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Abstract

Manipulation tasks such as grasping, bin picking, pick-and-place, or garment folding are
challenging for robots, as they involve contact-rich actions, complex dynamics, unstructured
environments, and high-dimensional visual data. In this work, we investigate an action-
centric perspective that predicts and then optimizes an action’s outcome. Using a data-
driven approach, the robot learns to solve a task by interacting with the real world via trial
and error. As learning quickly becomes costly in terms of time and resources, this work
proposes:

First, we simplify the robot’s action to manipulation primitives. By pre-defining a se-
quence of robot actions and motions, the controller only needs to decide where and which
primitive is applied. Second, a sliding window on an orthographic image predicts an ac-
tion’s outcome as if it were applied at a large number of planar poses. In particular, we
implement this as a fully convolutional neural network to efficiently infer actions in below
40ms on our hardware. Third, we generate real-world data for learning in a self-supervised
manner. This way, large-scale robot interaction in the range of hundreds of robot-hours is
made possible, as the training requires minimal human intervention. In particular, collisions
appear naturally during trial and error of manipulation tasks. We present an algorithm for
online trajectory generation to ensure a safe and robust data collection.

We apply these methods to various real-world tasks: First, we investigate grasping,
pre-grasping manipulation, and semantic (targeted) grasping in the context of bin picking.
Grasp success rates of over 95% in cluttered scenarios were achieved. In general, the action-
centric approach allows for generalization to unknown objects and environments. For 6DoF
grasping, a grasp rate of 90% was measured for unknown objects. Non-prehensile primitives
are introduced for pre-grasping manipulation that increase the subsequent grasp probability
and allow to empty a bin completely. By grasping multiple objects at once as well as inferring
multiple actions from a single observation, over 700 picks per hour were achieved. Second,
we extend grasping by targeted placing to an inter-dependent pick-and-place action. To
keep the flexibility regarding unknown objects, the user-defined target pose is specified by
a single visual demonstration at run-time. Trained on 25 000 actions, the system achieves a
translational placement error of 2.7mm. Third, a bimanual system learns garment folding
from an initially crumpled state. A success rate of 93% with an average fold duration of
under 120 s was achieved. As for all tasks, the capability to generalize, e.g. to garments of
unknown textile, shape, and color, was demonstrated.
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Zusammenfassung

Manipulationsaufgaben wie das Greifen, der Griff in die Kiste, das gezielte Ablegen von
Objekten oder das Falten von Kleidungsstücken sind für Roboter herausfordernd, da sie
kontaktreiche Aktionen, eine komplexe Dynamik, unstrukturierte Umgebungen und hoch-
dimensionale visuelle Daten erfordern. In dieser Arbeit wird ein aktionsorientierter Ansatz
untersucht, der den Erfolg einer Aktion vorhersagt und darauf aufbauend optimiert. Der
Roboter löst eine Aufgabe, indem er mit der realen Welt interagiert und durch Versuch und
Irrtum lernt. Solche datengetriebenen Methoden sind jedoch zeit- und ressourcenintensiv.
Um dennoch praktische Manipulationsaufgaben lösen zu können, schlägt diese Arbeit vor:

Erstens, werden Aktionen des Roboters zu Manipulationsprimitiven vereinfacht. Dabei
wird eine Trajektorie und/oder eine Sequenz von Aktionen für eine spezifische Aufgabe de-
finiert, sodass der Roboter nur entscheiden muss, wo und welches Primitiv ausgeführt wird.
Zweitens, wird ein Sliding Window auf einem orthografischen Bild verwendet, um den Er-
folg einer Aktion als skalare Größe vorherzusagen. Durch das Verschieben des Fensters kann
der Erfolg für eine Vielzahl an unterschiedlichen Posen abgeschätzt werden, sodass dann die
vielversprechendste Aktion ausgewählt werden kann. Insbesondere wird dies als vollständig
faltungsbasiertes Neuronales Netzwerk (fully convolutional neural network) implementiert,
welches auf der verwendeten Hardware effizient Aktionen in weniger als 40ms berechnen
kann. Drittens, wird ein Schwerpunkt auf eine umfangreiche und skalierbare Datengenerie-
rung in der realen Welt gelegt. Ein selbstüberwachtes Training mit minimalem menschlichen
Eingriff ermöglicht das Aufnehmen von mehreren 10 000 Aktionen in hunderten von Ro-
boterstunden. Beim Erlernen von Manipulationsaufgaben treten unvermeidlich Kollisionen
auf, die eine sichere und robuste Datenerfassung erschweren. Wir präsentieren Ruckig, einen
Algorithmus zur Berechnung zeitoptimaler Trajektorien von Bewegungen zwischen belie-
bigen kinematischen Zuständen mit Geschwindigkeit-, Beschleunigungs- und Ruckgrenzen.
Seine Echtzeitfähigkeit ermöglicht den sicheren Umgang mit Kollisionen.

Wir wenden diese Methoden auf verschiedene Aufgaben an: Erstens, wird das Greifen,
die Manipulation vor dem Greifen und das semantische (gezielte) Greifen im Kontext des
Griffs in die Kiste untersucht. Der Roboter probiert in einem typischen Training etwa 25 000
Griffe innerhalb von 100 h aus, und trainierte mit diesem Datensatz das Neuronale Netz-
werk. In unübersichtlichen Szenarien wurden Greiferfolgsraten von über 95% erzielt. Im
Allgemeinen ermöglicht der aktionsorientierte Ansatz eine Generalisierung auf unbekann-
te Objekte und Umgebungen. Beim 6DoF-Greifen wurden für unbekannte Objekte eine
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Greifrate von 90% gemessen. Zusätzliche Primitive für die Manipulation vor dem Greifen
ermöglichen es, die nachfolgende Greifwahrscheinlichkeit zu erhöhen und damit eine Kiste
vollständig zu leeren. Durch das gleichzeitige Greifen mehrerer Objekte und die Vorhersage
mehrerer Aktionen aus einer einzigen Beobachtung wurden Geschwindigkeiten von über
700 Griffen pro Stunde (PPH) erreicht. Zweitens wird das Greifen durch gezieltes Ablegen
zu einer voneinander abhängigen Pick-and-Place-Aktion erweitert. Um die Flexibilität in
Bezug auf unbekannte Objekte zu erhalten, wird die Zielposition durch eine einzige visuelle
Demonstration zur Laufzeit vorgegeben. Mit 25 000 Aktionen trainiert, erreicht das System
einen translatorischen Fehler von 2.7mm zur Zielposition. Drittens lernt ein zweiarmiges
System das Falten von Kleidungsstücken aus einem anfänglich zerknitterten Zustand. Es
wurde eine Erfolgsquote von 93% mit einer durchschnittlichen Faltdauer von unter 120 s
erreicht. Wie bei allen Aufgaben wurde die Fähigkeit zur Generalisierung, z.B. auf Klei-
dungsstücke unbekannter Textilien, Formen und Farben, nachgewiesen.
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Chapter 1

Introduction

Robotics research is driven by some of the wildest dreams of mankind: Replacing human
labor and workforce with powerful and flexible machines, making use of automation to
increase productivity and welfare, but also having intelligent machines that assist and ease
our day-to-day life. However, despite all the progress made in recent years, the state of
robotics is still far from those noble goals. There are various reasons and challenges, but
of paramount importance is the great complexity that robots have to deal with in the
real world. Truly helpful robots need to successfully operate in an unfamiliar, changing,
and non-deterministic environment. Therefore, sensors are required to observe the robot’s
environment and allow it to re-plan its task execution according to the newest available
information. The robot acts on the environment by controlling its motors to follow a
desired trajectory. Mapping sensor data to motor torques is the core of all robotic software;
equally for industrial robot arms, humanoid robots, or autonomous vehicles.

This mapping is challenging even for simple and well-confined applications: First, high-
dimensional sensor input like visual data is oftentimes required to observe and provide a
sufficient level of detail about the environment. For example, a camera image is a matrix
of millions of values that need to be understood by the robot. Second, sensor data might
be noisy, incomplete, and just a partial observation of the actual real-world state. Third,
motor torques are an abstract and unintuitive measure for solving relevant tasks. The robot
controls its environment only indirectly, and the effect of motor torques on the environment
is challenging to predict. Fourth, the robot usually requires prior knowledge about the en-
vironment, itself, or general physics to solve a task. As integrating all these requirements
into a truly universal robot controller is too far ahead, robots are constrained to specific
tasks.

In this work, we focus on robot arms manipulating their environment. In particular,
tasks like grasping or pick-and-place take an essential role as a building block for further,
application-specific manipulation. The robot needs to combine visual information and prior
knowledge in a way that allows a robust yet flexible task execution. To highlight these
difficulties, this work focuses on the setting of bin picking. Here, a robot grasps objects

1



2 CHAPTER 1. INTRODUCTION

out of an unstructured environment like a randomly filled bin. In comparison to general
robotic grasping, bin picking emphasizes challenges like partially hidden objects and an
obstacle-rich environment.

Classical approaches have been object-centric and model-based. In industrial use cases,
state-of-the-art techniques localize the target object via pose estimation and manipulate in
a pre-defined manner relative to the object. This object representation greatly simplifies
programming, for example, to allow a target pose for pick-and-place. However, extracting
objects out of a scene remains challenging in general, and even more so for dense clutter or
soft objects. Moreover, unknown objects do not work.

In research, model-based approaches without knowledge of object instances can be
found. While these can be applied more flexibly, several issues have prevented widespread
adoption: First, these approaches require high-quality and complete geometrical informa-
tion about the scene. Practical solutions demand a single camera sensor that cannot observe
back sides. Second, a model-based solution assumes knowledge about the object, the envi-
ronment, and the robot that might not be available in reality. This often contradicts the
desire for good generalization to unknown situations.

In recent years, much progress has been achieved in the area of deep learning, in particu-
lar regarding learning from images and other high-dimensional data. In this work, we make
use of these innovations by developing a primarily learned and action-centric approach to
robotic manipulation. In general, the proposed method skips the object representation and
instead maps the sensor image directly to action success probabilities (or so-called rewards).
A key idea of robot learning is that the robot performs actions within an environment, and
tries to optimize for a scalar reward signal. With the cost of this training, data-driven
methods have the intrinsic capability to generalize to a certain degree, e.g. to unknown
objects. This way, learning allows to avoid the model building, contact dynamics, and
parameter estimation of model-based manipulation.

While this action-centric approach is (theoretically) able to learn arbitrary complex
manipulation tasks, the effort shifts to data generation for training. The robustness, task
flexibility, and generalizability of learned approaches are practically limited by the avail-
able amount of data. To achieve capable manipulation with limited resources, the overall
approach should (1) rely on learning only where necessary, (2) use data-efficient task formu-
lations and learning algorithms, and (3) be able to scale the data generation. Respectively,
this work deals with the following research questions: What aspects of manipulation should
be learned, and what aspects should be modeled classically? How can robotic manipulation
tasks be formulated so that the learning is data-efficient? What is needed to scale real-world
data generation for manipulation tasks?

In the following, chapter 3 introduces manipulation primitives as a level between model-
based and data-driven approaches. Briefly, a primitive is a pre-defined action and motion
that is applied at a (partially) learned position and orientation (pose). This way, the robot
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can apply its model-based kinematics and controllers. Moreover, it allows to utilize specific
deep learning architectures to efficiently predict an action’s outcome for a large number of
different poses, and then optimize over this search space.

Chapter 4 presents techniques for self-supervised robot learning. To allow large-scale
data collection, the robot should be able to generate data continuously, safely, and au-
tonomously. Amongst others, we derive approaches for safe collision handling and their
integration into our experimental setup.

Following, we explore different manipulation tasks in their respective chapter. Chap-
ter 5 deals with the fundamental task of grasping, and is divided into the subtasks for planar
(top-down) grasping (section 5.1), 6DoF grasping (section 5.2 and 5.3), pre-grasping manip-
ulation to better grasp objects afterwards (section 5.4), and semantic grasping of a target
object type (section 5.5). In chapter 6, our approach for pick-and-place allows to place
a grasped object at a precise position and orientation. Chapter 7 introduces a transition
model to predict the environment’s state after an applied manipulation primitive. This way,
multiple grasping or pre-grasping actions can be calculated in advance and used for manip-
ulation planning. Finally, chapter 8 presents our approach for the task of garment folding.
In comparison to grasping or pick-and-place, folding requires dynamic manipulation primi-
tives, even more challenging real-world data generation, and bimanual actions. This way, it
demonstrates the effectiveness of primitive-based manipulation and self-supervised learning
on a truly complex task.
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Chapter 2

Related Work

Our contributions in the subsequent chapters are built upon and inspired by numerous
works within and outside the robotics community. Robotic manipulation is a broad field,
and as such it accumulated ten-thousands of papers in decades of cumulative research. In
the following, we try to survey only the most important ideas relevant to our work. This
chapter intends to structure the state-of-the-art to better contextualize the contributions
of the following chapters.

As introduced in chapter 1, a primary differentiation for manipulation approaches is
the usage of prior information about the object of interest. Usually, this implies geometric
knowledge in the form of a 3D model like an object scan or a CAD file. While this might
be sufficient for static tasks like grasping, other more dynamic manipulation tasks would
greatly benefit i.a. from inertia or friction parameters. For soft objects, prior knowledge
might also be an object deformation model. On the other hand, relying less on prior object
information directly implies the need to know more about the manipulation action and
the ability to predict its outcome. Of course, this also becomes easier with explicit object
knowledge, but oftentimes implicit knowledge or manipulation planning under uncertainty
can be used instead. Recently, data-driven methods allow to forgo an explicit object model,

Object-centric Action-centric

Model-based

Learning-based

ours

Figure 2.1: Two major criteria for structuring robotic manipulation are the usage of (1) prior
knowledge about the object of interest (left-right) and (2) data-driven methods in comparison to
user-derived models (top-down).

5



6 CHAPTER 2. RELATED WORK

and therefore enable more flexible manipulation even with unknown objects. Moreover, ap-
proaches can specialize in object types to reduce the dependency on object information.
Fig. 2.1 shows object vs. action-centric approaches as a first, horizontal axis.

Second, we find the extent of learning used by the approach to be an important criterion.
Without any learning, user-defined analytical or numeric models for geometric, kinematic,
or dynamic predictions of the environment allow to plan and optimize manipulation actions.
In contrast, learning-based methods allow to infer these models implicitly or explicitly from
data. In the most extreme case, the complete robot controller, mapping raw sensor data to
motor torques, can be learned end-to-end by corresponding data or experience. However,
learning can be applied at various points for manipulation planning, and current research
deals about where it should be used. In general, learning can be introduced gradually, e.g.
to use it for hard-to-model parts of the manipulation planning only and keep analytical
models e.g. for kinematic calculations. In this context, we classify approaches into model-
or learning-based (Figure 2.1).

2.1 Classical Approaches

Both criteria of object-centric and model-based manipulation intersect naturally when ma-
nipulation is planned entirely based on an object model (lower left of Figure 2.1). His-
torically, these were the first approaches introduced for robotic manipulation more than
40 years ago. Even more than today, robotic grasping was of primary interest due to its
foundational role in further manipulation. In this regard, most classical approaches were
derived with grasping in mind and only extended slightly to other, more complex tasks.

In 2000, Bicchi and Kumar [13] surveyed the state-of-the-art for robotic grasping. Given
a geometric model of the object and the robotic gripper, a grasp can be analyzed regarding
its force closure on the object of interest. Commonly, contacts are assumed to be point
contacts, either frictionless (only normal forces), with friction (additional tangential forces),
or soft contacts (with torsional torques). A force closure is achieved when an object is in
a static equilibrium despite a wrench acting on it. Salisbury [103] derived an analytical
procedure to test for force closure. This is however only a necessary condition for a grasp,
as it also requires stability, e.g. against model errors or external wrenches. Therefore, the
forces of a quasi-static yet dynamic grasp model were commonly investigated, resulting in
the requirement of the stiffness matrix describing the grasp being positive definite [103].
Several grasp performance measures were introduced to summarize a grasp candidate, e.g.
by building upon force closure, controllability, dexterity, observability, or reachability. Com-
monly, these approaches were evaluated in simulation only, as object and gripper models
can be flexibly created [13]. In real-world experiments, however, errors occur naturally and
are inherent to a robotic system, primarily due to modeling simplifications or errors. Bicchi
and Kumar [13] argued that approaches at that time were not sufficiently considering grasp
robustness under imprecise finger placement.
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(a) Grasp planning inside the
GraspIt! simulator [86]

(b) Pick-and-place planning in-
side OpenRAVE [28]

(c) Transferring planned ma-
nipulation to a robot [28]

Figure 2.2: Examples of classical approaches of grasp generation.

With the introduction of GraspIt! [86] and other simulators in 2004, the focus shifted
towards a larger-scale grasp synthesis. As a common differentiation, grasp generation refers
to the generation of grasp hypotheses that are subsequently ranked by a grasp performance
measure. According to Bohg et al. [16], approaches differed mostly in the grasp hypotheses
generation. For ranking, the -metric by Ferrari and Canny [35] was widely popular. It
extends the force closure analysis to the grasp wrench space by computing the convex hull
over all wrenches that result in a stable grasp. The -metric corresponds to the radius of
the maximum sphere that is still contained within the wrench space, and it thereby in-
corporates both the stability as well as the robustness of the grasp. However, transferring
these approaches onto real-world robotic systems has still proven to be difficult. Then,
the pose of an object needs to be estimated by sensor data, and the resulting pose error
was found to have a great effect on the grasp stability [16, 123]. Moreover, all approaches
presume an object model or high-quality scan, although a single camera sensor is only able
to view parts of the object. Shape completion is an approach for constructing a full 3D
model of an object or scene from partial observations [121]. Prior information based on
familiar objects or general symmetries allows the system to use these classical approaches
from sensor observation. However, unknown objects are always able to break the shape
completion and the downstream manipulation, rendering them unreliable for the general
case. These challenges motivate the usage of learning to let the robot explore and identify
grasps from real-world experience.

Other manipulation tasks were studied much less frequently, even more so in a similar
manner using analytical models. Task-oriented grasping extends grasp planning by inte-
grating constraints of downstream manipulation tasks. Sahbani et al. [102] identifies the
primary difficulty as the modeling of the task. In this regard, general measures like the
manipulability of the robot or transmission of velocities or forces onto the object were in-
troduced as optimization criteria during grasp planning. Representative for more complex
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manipulation, Dogar and Srinivasa [29] evaluated pushing actions for pre-grasping manipu-
lation. As tasks become more dynamic and require force analysis in motion, the analytical
models become more complex to compute and optimize. First and foremost, however, model
identification and subsequent transfer into the real world become the limiting challenge.

2.2 Object-based Learning

Most approaches presented so far require the pose of the object to be known. Moreover,
pose estimation is particularly relevant for industrial tasks like bin picking, as a known pose
allows to (1) grasp at pre-defined points and even (2) place the object precisely. While pose
estimation was a major bottleneck for transferring classical grasp planning to real-world
execution, data-driven methods have tackled some of those challenges in recent years [65].
These include dense clutter and occlusions, changing lighting conditions and sensor noise,
as well as the required flexibility regarding the object type. While classical approaches like
the Iterative closest point algorithm [24] exist, they usually require an object-specific and
therefore expensive, manual tuning to achieve a satisfying task performance [65].

Modern approaches for 6D pose estimation are commonly based on a CNN! (CNN!),
either by solving an underlying classification (within a spatial discretization) or a 6D re-
gression task. Nearly all approaches rely on supervised learning utilizing a large dataset of
color-, depth- or point cloud data with labels of the visible object poses. Xiang et al. [126]
introduced PoseCNN for 6D pose estimation of different object classes from images. It
splits the calculation into a first localization of the object’s center within the image, a sec-
ond estimation of its distance, and a third regression of a quaternion representation of the
object’s orientation. More recently, OP-Net by Kleeberger and Huber [64] achieved state-
of-the-art results in terms of average precision and computation time. Working directly on
the point cloud instead of intermediate image representations, the approach regresses the
object’s pose and confidence for a large number of subdivided volume elements.

All approaches share the need for large amounts of labeled data and rely on their quick
generation for easy integration of novel objects. Therefore, training on synthetic data from
simulation is dominating current approaches. Here, labeled data is abundant as the object
pose annotations are perfectly known for all cases. However, transferring trained approaches
into the real world creates the sim-to-real gap, as the real data distribution might differ
from the simulated training data. The sim-to-real gap for pose estimation is smaller than
for a complete manipulation simulation, as only the synthetic sensor data needs to match
the real input data. Besides photorealistic image rendering and user-defined camera models
for point clouds, data generation typically involves dropping objects into the scene from
random configurations in simulation. Particularly for bin picking scenarios, this ensures a
diverse and cluttered training set with expected object configurations.
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Figure 2.3: Learning enables skipping an intermediate object representation prevalent in prior
manipulation approaches, opening the door for generalization to unknown objects.

2.3 Robot Learning

So far, these approaches have been using an intermediate object representation and relied
on analytical models or heuristics, written into code by a human programmer. Robot learn-
ing takes a fundamentally different approach. Here, the robot infers strategies for solving
manipulation from data, corresponding to a mapping between two domains. Data-driven
methods allow mappings that were too complex or tedious for a human to program, in
particular mapping from raw visual sensor data to an output signal like motor torques,
motor velocities, or manipulation success probabilities. As sketched in Figure 2.3, this flex-
ibility enables robot learning to skip intermediate object representations and map directly
to grasp poses or robot actions. Therefore, robot learning can be naturally used for action-
centric approaches. This way, learning enables approaches that can generalize to unknown,
never-seen objects.

2.3.1 Influencing Works

Historically, the work of Saxena et al. [105] has influenced later approaches to robot learning
significantly. Here, the grasp point was estimated by a logistic regression taking different
edge and texture filters of a (depth) image as input. This way, the model does neither
try nor require to use a 3D object representation or analytical formulation, but focuses
solely on the object features that cause a good grasp. The regression model was trained on
synthetic labeled data via supervised learning and was able to generate successful grasps
for objects not seen in the training set. However, the manual creation of object features
held back this approach until the widespread emergence of deep learning around 2014.

In 2016 and 2017, several influencing papers were published. Similar to [105], Pinto and
Gupta [94] investigated the problem of planar grasping from depth images. They used a
convolutional neural network (NN) to learn a mapping from a window patch, representing
the xy-translation and single rotation of a grasp, to a grasp success probability. In partic-
ular, the NN learns directly from the sensor input without any manual feature selection;
this however increases the demand for more data. For this reason, they scaled the data
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(a) Pose estimation of house-
hold objects for grasping [126]

(b) Learning pushing and
grasping primitives [128]

(c) Large-scale data collection
for end-to-end learning [73]

Figure 2.4: Examples of robot manipulation with different extent of learning.

collection by 40 times over prior works, resulting in a dataset of 50 000 grasp attempts
recorded in 700 robot hours. The work achieved a grasp success rate of 73% for previously
seen objects and 66% for unknown objects, with good qualitative results even in clutter.

Levine et al. [73] advanced the real-world data collection even further to over 800 000
grasp attempts from multiple robots over months. While keeping planar grasps, the work
differed in the used action space: In comparison to prior works focusing on the binary
classification of a single grasp pose, the NN controls the Cartesian velocity of the end-
effector from an over-the-shoulder RGB camera. Prominently, this approach also needs to
learn the hand-eye-calibration that is else provided by the user. In this regard, the work
introduced more general reinforcement learning (RL) algorithms to robotic manipulation
tasks.

Mahler et al. [82] improved grasp success rates by combining a convolutional NN with a
large yet synthetic grasp dataset. The dataset included 6.7 million grasps with a depth im-
age patch that represents the planar position, angle, and depth of the grasp, and a labeled
analytical grasp quality metric. The resulting NN can grasp known isolated objects with a
success rate of 93% and achieves state-of-the-art results on unknown objects. Two contri-
butions were essential to the field: First, it showed that deep learning in combination with
large-scale analytical grasp metrics can accelerate and improve grasp generation. Second,
the transfer gap from real-world to synthetic depth images could be bridged successfully
via deep learning.

In the following, we survey robot learning for manipulation systematically. Approaches
differ, both from their theoretical background as well as their practical implementation, in
the data source, the action space, and the observation space. In this regard, the fundamental
questions for robot learning are: Where does the knowledge come from? What does the
policy control? What does the policy sense in the environment?

2.3.2 Data Source

Sahbani et al. [102] classify approaches for learning robot manipulation by their data source
into either object- or human observation-based. In accordance with [16], we extend this
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classification by synthetic data sources from simulation or analytical models.

Real-world Direct interaction between the robot and the real world allows the best
transfer to applications, as the training and inference environment are usually similar or
even equivalent. However, this comes with a generally slow and costly data collection, not
only because of expensive robot time, but also because of safety or robustness issues, or
regular human intervention due to environment preparation or resets [32, 61, 72, 73, 90, 94].
Therefore, real-world data collection is generally desirable but difficult to scale. For this
reason, overfitting the robot due to too few trial and error interactions remains problematic
[72, 90].

Simulation By replicating the real-world environment virtually, simulation aims to pre-
dict the relevant physics of the manipulation task. This allows for a much more scalable
data generation, as a simulation can be easily accelerated and parallelized. Moreover, it
allows full control and knowledge over the environment which might be helpful during train-
ing. However, the learned policy needs to transfer to its real-world application. Two major
challenges are: First, the implemented physics model might only approximate the reality
due to analytical or numerical shortcomings. In general, current state-of-the-art simulators
such as Bullet [25] or Mujoco [120] struggle with robust contact dynamics, mostly because
of their underlying mathematical discontinuity. Second, modeling the real environment in
simulation is a difficult task, as parameters such as inertia matrices or friction parameters
are hard to measure. [16, 123] explain further challenges in simulating highly unstructured
environments.

Nonetheless, learning in simulation has found widespread adoption due to the data
consumption of deep learning [18, 107, 119, 124, 128]. Domain adaption is the task of
bridging the sim-to-real gap, usually by making the policy robust to domain shifts by
randomizing the simulation [18, 119]. Other techniques are an active field of research [66].

Analytical Models While simulation can be seen as a comprehensive end-to-end model,
we differentiate simplified analytical models that focus on specific components of the prob-
lem. In particular, models developed for manipulation planning (section 2.1) are commonly
used as a data source for learning [81, 82]. In comparison to simulation, analytical models
are faster to compute, easier to implement, and better suited for customization.

Human Annotation or Demonstration Human input as a data source for learning
allows to transfer prior knowledge from the human into the robotic system. This can either
be done as data annotation (labeling pre-recorded sensor data, commonly in the form of
mapping observations to robot actions [129]) or as human demonstration (recording human
interactions within the environment, [84, 112, 113, 92]). While the latter is more challenging
due to the transfer from the human to the robot, it is usually faster and more intuitive to
perform. In general, human input is the least scalable way to generate data, although
several ways to speed up annotations (e.g. via online outsourcing [113]) or demonstrations
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(e.g. via custom tools [112]) have been proposed. Multiple data sources can be combined
to be used in parallel or subsequently, e.g. human demonstrations are oftentimes used as
an initial policy to guide further exploration with real-world data.

2.3.3 Observation Space

Kroemer et al. [66] gave a recent survey about learning for robot manipulation, focusing on
skill policies and environment representations. This representation of the observation space
is essential as the input for the robot’s policy, however, it also influences the structure of
the policy and other properties of the overall system. For example, a robot might use a
combination of different sensors, multiple images from different perspectives, or an explicit
temporal history by taking the last n measurements as input. Here, [66] differs between
object-level, part-level, or point-level representation.

Object- or Part-level Object representations capture information about the complete
or partial object of interest. Oftentimes, manipulation is about objects regardless of low-
level features [27, 59, 64, 84]. The observation space might include the object’s pose,
geometry, mass, or other material properties. The representations can be extended by
higher-level information such as semantic labels, affordances, or object relations [59]. Gen-
eralization to different tasks implies variation of these properties, e.g. to allow manipulation
within novel situations or of unknown objects. In this regard, properties that are excluded
from the observation space are implicitly learned and are therefore not able to generalize.
Low-dimensional properties such as the object’s pose are commonly able to generalize to
variation, however, high-dimensional properties such as the object’s geometry are usually
implicitly learned. Instead, generalizable manipulation can be planned by finding corre-
spondences between similar objects [27].

Part-level representations commonly focus on parts that are associated with manipu-
lation actions and affordances. Practical examples can be a tool handle for grasping or a
bin for placing objects [14]. Parts allow to represent an object in a more granular way,
with improved geometrical approximation, relationships between parts, and action-related
constraints. Moreover, correspondences at the part level allow for improved generalization
across objects, as objects oftentimes share parts intended for interaction (such as handles).

Point-level High-dimensional input such as point cloud, pixels, or voxels can capture
low-level features of the robot’s environment [18, 40, 53, 61, 72, 73, 80, 118, 128, 130].
Sensors like RGB or depth cameras generate this input data with minor post-processing.
We differentiate between point clouds as a list of 3D points, and pixels (images) or voxels as
a grid-like structure for two or three dimensions respectively. In this regard, depth images
can be understood as a structured point cloud along the image plane. Pixels, voxels, and
points usually contain depth and/or color modalities, but can also include downstream
semantic information such as object segmentations [106]. Convolutional layers are used
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to predict higher-level features from pixel or voxel structures. In comparison, specialized
architectures such as Point-Net [95] directly operate on point cloud data.

In general, object representations build upon point-level features. While 2D images al-
low for a compact representation in comparison to voxels or point clouds, they suffer from
the pixel’s uni-modality and e.g. resulting unknown back side of the object. In contrast,
point clouds can be fused from multiple sensors to increase the resolution and the visibility
of the environment. A pixel or voxel representation can easily be rendered from a point
cloud.

Correspondences for generalization can also be found in point-level features. In partic-
ular, robots learn to identify the necessary low-level features for manipulation tasks and
therefore can transfer to unknown objects, scenarios, or higher-level representations.

2.3.4 Action Space

The action space includes all possibilities of how the robot can act within and onto the
environment, and therefore defines the output space of the policy. In the end, manipulation
tasks are solved by moving the robot along calculated trajectories. On a low level, the robot
controller runs a real-time control loop (commonly more than 100Hz) that takes as input
a desired joint position, joint velocity, or joint torque and executes the respective motor
torques to achieve the desired configuration. The input trajectory needs to fulfill a range of
constraints, e.g. the robot’s kinematic position, velocity, or acceleration limits. Calculating
a valid trajectory is non-trivial, and various algorithms exist to calculate a trajectory from
an intermediate motion representation.

Commonly, these representations enable passing a desired motion to the robot’s con-
troller with a lower frequency than the real-time control loop. The algorithm will then
interpolate the trajectory, e.g. by calculating a path, a time parametrization, or just by
low-pass filtering. Typical representations are

• low-frequent (less than 1Hz) position waypoints that are reached by the robot subse-
quently, either in joint space or transformed via the robot’s inverse kinematics from
Cartesian space [56],

• mid-frequent (around 10Hz) velocities that are filtered for a smooth acceleration
signal, either in joint space or transformed via the robot’s Jacobian from Cartesian
space [73],

• mid-frequent joint accelerations that are restricted in a way that the future trajectory
will stay within the kinematic limits [62].

Cartesian waypoints allow to define the actions in the same space as the manipulation task
or common 3D sensor data, and therefore circumvent learning additional transformations
between spaces. Moreover, manipulation tasks are oftentimes about specific contacts and
less about free-space motions. Defining manipulation via waypoints such as grasp poses,
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place poses, or general contact poses allows for outsourcing the free-space motions to a
motion planner or trajectory generator. These waypoints are also an understandable and
natural representation of manipulation actions. By pre-defining arbitrary complex trajecto-
ries relative to a Cartesian position-waypoint, they can be applied to specific manipulation
tasks and not only free-space motions. Overall, the action space is inherently connected to
an intermediate representation of the robot trajectories.

Manipulation tasks are commonly solved by using the n dimensional joint space (e.g.
with six or seven degrees of freedom (DoFs) for robot arms), six-dimensional Cartesian
space, or a four-dimensional planar Cartesian sub-space. A planar action space sets two
degrees of rotation fixed and is oftentimes used for top-down manipulation. For example, the
end-effector might always point down (along the negative z-axis), but can freely translate
and rotate around z. Reducing the dimensionality of the action space can simplify the
learning problem drastically, and finding the smallest action space that can solve a task is
oftentimes a challenging first step. In the following, we differentiate between continuous,
discrete, and hybrid action spaces.

Continuous Actions Continuous actions are necessary to control a robot with arbitrary
precision. To also allow for arbitrary complex motions, the action space can be directly
mapped to the motor torque signals within the high-frequency control loop of the robot.
In practice, manipulation policies are rarely able to be faster than 10Hz due to the com-
putational complexity of image- or point cloud processing.

Instead, the action space maps to a velocity-like control of the end-effector. In many
recent works such as QT-Opt [61] for grasping, the action space controls the Cartesian
velocity of the equilibrium pose of the downstream impedance controller [18, 37, 38, 57, 73,
97]. With low positional gains, the robot will stay within its limits, however at the expense of
positional accuracy as well as low speeds. The impedance control is in particular beneficial
when dealing with contact-rich tasks, as it is commonly found in learning for manipulation.
If a contact or collision occurs, the impedance control will result in a smoothly increasing
force in the direction of the equilibrium pose, instead of a sudden stop of the motion. In
general, this is a very powerful and expressive approach, but it requires a lot of data due
to its comparably time-dependent and high-dimensional action space. It extends easily to
closed-loop control.

More recently, the action space covers the next Cartesian pose of the manipulation
action, typically with low frequencies such as 1/2Hz [56]. The trajectory from the current
state to the next estimated Cartesian pose was either calculated by direct profiles or with the
means of a complete motion planner including obstacle avoidance and time optimization.

Discrete Actions From a theoretical perspective, most algorithms for reinforcement
learning (RL) have been developed on top of discrete or even tabular action spaces [115,
87]. While many extensions for continuous action spaces have been proposed [93, 76],
discrete action spaces have several theoretical advantages. First, discrete actions simplify
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the mapping from an action a to an action value Q or estimated total reward r. Second, all
actions can the calculated and compared for maximum value. Third, the observation space
is also oftentimes discretized in space, e.g. for pixel or point cloud inputs. Then, the same
discretization of the Cartesian space can be used for the observation and action space.

In this regard, a common approach is to use a depth image in combination with an
action space of planar Cartesian poses [81, 130]. The viewing direction and the z-axis of
the frame are chosen to be parallel so that the image frame and planar plane correspond.
Then, the depth image can be centered at and oriented according to a planar action pose.
The transformed image - relative to the action pose - is oftentimes used to estimate the
value of an action. For grasping, this might correspond to a grasp quality metric or, when
normalized, to a grasp success probability. While images are spatially discrete, they can
however be transformed continuously e.g. by interpolating pixels. Finding a maximum value
becomes challenging as both the transformation as well as the value predictions might be
computationally expensive. For this, one continuous approach for optimization is the cross-
entropy method [81, 82]. Other approaches are based on image discretization and transform
and evaluate the image at a fixed set of poses. This can be either done on a random set of
poses [94], or at every possible pixel as an action pose [128].

When reducing the temporal resolution of actions, the most extreme simplification is
single-step actions for manipulation. Then, a complete manipulation task is solved with
a single action representation of arbitrary dimensions, computed entirely beforehand, and
then executed in an open-loop manner. Following related work [34, 36], we adopt the
term manipulation primitives for this approach. Oftentimes, the policy decides where to
apply which pre-defined primitive, reducing the complete action space to a single Cartesian
position and a discrete primitive selection.

In case a discretization exists that can solve a task, discrete actions have a range of
advantages in practice. First, they are comparably more data-efficient due to the limited
number of actions. Second, they are more precise as continuous actions require interpolation
and smoothing of the policy or the value function. In this regard, discrete actions lend
themselves for high-precision tasks, in particular in the context of open-loop primitives.
While continuous actions, combined with a closed-loop approach, might also allow for high
precision, the time dependency and slow execution create complexity in the learning process.

Hybrid Actions Continuous and discrete action spaces are not exclusive and can be
combined into a hybrid action space. Slightly different tasks or subtasks might benefit from
different action spaces. For example, task-specific grasping can be solved in a discrete space,
while the downstream task can be parametrized continuously [130]. Still, both should be
calculated simultaneously due to their interdependence. Residual learning is a branch of
research about using classical model-based approaches and learning an error function on
top. Here, hybrid action spaces are also used frequently [130].
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2.4 Task-specific Work

We introduce related work that is highly relevant to the tasks investigated furthermore.

2.4.1 Planar Grasping

In recent years, research on robotic grasping in unsystematic environments gained a lot of
traction. Bohg et al. [16] divided possible approaches into the grasping of known, familiar,
or unknown objects. For known objects, grasping is mostly reduced to object recognition
and pose estimation. More flexibly, this process can be extended by matching the similarity
of known objects to new or familiar objects. In the case of unknown objects, the approaches
can be split into analytical and empirical methods [102]. Analytical grasp synthesis relies
on the definition of a grasp quality measure, such as the force closure or other geometrically
motivated measures. However, these approaches usually need high-quality and flawless 3D
maps of the scene. Data-driven methods intrinsically develop generalization and error ro-
bustness, but suffer from the demand for large datasets. First implementations sampled
grasp candidates in a simulator and evaluated them based on an analytical measure [86].
In 2008, Saxena et al. [105] applied a probabilistic model to a mostly simulated dataset to
identify grasping points in image patches. More recently, Mahler et al. [82] built a large
synthetic grasping database with analytic metrics, used supervised learning to train a NN,
and applied it to bin picking [80]. Reducing the gap between simulation and reality is of
high priority in the robotic community [18].

Alternative to simulation, the system can be automated and trained in a large-scale
self-supervised manner. Our work is closely related to the research of Pinto and Gupta
[94]. They were able to retrain a NN within 700 h and achieved a grasping rate for seen
objects of 73%. Levine et al. [73] scaled up the data collection to 800 000 grasp attempts
on 14 robots. They trained in an end-to-end manner, including camera calibration, spatial
relationships, and time dependency. While deep RL showed impressive results in learning
from visual input in simple simulated environments [101, 87], direct applications of RL for
robot learning have proven to be more difficult. On real robots, continuous policy-based
methods have been applied to visuomotor learning, either in an end-to-end fashion [72] or
by using spatial autoencoders [38]. Quillen et al. [97] showed in a recent comparison of RL
algorithms for simulated grasping that simple value-based approaches performed best.

2.4.2 6DoF Grasping

For data-driven or hybrid 6DoF grasping, simulation and analytical metrics have been
explored so far. In this context, Gualtieri et al. [46] used a (mostly) model-based grasp
synthesis and focused on the grasp ranking. Here, a convolutional NN maps a rendered
depth image, corresponding to the viewpoint of the grasp from the approach vector, to
a learned grasp quality score. ten Pas et al. [118] extended this approach to multiple
viewpoints around the grasp pose to better consider spatial data of the environment.
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To avoid the costly rendering of the depth images, Liang et al. [75] proposed GPD,
an algorithm that learns analytical grasp metrics directly from point clouds. The grasp
evaluation makes use of the PointNet architecture to learn a grasp measure from 3D spa-
tial relations, and can include complex geometric structure of the contact area between
the gripper and the object. Qin et al. [96] developed a single-shot grasp proposal network
built upon the PointNet++ architecture. Still, the training data generation relies mostly
on antipodal grasps evaluated by a classical grasp quality measure. Furthermore, NNs for
point cloud processing are one to two orders of magnitude slower than convolutional NNs
for depth images.

Mousavian et al. [88] introduced a grasp sample NN based on a variational autoencoder
and simulated training data. Subsequently, an iterative grasp refinement step selects and
improves grasps taking the point cloud as input. Gualtieri and Platt [45] use a multiple
time-step and hierarchical approach that can learn a sequence of actions to focus attention
on the task-relevant parts of the scene. They model the grasp as a RL problem and develop
a set of constraints to find a suitable yet generally applicable subset of state and action
representations. These methods however suffer from their slow execution and low picks per
hour (PPH).

Recent works in shape completion have improved grasp success rates based on a single
depth image [121]. Lundell et al. [78] render multiple viewpoints from discrete angles
and use an fully convolutional neural network (FCNN) to predict the grasp quality at a
large number of 6DoF poses. To improve grasp rates in dense clutter, Murali et al. [89]
extended this concept to a learned collision-checking module. In contrast, Schmidt et al.
[107] chooses a single depth image as the state space. Here, a convolutional NN is trained
to predict the 6DoF grasp pose as a regression problem, without any grasp ranking. Due to
its non-stochastic and single-modal nature, this approach works only for isolated objects.

2.4.3 Pre-grasping manipulation

As modeling grasps with classical approaches is already challenging, even more complex in-
teractions like pre-grasping actions were studied less frequently. Within this scope, Dogar
and Srinivasa [29] combined pushing and grasping into a single action, enabling them to
grasp more cluttered objects from a table. Chang et al. [23] presented a method for ro-
tating objects to find more robust grasps for transport tasks. In recent years, the progress
of machine learning in computer vision enabled robot learning based on visual input [38],
oftentimes learned from simulated data. However, as contact forces are difficult to simu-
late, training of more complex object interactions for pre-grasping manipulation remains
challenging.

Alternatively, a robot can be trained in a self-supervised manner from real-world object
manipulation. An end-to-end approach for general grasping strategies comes with the cost
of sparse rewards and high data consumption. Kalashnikov et al. [61] trained an expensive
multi-robot setup for 580 000 grasp attempts, resulting in an impressive grasp rate of 96%
for unknown objects. Furthermore, the robots implicitly learned pre-grasping manipulation
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like singularization, pushing, and reactive grasping. In contrast, Zeng et al. [128] introduced
a pushing motion primitive and learned grasping and pushing in synergy by rewarding the
sparse grasp success. Using significantly less training data than [61], their robot was able
to clear a table from tightly packed objects.

2.4.4 Pick-and-place

Task-based grasping investigates the interdependence between grasps and the subsequent
task [74, 15, 91]. Regarding pick-and-place, Zeng et al. [129] used classical image matching
to pick-and-place in the broader sense of semantic grasping, without further requirements
for a precise place pose. While the robot was able to grasp objects out of clutter reliably,
grasping was trained on human-annotated data. Gualtieri et al. [47] learned pick-and-
place of 6DoF in simulation and were able to transfer the results to real-world cluttered
scenes. However, the robot is limited in generalizing to unknown object classes and novel
place poses. Besides grasping, some work has focused on individual subproblems of pick-
and-place. Jiang et al. [60] have focused on finding a stable place pose given a grasping
configuration. Zhao et al. [132] calculated object displacements during the grasping action
without an object model. Recently, Zeng et al. [130] have learned to pick and throw objects
into target bins, extending prior work of primitive-based grasping. However, future toss
actions do not influence prior grasps.

Pick-and-place is a popular task within Imitation Learning and RL. Finn et al. [39]
used meta-learning on multiple pick-and-place tasks to achieve one-shot imitation learning
for novel objects and scenarios. Their accuracy suffices for placing objects within a larger
box or bowl, however, their grasping approach seems restricted to non-cluttered scenarios.
Duan et al. [31] used one-shot imitation learning for the task of block stacking, including
training in simulation, virtual reality, and a final sim-to-real transfer. Singh et al. [110] has
learned robot manipulation in the context of Inverse RL. While their bookshelf scenario
is quite simplified in the context of pick-and-place, their method allows for an easy and
flexible definition of a goal state without an explicit reward definition.

2.4.5 Garment Folding

We use a bimanual robotic system for the task of garment smoothing and folding. In this
regard, bimanual robotic manipulation has been studied extensively in fields from surgical
robotics to industrial manipulation [111]. A dual-arm system extends the workspace, allows
for increased payload and for more complex behaviors than a single arm system [124, 71,
52, 54], but comes at the cost of higher planning complexity due to the additional DoFs
and self-collisions [33]. A promising line of research is to employ dual-arm systems for gar-
ment manipulation [42]. Garments are especially difficult to control and manipulate due to
their large configuration space, self-occlusions, and complex dynamics [41]. Recent works
have mainly focused on garment smoothing from arbitrary configurations [49], or garment
folding, assuming the garment has been initially flattened [124].
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As garment folding has many applications in hospitals, homes, and warehouses, interest
from research has increased in the last decade. Early approaches rely heavily on heuristics
and can achieve high success rates, but have long cycle times on the order of 10min to
20min per garment [30, 83, 6, 5, 117]. Recent methods have been focusing on learning goal-
conditioned policies in simulation [124, 53, 109, 116] and directly on a physical robot [70].

Garment smoothing aims to transform the garment from an arbitrary crumpled config-
uration to a smooth configuration [108]. Prior works have focused on extracting and identi-
fying specific features such as corners and wrinkles [30, 83, 114, 125]. Recent methods have
used expert demonstrations to learn garment smoothing policies in simulation [41, 53, 108],
however, these methods learn quasi-static pick-and-place actions that require a large num-
ber of interactions on initially crumpled garments. Ha and Song [49] introduced a novel
4DoF dynamic fling action parameterization learned in simulation that can achieve ∼ 80%
garment coverage within three actions. However, this parameterization is (1) limited to
fling actions, (2) fails to fully smooth garments, and (3) induces grasp failures in more than
25% of actions.
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Chapter 3

Learning for Manipulation

In classic literature, Mason [85] defines manipulation as the process of moving or re-
arranging objects in the environment. While this definition holds true within the scope
of this work, it also illustrates an object-centric point of view still prevalent in robotics.
Instead, we suggest changing the view on manipulation and defining it as a targeted spatial
change of the environment. This action-centric view has two advantages: First, it gets
along without an (even harder) object definition. For example, soft or loose objects do
not have a fixed coordinate frame that moving might refer to. Second, it emphasizes the
intention of the action, as manipulation is executed to solve a specific task. This different
perspective allows to correlate a robotic action with a task outcome directly, without the
need for intermediate representations like object or environmental models. Finding this
correlation between action and task outcome might be learned, for example by trial and
error.

In this chapter, we introduce our approach to manipulation from a general point of
view. First, we present manipulation in the notation of reinforcement learning (RL) (3.1).
After defining the visual state space (3.2) and the action space (3.3), we derive and mo-
tivate simplifications of our general approach (3.4-3.5). Section 3.6 and 3.7 describe the
foundational algorithms for data-driven RL. In the chapters thereafter, we apply and adapt
this approach to various real-world tasks.

3.1 Reinforcement Learning

Reinforcement Learning (RL) is a powerful framework to describe, and more importantly,
solve general robotic tasks. It applies machine learning to solve a task by learning from data
instead of explicit programming. Although we simplify the general RL setting significantly
further (e.g. by reducing it to a single or very few time steps), we want to briefly introduce
its formal definition.

21
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Agent
with policy π

Environment
with world-model T

Reward rtState st Action at

Figure 3.1: A summary of reinforcement learning (RL): An agent tries to maximize the collected
reward R =


rt over multiple time steps t by observing and acting within an environment according

to a learned policy π.

3.1.1 Markov Decision Process

A Markov decision process (MDP) is defined by the tuple (S,A, T , p0, r) with a state s ∈ S,
an action a ∈ A, a transition model T , the initial configuration p0 and a reward function
r. The transition model T : S × A → p(S) maps an action in a given state s to a new
state probability p(s). The reward function r : S ×A → R maps an action in a given state
to a single scalar r. The goal of an agent is to maximize the discounted sum of collected
rewards given by

R =

N

i

γir(si, ai) (3.1)

with the (possibly infinite) episode length N . The discount factor γ < 1 weighs the ex-
pected rewards in the near future more than in the long term. This is motivated by the
higher uncertainty of rewards in the distant future [115].

The solution of a RL problem is a policy π

π : S → P (A) (3.2)

mapping a state st to a probability distribution of actions at every time step t. To find a final
executable action at, a policy might be split into a probability distribution ψ : S×A → [0, 1]
over the state-action space and a subsequent selection function σ. The first function ψ gives
a probability for every possible action at ∈ A in the current state st. The selection function
σ either maps directly to an action at or to another random variable conditioned on action
at. The overall policy can then be written as the composition π = σ ◦ ψ. Some literature
keep the name policy for the probability distribution ψ alone.

3.1.2 Finding a Policy

Most approaches to RL build upon the state-value function Vπ(s). Let E(x̂) denote the
expected value of a random variable x̂. The state-value equals the expected reward starting
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from state s and following a given policy π:

Vπ(s) = Eπ{Rt|st = s}. (3.3)

Similarly, the action-value function Qπ(s, a) denotes the expected reward starting from
state s, then performing action a at the next time step and afterwards following a given
policy π:

Qπ(s, a) = Eπ{Rt|st = s, at = a}. (3.4)

Presuming a known action-value function, a typical policy is the greedy action

a∗ = argmax
a

Qπ(s, a). (3.5)

Based on these definitions, different approaches to the general RL problem were developed.
First, state-value based solution methods estimate the expected reward for a set of possible
states, e.g. via the Bellmann equation [115] update, and then apply a selection function σ
to find an action. The set of states S can be estimated by applying a number of actions to
a known model of the environment T , leading to so-called model-based RL. Alternatively,
composing the Qπ-function with a selection function σ, e.g. as in Equation 3.5, works with-
out an explicit transition model and is called model-free RL. Here, the Qπ-function will
intrinsically learn information about the transition model of the environment. The set of
evaluated actions A is preferred to be discrete and finite, similar to the set of states in
model-based RL.

Policy-based solution methods learn the policy π : S → A directly as a model-free
approach. In particular, they can be extended by an action-value function to actor-critic
methods. First, a normal action-value function Qπ(s, a) is learned to predict the expected
reward after an action a. Subsequently, a policy π is learned by maximizing the action-value
Qπ(s,π(s)). This way, actor-critic methods allow to learn a policy from a known action-
value function, and in particular do so for continuous, high-dimensional, and uncountably
infinite action sets in a straightforward manner. However, because the policy depends on
the action-value, actor-critic methods are prone to learning and amplifying errors. [115]

3.1.3 Typical Challenges

RL problems suffer from typical challenges independent of the approach. The long-term
goal of a policy is to maximize the expected reward. To do so, the agent needs to know
and explore the environment and its reactions in the first hand. This leads to a discrepancy
between exploration vs. exploitation which is often individual to each task. At t = 0 of an
unknown MDP, the agent explores the state-action space by choosing a uniform random
action. Often, a parameter ε ∈ [0, 1] is defined as a probability of choosing a random
action instead of a learned policy π. By decreasing ε over time, the exploration shifts to an
exploitation phase.
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Exploration is usually done by trial and error in RL. This implies that all learned
information originates from trying out successful or unsuccessful actions. For many tasks,
this results in a large number of required actions and low data efficiency. For manipulation
tasks like grasping, a large number of possible grasps for even one object type exists that
needs to be explored.

For many real-world RL problems, the reward function rt is sparse with rt = 0 for most
t. Those reward functions correspond to problems that can only solved by a good sequence
of actions. Then, if a high reward is given, it cannot be assigned to a single action. As an
example, a successful garment fold might be rewarded by a single high reward afterwards.
However, the folding might have required a large number of smoothing, turning, folding,
or stretching actions to work out at the end. Finding out which actions are relevant to
the final reward is difficult with a single scalar. Additionally, the importance of actions for
a reward might be unrelated to the temporal proximity to the reward. This challenge is
known as a time-delayed reward. [115]

3.2 Observing the Scene

The agent observes and estimates its environment in a state s ∈ S. The state corresponds
to all information that is available to the robot for planning or reacting. For manipulation
tasks, visual sensors like a color (RGB), depth (D), or combined (RGBD) camera are com-
monly used as primary input. Interoceptive sensors like force sensors or motor encoders
are, at least indirectly, used for lower-level motion control. For completeness, there exists
work for manipulation with other sensor types like tactile sensors, electromagnetic sensors
(e.g. RFID), LIDAR sensing, or microphones for audio signals.

In this work, the robot calculates manipulation actions based on a depth-sensing cam-
era. Stereo cameras, usually with an infrared projector to improve depth estimation, are
available at a reasonable price. Typically, the raw camera output is given as a point cloud
defined by a list of points i with position (x, y, z)i. Some cameras include color information
(r, g, b)i as a textured point cloud. The number of points is in the order of 1× 105 or
more. Usually, a recorded point cloud is projected into the image space. This is done for
the following reasons: (1) an image grid gives a spatial context for a point cloud that (2)
reduces the data size of the state significantly, as an image is a much denser representation
and (3) is used by a lot of downstream algorithms in computer vision. A point cloud is
projected to an image plane according to a linear mapping
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chaining the camera (extrinsic) transformation RT , the projection matrix P , and the cam-
era intrinsics I. The intrinsic and extrinsic transformation needs to be calibrated for each
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experimental setup. A point cloud can be projected into an image via different projections:
First, the perspective projection PP maps points to a picture plane, projecting distant ob-
jects as smaller than nearer counterparts, resulting in lines parallel in world coordinates
vanishing at a single point. This projection approximates cameras and the human eye.

PO =
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(3.7)

Second, the orthographic projection PO has a direction of projection orthogonal to the
projection plane. This way, every plane of the scene appears in affine transformation on
the image, and the distance of an object does not change the position within the image
plane. Equation (3.7) shows the mapping as used furthermore, mapping points from inside
the so-called viewing frustum, a pyramid with dimensions to the left l, right r, top t, bottom
b, near n, and far f side. Figure 3.2 shows example images of a bin in orthographic and
perspective projection.

(a) Perspective Projection (b) Orthographic Projection

Figure 3.2: Example of a perspective and orthographic image projection on the same point cloud
data. While the perspective projection shows more distant objects smaller, the orthographic pro-
jection preserves distances between points.

Naturally, the observation of the environment is limited by the field of view of the cam-
era. In particular, a single camera is only able to record images from a single perspective,
leading to viewing “shadows” and undercuts in the depth estimation. These are prominent
when dealing with high objects or dense clutter within the observed scene (Figure 3.2).

3.3 Actions for Manipulation

The agent interacts with its environment by executing actions a ∈ A. This action space
is a fundamental distinction of approaches for learning manipulation. In the following, we
will introduce a primitive-based action space.
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3.3.1 Robot Kinematics

Let us first recap the kinematics of a robot. In this work, a robot arm refers to a serial
kinematic chain with known relative frames between each link. Commonly, the Denavit-
Hartenberg convention is used to parametrize the kinematic chain. Then, the transforma-
tion Tn−1

n between the reference frames n and n− 1 is given by

Tn−1
n =





cos θn − sin θn 0 an−1

sin θn cosαn−1 cos θn cosαn−1 − sinαn−1 −dn sinαn−1

sin θn sinαn−1 cos θn sinαn−1 cosαn−1 dn cosαn−1

0 0 0 1



 (3.8)

with the two angles θ and α, as well as two distances a and d. The end of the last chain is
known as the tool center point (TCP) or end-effector of the robot. The pose of the TCP is
then given by

TN =

N

i=1

T i−1
i (3.9)

The number of actuators N in between the links is usually equal to the DoF of the robot.
Common robot arms have 6 or 7 DoF to reach a target position with a given orientation.
The vector of all actuator positions q = {θ1, · · · , θN} is referred to as the joint position q
of the robot. Let p denote a possible Cartesian end-effector pose, combining a translation
t and a rotation R.

The forward kinematics fk(q) → p maps a joint position to an end-effector pose ac-
cording to Equation 3.9 for a kinematic chain. Let J = ∇qp(q) be the Jacobian of the
robot’s pose in respect to its joint positions. The inverse kinematics f−1

k (p) → q maps
an end-effector pose to a joint position. The inverse kinematics is much more complex, as
joint positions are not unique or might not exist for a target pose p. In case of more than
6DoFs, the robot usually has infinite solutions, the so-called null-space of the robot. For
example, a robot with 7DoFs resembling a human arm can move its elbow while keeping
the end-effector pose fixed. There exist analytical and numerical approaches for finding
the inverse kinematics. While analytical methods are usually preferred due to their faster
and more exact calculation, they in general exist only for robots with less than 7DoFs.
Otherwise, numeric approaches allow to solve for joint positions with flexible secondary
goals. Typically, the inverse Jacobian is used to iteratively refine the current end-effector
pose q′ = q − J−1(q)∆p to its target value.

3.3.2 Coordinate Frames

The start of the kinematic chain T0 relative to a world frame is called the robot’s base
frame. The end-effector pose p = TN is naturally given in this coordinate frame. A robot
commonly manipulates the environment with a gripper as its end-effector. Here, the TCP
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or gripper frame is usually defined as the fingertip of the (closed) gripper. Point clouds and
images are taken in the camera frame. The camera can be mounted at the flange of the
robot (the so-called eye-in-hand configuration) or externally with a fixed transformation to
the robot’s base frame. While both configurations enable different approaches regarding
manipulation, this difference is irrelevant throughout this work from an algorithmic point
of view. From a more practical perspective, they require different calibration techniques
and robotic motions. Additionally, we define a scene frame in the center of the currently
relevant scene. For the task of bin picking, this refers to the center of the current bin and
allows to easily switch between bins.

Besides the full homogeneous transformation that corresponds to a pose, its 6DoF
parametrization is of interest furthermore. A pose p can also be expressed by

p ∈ SE(3), p = {x, y, z,α,β, γ} (3.10)

via the translation (x, y, z) and the Euler-angles (α,β, γ) of the rotation. Figure 3.3 gives an
example for the TCP relative to the scene (bin) frame. Note that we use an unusual Euler-
angle convention: An extrinsic rotation α around z is followed by two intrinsic rotations β
and γ around x′ and y′ respectively. First, the pose p is then a simple extension of a planar
pose

p̃ ∈ SE(2), p̃ = {x, y,α} (3.11)

corresponding to a 3DoF parametrization (or sometimes 4DoF with the height z). More-

x

y

z

α

γ

β
d

Figure 3.3: The pose of the gripper in the scene frame. The rotation is defined by an extrinsic
rotation α around z, following intrinsic rotations β and γ around x and y′ respectively.

over, decoupling the first rotation α from the intrinsic β and γ angles is helpful for pose
definitions relative to the camera frame (as shown in Figure 3.4). It allows keeping α aligned
to the rotation of the image plane, and both β and γ fixed to the prior transformation α.
In particular, rotating the camera around its viewing direction does not alter the angles β
and γ. This work makes extensive use of the TCP’s pose relative to the camera frame. If
not otherwise stated, the camera observes the bin in a top-down view, with only a fixed
offset along the z-axis between the camera and scene frame.
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3.3.3 Manipulation Primitives

Let M denote a set of manipulation primitives. The key idea is to define a primitive as a
sequence of motions, actions, or arbitrary robot control signals that are parametrizable by
very few to zero parameters. The parameters allow to make the task execution of the robot
flexible and adaptable at run-time. At the same time, the high-level motion of the primitive
allows to integrate task-specific knowledge into the robot’s behavior. A primitive should
have as many parameters as necessary to solve a task under all circumstances. On the other
hand, it should have as few parameters as possible to simplify the run-time adaption.

In general, a primitive m is defined by a parametrizable trajectory

q = mu(t) for t < T (3.12)

mapping a time t and the parameters u to the robot’s joint position. Here, the joint position
q may also include the gripper position d. Let T be the duration of the manipulation
primitive. Two exemplary primitives are: First, a common use-case is to have a trajectory
in Cartesian space r(t) that is parametrized only by the start pose u = p. The Cartesian
trajectory is then executed relative to p, and the robot’s inverse kinematics calculates the
final joint trajectory q. Given a set M of these primitives, the robot needs (only) to decide
where to execute which primitive. Formally, this corresponds to a policy

π : S → M× SE(3) (3.13)

mapping a state s to a pre-defined manipulation primitive m parametrized by its starting
pose p. For the task of grasping, a simple primitive might follow a straight-line path parallel
to the robot’s fingers (in positive z-direction) until the TCP reaches the desired grasp point.
The position of the grasp point is specified by the pose p, and the orientation defines the
approach direction.

Second, a dynamic fling motion is another example of a manipulation primitive. Simi-
larly, the grasp pose p is a first parameter. Afterwards, the robot follows a trajectory that
is, besides a smooth transition in between, independent from the initial grasp point. The
height h of the dynamic fling trajectory needs to be adapted for a successful task execution.
Then, the overall manipulation primitive has seven parameters, six for the grasp pose and
one for the height.

3.4 Viewpoint Invariance

A robot manipulating its environment is a physical system that (neglecting some marginal
cases) can be understood by classical mechanics. As such, object-centric manipulation has
focused on geometric and dynamic models of the robot and its environment. In partic-
ular, mathematical models were derived to make predictions regarding the task success.
Although this work avoids these models intentionally, we still use specific characteristics of
the underlying physics to simplify our approach.
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Figure 3.4: Given a setup with a gripper (left), a camera (right), and an object of interest
(center), the gravitational vector g influences the manipulation and a (e.g. dynamics) model used
for prediction. If the model does not know about g, the model remains invariant under translations
of x, y, z and rotations α around g. We call this the viewpoint invariance.

First, we investigate transformations under which manipulation tasks are invariant, in-
tending to uncover possible simplifications. Figure 3.4 sketches a scene including a robotic
gripper, an object of interest, and a camera. The physics of manipulation does not change
under translation or rotation of the entire scene around the vector of gravity g. For g = −ez,
this corresponds to the parameters x, y, z, and α of the scene frame pose (Equation 3.10).
This invariance does not hold for the remaining rotations β or γ due to the fixed gravi-
tational vector. For example, grasping an object from the side requires a different policy
than grasping from the top, as the object might slide or tip over. Moreover, moving the
camera freely does, of course, not influence the manipulation itself but only the observation
thereof. Modeling the manipulation, e.g. for predicting the manipulation outcome from an
observation, requires explicit knowledge about the gravitational vector g. For example, a
complete model would require the dynamics of the object, which depends on the gravita-
tional force. If the observer (e.g. the camera) however does not know about g explicitly,
it might assume a fixed vector (e.g. from an implicit learned model). Then, likewise to
the manipulation invariance above, the model remains only correct as long as the camera
is translated or rotated around the gravitational vector. We refer to this as the viewpoint
invariance of a manipulation model furthermore.

3.5 Principle of Locality

Second, classical mechanics gives clues about robot-world interactions relevant to manipu-
lation. In particular, mechanics obeys the principle of locality. In other words, each action
of the robot affects only a bounded proximity, and vice-versa only a bounded proximity of
the environment influences an action outcome. Here, proximity refers to a spatial closeness
between the robot and the parts of the environment of interest.

We investigate the locality that needs to be observed to predict the outcome of a ma-
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nipulation action to a certain degree. First, we approximate manipulation as a slow action,
neglecting any dynamic effects. For these quasi-static actions, the mechanical equilibrium
holds throughout. Second, the accuracy of the approximation depends on the considered
proximity. We differentiate between:

Gripper locality The mechanical equilibrium between the gripper and an environment’s
object is determined by the contact forces and torques. The contact is primarily
influenced by the geometry of the gripper’s and object’s contact surfaces and their
friction parameters. With full knowledge of the contact, manipulation actions can be
described and predicted for a wide range of situations. For example, a firm frictional
grasp depends only on this locality, and further collision-free motions can be fully
predicted. The gripper locality includes the gripper itself as well as the inside contact
surfaces.

Object locality For some actions, this is not sufficient to predict a manipulation action
outcome, as knowledge about an object’s mass or density distribution might be re-
quired. For example, an object might slowly rotate within the gripper as a frictional
grasp might not be firm enough. Here, the object’s center of mass needs to be known
to predict the resulting movement. Similarly, objects oftentimes move while the grip-
per closes its fingers. To predict this displacement, the density distribution as well
as the contact surface with the table beneath needs to be known. The object locality
includes the object of interest and its contact surfaces. Usually, the object size is
limited - either by a known object set or by gripper or robot hardware constraints.
Then, the object locality can be approximated by the maximal object size.

Robot locality Knowledge about the robot might be required as soon as the robot gets
in contact with an arbitrary object of the environment. For bin picking, this might
be caused by a collision between the robot arm and the bin itself. Here, the robot
locality considers the robot and all adjoined contact surfaces.

Environment locality In general, arbitrary objects might influence the manipulation,
making knowledge about the complete environment necessary. For example, the ob-
ject of interest might get jammed by other objects during bin picking. Or, an air draft
might move a garment just before closing the gripper. In practical manipulation tasks,
the environment is bounded by the robot work cell.

Figure 3.5 illustrates the mentioned localities and their catchment areas as an overlap-
ping set. As a locality limits the available knowledge, a distant locality (e.g. containing the
robot or the entire environment) is able to better predict an action outcome. However, we
argue that contact forces are the main drivers of manipulation in practice, and therefore
localities closer to the contact points of the manipulation are more relevant. For this reason,
we motivate using a smaller locality to simplify the manipulation planning, usually between
the object and robot locality furthermore.
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Figure 3.5: The considered locality around the gripper is essential to predict an action outcome.
We motivate our local approach by the stronger influence of objects closer to the contact points of
the manipulation action.

To implement a locality in our image state space, we use a cropped window with side
length l centered around the position (x, y) and rotation α. Let s be the complete image of
the scene, then we denote ŝ as the cropped image window. Moreover, we slide this window
around the image to evaluate the algorithm at different positions and rotations (Figure 3.6)
in a so-called sliding-window approach. This way, we make use of the viewpoint invariance
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Figure 3.6: The translational invariance and bounded locality of the manipulation problem allow
to solve it via a sliding-window approach: An algorithm evaluates a local proximity (blue) at a grid
of planar poses with stride (∆x,∆y) for translation and ∆α for rotation (red). The cropped window
ŝ is a subset of the scene image s.

of a manipulation model introduced in section 3.4. However, the invariance requires the
z-axis of the camera frame and the gravitational vector g to be parallel. Usually, the planar
pose (x, y,α) correspond to the pose of the robot’s TCP, resulting in an image crop around
the gripper and the desired contact points of manipulation. Then, the locality can be easily
adapted by the window size l.
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3.6 Reward Estimation

Most manipulation primitives work in a single-step and open-loop manner and thereby re-
duce the underlying MDP to a single time step t = 0. The action-value function Q(s, a) = r
is then given directly by a reward r that can be interpreted as a success metric of the primi-
tive. Based on the recent developments in computer vision, we apply neural networks (NNs)
for reward estimation. NNs with many layers are called deep, giving the name to the field of
deep learning. We want to briefly introduce the most important terminology and methods.

In general, deep learning is a small subset within the broader field of machine learning.
In the most general way, a machine learning algorithm learns a task T when a performance
measure P improves with experience E. We explain these three terms furthermore.

Task A task T is fully defined by a function f mapping an input x to an output y. Out
of many more types, we focus on the classification and regression task. For classification
with k categories, an algorithm maps an input x to a category f : Rn → {1, . . . , k}. The
probability distribution f : Rn → [0, 1]k is often used instead. Classification was of great
importance for deep learning historically, as handwritten character recognition was one of
the early successful tasks [69]. Two special cases are the binary classification for k = 2, e.g.
to learn a success metric of a primitive, or the multi-class classification. The latter maps to
[0, 1]k without being a normalized probability distribution, allowing an input to correspond
to multiple classes simultaneously.

For regression, a function predicts numerical values from an input f : Rn → Rm from n
to m dimensions. Many relevant parameters of primitives such as its pose or other control
signals are physically numeric, making regression the second fundamental task in this work,
but also for broader research in robot learning.

Performance Measure The performance measure P of a specific task T is a scalar
value that allows the evaluation and comparison of different algorithms. The accuracy
is a common performance measure for classification tasks. It is defined as the fraction
of correctly classified examples over the total number of examples. A binary classifier
predicts positive or negative labels with four possible outcomes. The true positive (TP),
false positive (FP), false negative (FN), and true negative (TN) are summarized in the
confusion matrix. For the regression task, the performance measure is usually the mean
squared error (MSE).

Experience Assuming the experience is savable, we refer to it as a data set. Supervised
learning is the most common type of experience with a data set mapping inputs to known
outputs. The creation of labeled data is very costly, as oftentimes manual work is required
for thousands to millions of data samples. In contrast, unsupervised learning works only on
the input data itself, for example in tasks like clustering or compression.
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The data exploration found in RL is another type of experience (section 3.1). Commonly,
an agent interacts with an environment in an online manner, getting direct reward feedback
after choosing an action in a given state. Offline RL however uses a fixed data set of states,
actions, and rewards to optimize for a policy. This way, the latter is conceptually related
to supervised learning.

In active learning, an agent can sample examples from a data source to collect a data set.
However, as this sampling process might be costly, the focus lies on selecting the optimal
samples to learn quickly and robustly. Active learning is related to RL, and even more so
to single-step RL, as this sampling problem corresponds to the exploration strategy.

In the context of robot learning, self-supervised learning refers to a robot collecting
data (mostly) autonomously. The appeal of this method is to use robots for what they
do best: Working on tedious tasks like data acquisition or data labeling without human
operators. This can reduce the manual effort dramatically. In contrast in the general
machine learning field, self-supervised learning denotes techniques using auxiliary tasks on
a larger unsupervised data set to boost the performance measure on an original supervised
data set. We keep the robotics meaning of self-supervised furthermore.

3.6.1 Principle of Maximum Likelihood

Let X = {x(1), . . . , x(m)} be a data set of m examples, given by a training set as a part of
an experience. In statistics, a function g that calculates a quantity of interest θ based on
given data X is called an estimator. A point estimator is a function

θ̂ = g(x(1), . . . , x(m)), (3.14)

where θ̂ denotes an estimation of the true value θ. The difference between is called the
bias(θ̂) = E(θ̂)− θ. It is oftentimes desired for an estimator to have bias(g) = 0. However,
it is challenging to find a sufficient estimator for arbitrary data directly. Instead, the prin-
ciple of maximum likelihood provides a systematic derivation of estimators [43].

In the following, let θ denote the parameters θ of the task function f(x), written as
f(x; θ). An estimator could theoretically predict a function f̂ directly, however, nearly all
machine learning algorithms use a parametrized function f(x; θ) for simplicity. Let the
data set X be drawn independently from an unknown data-generating distribution pdata(x).
The task function f predicts the probability pmodel(x; θ) of a data point x. The principle
of maximum likelihood defines an estimator for θ as

θML = argmax
θ

pmodel(X; θ) = argmax
θ

m

i=1

pmodel


x(i); θ


(3.15)

that maximizes the probability of the given data using the model parameters θ. For compu-
tational and numerical reasons, the logarithm is maximized instead, as it does not change
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the argmax operator:

θML = argmax
θ



i

i = 1m log pmodel


x(i);θ


= argmax

θ
Ex∼pdata [log pmodel(x; θ) ] . (3.16)

In other words, the parameters θ are chosen to maximize the expected value of the log-
model-distribution. This simplifies the problem of finding the best parameters θ for a
function f solving a given task to a common optimization problem.

3.6.2 Gradient-Based Optimization

Optimization deals with finding the minimum argminx f(x) of a known loss function f(x).
This process is also referred to as training a machine learning algorithm. The first-order
Taylor series of the loss function is given by

f(x+ ) ≈ f(x) + ∇f(x) (3.17)

with a small  > 0 and the gradient ∇f(x). In general, the gradient points into the direction
of steepest accent. Therefore,

f(x− ∇f(x)) < f(x) (3.18)

holds true for a sufficiently small  called the learning rate. Repeating this update step
x′ = x − ∇f(x), f(x′) will eventually converge to a local minimum. This method is
referred to as gradient descent. In addition, stochastic gradient descent (SGD) averages the
gradient over a batch of elements x1, x2, · · · , xN . Momentum is a technique that improves
convergence behavior by averaging the last and current update change as a low-pass velocity
filter. The Adam optimizer builds upon these techniques for a robust and fast optimization
algorithm [63].

3.6.3 Neural Networks

Neural Networks (NNs) are parametrizable functions built of simple connected neurons
showing an overall emergent behavior. NNs that try to approximate a function f∗(x) = y
are called feedforward, and information flows to the output without any feedback. A feed-
forward NN defines a function f(x; θ); the goal of learning is to optimize the parameters
θ so that f(x; θ) approximates f∗(x) as closely as possible. It can be shown that NNs are
able to approximate arbitrary functions with θ being of large enough dimension. In many
practical use-cases, NNs are able to inter- and extrapolate comparatively well, which is
known as generalization. [43]

The building blocks of NNs are simple matrix multiplications such as

z = Wx+ b (3.19)

with a weight matrix W and a bias vector b. The parameter set θ = {W, b} includes all
weights and biases of the NN. Feedforward NNs are constructed as follows:
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Output Units The output of the NN must resemble the output of f∗(x), in particular
regarding its shape and numeric range. If f∗(x) → Rm, the most simple NN consists of the
matrix multiplication (Equation 3.19) called a single-layer perceptron, with the parameters
being the weights of the matrix. If f∗(x) → [0, 1] or another bounded interval, the output
can be limited by the logistic sigmoid function σ

x = σ(z) =
1

1 + exp(−z)
. (3.20)

If f∗(x) maps to a discrete probability distribution, the softmax function

y = softmax(z) =
exp(z)
j exp(zj)

(3.21)

is commonly applied. The output of the softmax function is normalized to 1 by calculating
the sum of all outputs zj , e.g. for a classification task. One advantage of the sigmoid and
softmax function over the MSE is that the exponential cancels out with the logarithm to a
simple sum of the maximum likelihood. This way, Equation 3.16 can be simplified to

θML = argmax
θ

m

i=1

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] (3.22)

= argmin
θ

m

i=1

[yi − yizi + log(1 + exp(−yi))] (3.23)

with the so-called logits zi of the output layer and the label yi.

Hidden Units Besides the output function, the NN based on Equation 3.19 is a lin-
ear model. Hidden units and activation functions are introduced to approximate general
nonlinear functions f∗(x). Hidden units h calculate a matrix multiplication, followed by a
nonlinear activation function g

h = g(Wx+ b). (3.24)

Hidden units are stacked consecutively, using the output h(i − 1) of the previous hidden
units as its own input. The first hidden unit h(1) uses x as input, the output unit uses the
last hidden unit h(n). This way, the units are organized as layers in a feedforward NN. The
number of layers n+ 1 is called the depth of the network. The term deep learning implies
that the NNs have large depth, usually n ≥ 3 [43].

Following Equation 3.24, the activation function g is essential for the entire network.
A common example is the rectified linear unit (ReLU), defined by g(z) = max{0, z} as a
computationally simple nonlinearity. Various alternatives exist, and one generalization is
the leaky ReLU

g(z) = max{0, z}+ αmin{0, z} (3.25)
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with the nonzero slope α > 0 for negative z < 0. A key advantage of leaky ReLUs over
standard ReLU is that gradients do not vanish for z < 0.

After constructing the NN, all its parameters θ are optimized based on the principle
of maximum likelihood. It allows to derive a so-called loss function H that is finally
minimized with a gradient-based optimization. The gradient∇H is calculated, in particular
for multiple layers, by the backpropagation algorithm. Without going into detail, it is an
efficient algorithm for applying the chain rule of calculus to large NNs [43].

3.6.4 Network Architecture

Different types of layers can be derived from Equation 3.24. For applications such as
computer vision, the vector x and h can be imagined to be a matrix, either by stacking
the vector or by generalizing the matrix multiplication to a higher-dimensional tensor.
Typically, data (and in particular images) are represented as a three-dimensional tensor of
width W , height H, and number of channels C. Research in machine learning has come up
with various specialized layer types. The normal matrix multiplication (Equation 3.24) is
called a dense layer. In this work, 2D convolutional layers acting on matrix inputs play an
essential role.

Convolution A convolution is a mathematical operation defined by an input matrix and
a kernel (filter) matrix of smaller size. At a specific position (i, j), the output is the sum
of the element-wise multiplication between the kernel and the input. The kernel is then
shifted over the input with a step size called stride. Due to the kernel’s extent, not all
elements of the input matrix are mapped to an output. The relation between the input and
output size for a single dimension is given by

output =
input − kernel + 2 · padding

stride
+ 1. (3.26)

Figure 3.7 illustrates an example of a convolutional operation. In general, a convolutional
layer maps an input of multiple channels C > 1 to an output of multiple channels C ′ > 1.
Then, the layer is composed of C × C ′ kernels for each combination. The parameters θ of
all kernels are learned independently. Commonly, padding with zero or constant values is
added around the input matrix, allowing the convolution to have equal input and output
size.

Importantly, convolutional layers can operate on inputs with variable sizes. In fact, the
size can change flexibly during training or run-time. The output then scales with the input
according to Equation 3.26, keeping a fixed offset due to the kernel’s size. In contrast, dense
layers operate on fixed inputs only.

Fully Convolutional Neural Network A NN that only consists of convolutional layers
is called a fully convolutional neural network (FCNN) [77]. While a deep FCNN allows
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Figure 3.7: A single multiplication step of a convolution operation. A 3 × 3 kernel matrix (mid)
is shifted over an 5× 5 input matrix (left), resulting in a 3× 3 output (right).

to approximate more complex functions than a single layer, it allows keeping the desired
properties of the convolution: First, the entire FCNN can adapt to the input size and
predict at each position in the width and height dimension. In the context of computer
vision, different positions correspond to pixels in an image. FCNNs allow to predict tasks
for each pixel individually, e.g. for dense pixel-wise classification or semantic segmentation.
Second, FCNN keep an effective kernel size determined by the overlay of all kernels. This
way, an FCNN only incorporates local information around its output position. By rescaling
the kernel size, the stride, and the number of layers the locality of the FCNN can be
adjusted.

In particular, FCNNs allow different image sizes during training and inference. As the
effective kernel size remains fixed, the FCNN will then only predict on image patches cor-
responding to the training size. Third, an FCNN is translational invariant, as the kernel
remains constant for all positions on the input. In particular, this allows for very efficient
implementations, as each layer might reuse multiplications from neighboring positions as
well as due to parallelization. This can speed up computations by multiple orders of mag-
nitude over simple calculations of each position separately.

We will make extensive use of FCNNs to integrate these desired properties (from sec-
tion 3.4 and 3.5) into manipulation planning. An FCNN implements a sliding-window
approach for the translational DoFs (Figure 3.6). The effective kernel size corresponds
to the window. However, convolutions restrict the sliding window approach significantly
in terms of mathematical operations and expressiveness. In return, this allows for their
efficient implementation.

3.6.5 Regularization

The capacity of a NN denotes a measure of the ability to approximate arbitrary functions
f . The deeper the NN and the wider its layers, the higher its capacity. While there are
also quantitative definitions of capacity, a qualitative understanding suffices furthermore.
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Regularization refers to techniques improving the performance measure on the test set,
even if that decreases the performance on the training set. In this regard, overfitting
is a fundamental problem of machine learning algorithms. Here, the NN learns features
of the limited samples in the training set which cannot be generalized to the underlying
data distribution. Overfitting arises in particular for small training sets or NNs with high
capacity. On the other hand, a particular capacity is necessary for learning the true features
of the task. A variety of techniques were developed to reduce overfitting [43]:

Early Stopping Before training, NNs are initialized with random weights θ. The op-
timization stops as soon as the performance measure on the test set cannot be improved
further.

Batch Normalization The idea is to normalize the batched input of a layer to zero
mean and standard deviation of one. During training, this operation is applied for every
batch and collects the average mean and covariate shift in the background. These values
are then accounted for during inference.

Dropout During dropout, a fraction of neurons in a layer are randomly neglected for the
calculation of the following layer. Instead, the activation of the remaining neurons is scaled
to keep the mean activation. Dropout reduces the effective capacity of the NN, resulting in
random and different subnetworks for each training step. For inference, the dropout rate
is set to zero, which can be interpreted as averaging over all trained subnetworks. In this
regard, dropout can be understood as an ensemble technique.

Norm Penalties A norm penalty of the weights θ or some activations h(i) is added to the
loss function. A penalty with L1-norm |θ| leads to minimal, sparse weights or activations.
In comparison, the Euclidean L2 norm θ2, reduces large weight values. This induces
smoother functions f regarding a smaller mean gradient ∇xf .

Data Augmentation Data augmentation is the technique of artificially increasing the
training set size. In most cases, this exploits symmetries or invariances of the data. For
example in image classification, the object classification stays fixed under image rotation
or flipping. Then, the training pipeline randomly rotates or flips the image to create
artificial training data. For learning manipulation based on orthographic images, these
transformations (flipping or rotating) however might change the meaning of the label. Data
augmentation is therefore discussed in the task-specific sections (chapter 5 and following).

3.7 Selection Policy

Value-based methods commonly estimate the action-value Q(s, a) for a discrete set of ac-
tions A′ ⊂ A. The RL agent then selects a final action a according to a selection method



3.7. SELECTION POLICY 39

σ, resulting in a policy π = σ ◦Q(s, a) composed of a value-estimation and a selection step.
The greedy approach with

a = argmax
a

Q(s, a) (3.27)

maximizes the expected reward according to Equation 3.1. However, this only holds true
when the estimated action-value Q corresponds to the true value. As the value estimation
is learned, data needs to be collected first by an inexperienced agent. This corresponds to
the exploration phase. When no prior knowledge is available, a uniform random selection
strategy can be used to bypass the value estimation. A ε-greedy policy selects

π(a|a) =

1− ε if a = argmaxaQ(s, a)

ε/(|A|− 1) otherwise
(3.28)

probabilistically with ε ∈ [0, 1]. Here, the greedy action is taken in 1 − ε of all cases, oth-
erwise, a uniform randomly chosen action is selected. It corresponds to a greedy approach
for ε = 0 and a purely random approach for ε = 1.

For learning manipulation in the context of RL, we introduce two specific selection
methods. First, the Top(N) method returns one of the N maximal actions uniformly
randomly. Let maxNa be the set of N actions with the highest following argument.

π(a|a) =

1/N if a ∈ maxNa Q(s, a)

0 otherwise
(3.29)

This is a stochastic variant of a purely greedy approach. It is used for exploiting and maxi-
mizing the expected reward, however with a small stochastic component to avoid repeating
the same action a when the state s does not change. It corresponds to the default greedy
approach for N = 1 and transitions into a random approach for N = |A|.

Second, the Prob(n) method selects an action a stochastically with probability P (a)
depending on the action-value Q(s, a). In particular, the scalar n exponentiates the nor-
malized action-value according to

π(a|a) = P (a) ∼


Q(s, a)

maxaQ(s, a)


n

, n ∈ N0 (3.30)

We make use of this selection method when the reward r is positive and upper bounded.
Then, this method corresponds to the greedy approach for n → ∞ and to the random
approach for n = 0. Both selection methods correspond to the greedy and uniform random
approach in their respective limits. In between, both allow a smooth transition for a non-
uniform sampling of actions for exploration.
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Most manipulation primitives simplify the RL problem to a single action step, after
which a reward corresponding to the task success is given. The exploration for RL then
resembles the task of active learning. Here, an agent needs to choose a limited number of
samples from a large dataset for learning. Briefly, the objective is to find the next sample
that will improve the performance metric of the learning task the most. In active learning,
uncertainty is an important metric: If an agent such as a NN has a high uncertainty
about an action-value estimation, then learning about the exact outcome will improve the
task. The introduced and furthermore used Top(n) and Prob(n) strategies fall short of this
introspecting behavior. As uncertainty estimation with NNs is still a challenging problem
and ongoing research, we found more intelligent exploration strategies hard to implement
and tune in practice. Primarily, the cycle time for evaluating an exploration strategy
corresponds to the training time of the policy itself.



Chapter 4

Real-world Training

Learning manipulation in a self-supervised manner is an essential aspect of this work. In
robotics, self-supervised refers to an autonomous training without constant human super-
vision and only very limited intervention. As the term only makes sense for real-world
robotic training, it emphasizes its practical complexity as well as the usual manual effort
for human-guided training such as learning from demonstration. In this chapter, we present
and compare the difficulties of real-world data generation. Particularly, the training process
needs to be able to cope with unforeseen events and be able to recover to an initial train-
ing state. For robotic manipulation, collisions and resulting force violations are a major
challenge for safe and large-scale training. We present an algorithm for online trajectory
generation (OTG) that allows to instantaneously react to collisions and other sensor events.

4.1 Generating Training Data

Data-driven approaches shift the main challenge of solving a robotic task to the data genera-
tion. In comparison, classical approaches focus on analytical model building and optimizing
actions therewith. Here, the primary challenges lie in (1) deriving a suitable model from the
robot and its environment (that approximates the behavior of interest well while being con-
ceptionally and computationally simple), (2) measuring the corresponding parameter (e.g.
masses, inertia matrix, or friction coefficients), and (3) tuning an optimization algorithm
to find the best possible action. Most of the first and all of the second step are replaced
with data generation instead.

Large-scale Data Generation We want to focus on primitive-based grasping in a bin
picking environment. Here data generally refers to recorded tuples (s, a, r) of the visual
state s, an action a given by pose and primitive type, and a single reward r as a success
metric. As learned approaches improve with the amount of data (corresponding to the num-
ber of tuples), the method of generating training data should scale as easily as possible. In
this work, the robot commonly attempts to measure 10 000 to 100 000 cycles. On one hand,
robots are perfectly designed for automating repetitive work. On the other hand, this is

41
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trivial only for a fully known and non-changing environment. Machine learning however
requires the data distribution of the training and the later application to match. There-
fore, the training process needs to cope with the same partially unknown and stochastic
environment that is expected during run-time.

State Space First, the state space and the reward need to be measurable. Visual observa-
tions are used throughout the work and can be easily measured by a camera. By mounting
the camera at the robot’s flange, the robot can position the camera flexibly before taking
images. In comparison to a fixed overhead camera, this comes at the cost of more robot
movements and slower data generation. Moreover, an overhead camera would allow to
measure videos while the robot is interacting with the environment. This is however not
necessarily required by primitive-based manipulation.

(1) Task
Real-world Training

(2) State and Action
Representation

(3) Data-efficient
Machine Learning

(4) Scalable Training

(5) Faster Data Generation

Real-world Interaction

Learning Algorithms

Figure 4.1: To speed-up the real-world training of a given task (1), various decisions or improve-
ments can be made both within the learning algorithm as well as the real-world interaction. First,
the state and action representation (2) as well as the underlying machine learning algorithm (3)
have great effect on the data-efficiency. On top, the real-world interaction should allow to scale
easily for minimal human supervision (4) and high experimental throughput (5).

Reward Measuring the reward is generally more challenging and might have a great effect
on the data generation and possible learning algorithms. For the task of bin picking, the
robot should learn the best possible grasp according to a given metric. However, it can
only measure a single grasp for one observation, as it is generally not possible to reset the
objects exactly to try out multiple grasps in a fixed scene. Instead, only a binary grasp
success can be measured easily, e.g. by distance or force sensors in the gripper’s fingers.
This directly causes the general approach of ranking different actions in this work. For the
task of smoothing a garment, the reward might be more complicated. Here, one possible
reward consists of the coverage, measured using computer vision algorithms on a segmented
overhead image, and an itself learned classifier.
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This is in strong contrast to learning in simulation. As all information about the envi-
ronment is accessible, expressive rewards are easier to define. For grasping, e.g. the torques
at the fingertips might indicate grasp points that are far away from the object’s center of
mass; and could be discounted in the reward definition. For smoothing, a metric could be
defined based on the fully known geometric state of the garment. While the reward does
not need to be measured during real-world application, a simulation-only reward prohibits
further fine-tuning.

Scalability Real-world data generation needs to be repeatable and scalable. First, the
environment needs to be resettable to initial states of the task’s distribution. This is often
combined (and only possible) with randomization to learn from a diverse set of states. For
grasping, a selection of objects is placed randomly within a bin. When the robot interacts
with the bin, it might unintentionally shift objects or randomly place grasped objects. This
results in a novel randomized state for the next cycle. Resetting an environment might be
a separate task (e.g. for bringing a smooth garment into a crumpled state), or part of the
training process (e.g. when switching between multiple bins for learning to grasp out of
differently filled bins).

Second, the data generation needs to be robust. In practice, various problems and diffi-
culties might make human interaction necessary; the required scale of the data generation
determines how much should work in a pure self-supervision manner. We discuss three
common challenges related to learning manipulation:

• The robot learns to interact with the environment by trial and error. As such, it
makes use of its complete action space, although some actions might be undesired and
possibly unsafe. While the field of Safe RL deals with this problem conceptionally,
oftentimes the actions are restricted manually in practice. For grasping, the robot
should grasp within and also near the edges of the bin. However, a binary mask,
corresponding to a blacklist of possible grasp poses, might be required to strictly
prevent the robot from grasping the bin itself, although the bin might look like a
perfectly graspable object.

• During interaction, objects might get dropped outside of the robot’s action space. In
general, bins are used commonly to prevent this to some degree. Still, large objects
might fall out of the bin during placement or get dropped while moving between two
bins. In this sense, learning grasping is ideal as multiple objects will still be available
in the bin. Some tasks like smoothing however cannot use bins and therefore rely on
additional functions to reset from out-of-distribution states.

• Collisions occur naturally when interacting with a complex environment, and are
oftentimes even required or desirable for the manipulation task. However, a bad col-
lision might not only damage objects or the environment, but also the robot itself
and might contribute to its wear and tear. Oftentimes the robot’s controller inter-
nally monitors collisions and safety-stops the robot until a human unlocks the robot
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again. We introduce a motion control algorithm that is able to avoid or weaken these
collisions in section 4.2.

Speeding up Data Generation Figure 4.1 shows key aspects for speeding up the over-
all training. Given a task that should be solved with real-world learning, the state and
action representations, as well as a data-efficient learning algorithm need to be chosen first.
Chapter 3 introduced key ideas to simplify learning for manipulation. In general, the state
and action spaces should be precise and only include relevant information. In practice,
there is a tradeoff for the boundaries of the action space: On one hand, the action space
should be kept small for fast exploration as well as simplified safety and robustness. On the
other hand, however, it should allow for all required actions to solve the task. Moreover,
the exploration strategy of the RL algorithm might be crucial for data efficiency.

For speeding up the data generation itself, one might i.a. refer to the number of robot
hours, the invested man hours, or the overall project time as the crucial metric. In this work,
we focus primarily on reducing the man hours, all while keeping the robot hours within a
fixed time budget. As only a single robot was used in this work at a time, the project time
scales equally with the robot hours in practice. For this reason, the training should be with
as little human intervention and supervision as possible, e.g. to allow training overnight.
The need for self-supervised learning is mostly founded in a scalable data generation.

Lastly, the data generation can be sped up by increasing the throughput of the manip-
ulation experiments. Usually, the majority of the time is spent on robot motions. Other
steps like the manipulation planning, gripper actions, or the manipulation success measure-
ment are relatively fast. Taking the task of bin picking as an example, a typical grasping
cycle is around 15 s in our experiments. Here, the longer motions, e.g. between the grasping
and a filing bin (and return), as well as slower motions, e.g. to approach a grasp point, are
the bottleneck with a duration of over 12 s. To reduce the time spent in these motions, the
experiment should first be designed for the shortest paths, e.g. by using relatively compact
setups or bins with short distances in between. Second, the robot should move as fast as
possible. Usually, the speed is limited by safety issues, in particular regarding collisions
with the unstructured environment the robot operates in. To allow for fast yet safe motions,
the robot should be able to detect a collision and stop (or replan) as fast as possible to
minimize damage at a given speed level. In the next section, we present an algorithm to
calculate trajectories that can instantaneously react i.a. to force sensor events. Moreover, it
is - in some cases - able to compute time-optimal motions given the kinematic capabilities
of the robot and therefore enable fast motions for high experimental throughput.

4.2 Online Trajectory Generation

In robotic manipulation, collision handling is an important aspect of robust training. We
use online trajectory generation (OTG) to react instantaneously to collisions and other
sensor events, and are therefore able to prevent force violations and safety-stops. This is
also an essential problem within the broader field of robotics and automation, as robots
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are supposed to manipulate their unknown and non-deterministic environments on-the-fly.
Then, a new trajectory needs to be generated in a real-time manner, allowing the robot
to adapt the task execution within the scope of its dynamical resources. The trajectory
representation is particularly important, as it serves as an interface between the (more
abstract) task planning and (lower level) motion planning. A common representation is
waypoint-based: The task execution is given as a single or list of waypoints with defined
kinematic state. Then, OTG will calculate a trajectory to the new waypoint target consid-
ering the robot’s constraints. Commonly, second-order (namely velocity and acceleration)
constraints take the dynamical resources into account. However, third-order constraints
(an additional jerk limit) are desirable to reduce mechanical stress, wear and tear, and the
robot’s overall cost over lifetime. In fact, we find that modern industrial robots (like the
used Franka Emika robot) monitor the jerk in the internal controller and terminate in case
of acceleration discontinuities.

Furthermore, we propose a novel algorithm for OTG named Ruckig [7] that is more
powerful yet significantly simpler than prior approaches. While guaranteeing a solution,
Ruckig enables three contributions: First, target waypoints can be defined not only by their
position and velocity, but by their complete kinematic state including acceleration. This
improves the practical usability of OTG in dynamic tasks. Ruckig is the first algorithm
to allow arbitrary target states for jerk-limited trajectory with multiple DoFs. Second,
Ruckig is the first freely available time-optimal OTG implementation with constrained
jerk. Third, this work introduces directional velocity and acceleration limits. This makes it
easier to exploit the full dynamic capabilities of the robot. In the following, we formalize the
problem of waypoint-based OTG, derive the proposed algorithm, and share details about
the implementation. We evaluate the robustness and real-time performance on a set of
randomly generated trajectories. Finally, we show real-world applications highlighting the
proposed contributions.

4.2.1 Problem Definition

Let x be the state of a kinematic particle with N DoFs. The state xi(t) of DoF i ∈
{1, . . . , N} at time t is defined by the position pi and its partial derivatives of up to third
order

xi =


pi, vi :=

∂pi
∂t

, ai :=
∂2pi
∂t2

, ji :=
∂3pi
∂t3



named velocity vi, acceleration ai, and jerk ji. We consider the kinematic time-optimality,
otherwise the total instead of partial derivatives would be required. Given an initial state
x0 and a target (final) state xf , we seek the time-optimal trajectory x∗(t) defined by

x∗(t) = argmin
x(t)

Tf , x(0) = x0, x(Tf ) = xf
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satisfying the velocity, acceleration and jerk constraints

vi,min ≤ vi(t) ≤ vi,max

ai,min ≤ ai(t) ≤ ai,max

ji,min ≤ ji(t) ≤ ji,max

for all times t ∈ [0, Tf ] and DoFs i. Tf is called the trajectory duration. In case no vector
notation is given furthermore, we calculate each DoF independently. Note that we consider
both the initial as well as target state to be complete with possibly all derivatives non-zero.
For simplicity, we assume jmin = −jmax furthermore, but keep the directional acceleration
and velocity limits. Moreover, not every kinematic target state is physically possible. We
define an upper bound of the allowed target acceleration by

af ≤


2jmaxmax (|vmax − vf |, |vmin − vf |), (4.1)

because an acceleration target requires a minimum velocity interval to be reached with
constrained jerk.

4.2.2 Ruckig Algorithm

We divide the OTG problem into six subsequent steps. Following a short overview, each
step is explained in detail in its own subsection.

A. An optional brake pre-trajectory is calculated if the initial state x0 exceeds or will
inevitably exceed the kinematic limits vmin, vmax, amax, or amin. In this case, recov-
ering to a safe kinematic state is the most urgent task.

B. In Step 1: Extremal times, all possible profiles that utilize the full dynamic resources
of the robot are calculated for each DoF i independently. We call this the set of valid
extremal profiles. The duration of the fastest profile is called Ti,min.

C. The target xf should be reached at the same time point Tf by each DoF i. Therefore,
some DoFs might need to slow down. In general, not every trajectory duration T >
maxi(Ti,min) is possible, as there might be a limited number of blocked intervals
for the duration. We derive these intervals based on the set of valid extremal profiles.

D. The minimum trajectory duration Tf is the fastest duration that is not blocked by
any DoF. This duration corresponds to a limiting profile as well as a limiting DoF
and is included in the set of valid profiles.

E. In Step 2: Time synchronization, we calculate a profile for every DoF that reaches
its target xf at the given trajectory duration Tf .

F. Finally, the new state at a given time t on the trajectory can be calculated.
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Jerk Acceleration Velocity Position

t1 t2 t3 t4 t5 t6 t7

Figure 4.2: A time-optimal profile of a single DoF with initial velocity v0 ∕= 0 and target ac-
celeration af ∕= 0. The proposed algorithm is able to generate a time-synchronized trajectory for
multiple DoFs with given velocity, acceleration and jerk constraints (dashed) in a limited number
of operations (real-time capability).

A time-optimal trajectory will be limited by a single DoF l which uses its entire dynam-
ical resources at all times t. Therefore, this DoF will use a bang-bang-like jerk profile with
jl(t) ∈ {−jmax, 0, jmax}. We call such profiles extremal. In particular, the total duration
T of a profile can be changed by its underlying jerk profile in infinitesimal steps. If and
only if the profile is extremal, the duration is bounded on one side. More generally, we for-
mulate each trajectory as a sequence of constant jerk values jk = skjf with corresponding
non-negative time steps tk ≥ 0. Let sk ∈ {−1, 0, 1} be the jerk sign and jf > 0 the jerk
value constant throughout the profile. An extremal profile with third-order constraints re-
sults in a linear acceleration, quadratic velocity, and in a cubic polynomial for the position.
Figure 4.2 shows an illustrative example of an extremal profile with seven steps k.

Brake Pre-trajectory

If the initial state x0 exceeds or will exceed the acceleration or velocity limits, a so-called
pre-trajectory is introduced to brake the system below its respective limits. Due to limited
jerk, cases exist that will inevitably brake the velocity constraints at a later point in time,
while being below the velocity and acceleration limit right now. Let Tib be the duration of
the brake pre-trajectory or zero if none is required. In contrast to the remaining algorithm,
this step works in the velocity domain ignoring any position values. We introduce a decision
tree (Figure 4.3) depending on a0, v0, amax, amin, vmax, and vmin that calculates the fastest
profile to reach the limits. It can be seen by distinction of cases that a resulting profile
includes up to two time-steps tib0 and tib1 with corresponding jerk jib0 ∈ {−jmax, jmax} and
jib1 = 0. The second step with zero jerk might be necessary, as no new constraints should
get broken.
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a0 > amax

j0 =
−jmax

j1 = 0
vat a max < vmin

vat a zero > vmax

t0 = tto a max

t1 =
min(tto v max, tto v min)

t0 =
tto a max

tto a max <
tto v max

and tto a max <
tto v min

t0 = tto a min

t1 =
min(tto v max, tto v min)

t0 =
min(tto v max, tto v min)







Figure 4.3: A part of the decision tree (given a0 > amax) for calculating an optional brake
pre-trajectory. If required, we calculate the time-optimal profile to transfer the system to a safe
kinematic state. The pre-trajectory is determined by up to two steps of constant jerk j0 and j1 and
their respective duration t0 and t1.

Step 1: Extremal Times

We want to find all extremal profiles that reach the target state xf for all DoFs indepen-
dently.

Lemma 4.2.1. A velocity limit might only be reached once in an extremal profile.

At a velocity limit, the profile has zero acceleration and zero jerk. The profile can always
be decelerated by reducing the velocity plateau. We show by contradiction: If two velocity
limits would be in the same direction, the profile could be accelerated by removing the
intermediate deceleration and extending the maximal velocity. If the velocity limits were in
opposite directions, the profile could be accelerated by removing the distance traveled from
the shorter direction from the other one. As the duration can be shortened and extended,
it cannot be an extremal profile.

Lemma 4.2.2. There are only up to two acceleration limits in an extremal profile.

Otherwise, a third acceleration peak exists resulting in one direction being reached at
least two times. Then, the profile could be sped up by shifting the acceleration from the
later-reached peak to the prior one. The profile could be decelerated with the inverse ap-
proach.
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Therefore, only up to three limits can be reached in total (as shown in Figure 4.2):
First, an acceleration limit called ACC0, second a velocity limit called VEL, and third an
acceleration limit called ACC1. Introducing optional steps of constant jerk before, after, and
between the limits leads to a maximal number of seven steps k with jerk jk = skjf and
corresponding duration tk (Table 4.1). We denote the sign of the non-zero jerk sk as either
↑= +1 or ↓= −1. A redundant step is encoded with zero duration tk = 0.

Four non-zero jerk steps result in 16 possible combinations. However, only four unique
profiles meet the kinematic constraints and are non-redundant: ↑↓↓↑, ↑↓↑↓, ↓↑↑↓, and ↓↑↓↑.
As the overall problem is invariant to a sign change in jmax and exchanging vmin ↔ vmax

and amin ↔ amax, the set of distinct jerk profiles can be simplified further to ↑↓↓↑ and ↑↓↑↓
profiles. Then, the first jerk sign corresponds to either the UP or DOWN direction.

The final list of profile types includes every combination of the above three limits and the
final two jerk profile types. Table 4.2 lists all 16 distinct profile types for a single direction.
In step 1, only 12 profiles are possible as a ↑↓↑↓ profile with a positive acceleration after
the velocity limit is not valid.

Mathematically, each profile type maps the initial state x0, the target state xf , and the
given limits

S1 : (p0, pf , v0, vf , a0, af , vmax, amax, amin, jmax)

→ (t1, t2, t3, t4, t5, t6, t7)

to corresponding times t1 to t7. Given 3 equations for position, velocity and acceleration
and 7 variables, 4 additional conditions need to be introduced. Three conditions are set
by their limits or a zero step duration. The final condition is either set to a3 = 0 for
constant velocity, t5 = 0 for fusing the centering steps ↑↓↓↑ if t4 = 0, or t7 = 0 to reach
time-optimality for the ↑↓↑↓ profile. Note that profiles might have multiple solutions. Most
profiles are analytically solvable. For some profiles, however, roots of up to sixth-order
polynomials need to be found. Here, we make use of a safe Newton root-finding algorithm:
Given an isolated root of a polynomial in an interval, a Newton method ensures quadratic
convergence on average. Using a bisection method as a fallback strategy, an upper bound
of the number of iterations for a given tolerance can be specified. This is required to en-
sure real-time capability. The initial interval is found by solving the second derivative of

Table 4.1: Steps of Constant Jerk of an Extremal Profile.

Step k Jerk Sign sk Limit

t1 ↑ or ↓ -
t2 0 ACC0

t3 ↑ or ↓ -
t4 0 VEL

t5 ↑ or ↓ -
t6 0 ACC1

t7 ↑ or ↓ -
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the sixth-order polynomial analytically and checking if a root exists between two extrema.
This step is repeated for the first derivative, leading to intervals with isolated roots for the
polynomial itself.

We calculate the numeric times tk for all 24 possible profile types, as given in Table 4.2
per direction. However, not all solutions are physically reasonable or within the kinematic
limits of the system. First, we check that every time step 1 ≤ k ≤ 7 is non-negative

tk ≥ 0.

Then, we integrate position, velocity, and acceleration

ak+1 = ak + skjktk, (4.2)

vk+1 = vk + aktk +
skjk
2

t2k, (4.3)

pk+1 = pk + vktk +
ak
2
t2k +

skjk
6

t3k (4.4)

for each time step. We check the acceleration limits via

amin < { a1, a3, a5 } < amax

and the velocity limits via

vmin < vk −
a2k

2skjk
< vmax if ak · ak+1 ≤ 0,

vmin < vk < vmax if ak = 0.

If the profile passes all checks, it is added to the set of valid extremal profiles. The total
duration is given by

T =

7

k=1

tk. (4.5)

We find the fastest profile and its duration Ti,min for each DoF i easily by comparing.

Blocked Duration Intervals

Given the set of valid extremal profiles, we want to find all possible duration Ti > Ti,min.
In general, a number of blocked intervals (T1α,start, T1α) might exist, in which a DoF cannot
reach the target with a duration within the interval. Figure 4.4 illustrates an example of a
single blocked interval.

Lemma 4.2.3. For a third-order target state, up to two blocked intervals might exist.
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Figure 4.4: Example of a single blocked interval: Given p0 = −0.75, pf = 0.75, and v0 = vf = 1.0.
No trajectory is physically possible with a duration below tmin = 1.35 and between t ∈ (2.0, 2.6).

Velocity Acceleration Max. Number of Blocked Intervals

vf = 0 af = 0 0
vf ∕= 0 af = 0 1

- af ∕= 0 2

Here, we refer to the work of Kröger and Wahl [68]. In particular, the maximal number
of blocked intervals depends on the target velocity and acceleration being non-zero. In our
case, we denote the two possible blocked intervals as α and β. Furthermore, we clarify the
relationship between blocked intervals and extremal profiles.

Lemma 4.2.4. A blocked interval is between two extremal profiles and each valid extremal
profile corresponds to a blocked interval boundary.

For all but extremal profiles, the duration can be adapted infinitesimally by changing
the jerk jf or introducing a velocity or acceleration plateau. As the duration is constrained
(to one side) for a boundary profile, it must be extremal and vice versa.

Lemma 4.2.5. A blocked interval can only exist between two neighboring profiles (regarding
their duration).

Otherwise, there would be a valid profile within a blocked interval.

Given up to two intervals, the set of valid extremal profiles must include exactly 1, 3,
or 5 profiles. Given a sorted list of the profile duration, the profiles are mapped to blocked
intervals as follows:
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One profile results in no blocked intervals.

Three profiles lead to a single blocked interval α. The interval is between the second and
third profiles.

Five profiles correspond to two blocked intervals α and β. The first interval is between
the second and third profiles, the second one between the fourth and fifth profiles.

Else a failure of the algorithm would have occurred. In particular, the implementation has
to deal with edge cases where different profile types merge.

Minimum Duration

Given the blocked duration intervals for each DoF, we want to find the minimum duration
that is possible for all DoFs. Figure 4.5 shows an exemplary illustration of this problem.

DoF 1

DoF 2

DoF 3

T3minT1min T2min T1αT3α T1β

Figure 4.5: Example of finding the minimum non-blocked duration of multiple DoFs. Shown are
the blocked intervals (gray), possible minimum duration (orange), possible braking pre-trajectories
(blue), and the final minimum duration (black).

The minimum duration Tf needs to be either time-optimal for a single DoF or correspond
to the right boundary of a blocked interval:

Tf ∈ { ∀i ∈ {0, . . . , N} :

Tib + Ti,min,

Tib + Tiα if α exists ,

Tib + Tiβ if β exists }

The duration of a possible braking pre-trajectory needs to be added. Then, up to 3N
possible durations are sorted and evaluated in ascending order. The first duration that is
not blocked in any DoF is the final trajectory duration Tf . The DoF l that corresponds to
the resulting duration is called the limiting DoF.

Step 2: Time Synchronization

Given the trajectory duration Tf , let Tip = Tf − Tib be the duration of the profile without
possible braking. Except for the limiting DoF l (where we can reuse the calculated profile
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from the prior step), we need to find trajectories of corresponding duration Tip. Therefore,
step 2 maps the duration Tf , the initial state x0, the target state xf and the given limits

S2 : (Tp, p0, pf , v0, vf , a0, af , vmax, amax, amin, jmax)

→ (t1, t2, t3, t4, t5, t6, t7, jf )

to corresponding times tk and the final jerk constant jf . In comparison the extremal profiles,
we adapt the duration by changing the velocity plateau VEL to vplat with vmin < vplat < vmax

or by reducing the jerk |jf | < jmax. With a velocity plateau below its limit, the ↑↓↑↓ profile
gets possible for all profile types with VEL limit, leading to the full 16 possible profiles for
each direction (Table 4.2). Here, we check all 32 profiles similarly to step 1, but return
after the first valid profile is found.

New State

So far, Ruckig has calculated the step duration tk and corresponding jerk signs sk, the jerk
value jf , and a possible two-step brake pre-trajectory tib and jb for each DoF i. For each
step k ≤ 7, we integrate the acceleration ak+1, velocity vk+1 and position pk+1 of the final
profile according to Equation 4.2, Equation 4.3, and Equation 4.4. Then, we can calculate
the state at a given time t by finding the last index s that fulfills

s

i=1

ti ≤ t

and integrating from index s for time ∆t = t − ts starting from the kinematic state ps,
vs, and as. If a brake trajectory exists, we apply the same principle to this pre-trajectory.
Usually, only this final integration of the new state will be repeated every control cycle of
the robotic system. If and only if the input parameters change, the whole trajectory needs
to be recalculated.

4.2.3 Experimental Results

Ruckig is implemented as a C++17 library without further dependencies and open-sourced
under the permissive MIT license1. Symbolic equations were solved ahead of time using
Wolfram Mathematica; the corresponding notebooks are included in the repository. The
generated equations were exported as C/C++. To keep the implementation simple, we
preferred to export a polynomial whose roots correspond to the profile solution. This form
is then solved by our own C++ polynomial root solver. A non-real-time Python wrapper
using pybind11 is available. Moreover, we’ve implemented a velocity-control interface that
calculates time-optimal trajectories ignoring the current position, the target position, and
velocity limits. Due to its simplicity, we focus only on the complete position-control interface
in this paper.

1Available at https://github.com/pantor/ruckig(accessedonDecember9th,2022) (accessed on De-
cember 9th, 2022)
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Robustness

To evaluate the robustness and numerical stability of the proposed algorithm, we generated
a test suite of over 1 000 000 000 random trajectories with up to 7 DoFs each. The input
parameters are drawn from

p0, pf ∼ N (σ = 4.0)

v0, vf , a0, af ∼ N (σ = 0.8)

vmax, amax, jmax ∼ G(2.0, 2.0) + 0.05

with the Normal distribution N , the gamma distribution G and a minimum limit of
5× 10−2. We skip cases that violate the target acceleration requirement (Equation 4.1).
Then, we define a successful calculation if the maximal deviations ∆ between the result
and the target state of

|∆p| < 10−8, |∆v| < 10−8, |∆a| < 10−12

are met. Here, we achieve a robustness of 100%. However, Ruckig is quite sensitive
to long trajectory duration. During integration, the numerical error will propagate with
∆p = T 2∆a. With the precision of a double type for a and the required position accuracy
of p, this results in a maximal trajectory duration of

T =


∆p

∆a
≈


1× 10−8

2× 10−16 = 7.1× 103

that fulfills the above numerical error. In SI units, this corresponds to an upper limit of
around 16min. If cases above this duration threshold are ignored, Ruckig achieves a ro-
bustness of 100% even without any minimum limit value. Note that the input parameters
are invariant to the unit of distance, so the input can also be scaled without loss of generality.

We compare the duration of trajectories generated by Ruckig and Reflexxes Type IV for
the above input distribution with af = 0. We find that both durations of every trajectory
within our test suite are within a numeric deviation of |∆t| < 10−6, supporting the claim
of time-optimality of each other.

Calculation Duration

As an online trajectory generator, Ruckig is real-time critical and must output the next
state within one control cycle of the robot. Typical control cycles range between 0.5ms and
5ms. The following measurements were done on an Intel i7-8700K CPU 3.70GHz 6-core
CPU using a single thread with PREEMPT-Linux. The test suite for benchmarking reuses
the above input distribution.

Table 4.3 shows the mean and worst calculation performance for a robotic system with
7 DoFs. Figure 4.6 shows the calculation duration depending on the number of DoFs.
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Table 4.3: Calculation Performance for 7 DoFs.

Mean [µs] Worst [µs]

Ruckig (ours) (af ∕= 0) 19.8± 0.2 123± 13
Reflexxes Type IV (af = 0) 38.4± 0.4 155± 35
opt control (af ∕= 0) 727± 7 3203± 504
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Figure 4.6: Calculation performance depending on the number of degrees of freedom (DoFs).

As expected, we find a near linear relationship O(N) between the average performance
and the number of DoFs. Furthermore, we find that Ruckig is well suited for control cycles
as low as half a millisecond. In fact, N = 82 is the smallest number of DoFs that misses
the control cycle of 1ms in the worst case on our hardware.

Real-world Experiments

We have integrated Ruckig into our controller library frankx for the Franka Emika robot
arm with 7 DoFs.2. As the Franka robot checks for acceleration discontinuities in its real-
time control, a constrained jerk is a hard requirement for frankx. The robot has a control
cycle time of 1ms.

Ruckig is agnostic towards the used parametrization; commonly either the joint space
or the Cartesian (task) space formulations are used. Furthermore, we use Cartesian space
control with three translational, three rotational DoFs, and a single elbow parameter. Fur-
thermore, we highlight two possible applications.

Online Reaction to Sensor Input A robot requires OTG to react to unforeseen sensor
input. Figure 4.7 shows a concrete example within the field of HRC. Here, the position

2Available under the LGPL-license at https://github.com/pantor/frankx(accessedonDecember9th,

2022) (accessed on 2022/12/07) and allows for high-level motion generation (see section 4.4).
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Figure 4.7: An example application in the field of human robot collaboration (HRC): The robot
pick-and-places an object from (A) to (B). However, a worker accidentally enters the range of the
robot (dashed) and triggers a safety violation at (C). Ruckig calculates a time-optimal trajectory
within one control cycle to a pre-defined state (D) within a safe zone (gray). Notably, the velocity
limits towards the human are near zero (due to safety) and much larger in the opposed direction
(limited by the robot dynamics). This results in the desired behavior that the robot first brakes the
velocity as fast as possible and then moves to the safe zone.

of a human worker is monitored. After a detected safety violation, the velocity towards
the human should be reduced to a minimum to weaken possible collisions. Moreover, the
robot should move away from the human as fast as possible to avoid bruises or potentially
dangerous contact. Ruckig offers a high-level interface for this scenario: The robot moves
as fast as possible to a safe target position with zero velocity, limited by a near-zero velocity
vmax towards the human, and a robot-limited velocity vmin in the opposite direction.

Offline Trajectory Planning Ruckig allows for trajectory planning by following a list
of successive waypoints. In particular, waypoints with zero target velocity and acceleration
correspond the a piecewise path without blending. Given the waypoints in Table 4.4, we
highlight the use of a non-zero acceleration target in a dynamic task: An object (with-
out any jerk constraint) should be accelerated as fast as possible by a jerk-limited robot.
Therefore, no impact between the robot and the object should occur, as this would lead to
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Table 4.4: Example waypoints for offline trajectory planning.

Position [m] Velocity [m/s] Acceleration [m/s2]

0 0 0 0
1 0 0 1.2
2 0.68 1.0 0
3 0 0 0
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Figure 4.8: An example of offline planning of the following task: An object placed at p = 0 should
be accelerated to a target velocity (without jerk constraints) in the shortest time possible by a robot
(with jerk constraint). The robot starts from rest (T0). As no impact should occur (otherwise
leading to an acceleration violation), the contact between object and robot (gray) should happen
at zero velocity but with maximum acceleration (T1). After the object reaches its velocity (Tv), the
robot brakes and reaches its maximum velocity (T2). Then, the robot moves back to its origin (T3)
with reduced velocity.

an acceleration violation. Then, the robot should only be in contact with the object at its
maximum acceleration. After reaching the target velocity of the object, the robot smoothly
decelerates and moves back to its initial position. Figure 4.8 illustrates the resulting tra-
jectory.

4.2.4 Discussion

In comparison to related work, Ruckig expands the capabilities of the proprietary Reflexxes
Type IV library [67]. Reflexxes uses decision trees to find matching profiles as well as the
blocked intervals, and calculates the numerical profile afterwards. With over 4760 unique
nodes, these decision trees cause great complexity [68]. In contrast, Ruckig calculates all
valid extremal profiles first and derives matching profiles and blocked intervals afterwards.
The proposed algorithm is significantly simpler without decision trees: The relevant code-
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base of Ruckig has around 2800 lines of code in comparison to 23 000 lines for Reflexxes
Type IV. To our surprise, we find that the mean calculation performance of Ruckig is
around twice as fast as Reflexxes. This is probably due to implementational details and
better optimizations. In comparison to opt control [12], Ruckig is able to handle blocked
intervals for time synchronization and therefore guarantees a solution for arbitrary input
states. Moreover, Ruckig is an order of magnitude faster and real-time capable. In contrast
to other related work within the field of OTG, Ruckig supports a complete initial and target
state [20, 51], time-optimality [3, 122], and multiple DoFs [79].
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4.3 Hardware Setup

We briefly present the robotic hardware used throughout this work (except in chapter 8).
The general setup consists of: A robot arm, a gripper, a depth camera, two bins with a
variety of objects, and a computer system for processing and control.

Robot

A Franka Emika robot was mounted onto a table (Figure 4.9). The robot arm has 7DoFs,
a load of 3 kg, and a maximum reach of 85 cm. A key feature of the Franka robot is its
integrated torque sensors that can be used i.a. for (1) changing the robot configuration
by hand, (2) impedance or other force control, and (3) force supervision regarding safety
regulations. The internal controller makes use of the force control in two ways: First, the
controller appends an impedance control behind the regular robot control strategy, and
second, brakes the robot when a fixed force threshold is violated. This way, the robot
lessens the impact of possible collisions. This allows for a hands-on approach to real-world
manipulation training, as the internal controller takes care of the overall safety of the robot
and its environment. However, it requires a manual safety stop release afterwards.

1
2

3

4

5

Figure 4.9: The overall setup of the Franka Emika Panda robot arm (1), with an eye-in-hand
mounted depth or RGBD camera (2), the default two-finger gripper (3), custom 3d-printed gripper
fingers (4), and two bins with a variety of objects (5).

The default Franka hand is an electric two-finger gripper (Figure 4.9-(3)). It has a
stroke between 0 and 87mm, and includes a current sensor to estimate the gripping force.
This way, a variable gripping force of up to 140N can be applied. The bounding box
of the gripper is 20 cm along the gripper opening axis and 5 cm orthogonal thereto. We
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designed and 3D-printed custom gripper fingers3 that allow to reach the ground of the
bin. The fingers have a length of 10 cm, leading to a high torque at the attachment point.
Additionally, the 3D-printed plastic material experiences wear and tear over large-scale
real-world training. Therefore, the finger was robustly designed to withstand 100 000 of
manipulation attempts including possible collisions. The fingertip is sloped so that they
push objects away while moving down. This improves manipulation in very dense clutter.

Depth Camera

We used three different cameras in this work. While usually only a single camera was used
at a time, sometimes two cameras were combined particularly for improved RGBD sensing.
All three cameras are stereo cameras and measure depth via triangulation. They support
pattern projection in an infrared wavelength which is invisible to the images.

Ensenso N10 The Ensenso is a depth-only camera primarily used in the industry. While
the image resolution is only 752×480, it allows a depth resolution of below 1mm in
the working distance of interest.

RealSense D435 The RealSense is an RGBD camera. In comparison to the Ensenso, it
produces images with more artifacts and of less quality. While the depth resolution
achieves 3mm after calibration, the images include noise and distortions that need to
be accounted for. It is used commonly in robotics research due to its low price point.

Framos D435e The Framos shares the same sensor module as the RealSense D435. The
key differences are a more robust housing and an Ethernet instead of a USB connec-
tion. We found this connection to be much more reliable and robust during training.
Furthermore, we will not differentiate between Framos D435e and the RealSense D435.

Figure 4.10 shows exemplary images of the different cameras. The depth cameras were
mounted eye-in-hand at the robot’s flange to allow flexible viewpoints.

Bin and Objects

The used bins have a size of 15 cm width, 25 cm depth, and 9 cm height. They are either
blue or red, and we inlay colored papers for further randomization. The used object sets
differ for each task. Details can be found in the task-specific sections from chapter 5 to 8.

Computer System

Calculations were done on a computer with an Intel i7 7800-K@3.7GHz CPU, 32GB RAM,
and two NVIDIA GTX1070Ti. However, both GPUs were used in single-mode for parallel
inference (for real-world training with non-random exploration) as well as NN training.

3The CAD model of the default gripper finger is available at https://github.com/pantor/

learning-shifting-for-grasping (accessed on December 9th, 2022)

https://github.com/pantor/learning-shifting-for-grasping
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(a) Ensenso N10 Depth (b) Realsense D435 Depth (c) Realsense D435 Color

Figure 4.10: Example images of the bin taken by the respective cameras, including the border
of the bin (white), a possible planar grasp (red), and the used image window around the gripper
(blue).

4.4 Software Setup

The algorithms and their implementations for learning different manipulation tasks pre-
sented in chapter 5 and following share the following common dependencies. Our software
is either written in C++ (for low-level e.g. real-time capable) parts or Python (for higher-
level process control), and are connected via the pybind11 library. We use OpenCV [19]
for classical computer vision algorithms and image handling. Our deep learning, NN op-
timization as well as inference, and data loading are based on TensorFlow [2] with its
high-level Keras interface. OpenGL and EGL are used for rendering orthographic images
from point clouds or projective transformation. Pose and frame definitions are implemented
as isometric transformations of the Eigen library.

We developed two custom software packages for robot learning: First, a library for inter-
facing the robot called Frankx, and second a database solution tailored towards primitive-
based manipulation.

Robot Control

The libfranka C++ library is provided by Franka Emika for controlling the robot in a low-
level manner. The real-time control loop is exposed for different control strategies such
as position, impedance, or torque control. To generate trajectories, an interface to the
presented Ruckig library was written. This Frankx library4 replaces necessary real-time
programming with higher-level motion commands, and allows to react to collisions and
other unforeseen events by utilizing OTG. We primarily used the included Python wrapper
for controlling the robot via waypoints and reactions.

4Available under the LGPL-license at https://github.com/pantor/frankx (accessed on December 9th,
2022)
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Figure 4.11: Screenshot of the database viewer, a custom web application for data management
for primitive-based manipulation.

Data Management

Managing the collected data is an essential task for real-world robot learning. In our terms,
each manipulation primitive corresponds to an action. Multiple images are recorded in
relation to each action, e.g. an image before or after an action with one or multiple cameras.
To combine multiple primitives that require a temporal correspondence (e.g. a pick and place
action), multiple actions might be combined into an episode. Each experiment includes a
large number of episodes; they are saved as collections in a MongoDB database.

The database is connected to a web server that manages in particular episode insertions.
This would allow - although not used - to train on multiple robots in parallel. Moreover, the
web server includes a frontend called Database Viewer for viewing and editing the database
(Figure 4.11). In its default setting, it shows a grid of the most recent actions or episodes
with detailed information about the selection action. It supports live viewing of the most
recent measurements, as well as statistics about the current collection. The database viewer
allows to delete episodes; typically required after an accidental human interaction with the
system or after the lights were switched off during nightly training by mistake.
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Chapter 5

Grasping

Chapter 3 and 4 introduced robot learning algorithms and data generation techniques for
real-world manipulation. In the following chapters, we apply these approaches to practi-
cal robotic tasks. Grasping is arguably the most essential manipulation task in robotics.
Industrial use cases like machine loading, large-scale warehouse automation, or order ful-
fillment rely on grasping to solve bin picking. Grasping is not only an important task by
itself, but also serves as a starting point for further interaction with the environment. For
example, many service robotics tasks like opening kitchen drawers, general tool use, as well
as industrial tasks like peg-in-hole or cable fixation require the primary grasping of objects.

As motivated in chapter 4, bin picking eases learning for grasping in a self-supervised
manner. This chapter is divided into multiple sub-tasks related to bin picking. At first,
planar grasping with a top-down orientation of the gripper is learned as a starting point
(section 5.1). On top, we introduce two methods for 6DoF grasping. First, by combin-
ing a model-based method for the remaining DoFs (section 5.2). Second, by leveraging
imitation learning to use the full power of learning methods for all DoFs (section 5.3).
Then, pre-grasping manipulation is used to improve the expected success of a subsequent
grasp. Finally, we extend primitive-based manipulation to semantic grasping to grasp a
specific object type out of a scene with multiple object types (section 5.5). All introduced
algorithms are evaluated in real-world experiments.

5.1 Planar Grasping

Chapter 3 introduced a technique for using FCNNs as a sliding window estimator, in par-
ticular for learning a mapping from image data to a task success reward. This approach
becomes directly applicable when simplifying bin picking to planar grasping. In general,
planar manipulation limits the end-effector orientation to be orthogonal to the image plane.
This way, the grasp point is described by four DoFs: the translation x and y, the rota-
tion α within the image plane, and the height z (Figure 3.3). Then, the grasp orientation
equals the camera orientation, and the gripper fingers are parallel to the viewing direction.

65
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Usually, planar grasping is combined with top-down images of the bin. Then, the grasp
orientation is limited to be orthogonal to the world plane (β = γ = 0).

For bin picking, planar grasping is a surprisingly small restriction. For a bin with a
large number of randomly filled objects, a good planar grasp is very probable in practice.
The bin usually prohibits planar grasps near its edges or corners; planar grasps might not
be able to grasp objects here. This becomes noticeable if the bin only contains a few objects
at these positions, so that the robot might not be able to empty the bin completely. Our
robotic setup uses long fingers, e.g. longer than the bin height, to prevent collisions between
the gripper base and the bin and to mitigate these issues.

5.1.1 Primitives

To apply the concept of primitive-based manipulation (subsection 3.3.3) to grasping, we
define a general grasp primitive as the following sequence:

1. The robot moves the gripper to the approach pose, and its gripper to the defined
pre-shaped gripper width dm by the primitive m. This trajectory is planned by a
collision-aware motion planner.

2. The robot approaches the given grasp pose parallel to its gripper finger (along the
local z-axis). If a collision is detected by a force sensor, the robot stops and retracts
a mm (so that it avoids being in contact).

3. The robot then closes the gripper and detects a possible object using the force-
feedback and width sensor within the gripper. Then, let the current pose be the
final pose with the final gripper stroke.

4. If an object is detected, the robot lifts the object and moves above the (possibly
different) filing bin. Then, the final grasp success is measured again.

This way, an entire grasping action is parametrized by the pose (x, y, z,α) and the pre-
shaped gripper width dm. To further simplify planar grasping, we restrict possible gripper
widths dm to a small set of commonly four discrete values. The widths should span the
gripper’s width and be uniformly distributed. We interpret these as four different primitives
M = {d1, d2, d3, d4} to keep them only dependent on the pose.

Furthermore, we calculate the height z directly from the depth image using classical
computer vision. Briefly, the height at the grasp point (x, y) is read and transformed into
a global frame with a fixed offset for the gripper. The idea is that a pre-programmed
method for calculating the height z provides successful values for (at least) a wide range of
scenarios, and the policy then learns the reward estimation and all other parameters with
this in mind. The reward of a grasping primitive is given by

r =


1 if grasp until filing successful,

0 else
(5.1)



5.1. PLANAR GRASPING 67

Although the given reward r is binary, predicting the grasping probability is not a clas-
sification but a regression task: The grasping success is intrinsically probabilistic, mostly
because the MDP is only partially observable and the state s based on the visual observa-
tions does not have full knowledge about the scene. Eventually, the grasping policy needs
to learn four parameters (x, y,α,m) from the visual input.

5.1.2 Model Architecture

Let s be a top-down image of the bin, and ŝ be a cropped window at a known pose (x, y,α).
To implement a sliding-window approach, we define the action-value-function Qm(ŝ, a) per
primitive m as mapping the image window ŝ to the binary grasp reward r as defined by
Equation 5.1. In particular, all relevant information about the pose is contained in the
cropped image window ŝ. The action-value function is approximated by an FCNN called
ψ.
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Figure 5.1: (a) Our neural network (NN) architecture. The training output has a size of (1× 1×
4), corresponding to three gripper distances d. (b) During inference, the NN calculates from the
overview image an output of size (40 × 40 × 3), corresponding to the (x, y, d) parameters. For the
rotation a, the input image is pre-transformed and the NN is recalculated for 20 angles. A single
output can be interpreted as a grasp probability heatmap.

Training Figure 5.1 shows the architecture of the NN. During training, the NN takes a
cropped window of size 32× 32× 4 pixels as input. The last dimension corresponds to the
four RGBD channels of the image. For depth or RGB images, a smaller number of input
channels can be used without loss of generality. The NN outputs four scalar predictions
(ψ1,ψ2,ψ3,ψ4) for each manipulation primitive and corresponding gripper width. The
output is of size 1×1×4, as the NN should predict reward predictions for all manipulation
primitives at every pose. The number of manipulation primitives is hence implemented
within the depth channel of the final layer. While the exact NN implementation might
differ within the experiments, Figure 5.1 shows details such as the number of kernels for a
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typical architecture. In general, we use a stride of (2, 2) in the first layer to half the feature
size. Then, we continue to shrink the feature size with kernel sizes of (3, 3), reducing the
feature size by (2, 2) per layer. Simultaneously, we increase the number of kernels over the
layer depth from 32 up to 128. We use a leaky ReLU for the activation function and batch
normalization in every hidden layer. We apply standard dropout with a rate of 0.3 and a
l2 regularization with a low 0.01 weight. A final sigmoid function maps the NN output to
binary reward predictions ∈ [0, 1]. A typical NN has around 200 000 learnable parameters.
Although used commonly in image classification, we do not make use of pooling layers.
Manipulation requires exact spatial information which would get lost during pooling. The
NN is trained to minimize the loss

L = − 1

|M|

|M|

m=1

δmn (rn logψm + (1− rn) log(1− ψm)) , (5.2)

the binary cross entropy between the predicted reward and the measured value for a specified
manipulation primitive m (gripper width).

Inference During inference, the same NN takes an image of the complete scene as input.
The output size X ′ scales with the input size X according to

X ′ = (X − 32)/2 + 1 (5.3)

due to the stride of 2 in the first layer. A typical input size of (110 × 110 × 4) is then
mapped to (40 × 40 × 4) reward predictions. These correspond to predictions at a grid
of poses over (x, y). In particular, the index position (i, j) within this grid is sufficient
to calculate the position (x, y) of the reward prediction, and the calibrated orthographic
image allows to compute the real-world position. The angle α is incorporated by rotating
the input image first, usually with 20 uniformly distributed orientations. This leads to a
number of 32 000 different grasp poses with four different primitives each, resulting in a total
action space size of |A| = 128 000 actions. The final output tensor has a size (20, 40, 40, 4)

Figure 5.2: Example heatmaps for planar grasping. The estimated grasp reward, averaged over
all rotations α and gripper widths d, is shown ranging from 0 (blue) to 1 (red).
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reward predictions corresponding to (α, x, y,m). This can be interpreted as a heatmap over
the spatial dimensions (x, y). Figure 5.2 shows exemplary heatmaps that are averaged over
rotations α and primitives m. Typical resolutions are approximately 4mm in the x-y-plane,
15mm for the gripper distance dm, and less than 9 ◦ for the rotation α. For binary rewards
such as r, the estimated grasping action-value function Q(s, a) is interpreted as a grasp
success probability ψ.

5.1.3 Training Process

Chapter 4 motivated and derived techniques for self-supervised learning. We apply them
for scaling the real-world training process to a large and diverse dataset. In particular, two
bins are used for continuous and diverse training: The robot learns to grasp objects out of
one bin and drops them into the second bin. This way, the fill level of the bin varies and
the objects do not repeat that closely over time. If a bin is empty or a number of grasp
attempts fail, the robot switches the bins and starts grasping from the then-filled bin. If
not otherwise stated, we use a threshold of 12 consecutive failed grasp attempts. Usually,
a human changes the objects or the bin once every 10 h. We apply a simple curriculum
learning strategy, starting with a few objects and increasing the number and complexity of
object types over time.

Random grasps result in a success rate of only 2% to 3%. However, successful grasp
actions contain more valuable information, as (1) they should be inferred during the ap-
plication phase, and (2) are harder to collect. This motivates a systematic approach to
exploration to use already learned knowledge to improve the learning itself. This explo-
ration is implemented by the selection function σ that chooses the final action from the
tensor of all grasp reward predictions. The general idea of the exploration is to prefer grasps
that have a higher chance of success, all while keeping a given (over time decreasing) level
of randomness. Besides uniform sampling for random grasps, we primarily make use of
the Prob(1) and Prob(2) methods (section 3.7). We avoid a purely greedy strategy dur-
ing training to avoid repeating the same, potentially failing grasping action. Furthermore,
switching is implemented softly by a probability threshold of choosing a first strategy over
a second one. During the application phase, we use the greedy policy σ = argmax named
Top(1). If a grasp fails, we switch to the Top(10) selection.

In parallel to the real-world data generation, our system of two GPUs is able to train
the NN from the most current dataset. The NN training takes in the order of 10min. This
guarantees that grasp reward predictions are always up-to-date, which improves the data
efficiency of the training procedure. Two further effects need to be considered: Firstly, an
average reward of around 0.5 for the overall dataset is preferred for a normalized reward
output, otherwise, the NN overfits to the specific, skewed distribution. Secondly, both
grasping error types are asymmetric. A false negative error is a missed chance for grasping,
while there are typically a multitude of positive grasping poses. However, false positive
errors correspond to real grasping errors, which should be minimized with higher priority.
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(a) Simple Objects (b) Unknown Objects

Figure 5.3: Object sets for evaluating planar grasping.

Both effects are implemented as two successive, reward-depending weights in the calculation
of the cross entropy loss.

To increase the quality of grasps, the clamping force f of the gripper is reduced during
training in comparison to application time. This minimizes grasping torques during training
and draws grasps towards the object’s center of mass. For improved evaluation and easier
debugging, we use a deterministic split into training and test sets. As new measurements
are added, a hash function maps the grasp timestamp to a number ∈ [0, 1]. If this value
is less than 0.2, the grasp is assigned to the test set. The exact set sizes are therefore not
predetermined. The NN is trained by the Adam optimizer with a learning rate of 10−4.

5.1.4 Experimental Results

We use the general experimental setup specified in section 4.3 with the Realsense D435
camera only. Moreover, the experiments make use of three object sets: (1) simple wooden
primitives for training, (2) M10-80 screws for challenging reflective surfaces, and (3) a
variety of more than 50 unknown objects for testing only (Figure 5.3).

Dataset

We train two separate datasets furthermore: (1) A main set for training on simple objects
as well as the evaluation of unknown objects, and (2) a dataset for screws specifically.
The main dataset includes 25 000 grasp attempts, recorded in 100 h in total. The 20 000
attempts of the screw dataset were taken in 80 h. A grasp attempt takes 15 s on average.
Figure 5.4 gives examples of overview RGBD images with corresponding grasp actions for
both sets. It also highlights the noisy depth image due to the reflective screws in clutter,
causing the major challenge of grasping reflective or transparent objects. Figure 5.6 shows
cropped image windows ŝ that are used as input for training the NN.

Complete random grasps were conducted for the first 2000 grasp attempts. Then we
switched to the Prob(n=1) selection method for exploration and increased n to 4 till 15 000
grasp attempts. We then used a ε-greedy exploration until the loss saturated at 25 000



5.1. PLANAR GRASPING 71

Figure 5.4: Example images of the bin with its border (white) and a successful grasp (red) and
the window used for its calculation (blue).

or 20 000 grasp attempts respectively. Figure 5.5 shows this convergence of the binary
crossentropy (BCE) loss and the accuracy of the NN depending on the dataset size for
training, validated on the evaluation set of the final dataset. For the ε-greedy exploration,
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Figure 5.5: The BCE loss and the accuracy of the NN depending on the training progress, corre-
sponding to the training set size N .

a Prob(n=2) selection was chosen with probability ε, otherwise, a greedy Top(25) action
was executed. ε was reduced linearly from 1 to 0.2 after 15 000 grasp attempts until the
end of the training. We retrain the NN on the most current dataset repeatedly, on average
every 200 grasp attempts depending on the duration of the NN training.
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Figure 5.6: Examples of cropped image windows ŝ around the tool center point (TCP) (red). The
border indicates a grasp success (green) or failure (red).

Grasp Rate

The grasp rate is measured by counting the attempts of grasping n objects without replace-
ment out of a bin filled with a total of m objects. Table 5.1 lists grasp rates for different
bin picking scenarios. We differ between the used object set as well as the number of ob-

Table 5.1: Grasp rate for planar grasping in different bin picking scenarios.

Objects n out of m Grasp Attempts Grasp Rate %

Simple

1 out of 1 213 99.5± 0.5
1 out of 5 205 99.0± 0.6
5 out of 5 183 98.4± 0.9
5 out of 20 219 95.9± 1.2
10 out of 20 240 93.8± 1.6
15 out of 20 192 93.8± 2.4
25 out of 30 216 92.6± 1.4

Screws
1 out of 1 114 97.4± 1.5
5 out of 20 135 96.3± 1.5
10 out of 40 156 89.7± 2.2

Unknown (simple)
1 out of 1 101 92.1± 2.5
5 out of 10 114 92.1± 3.2

Unknown (complex)
1 out of 1 154 68.8± 3.8
5 out of 10 114 61.4± 4.8

jects n and m. The same training and screw object set were used during both training
and evaluation. However, the unknown object set was trained only with the simple ob-
ject set. For typical bin picking scenarios of grasping 5 out of 20 objects, a grasp rate of
(95.9± 1.2)% for the wooden objects was measured. As expected, the grasp rate improves
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with decreasing clutter and increasing choice. For example, clutter might lead to stacked
and partially hidden objects, gaps in the depth information, and interlocked objects. The
grasp rate decreases for n near m and large m. Still, the system achieves a grasp rate of
(92.6± 1.4)% even for m = 30 objects inside the bin. For highly reflective screws in dense
clutter (m = 40), the grasp rate decreases to (89.7± 2.2)%.

Despite being trained only on simple wooden primitives, the robot is able to generalize
to novel object types never seen during training (Figure 5.3b). We differ between simple
and complex unknown objects depending on the similarity of the shape and material to the
trained objects. For simple objects, the robot can keep a grasp rate of over 92% even for
clutter. For more difficult objects, however, the grasp rate drops to 68.8% even for isolated
objects. Problems arise with unknown objects larger than the trained objects. As larger
objects may look like multiple smaller objects, the system attempts a grasp that would
separate possible objects. Hence, the grasping success depends strongly on the similarity
with the trained object type.

Another typical grasp failure case is due to missing depth data. In orthographic images,
an elevated object creates a “shadow” of missing depth data around it. Additionally,
geometric occlusions, reflective objects, or camera noise might increase these regions of
missing depth data significantly. Then, unexpected objects or obstacles might be within
these regions of missing data that result in a collision and failed grasp. Section 5.3.3
discusses this and other failure cases in more detail.
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Figure 5.7: The maximum estimated grasp reward over the translational and rotational resolution.

The output of the FCNN includes 128 000 estimated grasp rewards in a grid-like struc-
ture over 20 rotations and 40 translations for x and y each. We further investigate the
dependency of the action space resolution on the maximum grasp reward. A low resolution
might skip good grasp candidates, resulting in a low maximum grasp reward. A high reso-
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lution decreases the computing performance, so that a trade-off for finding successful grasps
needs to be considered. Figure 5.7 shows the maximum grasp reward for the total number
of translations and rotations. We find that the grasp reward saturates at a surprisingly low
number of around 15 translations and 20 rotations. This corresponds to a grid resolution
of 11mm and 9 ◦.

Calculation Duration

We measure an average calculation duration of (23.2± 3.1)ms on our control hardware.
This includes (1) 7.2ms for pre-processing, e.g. for rotating and scaling the images, (2)
14.2ms for the NN inference, and (3) 1.8ms for selecting and calculating the final grasp
action. Figure 5.8 shows the calculation duration over the side length of a (quadratic) bin.
We generate (hypothetical) images by scaling real images accordingly. As expected, we find

0.2 0.3 0.4 0.5 0.6

0

50

100

150

Bin Side Length l [m]

C
a
lc
u
la
ti
o
n
D
u
ra
ti
on

[m
s] Total

Pre-processing
Post-processing

Figure 5.8: The calculation duration depending on the size of the bin with constant resolution.

that the total calculation duration as well as the NN inference scales quadratically with the
bin size. For a side length of 0.6m, the policy estimates the grasp rewards for 1 230 080
actions. Still, the calculation duration stays below 200ms.

Transfer Learning

Besides generalization to unknown objects, we investigate the transfer learning between
object types. In particular, the robot trains on a dataset of wooden cylinders only. We
then evaluate it on sharp wooden cubes as the novel object type. Figure 5.9 shows the
robot’s capability of transfer learning based on different training datasets. With either a
large dataset of cylinders or a small dataset of cubes, the grasp success rate stays below
72%. In the first case, it fails to generalize to out-of-distribution objects, in the latter case
it overfits on too few data samples. However, combining both datasets results in a grasp
rate comparable to prior trainings as in Table 5.1.
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Figure 5.9: The grasp rate of cubes (10 out of 15 objects), depending on the trained object type
(label) and their corresponding dataset sizes N .



76 CHAPTER 5. GRASPING

5.2 Model-based Adaptive Primitives for 6DoF Grasping

So far, we focused on planar grasping as a simplification towards the general 6DoF grasping
problem. In the following two sections, we want to derive two approaches for 6DoF grasping
that both gently extend the methods introduced in chapter 3. The key idea of the first
approach is to use adaptive primitives. Here, the manipulation primitives are, besides the
planar grasp pose, parametrizable by a small number of additional variables. By using an
analytical model for these parameters next to the learned grasp reward estimation, a hybrid
approach is derived for 6DoF grasping. This section is based on [10].

5.2.1 Advantages and Challenges of 6DoF Grasping

6DoF grasping allows for two primary advantages over planar grasping: First, the additional
DoFs of the orientation might allow new grasps that would otherwise be in collision and
therefore improve the general grasp quality. When calculating grasps based on top-down
images of the bin, this appears mostly for collision avoidance between the gripper and the
bin. With 6DoF grasps, the robot is able to approach a grasp point laterally to e.g. grasp
objects near the edges of the bin (Figure 5.10a). Second, 6DoF grasping allows for more
flexible viewpoints. Assuming a flat object on a table, the robot needs to grasp the object in
a specific orientation (Figure 5.10b). 6DoF grasping relaxes the requirement of a top-down
image to more practical camera positions, e.g. found in service or humanoid robotics with
a camera mounted on a mobile platform.

(a) Collision avoidance (b) Lateral viewpoint

Figure 5.10: Two advantages of 6DoF over planar grasping: First, it allows more flexible grasps
and improved collision avoidance (left). Second, it allows lateral points of view instead of top-down
images (right), even for flat objects on a table.

However, these advantages are bought dearly by challenges that are avoided intention-
ally in planar grasping. First and foremost, the additional DoFs reinforce the curse of
dimensionality that results in an exploding action space. For example, section 5.1 dis-
cretized the action space to 128 000 grasp poses. Extending the action space by two more
DoFs increases its size exponentially, e.g. by a factor of 400× to 51 200 000 actions when
keeping the same resolution for all three rotations. First, this would slow down the infer-
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ence calculation to around 16 s. This would not only be impractical for any applications,
but would also more than halve the real-world training throughput. Second, the task of
6DoF grasping yields significantly more diverse input data, and therefore requires more
training data for similar performance metrics. Moreover, the extended action space makes
exploration much more challenging in the real world. At the beginning of the training, a
number of successful grasps need to be observed so that the robot can start learning to
classify between grasp successes and failures. Using more complex selection strategies relies
on a working yet possible erroneous reward estimation that was kickstarted by random
sampling. As grasp failures are very easy to collect, we argue that the initial training time
scales with the random grasp success rate. 6DoF grasping reduces the random grasp rate
to around 0.25% from 2.5% for planar grasping. To collect 50 grasp successes, random
planar grasping requires around 2000 grasp attempts. For 6DoF grasping, this increases
by an order of magnitude to around 20 000 attempts.

Planar grasp primitives were introduced in subsection 5.1.1. For 6DoF grasping, we
allow β and γ to be non-zero. In particular, the grasp pose is defined by a complete 6DoF
frame. A grasping action is parametrized by the pose (x, y, z,α,β, γ) and the pre-shaped
gripper width dm. We keep four distinct pre-shaped gripper widths which are implemented
as separate manipulation primitives m.

5.2.2 Model-based Orientation

To mitigate the challenges associated with the introduction of the β and γ DoFs, we extend
planar grasping by calculating these by a manually defined, model-based controller. This
way, we keep learning the planar DoFs only, and therefore avoid an exponentially increased
action space for the learned policy. In the following, we derive a controller Cβγ

Cβγ : Ŝ ×M → [−π/2,π/2]2 (5.4)

mapping each image window ŝ and primitive m to the relevant half-space of the angles β
and γ. Similar to the height z, the NN needs to implicitly estimate the controller Cβγ to
predict the final grasp reward. Therefore, we constrain the mapping to be simple in the
sense of deterministic and continuous with a finite and low Lipschitz-constant. As the grasp
reward is generally a multi-modal distribution, a simple controller can only contribute as a
first approximation. However, it suffices that the controller benefits the grasp on average,
as negative (false positive) cases should be learned and eventually avoided by the NN. For
an efficient implementation, we restrict our algorithm input to depth images. In summary,
the robot should utilize the additional two DoFs to:

• Avoid collisions between the gripper and a possible bin or other objects.

• Maximize the grasp quality. We briefly define the quality using the antipodal score.
In general, we minimize the mean scalar product of the normal vectors between both
gripper jaws and the object surface.
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Figure 5.11: Sectional drawings of depth profiles s(x, y) (blue) to illustrate the controller derivation
for a given grasp point (red). In (c), the hatched area marks an undercut from the camera view
from above.

• Minimize uncertainty as grasping in 6DoF naturally has to deal with back sides,
undercuts, and viewing shadows. In this regard, the uncertainty increases with in-
creasing grasp angles β and γ.

• Maximize the grasp surface between the gripper jaws and the object.

In a simplified manner, the grasp quality of a planar two-finger gripper is only changed by
γ. Furthermore, we separate the calculation for each DoF.

Angle β The primary task of this DoF is to avoid collisions (Figure 5.11b). Let s(x, y)
be the height profile given by a depth image of size x ∈ [−dx, dx] and y ∈ [−dy, dy]. We
calculate the gradient in regard to the rotational axis x and average over all values in y

tanβ = − 1

4dxdy

 dy

−dy

 dx

−dx

w(x)
∂s

∂x
(x, y) dx dy

The resulting angle β approximates an orthogonal vector at the grasp point, averaged over
the depth profile of the gripper’s environment. A centered Gaussian w(x) = N (0, 1.5 ·
finger width) is used as a weighting function.

Angle γ The primary task of this DoF is to maximize the grasp quality score. We define
the angles γl and γr (Figure 5.11c) as

tan

γl +

π

2


= −max

y

1

2dx

 dx

−dx

∂s

∂y
(x, y) dx

tan

γr −

π

2


= −min

y

1

2dx

 dx

−dx

∂s

∂y
(x, y) dx

As the gradients can be quite prone to depth noise, we calculate the mean gradient
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averaging the depth profile without weights. Let ρ ≥ 0 be the so-called certainty parameter.
We combine these three angles via

γ =






1
2(γl + γr) + γm if γl > −π

2 and γr <
π
2

1
1+ρ(ργl + γm) if γr ≥ π

2
1

1+ρ(ργr + γm) if γl ≤ −π
2

γm else

with the following intuition: If an undercut exists (|β| or |γ| ≥ π
2 ), the system will try a

grasp orthogonal to the surface γm (for ρ = 0) or antiparallel to the visible surface normal
of the object γl or γr (for ρ ≫ 0). Furthermore, we use ρ = 0.5.

5.2.3 Collision Avoidance

Both angles should be guaranteed to be without collision (Figure 5.11a). For the following
derivation, we introduce the angle τ substitutional for both angles β and γ. We derive the
interval [τmin, τmax] around planar manipulation τ = π/2 without collision. For each angle,
we use the maximum profile sb = maxx s(x, y)) or sc = maxy s(x, y)) regarding the rotation
axis. Then, we calculate the maximum height hi at a discrete set of distances rxi from the
grasp pose. We assume a simple rectangular collision model (with side lengths du − dl and
2r) of the gripper. Simple geometric considerations lead to

τmin =






tan−1 r
dl

if du < rx,

tan−1 r
du

+ tan−1
√

d2u+r2−r2x
rx

if d2u+r2

r2x+r2z
< 1,

tan−1 rx
rz

+ tan−1
√

r2x+r2z−r2

r + π if
d2l +r2

r2x+r2z
< 1,

tan−1 rz
rx

+ tan−1 r
dl

else

depending on the finger length dl and the considered gripper height du. Similar results hold
for the other side to calculate τmax. Finally, the angles β and γ are clipped to be within
their respective intervals.

Given a planar pose (x, y,α) with a corresponding cropped window ŝ, the controller
calculates the additional orientations (β, γ) in a deterministic manner. Additionally, we
keep the (trivial) calculation of the height z by reading the value at the center of the depth
images plus a fixed gripper-dependent offset. Similar to subsection 5.1.2, a NN ψ(ŝ) maps
the image state ŝ to the single-step grasp reward r (given by Equation 5.1).

Again, we apply a fully convolutional neural network (FCNN) to efficiently implement
a sliding-window approach for the planar DoFs. A key contribution is the integration of
the model-based controller within the FCNN (Figure 5.12): The FCNN predicts the grasp
reward at a grid of planar poses. At the selected planar pose (x, y,α) (e.g. the maximum
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Figure 5.12: During inference, a fully convolutional neural network (FCNN) estimates the reward
for a grid of grasp poses (heatmap). A model-based controller calculates the lateral DoF (z,β, γ)
based on the selected planar grasp (x, y,α,m). During training, the reward of the adapted grasp is
fed into the NN.

predicted grasp reward), the controller takes the cropped image window as input and calcu-
lates the remaining DoFs (z,β, γ). The grasp reward r is measured for the complete 6DoF
grasp. While the NN does not predict and only knows about the exact orientation indi-
rectly, it learns to predict the grasp reward for a full 6DoF grasp. In fact, the pipeline first
estimates the grasp reward before computing the explicit values for β and γ. The planar
DoFs are learned and predicted by the FCNN, while the remaining DoFs are calculated by
the analytic model introduced above.

5.2.4 Experimental Results

Again, we use the experimental setup introduced in section 4.3 with the Realsense D435
camera only. We evaluate the approach on (1) simple wooden primitives for training and
(2) more than 50 unknown objects for testing (Figure 5.3).

Training Process

The NN was trained with a dataset of 27 000 grasp attempts in an overall training time of
120 h. For exploration, random grasps were conducted for the first 4000 grasp attempts.
Then, the Prob(n=1) selection strategy was used with linearly increasing n until 18 000
attempts. Then the ε-greedy Top(25) strategy was applied, falling back to Prob(n=1)
with a probability of ε = 0.1. We retrain the NN on the most current dataset every 200
grasp attempts. In the end, the BCE of the validation dataset starts to saturate in our
experimental setup.
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(a) b=0.237, c=0.039 (b) b=−0.017, c=−0.013 (c) b=0.042, c=0.353 (d) b=0.022, c=0.076

(e) b=−0.002, c=0.281 (f) b=−0.028, c=−0.013 (g) b=0.057, c=−0.038 (h) b=0.035, c=−0.202

Figure 5.13: Examples of successful grasps, showing the RGBD image window ŝ. The projected
approach vector (green) represents the angles b and c, the result of the model-based adaption.
Furthermore, the grasp and its stroke are shown (red).

Learned Model-based Orientation

The adaption of the grasping primitive for the lateral angles β and γ are shown for several
examples in Figure 5.13. We find angle β to be robust and working well for general colli-
sion avoidance (e.g. Figure 5.13a, e). By adapting γ, the robot avoids other objects (e.g.
Figure 5.13c, i, j) or increases the grasp quality (Figure 5.13f). In general, the system often
uses near-planar grasps (e.g. Figure 5.13b, g) to minimize uncertainty.
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Figure 5.14: Histogram of the lateral angles β and γ (top) and their corresponding mean grasp
success (bottom) during training.

Figure 5.14 shows a histogram of the angles during the training phase. As expected,
we find that our model is very much limited to angles of around 0.5 rad (30 ◦). However,
due to the integral limits depending on dm as well as taking max and min values, γ is more
sensitive to camera noise. We therefore crop the lateral angles, leading to small peaks of γ
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at the border. As expected, we find that the grasp success drops off for non-planar grasps.

Grasp Rate

As before, we define the grasp rate as the ratio of successful grasps (r = 1) over the total
number of grasp attempts without object replacement. In Table 5.2, we report grasp rates
for several scenarios: For trained objects, we measure grasp rates near 100% for isolated
objects. In bin picking scenarios (e.g. 20 out of 30 objects), the grasp rate decreases to
92%. In comparison to planar grasps with similar training, 6DoF grasps are around 3%
less robust. If we apply our lateral adaption to a NN trained for planar grasps, the grasp
rate decreases significantly. This emphasizes the ability of the NN to learn grasping in
conjunction with the model-based adaption. For isolated unknown objects (Figure 5.3),
the robot achieves grasp rates of 85%.

Table 5.2: Grasp rate for different bin picking scenarios: (a) 6DoF or planar grasping, with (b)
normal or short grippers, and (c) either trained or unknown (novel) objects. The robot needs to
grasp n objects out of a bin filled with m objects.

Object Count Grasp Rate Number

6DoF

1 out of 1 100% 100
1 out of 5 (99.0± 1.0)% 103
5 out of 20 (96.3± 1.6)% 109
20 out of 30 (92.1± 2.2)% 152

Planar 20 out of 30 (95.2± 2.0)% 126
Planar + Model 20 out of 30 (73.5± 2.0)% 136

Short
6DoF 5 out of 20 (90.9± 2.5)% 110
Planar 5 out of 20 (37.0± 6.9)% 108

Unknown 6DoF
1 out of 1 (85.1± 3.3)% 215
5 out of 20 (81.7± 3.4)% 104

To emphasize a real-world benefit of 6DoF bin picking, we evaluate the grasp rate for
short gripper fingers smaller than the height of the bin. While the planar grasp rates drop
naturally to below 40% due to collisions, our approach keeps the grasp rate above 90%.
Here, the collision avoidance enables grasps that would not be possible with planar grasps.

For bin picking applications, the inference time directly reduces the PPH. During real-
world experiments, we achieve up to 296± 3PPH. Table 5.3 lists processing times between
camera input and grasp pose output for 6DoF approaches. On average, our proposed
algorithm requires less than 50ms and scales only with the observed bin area. The model-
based adaption takes a constant overhead of 6ms. In comparison to related work, the
presented approach requires significantly less processing in front of the NN inference.
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Table 5.3: Processing and NN inference time of different grasping approaches. Comparisons to
related work by [96].

Processing [ms] Inference [ms] Overall [ms]

6DoF (Ours) 15.3± 4.3 33.0± 0.4 48.3± 4.6
Planar (Ours) 9.8± 0.7 32.8± 0.5 42.6± 1.1

GPD [118] 24 106 1.5 24 108
Qin et al. [96] 5804 12.6 5817
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5.3 Fully Convolutional Actor-Critic for 6DoF Grasping

In the prior section, we investigated how analytical models can supplement a learned ap-
proach to keep the training complexity and inference calculation manageable. In this sec-
tion, we propose a fully learned approach for 6DoF grasping. We keep our general approach
from chapter 3 by using an FCNN for reward prediction, but extend it incrementally to a
fully convolutional actor-critic architecture. The actor calculates pose parameters for the
non-planar DoFs of the system, in particular the height z and the angles β and γ, in a way
that maximizes the estimated grasp reward. This way, the proposed architecture might
also be used for other tasks as a general 6DoF pose calculator.

5.3.1 Model Architecture

Let us briefly motivate the general proposed model architecture. Commonly, the task of
grasping is split into grasp generation and grasp ranking. At first, a number of grasp hy-
potheses are generated, and subsequently evaluated by a scalar grasp score. Then, the
highest-ranked grasp is chosen for execution. A key idea of this section is to approach this
distinction between generation and ranking for each DoF separately. In particular, both
generating and ranking grasps can be parallelized efficiently for some DoFs. For these
DoFs, a large number of grasp hypotheses can be calculated quickly and in a trivial way.
For the remaining DoFs, we generate only a small number of however high-quality pose
hypotheses, in particular as many as the compute budget allows for. Finally, all hypotheses
are ranked to find the best possible grasp. The planar DoFs (x, y,α) are computed in a
sliding-window approach as before, while the remaining non-planar DoFs (z,β, γ) are gen-
erated continuously.

We use a first deep neural network (NN) called actor to generate grasps, and a second
critic NN to rank them. This corresponds to the common actor-critic approach in RL
(as introduced in chapter 3). Figure 5.15 illustrates the NN architecture during training
(a) and inference (b). At first, the critic is trained to map the image window ŝ as well
as the non-planar grasp pose (z,β, γ) to the reward r. Afterwards, the actor is trained to
maximize the critic’s reward by computing corresponding grasp actions. In particular, the
training propagates the gradients of the critic to the actor’s output, enabling an efficient
optimization. The actor and critic share their base convolutional layers and differ only in
the final layers called actor or critic head. The critic head takes the action (z,β, γ) as input
and concatenates these values with the first convolutional layer of input size 1× 1×N . In
practice, the computationally expensive base layers are needed to be computed only once
for both action (z,β, γ) and reward r prediction. Moreover, the actor generates multiple (in
the order of three) action hypotheses and optimizes for their joint maximum reward. The
actor might then better approximate a multi-modal problem such as grasping. Intuitively,
the actor might propose different grasps that are far away from each other, resulting in
improved coverage of the grasp space before the critic’s ranking.

During training, the complete bin image s, rotated over Nr discrete orientations, is
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Figure 5.15: The neural network (NN) architecture during training (a) and inference (b). The
overall system is divided into the base (black), the critic (blue), and the actor NN. During training,
the critic maps an area around the gripper and the action of an either demonstrated or self-supervised
grasp to the corresponding reward. The actor learns to maximize the weighted reward by predicting
the action. All NN are fully convolutional. During inference, the same NN is applied to a complete
image of the scene, resulting in a heatmap of actions and rewards.
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taken as input for the shared base layers. First, the actor calculates Na predictions for
(z,β, γ) at each planar pose (x, y,α). This results in Nr ×Nx ×Ny ×Na generated grasp
poses with a full 6DoF pose that are subsequently evaluated by the critic head. Finally,
the selection policy selects the best possible grasp for training or inference. The proposed
architecture generates non-planar action hypotheses for all manipulation primitives m at
once, and only the critic then maps them to a grasp reward for each individual primitive.
Figure 5.16 shows that both the resulting grasp reward as well as action proposals can be
interpreted as a heatmap.

(a) Depth Image (b) Color Image (c) Grasp Reward

(d) Action z (e) Action b (f) Action c

Figure 5.16: Example images with corresponding heatmaps for the fully convolutional actor-critic
NN architecture. Given an RGBD input (a) and (b), the NN predicts the grasp reward at a grid
of planar poses (c), here averaged over all rotations. Additionally, the actor generates an action
height z (d), rotation b (e), and c (f) that maximizes the grasp reward at this specific pose. The
reward heatmap is given from low (blue) to high (red), while the actions are normalized from their
minimum value (blue) to their maximum (red). Exemplarily, (e) shows that the NN predicts a
maximum rotation b near the left border of the bin that rotates the gripper away from the border.

5.3.2 Combined Self-supervised and Imitation Learning

Self-supervised Learning

As introduced in chapter 4, the training needs to be self-supervised in order to scale the
real-world data generation. The grasp reward is defined as

rg(s, a) =


1 if grasp and filing successful,

0 else.
(5.5)
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To allow for a continuous and variable training, there are two bins (with changing grasp
and filing) with a variety of objects. During training, we apply a simple curriculum learning
strategy by introducing more complex objects, different boxes and deliberately changing
the lighting condition over time.

Imitation Learning

Subsection 5.2.1 lists challenges of 6DoF grasping, in particular related to the slow explo-
ration and the more complex action space. We pre-estimate that the low purely random
grasp success rate of around 0.25% will make hundreds of thousands of grasp attempts
necessary, unfortunately overstraining our robotic resources. To reduce the required explo-
ration, we want to learn from human grasp demonstrations instead. By collecting a dataset
up front, an initial policy is trained for the subsequent self-supervised training.

A grasp demonstration is given as a pose ph with a continuous gripper stroke dh, cor-
responding to a successful grasp (as supposed by the human annotator). We map the
continuous gripper stroke dh to a grasp primitive m by choosing the primitive with the
next larger gripper width. In addition to the grasp reward, we train the robot to imi-
tate the human grasp demonstrations. The reward for behavior cloning is defined as a
contrastive loss

rb(s, a) =


1 if grasp was demonstrated,

0 else from noise distribution.
(5.6)

using a pre-defined negative noise distribution. We overlay two distributions: First, a
uniform random distribution over the complete action space, constrained by the size of the
bin. Second, given a grasp demonstration ph at the planar position (x, y,α), we uniform
randomly set (z,β, γ) only. This way, the noise distribution focuses on the output of the
actor. In other words, the critic learns to differentiate between human and random grasps,
and the actor then tries to fool the critic.

Combining Imitation and Self-supervised Learning

We collect successful human grasp demonstrations first, and subsequently continue with
the self-supervised exploration. Let the total reward r be the weighted sum of the behavior
cloning and grasp reward

r = wb rb + (1− wb) rg (5.7)

with the behavior cloning weight wb. For the critic, both rewards rb and rg are estimated at
inference run-time. For training the actor, however, this weight needs to be fixed. Then, we
start the self-supervised training only based on behavior cloning (with wb = 1). In general,
we reduce wb linearly to zero over time. At the end of the training, the robot should only
predict grasps based on its own experience.
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This way, the purely random exploration is replaced by behavior cloning. For the self-
supervised exploration, however, we introduce two stochastic elements to the training:

1. We apply the Prob(n) selection method from section 3.7 with n ∈ {1, 2, 4, 6}. While
the Top(n) method has little randomness, we combine it in a ε-greedy strategy with
Prob(n) as the fallback.

2. We apply a Gaussian noise with zero mean on the action (z,β, γ) via

(z,β, γ)′ = (z,β, γ) + εaN [ 0, (0.01 cm, 0.1 rad, 0.1 rad) ] . (5.8)

The standard deviations are scaled with the εa parameter.

In particular, we avoid purely (uniform) random exploration completely because of the
high-dimensional action space and the hence very low random grasp success rate. Instead,
behavior cloning is used to find an initial policy that enables downstream self-supervised
training. However, the reduced exploration increases the chances of converging to a (worse)
local minima instead of the optimal global minima. The data collection for imitation
learning is crucial for drawing the local near the global minima.

Neural Network Training

In parallel to the self-supervised data collection, the NN is continuously trained on the
most recent dataset. Both actor and critic NNs are split into three parts (Figure 5.15):
The critic head, the actor head, and a shared base of convolutional layers. The critic and
actor NNs are trained consecutively, while the base weights are only updated during critic
training. Here, we use a common binary crossentropy (BCE) loss regarding the reward r.
Afterwards, the base is kept fixed for the actor training. The actor generates Na action
hypotheses. Then, the loss function of the actor is given by

L =


i∈Nb

max
j∈Na

|1− critic(ŝi, actorj(ŝi))| (5.9)

with the batch size Nb. In addition to the data augmentation techniques presented in
section 3.6.5, we make use of the height correspondence between z and the depth image. A
random offset ∆z is applied to the depth image by changing its brightness by a constant
factor; the orthographic color image is invariant.

5.3.3 Experimental Results

Again, we use the experimental setup introduced in section 4.3 with the Realsense D435
camera only.
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Recording Grasp Demonstrations

Successful grasp demonstrations are recorded as a pair of grasp pose p and continuous
gripper width d. Furthermore, we evaluate and compare two approaches for human grasp
demonstrations (Table 5.4).

Table 5.4: Methods for Recording Grasp Demonstrations.

Human Tracking Kinesthetic Teaching

Calibration (per session) 15min -
Grasp Recording 5 s 16 s
Post-processing 6 s -

Total (per grasp) 15 s 16 s

Mean Deviation 8mm < 1mm

First, human tracking allows to estimate (1) the hand position using an ARTrack
infrared marker system and (2) the relative position of the fingertips using a CyberGlove
data glove. We measure the position of the thumb and index fingertip, and derive the grasp
pose as the center and the gripper width as the distance between the two fingertips. Instead
of relying on a human hand model for calculating the finger position based on angles, we
calibrate the CyberGlove by learning directly from the raw sensor values. Typical errors
are in the order of a few mm for the marker-based system and around a cm of accuracy for
the relative fingertip positions. This way, post-processing of the grasp poses is required.
Moreover, we found that the CyberGlove needs to be re-calibrated quite regularly after a
session of around 250 grasps due to sensor shift.

Second, we move the collaborative Franka Emika robot to successful grasp poses by
hand, referred to as kinesthetic teaching. While this approach achieves optimal accuracy
(at least the same absolute position accuracy that applies to the grasping process itself),
teaching is slower per grasp than by human tracking. However, no calibration or post-
processing is required. In total, we recorded around 1000 grasp demonstrations in 5 h for
each approach.

Training

After training the NN with 2000 demonstrated grasps for the first time, the robot collected
over 38 000 grasp attempts in a self-supervised manner. For each grasp attempt, one top-
down and two additional RGBD images from lateral viewpoints were recorded per grasp,
resulting in a dataset of over 100 000 images. Typical durations for a grasp attempt and
three images are between 15 s and 20 s, resulting in 150 h of self-supervised training on top
of 10 h of human grasp demonstrations. Figure 5.19 shows the accuracy as the absolute
difference between the estimated and measured grasp reward over the training progress.
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(a) Simple Objects (b) Unknown Objects

Figure 5.17: Object sets for evaluating 6DoF grasping with an actor-critic architecture

Figure 5.18: Example windows ŝ of (successful) human grasp demonstrations

In general, a variety of simple objects, mostly wooden geometric primitives, were used
throughout training (Figure 5.17a). We applied a simple curriculum learning strategy:
First, we introduced more complex objects (e.g. screws) over time. Second, we increased
the number and diversity of objects within the bin. In the end, the dataset included around
40 000 grasp attempts with a mean success rate of 31%. Then, the NN training required
around 2 h, corresponding to 450 newly collected grasp attempts.

Grasp Rate

As before, the grasp rate is defined as the ratio of successful grasps (r = 1) over the total
number of grasp attempts without object replacement. In particular, the grasp rate is mea-
sured by grasping n objects out of a bin filled with m objects. Table 5.5 shows grasp rates
for a variety of bin picking scenarios. Apart from the training objects, unknown (novel)
objects were used for evaluation. They were never seen before, and include household as
well as office objects, toys, tools, and industrial parts (Figure 5.17b).

In typical bin picking scenarios, our approach can grasp trained objects with success
rates of over 95%. However, this rate decreases with an increasing number of objects in
the bin (due to clutter) as well as an increasing number of objects to be grasped out (due
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Figure 5.19: Estimation accuracy (absolute difference between estimated and measured reward)
over the training progress. The first 2500 training samples were recorded as human grasp demon-
strations, following a self-supervised real-world training.

to using the best grasps first). For unknown objects, we measured grasp rates of 92% in
isolated settings and 84% in clutter. Furthermore, we compare to a planar grasping base-
line and three alternative approaches.

In general, 6DoF grasping has two major advantages over planar grasping in the context
of bin picking: First, the robot is better able to avoid collisions, in particular between
gripper and bin. Accordingly, our approach is able to grasp objects out of the corner of
the bin. We test objects from both the trained and unknown sets that are not possible to
grasp in a planar way (Figure 5.10a). In comparison, we achieve a grasp rate of 87% in this
setting. Second, 6DoF grasping allows for a more flexible viewpoint of the camera. For
example, a robot is then able to grasp flat objects from lateral points of view (Figure 5.16f).

Inference Performance

Table 5.5 shows the grasp calculation duration for all evaluated approaches. On our hard-
ware, our approach takes on average 67ms for inferring the next best grasp. Regarding
related work, this is two orders of magnitude faster than PointNetGPD calculating 6DoF
grasps with specialized NN architecture point clouds. Table 5.6 shows detailed timings
about the calculation performance. Interestingly, inferring the NN takes less than half of
the total time, as rendering orthographic images from point clouds takes a fixed 24ms. In
comparison to planar grasps, 6DoF grasping shows an overhead of around 20ms for the
larger actor-critic NN. To highlight the efficient implementation of the FCNN as a slid-
ing window approach, we further compare this to a non-fully convolutional NN that crops
each input image individually. In comparison, the FCNN accelerates the inference over two
orders of magnitude.
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Figure 5.20: Example grasps with 6DoF on unknown objects, computed by a fully convolutional
actor-critic NN architecture trained on human demonstrated and self-supervised data collection.
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Table 5.6: Details about the Calculation Duration [ms].

Non-FC 6DoF Planar 6DoF

Rendering 23.9± 0.4

Preprocessing 4919± 45 7.6± 1.0 7.6± 0.9
NN Inference 3980± 8 13.5± 0.9 32.5± 0.3
Selection 191.0± 0.4 2.3± 0.1 2.7± 0.2

Total 9114± 38 47.3± 2.3 66.7± 1.3

Collision Rate

We define a collision when the external force exceeds 7N during the grasp approach motion.
In most cases, a collision should be avoided due to sensitive objects and the robot’s wear
and tear. In some cases, however, a collision can enable a grasp that wouldn’t be possible
otherwise, e.g. when a finger needs to move into a small gap between objects. Our approach
allows three modes to handle collisions: First, the default setting (called collisions as fail-
ures) explicitly learns to avoid collisions. During the training, both the target pose and the
pose just above the collision are saved. Then, the collision pose is used as the successful
grasp, while the original target pose is learned as a grasp failure. Second, a model-based
check finds collisions as intersections between a bounding box of the gripper and the point
cloud. In case of a predicted collision, the next best possible grasp is selected in an iterative
manner. Third, collisions can be ignored. For these modes, Table 5.7 compares collision
and grasp rates. Despite treating collisions as failures, we measure a collision rate of 19%,

Table 5.7: Collision Rate (10 out of 20).

Mode Collision Rate [%] Grasp Rate [%]

Ignore Collisions 34± 3 94.2± 1.6
Collisions as Failures 19± 2 95.5± 1.2
Model-based Check 3± 1 94.6± 1.1

improving from a baseline 34% without collision handling. With the model-based check,
we reduce the collision rate to 3%.

Ablative Study

Furthermore, we investigate the system in an ablative study. For some parameters, we
measure the influence on the validation metrics of the corresponding NN. While there is
some correlation to the actual grasp rate, this is highly nonlinear. In particular, the true
grasp error rate is a rate of false positive predictions.

Fully Convolutional Constraints While a fully convolutional architecture allows for an
efficient implementation of a sliding-window approach, it limits possible designs of the NNs.
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Primarily, the concatenation of the action onto the critic is required to be a vector without
spatial dilation. In contrast, an unrestricted NN might tile the action and therefore merge
the action within lower layers. Table 5.8 compares a fully convolutional and an unrestricted
NN with fixed training otherwise. Note that the fully convolutional NN improves the
performance by two orders of magnitude compared to cropping and evaluating each window
individually.

Table 5.8: Accuracy of a fully convolutional vs. unrestricted NN architecture.

Architecture BCE Accuracy Duration [ms]

Fully Convolutional 0.295 85.9% 66.7± 1.3
Unrestricted 0.276 86.7% 9114± 38

Locality The side length l of the cropped image area ŝ is a parameter for the locality
of the grasp prediction. We set l = 10 cm as a default, slightly exceeding the size of
the maximum gripper width of 8.6 cm, and corresponding roughly to the maximum object
size in the training set. Figure 5.21 shows the dependency of the critic’s accuracy on the
locality. We kept the NN architecture fixed while retraining on scaled input images. For
purely local actions, we expect a maximum at the maximum gripper length. However,
maximum accuracy is reached at side lengths l ≈ 0.12 cm. This is due to non-local effects,
e.g. collisions between the gripper and the bin. For lateral orientations, the projected
approach vector might even be outside the image area. As expected, the accuracy drops
off for increased side length e..g due to the decreased resolution.
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Figure 5.21: Accuracy of the critic NN depending on the window size of the input image.

Number of Action Hypotheses The actor predicts multiple action hypotheses to be
evaluated by the critic. While this comes with the cost of a lower inference performance,
an increased number of actions improves the mean absolute error metric of the actor (Fig-
ure 5.22). In our experiments, we set the number of action hypotheses to Na = 3.
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Figure 5.22: The actor’s loss and inference duration depending on the number of non-planar action
hypotheses.

Color Information Depending on the camera, the image provides color (RGB), depth
(D), or both (RGBD) information as input channels to the NNs. Incorporating color infor-
mation improves the accuracy of the critic from 85.5% (D) to 86.0% (RGBD). In compar-
ison, the critic achieves an accuracy of 82.9% only using color information (RGB). Note
however that depth information is required for the orthographic projection. As expected,
we find color input in particular helpful when depth information is missing or inaccurate.

Viewpoint Encoding So far, the NNs are trained assuming the manipulation to be view-
point invariant under translations and all rotations. However, as described in section 3.4,
gravity influences the physics of manipulation. The three DoFs (α,β, γ) change the local
gravity vector. As these are given in the camera frame, the camera orientation becomes
essential. Therefore, we input information about the current viewpoint orientation into the
system. Figure 5.23 compares the NN training result with and without the viewpoint en-
coding. We find that the actor model is able to achieve a higher grasp rate with a viewpoint
encoding, in particular for orientations that are far from top-down (β = 0) grasps.

Behavior Cloning Weight Figure 5.24 shows the grasp rate depending on the behavior
cloning weight wb, influencing the final reward according to Equation 5.7. The grasp rate
decreases monotonously with increasing focus on behavior cloning. When using only the
2000 human grasp demonstrations and ignoring the self-supervised training (wb = 1), the
system achieves a grasp rate of (73± 4)%. As the grasp rate reaches its maximum at
wb = 0, the human demonstrations are only required by the training, but not the final
grasp policy. Trivially, we expect a benefit from the larger combined dataset size, however,
the shortcoming might be caused by a mismatch between human demonstrations and the
subsequent transfer to the robot’s experience.
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Figure 5.23: Grasp success rate depending on the viewpoint orientation β (the grasp orientation
given in the camera frame).
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Figure 5.24: Grasp success rate depending on the weight wb of the behavior cloning (based on
human grasp demonstrations). The grasp rate is measured by grasping 10 out of 20 simple objects
out of a bin.
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Failure Cases

Similar to other data-driven approaches, grasp decisions and in particular its failures are
not necessarily explainable. Nonetheless, we find several primary failure cases (Figure 5.25)
showing the limitation of the current system.

(a) Multiple Objects (b) Adversarial Object (c) Confusing Texture (d) Missing Depth Data

Figure 5.25: Common failure cases of our 6DoF grasping pipeline.

Multiple Objects As the robot does not know about the concept of objects, it may
try to grasp multiple objects at once. This often leads to unstable configurations due to
objects moving relative to each other. In general, the robot fails to predict whether two
object parts are fixed.

Adversarial Objects Despite training on a variety of objects, we are still able to discover
objects that result in repeated grasp failures. This is mostly due to the geometric shape
being not similar enough to the trained objects, corresponding to an out-of-distribution
case for our data-driven approach.

Confusing Texture Furthermore, we find that texture can confuse the robot, despite
the seemingly small improvement of 0.5% in the critic’s accuracy when using RGBD input.
As an example, the robot estimates the grasp reward of a printed image of a screw to
(80± 4)%, corresponding to an obvious false positive classification.

Missing Depth Data In orthographic depth images, every object has, depending on its
height and distance to the camera, a “shadow” of missing depth data around it. However,
camera failures, unfavorable occlusions, or reflective objects might increase these regions
of missing depth data significantly. Currently, the NN takes these regions with a constant
zero as input, and therefore dismisses the explicit uncertainty that the system knows about.
Incorporating uncertainty into the grasp reward prediction, e.g. by mapping the uncertainty
of the input data to the reward, might help to make the robot more robust to unexpected
objects or obstacles in the missing depth data. While the NN implicitly learns about this
uncertainty, it still sometimes tries to insert the robot’s fingers into missing depth data.
This might also be caused by the depth representation mapping zero values to far distances.
Currently, around a third of grasp failures are within regions missing sufficient depth infor-
mation. As discussed in section 5.6, some of the related work fill missing depth data with
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neighboring values. However, we find that this creates a range of even greater challenges
and assumptions, dismisses uncertainty completely, and does not improve the grasping rate
in practice.

Both failure cases of multiple objects and missing depth data are regularly seen during
training and in the dataset. However, there are also positive examples of both failure cases.
For example, the gripper finger might reach into the gap of the Duplo block. We find
that grasp failures are often due to this stochastic behavior of the system. Incorporating
uncertainty might help finding a risk-averse policy in the future.
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5.4 Pre-grasping Manipulation

In general, grasping is more complex than a single clamping action. For example, surround-
ing obstacles might prevent all possible grasps of a specific object. In this case, it needs
to be moved first so that it can be grasped afterwards. While pre-grasping manipulations
are trivial for humans, they require complex interactions like sliding, pushing, or rolling
objects. In the context of bin picking, pre-grasping is essential to empty a bin completely,
since the bin itself might block grasps at its edges or corners. Additionally, when items are
stored as space-efficiently as possible, objects often prevent each other from being grasped
in densely filled bins. We focus on planar grasping again to further motivate the necessity
for pre-grasping manipulation. This section is based on [8].

1. Shift 2. Grasp

Figure 5.26: A shift primitive for pre-grasping manipulation allows the robot to grasp objects that
are blocked due to collisions. It learns to apply a shift action to explicitly increase the predicted
grasp success.

For this, we add two motion primitives for shifting as a pre-grasping manipulation (Fig-
ure 5.26). In both cases, the gripper closes completely and approaches the given shift pose
parallel to its gripper jaws. If a collision occurs, the approach motion stops. Then, the
robot moves either 30mm in positive x-direction or positive y-direction of the gripper frame.
Note that the gripper is not rotational invariant, so these primitives are distinct regarding
the gripper’s collision shape.

In a trivial manner, the MDP could be prepended by a number of pre-grasping actions
before the final grasp, and the robot could then learn to maximize the final grasp reward
(similar to Equation 5.1). However, this introduces a time dependency into the system, as
the grasp is now dependent on all previous pre-grasping actions. The complexity of the
learning problem would scale exponentially with the number of pre-grasping actions, as the
robot would need to learn the effect of each action on the grasp in a data-driven manner.
Moreover, there is only a single reward at the end of each episode, leading directly to the
problem of sparse rewards. The robot would need to learn the outcome of multiple actions
based on a single scalar, and therefore would need to try out an exponential number of
combinations to find the pre-grasping actions causing the improving grasp success. In the
following, we will present an approach to avoid this challenging complexity.
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5.4.1 Learning for Shifting

A key contribution of this section is making one primitive (shifting) explicitly dependent
on the other (grasping). This way, we bypass the problem of sparse rewards in multi-step
MDPs. Besides faster and more data-efficient training, this also allows to learn the skills
successively. Therefore, we can reuse prior, successful approaches of learning for grasping
(e.g. from section 5.1) and focus solely on pre-grasping manipulation.

For grasping, we again define the set of motion primitives m ∈ M as gripper clamping
actions starting from three different pre-shaped gripper widths dm. Subsection 5.1.1 de-
scribes the primitives and their trajectories in more detail. The grasp reward is given by
the binary success (Equation 5.1). Based on section 5.1, we make use of a NN mapping a
cropped image window ŝ to an estimated grasp reward ψ and use it for: (1) Estimating the
grasp probability at a given position (x, y,α), (2) calculating the best grasp (x, y,α, d), (3)
calculating the maximum grasp probability in the entire bin ⌈ψ⌉, and (4) calculating the
maximum grasp probability ⌈ψ̂(s, x, y,α)⌉ in a cropped window with a given side length l
centered around a given pose (x, y,α). Figure 5.27 shows exemplary image windows before
and after a shifting primitive and their respective maximum grasp probability ⌈ψ̂⌉ around
the gripper’s pose.

(a) 0.05% → 93.2% (b) 14.7% → 75.9% (c) 40.2% → 97.7%

(d) 92.1% → 43.9% (e) 90.5% → 95.8% (f) 90.8% → 45.8%

Figure 5.27: Examples of depth image windows ŝ before (left) and after (right) an applied motion

primitive. The maximum grasp probability within the red window ⌈ψ̂⌉ before and ⌈ψ̂⌉′ after are
given below; their difference is then estimated by a fully convolutional neural network (FCNN).

We integrate prior knowledge about the relationship between shifting and grasping by
making the reward function for shifting explicitly dependent on the grasping probability.
More precisely, the system predicts the influence of a motion primitive on the maximum
grasp probability ⌈ψ⌉. We train a second NN using the reward function

rs(s) =
1

2


⌈ψ̂⌉(s′, x, y,α)− ⌈ψ̂⌉(s, x, y,α) + 1


(5.10)
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mapping the image s to the difference of the maximum grasping probability in a window
⌈ψ̂⌉(s, x, y,α) before s and after s′ the manipulation primitive. Therefore, depth images
before and after the shifting attempt are recorded and applied to the grasp probability NN.
Additionally, the reward is re-normalized to rs ∈ [0, 1]. The window w is approximately
50% larger than for the grasping action, the latter corresponding roughly to the maximum
gripper width. In comparison to the grasping reward function rg ∈ {0, 1}, estimating shift
rewards is a pure regression task. We further denote the estimated reward for shifting
Qs(s, a) as ρ. The NN is trained to optimize the mean squared loss between the predicted
and actual reward ρ and rs. Finally, all predictions for the five grasping and shifting prim-
itives are combined, and computed by a single NN at 20 rotations, 40 x and y translations
each, resulting in 160 000 evaluated manipulation actions. Figure 5.28 shows two exemplary
heatmaps of a shifting primitive averaged over all rotations.

Figure 5.28: Examples of heatmaps for the shifting primitive. The NN predicts the maximum
positive reward ρ at a given pose (x, y) for all rotations a and motion primitives d. The rewards
are shown from low (blue, ρ = 0.5) to high (red, ρ = 1), the direction is shown (white) for the ten
highest rewards.

Since data generation is a limiting factor in robot learning, it is important that the
training is self-supervised and requires as little human intervention as possible (chapter 4).
To guarantee continuous training, the system first estimates the overall maximum grasping
probability ⌈ψ⌉. If ⌈ψ⌉ < 0.2, the system tries to increase the grasping probability until
⌈ψ⌉ ≥ 0.8 is reached. Then, the system tries to decrease the maximum grasping proba-
bility until ⌈ψ⌉ < 0.2 again. This is done by exploring the negative action-value-function
−Qs(s, a) while keeping the selection function σ constant. Intuitively, the robot both learns
to shift objects to improve and worsen the grasp probability, so that it can efficiently explore
randomized scenes in a self-supervised manner. The training starts with a single object in
the bin, further ones were added manually over time for curriculum learning.

5.4.2 Combined Learning and Inference

For the task of bin picking, grasping and shifting needs to be combined into a single con-
troller. Besides inference itself, combined learning also enables matching data distributions
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for training and application. First, let ψg be a threshold probability deciding between a
grasping and a shifting attempt. Second, let ρs denote a threshold probability between a
shift attempt and the assumption of an empty bin. As shown in Figure 5.29, the system
first infers the maximum grasping probability ⌈ψ⌉. If ⌈ψ⌉ is higher than ψg, the robot
grasps, else it evaluates the shifting NN and estimates the maximum shifting reward ⌈ρ⌉.
If ⌈ρ⌉ is larger than ρs, the robot shifts and restarts the grasp attempt, else it assumes
the bin to be empty. ψg can be interpreted as a high-level parameter corresponding to the

Estimate max grasp probability ⌈ψ⌉

Estimate max shift reward ⌈ρ⌉ Grasp

Shift Bin empty

⌈ψ⌉ ≥ ψg⌈ψ⌉ < ψg

⌈ρ⌉ ≥ ρs ⌈ρ⌉ < ρs

Figure 5.29: State diagram of the combined grasping and shifting controller; common threshold
parameters are ψg ≈ 0.75 and ρs ≈ 0.6.

system’s cautiousness for grasp attempts as well as its readiness to rather increase the grasp
probability by shifting over trying a grasp attempt.

5.4.3 Experimental Results

Experiments were performed on the system introduced in section 4.3. Inferring the NN takes
around 30ms on a single GPU, and calculating the next action including image capturing
takes less than 100ms. The source code, trained models and a supplementary video showing
our experimental results are open-source1.

Data Recording

In bin picking, shifting objects becomes either necessary because of static obstacles like the
bin or dynamic obstacles like other objects. This first case is enforced by using a small bin
of size 18 cm × 28 cm. The latter case is emphasized by using cubes as the most suitable
shape for blocking grasps among themselves. Additionally, we train with wooden cylinders
as a second object primitive (Figure 5.30). For our final data set, we trained 25 000 grasps
in around 100 h. For learning to shift, we recorded 2500 attempts in around 9 h. We find
that grasping and shifting need different amounts of training time; separate training allows
for easy stopping at an appropriate success measure and an overall data-efficient recording.
Furthermore, we generated data using the combined training approach for the last 10% of

1Available at https://github.com/pantor/learning-shifting-for-grasping (accessed on December
9th, 2022)

https://github.com/pantor/learning-shifting-for-grasping
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the training time. For robust and low-noise calculations of ρ, the grasping probability ψ
needs to be trained reliably for at least 15 000 grasp attempts.

(a) Training Objects (b) Unknown Objects

Figure 5.30: The object sets for training and testing the system’s ability to generalize to unknown
objects. All objects can be placed within a bin so that they can not be grasped directly.

Shifting Objects

The recorded shifting data set has a mean reward of 0.521± 0.112. The trained NN achieves
a cross-validated mean squared loss of 0.053, corresponding to a mean error of the grasp
probability difference |⌈ψ̂⌉′ − ⌈ψ̂⌉| of around 14%. Setting ρs = 0.6 is a robust threshold
for perceiving empty bins. The output of the NN can be interpreted as a heatmap over
the original input image. Figure 5.28 shows qualitatively that the system learned to shift
objects either apart or away from the bin’s edge for improved grasping. We denote non-
graspable positions as object poses, where at least one shift is required before grasping. As
given in Table 5.9, on average 2% of shifts are not sufficient for grasping single objects from
those positions. Moreover, shifting objects enabled the robot to empty the bin completely
(grasping m out of m objects) throughout the evaluation (Table 5.9).

Table 5.9: Picks per hour (PPH), grasp rate, and shifts per grasp in different bin picking scenarios.
In the experiment, the robot grasped n objects out of a bin with m objects without replacement.
The random grasp rate was approximately 3%.

n out of m PPH Grasp Rate Shifts per Grasp Grasp Attempts

1 out of 1 323± 3 100% 0 02± 0 01 100

1 out of 1 (non-
graspable)

170± 3 (98.2± 1.8)% 1.02± 0.02 56

10 out of 10 272± 6 (98.4± 1.1)% 0.10± 0.02 122

10 out of 20 299.6± 1.4 100% 0 120

20 out of 20 274± 3 (98.4± 1.0)% 0.07± 0.01 122
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Picks Per Hour

For realistic scenarios like grasping 20 objects out of a bin with 20 objects without replace-
ment, our robotic setup achieved 274± 3 PPH. The fewer shifts per grasp are necessary
for the bin picking scenario, the higher the PPH. Using the grasp threshold parameter ψg,
we can adapt the grasp strategy to be more cautious. Let the grasp rate be the number of
grasp successes over the total number of grasp attempts. As expected, Figure 5.31 shows
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Figure 5.31: Grasp rate and picks per hour (PPH) depending on the minimum grasp probability
ψg deciding between a grasp or shift. While the robot grasped 10 objects out of a bin with 10
objects without replacement, an optimal threshold ψg ≈ 0.75 regarding PPH was measured.

that a higher ψg results in an improved grasp rate. In particular, the system is able to
achieve a 100% grasp rate already for ψg > 0.8. For this reason, the grasp rate loses its
significance as the major evaluation metric. Instead, we can directly optimize the indus-
trially important metric of picks per hour (PPH). At low ψg, frequent failed grasps take a
lot of time. For high ψg, the improved grasp rate comes with the cost of more shifts. Since
some shifts might be superfluous and worsen the PPH, an optimal threshold of ψg ≈ 0.75
exists. Interestingly, the corresponding grasp rate is less than 1 in that case.

Unknown Objects

The ability to generalize to novel (unknown) objects is important for extending the range of
applications. While training only with cylinders and cubes, we further evaluated the system
on the object test set shown in Figure 5.30b. On average, the robot was able to grasp
novel objects from non-graspable positions after 1.2± 0.3 shifts (Table 5.10). Then, the
robot achieved an average grasp rate of (92.1± 7.8)%. As expected, we find a qualitative
relation between the similarity to the training objects and the success rate of each test
object. However, the most common cause of failure is missing depth information from the
stereo camera and the resulting confusion by large black regions (e.g. shown in Figure 5.27).
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Table 5.10: Grasp rate and shifts per grasp for novel (unknown) objects from non-graspable
positions.

Object Grasp Rate Shifts Grasp Attempts

Brush 77% 1.3 10
Cardboard box 94% 1 15
Duplo bricks 91% 1.3 10
Folding rule 83% 1.1 10

Marker 100% 1.9 10
Pliers 83% 1.2 10

Screw driver 83% 1.2 10
Shape primitives 98% 1 25
Table tennis balls 100% 1.1 10

Tape 92% 1.5 10
Tissue wrap 100% 1 10
Toothpaste 100% 1.1 10

(92± 7)% 1.2± 0.3 140

Furthermore, the shifting motion primitives are not equally suitable for each object. For
example, the marker was usually shifted twice, as it did not roll far enough else. The brush
did sometimes rebound back to its original position, which could be prevented by a larger
shifting distance.
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5.5 Semantic Grasping

Semantic grasping refers to the task of grasping a specific object class out of a scene.
Action-centric approaches allow for flexible grasping regarding object types, and even allow
for variation within a single scene. Then, targeted semantic grasping might become desir-
able.

Furthermore, we want to explicitly keep the flexibility of grasping unknown objects in
the sense of specifying unknown object classes as well. Here, one-shot learning is essential to
define the target object class during run-time based on a single label only. In the following,
the system takes a first image of the target object class and a second image of the grasping
scene. It is then able to output not only the general grasp probability, but the probability
of grasping a specific target object class. This way, flexible manipulation tasks could be
designed on top of a semantic grasping skill.

5.5.1 Object Correspondence Reward

We presume a system and a learned policy for general planar grasping. We extend this
system by the concept of object correspondence whether the grasped object was an element
of the target object class. In this regard, we keep the binary grasp reward rg (Equation 5.1)
to maximize the grasp success. We define the object correspondence reward ro to be

ro =


1 if grasped object is in the target class

0 otherwise.

The final semantic grasping reward r is the weighted geometric mean of both rewards

r = rωg r1−ω
o , ω ∈ [0, 1] (5.11)

with the hyperparameter weight ω. The overall objective of the robot is to maximize the
final reward r, as this corresponds to maximizing both the grasp success and the object
correspondence. For this, we extend the output of the NN architecture to include both
rewards rg and ro. The separation allows to learn both rewards independently, and in par-
ticular to reuse data learned from grasping alone.

We extend the prior approach of planar grasping (section 5.1) using a fully convolutional
NN and the orthographic image of the scene s. Again, let ŝ be the cropped image window
around the gripper pose. We denote the additional image of the target object class (or an
instance thereof to be precise) as the object image so. In comparison to the bin image, the
object image does not necessarily need to be in an orthographic projection. In particular,
it is possible to use simple RGB images (such as in Figure 5.33). Given these two images ŝ
and so, the NN architecture should predict the object correspondence reward ro. The key
idea is to simplify the correspondence to a similarity metric based on the temporal causality
of the images. During the training process, the robot can grasp objects out of a bin and
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take images so of the grasped, isolated object. In this case, the images ŝ and so were from
the same grasp measurement and their objects (obviously) correspond. Moreover, we can
generate a distribution of false temporal causality by mixing ŝ and so images from different,
randomly sampled measurements. Then, the objects do not correspond to each other and
the NN is able to learn that grasp actions at ŝ do not retrieve objects pictured in so. This
way, we reformulate the object correspondence as a contrastive reward r′o with

r′o =


1 if ŝ and so were from the same grasp measurement

0 otherwise.
(5.12)

Both rewards r′o and ro are equal if all objects are from different classes. However, there
might be multiple measurements of the same object class within the dataset, leading to
both false positives and false negatives in the contrastive reward. To mitigate this issue, we
apply data augmentation to the object class image. In particular, we translate, rotate, and
mirror the images to learn a robust similarity metric between the input and object class
image. In short, our approach solves semantic grasping by actually learning to grasp inside
the bin so that the robot retrieves an object most similar to the one in the object class
image.

5.5.2 Embedding Learning

Information of the scene image s and the object image so need to be merged within the
NN architecture (Figure 5.32). In particular, the main NN should, as before, be fully
convolutional to output the rewards rg and ro at a large number of grid-like poses. In
contrast, the object class image should be used globally for evaluation, and information
thereof should be entirely available at each reward prediction. This constraints the NN
architecture to use an intermediate embedding of the object image.

To calculate this embedding, the so-called object NN takes the object image as input.
As this is a regular RGB image, we apply the popular MobileNetV2 architecture [104]
including its pre-trained weights. To allow for faster manipulation training, we incorporate
a pre-training strategy to predict useful embeddings without any real-world manipulation
data. Here, we apply the contrastive loss as a self-supervised (in the machine learning
definition) learning task. Ideally, the embeddings should be similar (or close) for the same
object class and diverse (or distant) embeddings for different classes. This way, object
classes can be easily compared by downstream manipulation tasks. Let x1 and x2 be two
embedding vectors. The contrastive loss is then defined by

L(x1, x2, y) =
y

2
x1 − x22 +

(1− y)

2
max (0,m− x1 − x2)2 (5.13)

with the equality label y, a pre-defined distance m, and the L2-norm  · . Minimizing
this loss pushes two embeddings of the same class together and else apart. Given a set
of various object class images, we randomly select two distinct object classes to create an
inequality sample y = 0). However, an equality sample y = 1 is generated by applying
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(a) Manipulation Training
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Figure 5.32: The neural network (NN) architecture for learning semantic grasping during manip-
ulation training (a) and inference (b). At first, the object NN (red) learns to predict embeddings
from object images for usage in the downstream manipulation task. During manipulation training
(a), the manipulation NN (blue) learns to predict the object correspondence reward (whether the
object from so matches the grasped object from ŝ) and the grasp success reward. The object NN is
kept fixed during this training step, and the embedding is concatenated with an intermediate layer
of the manipulation NN. During inference (b), the same NNs are used to predict reward heatmaps
for a large number of poses. While the manipulation NN is fully convolutional, the object NN is
not, and therefore the embedding must be expanded to match the heatmap size.
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distinct data augmentation to the same image, using the same augmentation pipeline as in
subsection 5.5.1. We then fine-tune the last two layers of the object NN only to this object
pre-training task.

The predicted embedding is then combined with the FCNN, the so-called manipulation
NN. The embedding vector is concatenated to the first layer that has a width and height
of 1 during training, and the same size as the final reward output during inference. In
the final architecture, this corresponds to a concatenation in the third last layer, with two
following convolutional layers that have a kernel size of (1 × 1) respectively (Figure 5.32).
The manipulation NN is trained to minimize the loss of the combined reward r similar
to Equation 5.2. The object NN is kept fixed. To allow reusing data collected without
any semantic labels, we weigh the object reward in the loss function and omit any gradient
update during training in case no object image was given. During inference, the final output
can be interpreted as two heatmaps, one as a spatial map of general grasp rewards ψg and
one of the object rewards ψo conditioned on the object image so (Figure 5.33).

(a) Color bin image (b) Grasp probability

(c) Object probability (d) Object probability

Figure 5.33: Example heatmaps of semantic grasping. Based on the bin image (a), the neural
network (NN) calculates the estimated grasp reward (b) and a probability that the shown object
will be grasped. Two examples of the yellow cube (c) and the peg (d) are given.
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5.5.3 Experimental Results

We evaluate the proposed approach for semantic grasping as a proof of concept on our
common hardware setup (section 4.3). The experiments focus on success rates of different
selection tasks. Besides the overall grasp success rate, the rate of grasping the correct object
class is of primary interest.

Training

Training of semantic grasping builds upon a planar grasping policy trained according to
section 5.1. Similarly, the robot tries to grasp objects out of one bin and places them
randomly in the second bin. This enables a consecutive training, as the robot switches the
bins in case no more objects can be grasped. For recording the object image of semantic
grasping, a third scene is defined next to the bins on the planar table. After an object
is successfully grasped, the robot places the object at this pre-defined pose, by moving
towards the table until a force is detected. Then, the robot stops and opens the gripper.
The object image is taken from a pre-defined pose. Afterwards, the robot again grasps
the object with the previously learned policy and drops it randomly into the filing bin. In
general, this procedure allows for a self-supervised training without human intervention.

(a) Trained Objects (b) Colored Cubes (c) Unknown Objects

Figure 5.34: The object sets for training and evaluating semantic grasping.

A dataset of 400 successful grasps was recorded using the objects shown in Figure 5.34a.
The training took around 3 h. The Top(5) selection method was applied during training to
match the grasp distribution seen in real-world evaluation. Grasp failures were discarded
and not included in the dataset. The dataset was recorded without intermediate training
of the NN, so no closed-loop feedback typical for RL was available during training.

Selection Rate

We define the selection attempt rate as the number of correctly grasped target objects over
the number of grasp attempts. In comparison, the selection grasp rate is the number of
correctly grasped target objects over the number of successful grasps. Table 5.11 shows
selection rates for different settings. Similar to grasping alone, the robot needs to grasp n
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out of m objects of a given target class out of the bin. If n > 1, objects are grasped without
replacement, resulting in a higher success rate for random grasps. For example, random
grasps for 1 out of 15 objects lead to 1/15 ≈ 6.7%, while 15 out of 15 objects result in a
random average selection rate of 22.1%.

Table 5.11: Success rates of selecting the correct target object in different scenarios of semantic
grasping. The robot should grasp n out of m objects without replacement.

Objects n out of m
Selection
Attempt Rate

Selection
Grasp Rate

Grasp Rate Attempts

Colored Cubes 1 out of 6 38% 40% 97% 52

Trained 1 out of 6 88% 90% 98% 52

Trained 1 out of 15 75% 76% 97% 52

Trained 15 out of 15 76% 83% 91% 66

Unknown 1 out of 6 49% 63% 77% 53

For trained objects, a selection attempt rate of up to 88% in the 1 out of 6 objects
configuration was achieved. This rate decreases to 75% for m = 15 objects within the
bin, as both the general grasp rate decreases due to clutter, as well as the selection grasp
rate decreases due to a larger choice of objects. For trained objects, a selection grasp
rate of around 80% was measured. This rate is halved when grasping only colored cubes
(Figure 5.34b), as only color (and no depth) information can be used for distinguishing
objects. For unknown objects (Figure 5.34c), we measured a selection grasp rate of 63%.

Grasp Rate

In general, the grasp success rate decreases in comparison to planar grasping alone, as
the object correspondence reward influences the final grasp independently of the estimated
grasp success. The parameter ωo weights the object reward within the final reward for
action selection. For ωo = 0, semantic grasping equals planar grasping. For ωo = 1, the
system outputs a grasp that corresponds only to the estimated object without considering
its success. Figure 5.35 shows the grasp success rate, the selection attempt rate, and the
selection grasp rate depending on the object reward weight ωo. As expected, the grasp
rate corresponds to the case of planar grasping when ωo = 0. It decreases with increasing
weight, however remains over the random grasp rate for ωo = 1 by an order of magnitude.
At the cost of this decreasing grasp rate, the selection attempt rate increases at a higher
object reward weight. As the selection grasp rate is the product of the grasp rate and
selection grasp rate, the selection grasp rate achieves a global maximum for ωo ∈ (0, 1).
Our experiments show a maximum selection attempt for ωo = 0.5.
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Figure 5.35: The grasp success rate, selection rate over all attempts, and the selection rate over
all grasps depending on the object reward weight ωo. Measurements were taken in the 1 out of 3
setting for both trained and unknown objects.

Inference Performance

Calculating a semantic grasp takes around 200ms on our hardware, around four times as
long as for planar grasping alone. Table 5.12 shows detailed information about the inference
performance. The slower calculation for semantic grasping is caused by: (1) rendering and
pre-processing of the additional object image, (2) inferring the larger NN, in particular for
the object embedding, and (3) taking the square root and product of both rewards. Most
of these additional calculations only need to be repeated when a new target object image is
used. Otherwise, the object image rendering and pre-processing as well as embedding can
be calculated once. Then, the embedding is saved and reused directly in the manipulation
NN, increasing the inference performance to around 80ms.

Table 5.12: Calculation Duration of Semantic Grasping [ms].

Planar Grasping Semantic Grasping

Rendering 23.9± 0.4 43.5± 0.6

Pre-processing 7.6± 1.0 9.7± 1.3

NN Inference 13.5± 0.9 133± 8

Selection 2.3± 0.1 14.2± 1.8

Total 47.3± 2.3 200± 11
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5.6 Discussion

In this chapter, we introduced a general approach for learning several manipulation tasks
related to grasping. Foremost, we compare the experimental results of the entirely learned
6DoF grasping based on the fully convolutional actor-critic architecture with the following
baselines and related work.

Model-derived Convolution As a simple baseline, we apply a model-derived filter rep-
resenting the geometric profile of the gripper to calculate planar grasps. The kernel is then
convoluted over the depth image of the bin. As the filter rewards nearer depth values be-
tween the gripper and farther values around and at the gripper, this approach represents a
primitive collision avoidance that favors high objects. In comparison, our method improves
the grasp rates of this simple baseline by 23% on average.

Dex-Net 2.0 Mahler et al. [82] calculate planar grasps targeted for bin picking applica-
tions. For our experimental setup, we adapted the rendering of the depth images to the
specifications of the pre-trained model. In general, we find the default CEM policy to work
more robustly than its fully convolutional counterpart. Then, Dex-Net achieves a grasp
rate of 82% for the simple and 73% for the unknown object set. Note however that the
simple object set is also unknown to the pre-trained model. Despite setting a corresponding
segmentation mask, grasp failures are commonly caused by collisions between the gripper
and bin. Accordingly, we find that Dex-Net focuses strongly on the local contact between
gripper fingers and objects. This is expected, as the NN is learned on analytical data focus-
ing on the grasp points alone. For example, this results in grasps of jammed objects. For
unknown objects without (nearby) bin, [82] reported a grasp rate of over 94%. As com-
monly found in related work, Dex-Net calculates grasps with a fixed pre-shaped gripper
width, which we find to miss many possible grasps in dense clutter.

PointNetGPD Liang et al. [75] calculate 6DoF grasps directly from point clouds. We
found two drawbacks regarding our experimental setup: First, PointNetGPD is not appli-
cable to bin picking, but only to a heap of objects on a table surface. Second, it is focused
on physically larger objects, so that we were only able to evaluate a selected unknown ob-
ject set. Moreover, the table needs to be cropped from the point cloud manually. On our
setup, PointNetGPD achieves a grasp rate of 69% for unknown objects. In comparison,
the experiments by [75] measured a success rate of over 66%, significantly less than our
proposed method for 6DoF grasping. Moreover, our approach reduces the grasp calculation
by over 100× due to the efficiency of the fully convolutional NN.

Real-world Training Our implementation works on a simple experimental setup and
improves time and data efficiency regarding other works trained with real-world experience,
e.g. by Pinto and Gupta [94] or Levine et al. [73]. We use a depth camera in contrast
to [94, 73, 57] that includes relevant geometric information about the scene and allows
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for an orthographic projection. An average grasp attempt lasts less than 15 s, leading to
a fourfold reduction compared to [94] with a similar setting. Our algorithm for planar
grasps runs at 50 frames per second and outperforms [99], despite their focus on real-time
capability. Although our random grasp rate of around 3% is an order of magnitude lower,
the final dataset is only required to be half the size of [94].

Pre-grasping

We presented a real-world solution for self-supervised learning of pre-grasping manipulation
to improve the expected grasp success. We find two implications of our work particularly
interesting: First, emptying a bin completely is important for industrial applications. Sec-
ond, we integrated prior knowledge into the learning algorithm by making the reward of one
skill (shifting) dependent on the other (grasping). This way, we were able to bypass sparse
rewards for data-efficient learning. In contrast, both Kalashnikov et al. [61] and Zeng et al.
[128] rewarded grasp success in a time-dependent manner. Additionally, we focused on bin
picking scenarios of densely filled, industrial storage bins. For this task, we find multiple
gripper openings, neglected by both [61, 128], inevitable. While our approach is more simi-
lar to [128], we highlight four concrete improvements: First, we integrated multiple motion
primitives into a single NN. Second, our controller can change its readiness to assume
risk. This way, our robot achieves arbitrary grasp rates, so that we can directly optimize
in relation to picks per hour (PPH). Third, while we find their contribution of training
grasping and pushing in synergy necessary, it is not ideal on its own. By splitting both the
rewards and training procedures for grasping and shifting, we incorporate different training
complexities for different skills. Fourth, our algorithm is around an order of magnitude
faster, resulting in increased PPH. Regarding [61], the PPH are fundamentally restricted
by their repeating inference and motion steps.

Semantic grasping

The presented approach for semantic grasping works flexibly based on a target image (sim-
ilar to Jang et al. [58]), and not on pre-defined classes or other priors as in [26, 57, 55]. In
this regard, [58] learns a representation based on object persistence, and uses this embed-
ding to identify object instances within the scene. In their prior work [57], they introduced
a separation into a general and a target object specific grasp reward, the so-called dorsal
and ventral stream. Moreover, their policy was also trained on real-world experience. In
contrast, they control the robot with a planar Cartesian velocity-like control (building upon
the work of Levine et al. [73]), and therefore require multiple time steps and large amounts
of training data for the grasping strategy. They also reuse data from prior experiences
for learning to grasp alone, and can reduce the required data for the semantic learning to
hundreds of labels per class. Our action space of single-step primitives is closer related to
Iqbal et al. [55]. Here, a pipeline for semantic segmentation analyzes the scene and selects
a corresponding grasp. Our approach is however learned in an end-to-end manner, making
it more robust in dense clutter where segmentation might become challenging.
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Chapter 6

Pick-and-place

A common task in robotics is not only the grasping, but also the subsequent targeted placing
of objects. Machine feeding, blister packaging, logistics, or general assembly require the
object to be in a specific pose relative to a reference frame. First, the approach should
work for unknown objects without a model for great flexibility. Second, it needs to ensure
high reliability for picking objects out of dense clutter or an obstacle-rich environment like
a randomly filled bin. Third and important for real-world applications, the computation
needs to be as fast as possible, all while keeping the desired placing precision.

To approach this problem in the context of primitive-based manipulation, we introduce
a learned place primitive. In this chapter, we explain the challenges of pick-and-place over
grasping (section 6.1). We derive an algorithm for learning planar pick-and-place based on
a visual reference that extends our prior approaches for planar grasping. Furthermore, we
will specify the action space (section 6.2), the state space observations (section 6.3), and
the learned reward function (section 6.4) in detail. The system is evaluated in real-world
experiments based on the object placement error and task success rates (section 6.7). This
chapter is based on [9].

6.1 Challenges

In comparison to grasping alone, pick-and-place introduces two major challenges: First,
the action space of a combined pick and place action becomes exponentially more complex.
Second, the reward should minimize the distance to a target pose. This pose needs to be
defined even for unknown objects.

Action Space We define a pick-and-place action as a temporal sequence of a grasp and
a place (Figure 6.1). Then, the place action is conditioned on the grasp: The place pose
after releasing a grasped object depends on the pose of the object within the closed gripper,
which in return depends on the grasp pose itself. Moreover, both actions might constrain
each other: A target pose might be infeasible to achieve with a given grasp, e.g. due to

117
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collisions with the environment. This makes a combined approach necessary. Here, both
the pick and place action are calculated simultaneously.

Figure 6.1: A pick-and-place action with a grasp (left) and the subsequent place (right.

Our approaches so far have used a sliding window (e.g. implemented by an FCNN) to
evaluate a reward prediction at a discrete grid of actions. The action space for a grasp action
commonly includes 105 actions. Given the same number for a place action, the combined
action space increases to 1010 pick-and-place actions. The curse of dimensionality prevents
the naive approach of evaluating every possible pick-and-place action.

Reward definition The pose of an unknown object without a model is ill-defined, since
a reference point (origin) would need to be known. To still allow for flexible applications
with unknown objects, we allow a single demonstration to be used as a goal state. This
results in an approach in the field of one-shot imitation learning. Ideally, the reward should
resemble an inverse distance metric (e.g. between an estimated predicted place pose and
the target pose). However, calculating a distance based on visual sensor data is challenging
- and would again require a rigid object model that might not be available. We achieve
a desired action-centric approach by learning a similarity metric between an expected and
the target state directly within the visual space. In comparison to grasping, the reward
becomes more complex than measuring a binary success using the gripper’s sensors.

6.2 Pick-and-place Primitives

A pick-and-place action a ∈ Ag×Ap is a grasp ag ∈ Ag following a place action ap ∈ Ap. We
limit both action types to a set of manipulation primitives, given by predefined motions at a
specified pose. As planar primitives, each action space Ag and Ap is given by SE(2)×R×N
with actions parametrized by a tuple (x, y,α, z,m) with the planar translation (x, y) parallel
to the table surface, the 2D rotation α around the z-axis, and the index of the manipulation
primitive m. The height z is analytically calculated from the depth image, similar to our
approach for planar grasping in section 5.1. In general, the controller needs to decide where
to apply which manipulation primitive m.

We define four grasp primitives, which differ in the gripper opening as a pre-shaped
gripper width, similar to subsection 5.1.1. We also assume the grasp success definition in-
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cluding the measurement just before the place primitive. Here, a single place action opens
the gripper at a given pose using the same approach trajectory as grasping. In particular,
the robot retracts a mm if its force sensors detect a collision during the approach.

While both learning to grasp from a dense reward and finding missing objects in the goal
state is comparably easy, the challenge of precise pick-and-place is to find corresponding
grasp and place actions. In this regard, we propose an approach to efficiently handle the
Cartesian product Ag ×Ap of both action spaces.

6.3 State Space

Given the state space S, let s be a set of images in orthographic projection. Each image is
either a depth or an RGBD image, depending on the chosen camera configuration. Due to
the orthographic projection, each translation or rotation in the image space corresponds to
a planar transformation (x, y,α) of the robot in the task space. To observe the entire bin
without occlusion, we use top-down views of the scene.

Grasp Before
ŝt; grasp

Place Before
ŝt; place

Place Goal
ŝt; goal

Place Result
ŝt+1; place

Figure 6.2: Dataset samples from successful pick-and-place actions. Our approach uses four

relevant observations, in particular the shown image windows [̂s] of the scene around the robot’s
tool center point (TCP). The robot grasps an object out of the grasp before image, and places it
into the place before image with a given place goal in mind. The subsequent place result is only
required for training. In a simplified manner, the robot should choose pick-and-place actions so that
it cannot differentiate between the place goal and the place result image.

Let ŝ ⊂ s be an image window around the TCP of the robot, which is defined by the tip
of the closed gripper. As common in robot learning for manipulation, we train an FCNN to
estimate the action-value function Qa of an action given the corresponding image window
ŝ. During inference, we use the same FCNN to estimate Qa at a grid of poses efficiently.
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This corresponds to a pixel-wise sliding-window approach for (x, y), while α is calculated
by pre-rotating the image inputs. The window’s side length l remains roughly equal to the
maximal object size. In terms of RL, the policy π(s) = σ ◦ Qa(s, a) can be defined by a
so-called selection function σ composed with the action-value function Qa. We make use of
selection strategies introduced in section 3.7.

We consider the grasp and place actions to be in different scenes. Importantly, all
images of the same scene are taken using the same top-down camera pose. Then, we define
the state space S by the set s of following three observations:

1. sgrasp, state of the grasp scene before the grasp ag,

2. splace, state of the place scene before the place ap, and

3. sgoal, goal state of the place scene. Usually, this is an image of the scene configured
by a human demonstrator.

Furthermore, the state of the place scene after the place ap is a fourth important observation.
It is denoted as st+1; place and can be understood as the result of a pick-and-place action.
It is only available and required for training. Examples of the four relevant observations
are shown in Figure 6.2.

6.4 One-shot Imitation Learning

Since the robot should imitate the given goal state, the reward r needs to capture the
similarity between sgoal and the expected st+1; place, conditioned on both before states
sgrasp and splace. In general, the robot should choose those actions that most probably
result in the place goal image as the real place result image. We interpret this as a task of
density estimation and apply noise contrastive estimation (NCE) [48] to this unsupervised
learning problem. Given a dataset D of pick-and-place actions a, a model is trained to
discriminate between the real data D (with label C = 1) and a noise distribution Q (with
C = 0). Then, a classifier is able to measure the probability rp of an image ŝ being a
realistic outcome of a pick-and-place action:

rp(ŝ) := p(C = 1|ŝ, ŝgrasp, ŝplace)

We refer to this probability as the place reward rp ∈ [0, 1]. Besides, the estimated grasp
reward rg ∈ [0, 1] of the binary grasp success can be interpreted as a grasp probability. For
NCE, the design of the noise distribution Q is crucial for estimating the density of the data
D. For each sample in D with a given grasping image ŝgrasp, we augment the remaining pair
of place images. For the data distribution (C = 1) in a pick-and-place task, we generate
two positive samples:

Hindsight Foremost, the real measured pair of

ŝplace, ŝt+1; place


is the basic positive

sample in the data distribution.
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Further Hindsight If further objects are placed into the same bin for tbin steps after the
current pick-and-place action, the images


ŝplace, ŝt+n; place


for 1 ≤ n ≤ tbin are used

as positive samples as well. This sample enables the robot to consider future actions
when multiple pick-and-place actions are needed to achieve a goal state, e.g. for box
stacking.

Before Grasp Place Before Place After 2. Place After 3. Place After

Figure 6.3: Further hindsight: Subsequent episodes are also used as positive examples in the
contrastive loss. Then, other objects might be added to the reference window.

For the noise distribution (C = 0), we generate a range of negative samples as follows:

Negative Foresight We create negative pairs using either identical images (for both ŝplace
and ŝt+1; place) or positive pairs in the wrong temporal order


ŝt+1; place, ŝplace


.

Augmented Hindsight Moreover, we generate additional negative samples by jiggling
the pose of the place images ŝ. In particular, we jiggle real hindsight images randomly
with a minimum displacement of 1mm or 3 ◦.

Goal The goal image pair

ŝplace, ŝgoal


is used as a negative sample. As the training

progresses and accuracy improves, both images should converge and lead to a median
contrastive loss. To circumvent this effect, we apply methods of confident learning :
If a trained classifier predicts a goal image sample to be from the real data distri-
bution with given certainty, we remove the goal image from the noise distribution
furthermore.

Other Hindsight Finally, place images of independent actions ag and ap are used. In
particular, this results in mismatching object types as negative samples.

Using NCE, the imitation learning problem simplifies to ordinary supervised learning. The
contrastive loss is defined using the BCE

yi = zi − log p(i)

BCE =

N

i

Ci log σ(yi)− (1− Ci) log(1− σ(yi)) (6.1)

with the logits zi adapted by the probability p of the sample i, and the sigmoid function σ.
We train a system of three NNs by minimizing the BCE of the contrastive loss (Equation 6.1)
as well as the binary grasp reward.
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Figure 6.4: Our neural network (NN) architecture during training: Given the images of both the
grasping and placing scene, a system of three NNs predicts whether a given third image is a real
measured image based on an executed action or a negative sample such as the goal image. While
both the Grasp NN and the Place NN are limited to their corresponding scene, a third NN predicts
a combined contrastive loss via the difference between the zg and zp embeddings. We interpret this
contrastive loss as a place reward. Additionally, the fully convolutional Grasp and Place NN predict
the grasp success and the place reward as an initial estimation, respectively.

6.5 Model Architecture

Three constraints are applied to our NN architecture (Figure 6.4): First, we define two
separate grasp and place NNs as FCNNs and limit their input to their corresponding scene.
Second, the grasp NN predicts the grasp reward rg as an additional output. Similarly,
the place NN pre-estimates the place reward, however without information about the grasp
action. We denote this prediction by the place NN as rp1. Third, both NNs calculate action
embeddings zg or zp respectively. They are combined in the (non-convolutional) merge NN
using their element-wise difference. Since information from both the grasp and the place
scene are joined here, the place reward rp can then be predicted with significantly improved
accuracy.

During the inference phase, we first rotate the images s of the grasp and place scene given
a discrete set of rotations (Figure 6.7). The image batches are fed into their corresponding
FCNN, resulting in action rewards rg and rp1 with their corresponding embeddings zg and
zp for a discrete set of action poses. The final action space A for pick-and-place scales by the
number of combinations Ag ×Ap. For performance reasons, not all possible combinations
can be evaluated in the merge NN. Therefore, a small fraction of grasp and place actions
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Grasp Before

Place Before
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- Contrastive Loss

Top N zg

Top M zp

Figure 6.5: Our neural network (NN) architecture during inference: Given the images of both the
grasping and placing scene, a system of three NNs predicts whether a given third image is a real
measured image based on an executed action or a negative sample such as the goal image. While
both the Grasp NN and the Place NN are limited to their corresponding scene, a third NN predicts
a combined contrastive loss via the difference between the zg and zp embeddings. We interpret this
contrastive loss as a place reward. Additionally, the fully convolutional Grasp and Place NN predict
the grasp success and the place reward as an initial estimation, respectively.

are pre-selected using the probability distribution

p(ag|ψg) =
ψα
g

Ag
ψα
g

, p(ap|ψp1) =
ψα
p1

Ap
ψα
p1

, α > 1.

based on the estimated grasp reward ψg and the pre-estimated place reward ψp1. Fur-
thermore, we set α = 6 and sample N := Ng = Np = 200 action proposals without
replacement, respectively. Figure 6.6 illustrates the grasp and place rewards rg and rp1 as
heatmaps, moreover indicating exemplarily positions of sampled action proposals.

For each combination of a proposed grasp ag and place ap, the merge NN predicts the
refined place reward rp from the embedding difference zg − zp. Since we only train the
place and merge NN on pick-and-place actions with successful grasps, the place reward rp
is conditioned on rg = 1. This way, we extend common approaches for learning to grasp
incrementally, and are able to learn the grasp confidence with additional or prior grasp data
independently. Finally, the pick-and-place reward r = rg · rp is defined by the product of
grasp and place reward.

One of three selection functions σ is applied to the set of N2 proposed pick-and-place
actions: First, a uniform random selection for initial exploration. Second, a sampling-based
approach based on Prob(N) using ag, ap ∼ ψg · ψp. Third and most important, an ε-greedy
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(a) Grasp reward ψg (b) Place reward ψp1

Figure 6.6: Example heatmaps of the estimated grasp and place reward, ranging from low (blue)
to high (red). The estimations of each FCNN are averaged over rotations. For visualization, we
reduce the number of sampled action proposals to N = 80 (white dots).

selection method Top(N) ag, ap = argmaxψg · ψp is used for application. Then, given the
scene images, the robot chooses the grasp and place combination that makes the scene after
the executed action look most like the goal image.

6.6 Self-supervised Learning

In order to scale the real-world training, the learning process needs to work with minimal
human interaction (chapter 4). Therefore, two bins are used for continuous and diverse
training. We apply a simple curriculum learning strategy, starting with single objects and
increasing the number and complexity of object types over time. In the beginning, we
sample grasps from a given grasping policy and place objects in the second bin randomly.
Later on, we sample goal states from a range of previously seen before states, denoted as
the goal database. As our approach is off-policy, we train the NN using the most current
dataset in parallel to the real-world data collection. Then, we sample the pick-and-place
action with the Prob(N) strategy, increasing N over time. At the end of the training, we
switch to the Top(N) selection strategy.

Optionally, the training of the grasp reward can be improved using single grasps without
place action. As pick-and-place is an extension to the planar grasping task (section 5.1),
the training can be bootstrapped by reusing prior data.

6.7 Experimental Results

We use the hardware setup introduced in section 4.3 for the following experiments.
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Data: Images sgrasp, splace, sgoal
Result: Grasp ag, Place ap

1: Create set of rotated grasp images Sg

2: Create set of rotated place and goal images Sp

3: Calculate grasp rewards ψg and embeddings zg for each pose in Sg using grasp FCNN
4: Calculate place rewards ψp1 and embeddings zp for each pose in Sp using place FCNN
5: Sample Ng grasps zgi with probability (ψg,i)

α

6: Sample Np places zpj with probability (ψp1;j)
α

7: for each combination (zgi, zpj) do
8: Subtract zgi and zpj element-wise
9: Calculate final place reward ψp using merge NN

10: end for
11: Select actions greedily via ag, ap = argmaxij ψg · ψp

Figure 6.7: Algorithm of inferring a pick-and-place action using FCNNs and reward pre-estimation.

6.7.1 Data Collection and Training

We evaluate our approach with two distinct models: First, a specialized model for pick-and-
placing screws (M10×60) using RGBD images. This model was trained on around 3500
pick-and-place actions. We reuse 12 000 sole grasps from prior experiments for improving
the grasp reward estimation of the screw model. Second, a general model was trained for all
remaining object types and experiments. Due to reliability issues of the RealSense camera,
this model uses only depth images of the Ensenso N10. It was trained on wooden primitive
shapes with side lengths of ≈ 4 cm for around 25 000 pick-and-place actions, corresponding
to around 120 h.

Both grasp and place NNs are fully convolutional and share the first few layers between
the reward and embedding outputs, respectively. The merge NN is a three-layer dense
neural network. We double the loss weight of the final place reward and optimize the NNs
using Adam [63] with a learning rate of 2× 10−4. After 100 epochs, we remove goal images
with a predicted contrastive loss of above 0.7 from the training set. For further details, we
refer to the open-source implementation1.

6.7.2 Object Placement Error

The precision of the pick-and-place task is evaluated using the placement error of a single
object. We define this error as the distance between the object’s pose within the goal state
and the pose after the executed pick-and-place action. Given the robot’s high repetition
accuracy and a well-calibrated depth-camera, the goal and result images are taken from the

1Available at https://pantor.github.io/learning-pick-and-place/ (accessed on December 9th,
2022)

https://pantor.github.io/learning-pick-and-place/
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Figure 6.8: The translational and rotational mean placement errors in different settings. We
compare the default case (N=200) with the separated case where the best grasp and best place
actions are chosen independently (N=1). Here, N is the number of proposed action embeddings for
further combination. Moreover, we differentiate between experimental results for grasping isolated
objects and out of clutter.

same camera pose. Then, we measure the placement error by determining the 2D transfor-
mation bringing ŝgoal and ŝt+1; place into alignment.

Figure 6.8 shows the translational and rotational placement error in various settings.
The placement error is investigated for isolated objects as well as objects in clutter. For
the latter, we fill the grasping bin with 25 trained objects, 80 screws, or 10 unknown
objects respectively and measure only places of the correct object type. Additionally, we
compare the results of our proposed default system with a separated approach: Then, we
set N = 1, leading to a system that chooses the best grasp action and the best place action
independently of each other, and does not make use of the merge NN. For trained objects,
our robot achieves an average placement error below of 3mm and 3 ◦. Interestingly, the
translational error falls just below the placing resolution. We assume the worse results
for screws to be caused by less training data and a more complex, e.g. reflective visual
appearance. For unknown objects in our test set (Figure 6.9), the robot is still able to
achieve an average precision of around 6mm and 4 ◦. In clutter, the precision decreases
in particular for screws and unknown objects. Here, typical grasp rates lie around 95%
for trained objects, and around 85% for unknown objects. Over all experiments, we find
an average error of 1.6mm in the direction of the gripper jaws constraining the object,
and 3.9mm orthogonal thereto. These findings suggest that the initial object displacement
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Figure 6.9: The evaluation set of 50 unknown objects.

caused by the closing gripper might influence the placing precision significantly.

6.7.3 Insertion Task

Although the robot did not learn to insert objects directly, we investigate this capability
despite tolerances of around 1mm using the peg game (Figure 6.1), pushing the robot
to its pick-and-place precision limits. On average, the robot achieves a success rate of
72% for the insertion of isolated objects, however depending heavily on the object type
(Table 6.1). For example, we observed that predicting the displacement of the cross shape

Table 6.1: Success rates of inserting a given object onto a peg

Default Separated

Object Isolation Clutter Isolation Clutter

Circle 9 / 10 7 / 10 5 / 10 1 / 10

Triangle 8 / 10 4 / 10 0 / 10 0 / 10

Square 9 / 10 7 / 10 1 / 10 0 / 10

Oval 6 / 10 6 / 10 3 / 10 0 / 10

Cross 4 / 10 2 / 10 1 / 10 0 / 10

72% 52% 20% 2%

during clamping is difficult to do - again suggesting that the grasp displacement is a primary
source of imprecision. The system can increase success rates by around 50% in comparison
to a separated approach. Moreover, the peg game also represents a perturbation of the
environment. Success rates of up to 90% suggest that the system can generalize to unknown
environments. We classify a wrong object type while grasping in clutter as a failure.

6.7.4 Selection Error

Given multiple object types in the grasping scene, the task of selecting the correct object
to place arises naturally. We evaluate this task by choosing five objects randomly from the
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set of either all known or unknown (Figure 6.9) objects. Then, the robot needs to select
the solely shown object from the goal state. For this 1-out-of-5 selection task, the robot
achieves a success rate of (86± 5)% for trained, and (60± 7)% for unknown objects, in
comparison to a random success rate of 20% (Figure 6.10).

0 20 40 60 80 100

20

74

60

86

Success Rate [%]

Trained Objects

Unknown Objects

Template Matching

Random

Figure 6.10: Success rates of grasping the demonstrated objects out of a set of five distinct objects
(1-out-of-5 selection task), independent of the final place precision. This comparison uses depth
images only.

However, the evaluated model does not make use of color images, which we assume to
be helpful for this task. We additionally compare our model against a simple template-
matching baseline. First, the target object is detected using the difference between the goal
and place image. Second, we apply this template to match a corresponding object within
the grasp image. Although we find that this baseline is sensitive to depth shadows, it still
outperforms our approach for unknown objects.

6.7.5 Multiple-step Tasks

Our approach allows to infer multiple actions from a single goal image when updating the
grasp and place images after each action. Given a single demonstration, the robot can
place multiple objects out of clutter, with examples shown in (Figure 6.11a and 6.11b).
Moreover, we can take a sequence of goal images as an instruction list. This allows a wide
range of easy-programmed pick-and-place tasks (Figure 6.11c). Videos of all three examples
are included in the supplementary material linked above.

6.8 Discussion

We presented an approach for learning pick-and-place tasks in a self-supervised manner.
Since our approach does not depend on an object model and instead takes a demonstrated
goal state as an input, it allows for the flexible yet precise placing of unknown objects. The
evaluated system was trained in the real world with up to 25 000 pick-and-place actions,
resulting in average placement errors of (2.7± 0.2)mm and (2.6± 0.8) ◦ for trained objects.
A separated approach, where grasp and place actions are calculated independently, results
in four to five times lower precision. For unknown objects, the translational placement error
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(a) Placing the logo of our Alma Mater (KIT) (6 actions, 1 goal).

(b) Placing screws in an industrial scenario (3 actions, 1 goal).

(c) Building a house with wooden blocks (6 actions, 4 goals).

Figure 6.11: Given a single goal state, our robot can infer multiple pick-and-place actions from
the (cluttered) grasp scene (left) to the place scene (right). Using an instruction list of multiple goal
states, the robot can reproduce more complex examples (c).

increases to around 6mm and 9mm for grasping in clutter. The robot learns to select the
demonstrated objects out of five alternatives with up to 86% accuracy. A second model
was trained specially for screws in an industrial use case. Moreover, we demonstrated the
robot’s capability to pick and place multiple objects from a single goal state.

We see our system as a combination of two common approaches in robot learning: First,
we build upon learning of manipulation primitives, estimating their reward for planar poses
using FCNNs. So far, we found that this was mostly done for grasping or pre-grasping
[82, 130, 129], as the reward can here be defined and measured more easily. Second, we
integrate methods of one-shot imitation learning. In particular, the work of Singh et al.
[110] used a contrastive loss approach to classify goal states from policy-generated, self-
executed states. Similarly, we use a demonstrated goal state to define a precise object pose
for placing.
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Regarding other approaches to pick-and-place, we see both advantages as well as short-
comings. In comparison to Finn et al. [39], we limit our policy to a single time step and
a discrete action space. While this diminishes the generality and ignores the trajectory
in between, our approach increases the final object precision significantly. Moreover, we
extend a common, state-of-the-art approach of learning for grasping, i.a. resulting in the
capability of pick-and-place out of clutter. Due to the use of manipulation primitives, our
trained models depend only on the gripper and generalize in principle to other robot arms.

Gualtieri et al. [47] learn a policy for pick-and-place in full 6DoF. Despite their ad-
vantages over planar manipulation, we see shortcomings in the restricted generalization
capability as well as a reward-based placing objective. In contrast, our approach allows for
wider generalization, easy training of additional object types, and flexible place poses. Ad-
ditionally, our robot is limited by its data consumption of real-world training in comparison
to learning in simulation.

As a part of a pick-and-place pipeline, Zhao et al. [132] predicted the object displace-
ment during the gripper’s closing action. We found that this displacement is a major source
of imprecision in our experiments. Still, our overall pick-and-place precision is similar to
their displacement prediction error. In comparison, our contributions allow to learn the
entire pick-and-place pipeline at once. Their approach would still require a pose estimation
of the object model and a grasp point detection for targeted placing. Furthermore, our
approach was also evaluated in clutter.

From a more general point of view, we proposed a method for learning two interdepen-
dent actions in an open-loop manner. We find that the presented ideas could be transferred
easily to other applications. In fact, chapter 8 uses bimanual manipulation and is based on
the idea of pre-selection and combining corresponding embeddings. Here, the two actions
are executed simultaneously instead of successively.



Chapter 7

Transition Model for Composed
Primitives

So far, the approach of manipulation primitives has reduced the controller to a single time
step. However, the discarded time dependency is often useful for practical applications.
Amongst others, it allows to plan longer manipulation sequences or second, optimize for
time-dependent multiple-step criteria. In this chapter, we propose to keep learning the
manipulation primitives in a single-step and data-efficient manner, while introducing a
transition model on top. This visual transition model is learned from pairs of images
before and after an executed manipulation action, and is then able to predict the resulting
state of an action. As a transition model adds errors into the system, we further predict the
uncertainty of the transition model. By estimating the final uncertainty of the manipulation
action, the robot can manipulate in a risk-aware manner. As before, we address this to
the robotic task of bin picking. It highlights several challenges for transition models, e.g.
unknown and partially hidden objects, as well as an obstacle-rich environment. We compose
manipulation primitives from planar grasping primitives (section 5.1) and pre-grasping
(section 5.4) to complex primitive sequences. This chapter is based on [11].

7.1 Model Architecture

In RL, a transition model T predicts the distribution over states st+1 at the next timestep

p(st+1) = T (st, at) (7.1)

based on the current state st and the chosen action at. A transition is generally non-
deterministic to reflect real-world stochasticity and incomplete knowledge that might not
be available to the agent. As the states st and st+1 are in the visual domain in this work,
our transition model maps one image to another image.

Section 3.5 analyzed the locality of manipulation actions. In this regard, all prior
approaches have simplified manipulation planning to take only an area around the action’s

131
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· · ·

(a) Manipulation Model M : The fully convo-
lutional manipulation NN is trained on an im-
age window only, but is able to predict a reward
heatmap averaged over rotations and primitive
types for a complete image of the bin.

(b) Transition Model T : The U-Net architecture
predicts the next image state st+1 depending on
the prior state st, the action at, and its reward rt.
The predicted window around the action (red) is
then patched into the original image.

Figure 7.1: We make use of two NNs, one for the manipulation policy (a) and one for the transition
model (b). The locality of manipulation was so far used to restrict the manipulation model to a
window around the TCP of the robot (red). Likewise, the same arguments allow us to simplify our
local transition model.

pose into account. For example, a NN evaluating a primitive’s reward takes a cropped
image window ŝ and not the complete image s of the bin as input. The same arguments
hold true for the transition model T . In this regard, we learn to predict only a window
ŝt+1 around the gripper’s pose for the next step. Likewise, a local transition model has
two major advantages: First, while the window size could in principle match to the overall
image s, we limit the window size to twice the maximal object size. This reduces the size
of the NN or the resolution of the transition model. Second, we center the robot’s TCP
within the image windows. This way, all spatial dependencies (x, y,α) can be removed from
the transition model. To estimate the distribution over st+1, the state image st is patched
with ŝt+1 at the affine transformation (x, y,α)

p(st+1) = T (st, at) ≈ T (ŝt,mt, rt) (7.2)

with the manipulation primitive type mt. Additionally, we condition the transition model
on the reward rt of the action. This is motivated by the following arguments:

• By using the estimated reward ψt instead, the calculations of this difficult and high-
level feature can be outsourced from the transition model to the already learned
manipulation NN. This is particularly important for grasp actions: Here, the next
states depend strongly on the binary grasp success. Therefore, we train the manipu-
lation model to learn the grasp success explicitly (as it is measurable) and reuse this
information in the transition model.

• Real reward measurements rt can be used in the transition model. For example, the
grasp reward can be quickly measured by the robot’s gripper.
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• Note that there is no loss of generality by conditioning the transition model on the
reward, as we can substitute the manipulation model as a reward predictor.

If not stated otherwise, we simplify the transition model to

p(st+1) ≈ T (ŝt,mt,M(ŝt)) . (7.3)

Let ŝ′t+1 denote the image prediction with the highest probability.

We employ the BicycleGAN architecture by Zhu et al. [133] for our transition model. In
a nutshell, the architecture is based on a generator, discriminator, and an encoder NN. The
generator tries to mimic images from the underlying distribution, taking a noise vector z
from a prior latent distribution as input. While playing a min-max-game, the discriminator
aims to distinguish the generated data from the real data. The BicycleGAN introduces an
encoder to calculate a representation from an image within the latent space z. By constrain-
ing the latent distribution between the real and generated images, as well as a similarity
to a Gaussian, the architecture is able to output a multi-modal distribution. This way, the
BicycleGAN architecture is in principle able to capture the stochastic physics as a transi-
tion distribution.

We use the generator NN as the transition model T . It uses a U-Net architecture with
(64×64) pixel input and output size (Figure 7.1b). We extend the BicycleGAN architecture
by additionally condition the generator on the manipulation primitive type mt (as a one-hot
encoded vector) and the reward rt.

7.2 Uncertainty Prediction

Given the image distribution p(st+1), we are able to estimate a pixel-wise uncertainty of
the prediction by sampling from its latent space z. Let the uncertainty σ̂2

s be the variance
of the prediction ŝ′t+1

σ̂2
s = E


ŝ− ŝ′t+1

2
=

N

i

p(ŝi)

ŝt+1,i − ŝ′t+1

2
(7.4)

given the number of samples N . The state uncertainty σ2
s,t+1 of the overall image is esti-

mated by zero-padding the uncertainty window σ̂2
s at (x, y,α). The state uncertainty σ2

s can
be propagated towards the estimated reward ψt of the manipulation action. A first-order
Taylor series of the manipulation NN M yields

σ2
a ≈



i,j


∂M(ŝ′t+1)

∂si,j


2

σ2
s;i,j (7.5)

summing over all pixels (i, j). The approximation presumes a zero covariance between
individual pixels and only small uncertainties σ2

s . A key contribution of our work is to
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Measurement
st=0

Uncertainty Σ2
t=0
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∂M
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ŝt
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t
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ŝt+1

σ̂2
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Figure 7.2: Iterative multiple-step predictions of the state st with corresponding uncertainty Σ2
t

given an initial measurement st=0. The computational flow during a prediction step is as follows:
The manipulation neural network (NN)M estimates rewards ψt for a discrete set of action primitives
mt, its gradients are used to propagate the cumulative input uncertainty Σ2

t towards the estimated
reward σa,t. The policy π chooses the final action a with corresponding reward r using the lower
bound of the estimated reward. Then, the transition model T predicts the new state ŝt+1 around
the action a with pixel-wise uncertainties σ̂2

s,t+1. The uncertainties are summed up ranging from
low (blue) to high (red).

implement Equation 7.5 in a fully convolutional way: The gradient of the fully convolutional
manipulation NN regarding the pixel-wise image input is fully convolutional itself. Then,
the gradient is convoluted over the mean prediction and multiplied with the pixel-wise
uncertainty. This results in an efficient computation of both the estimated rewards and its
uncertainties ψt±σa. Note that we only consider the input uncertainty; other uncertainties,
in particular from M itself, are neglected.

7.3 From Predicting to Planning

Following, we assume the independence of each state’s uncertainties σ̂s,t over time t. Due
to the linearity of the variance, we define the cumulative uncertainty

Σ2
t =

t

i=0

σ2
s;i (7.6)

as the accumulated uncertainty of the state. Furthermore, we denote t as the number of
action steps after an image measurement at t = 0. At t = 0, we consider the sensor to
be perfect and reset the cumulative uncertainty to zero. Moreover, we adapt the policy π
to select the action at maximizing the lower confidence bound of the estimated reward ψt
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given by

a∗t = argmax
a


M(st)− wc


∂M(st)

∂s

Σt


(7.7)

using the cumulative uncertainty Σt in contrast to Equation 7.5. Let wc > 0 denote a
parameter for weighing the estimated reward of actions against their confidence. If the
uncertainty rises above a threshold σ2

image a new image is taken. If the lower bound of the
estimated reward falls below a threshold, the bin is assumed to be empty. Furthermore,
given both a policy π and a transition model T , states and actions can be predicted multiple
steps ahead by iteratively applying π and T alternately. Figure 7.2 shows the computational
flow of a single prediction step, allowing to plan ahead and optimize for multiple-step
criteria. As we don’t focus on planning algorithms itself, we implemented a simple breadth-
first tree search. To allow diverse tree paths, we adapt Equation 7.7 to sample from the
N ≈ 5 highest actions uniformly randomly. This way, we can predict the overall tree ahead
of time and return the action path maximizing the criteria during inference.

7.4 Experimental Results

We use the same experimental setup introduced in section 4.3 with both the Ensenso N10
and RealSense D435 camera. For further details on the implementation, additional videos,
experimental results, and datasets, we refer to the project website1.

7.4.1 Image Prediction

During around 180 h of real-world data collection, the robot attempted 40 000 grasps and
2400 shifts. The robot used two bins with a variety of objects for training. After a successful
grasp, the robot moves the objects to the other bin, however returns after filing to take
an image after the manipulation. After 4000 random actions, the robot used the Prob(N)
selection strategy for learning manipulation. N was increased continuously from 1 to 6
and transitioned into the Top(N) selection at 30 000 actions, leading to an average reward
of r = 0.55. The manipulation NN was trained around every 500 actions. In the end,
we train the BicycleGAN architecture on the complete dataset of state-action-state-tuples
(st=0, pt=0, rt=0, st=1).

To stabilize the training of the generative adversarial networks (GANs), we smooth
the labels and add random noise to the discriminator input. In comparison to the origi-
nal implementation, we use a training batch size of 32. Otherwise, we keep the training
process of the BicycleGAN architecture. Figure 7.3 shows example predictions given the
manipulation primitive type mt and the reward rt. We include the ground truth as well
as results of the Pix2Pix architecture (without uncertainty estimation) and a variational

1Available at https://pantor.github.io/learning-transition-for-manipulation/ (accessed on De-
cember 9th, 2022)

https://pantor.github.io/learning-transition-for-manipulation/
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ŝt ŝt+1 BicycleGAN Pix2Pix VAE

rt = 1
mt = 3

rt = 1
mt = 1

rt = 1
mt = 1

rt = 0.8
mt = 4

rt = 0
mt = 1

(a) Comparison of predictions by the BicycleGAN, Pix2Pix (without uncertainty) and VAE model.
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(b) Predictions by the BicycleGAN, for both RGB (not used for downstream manipulation) and
depth images.

Figure 7.3: Example predictions given an image window ŝt before a manipulation action of type mt

and reward rt. ŝt+1 corresponds to the ground truth. The normalized pixel-wise uncertainties are
shown from low (blue) to high (red). Action types mt ∈ {0, 1, 2, 3} are grasps of different pre-shaped
gripper width; mt ∈ {4, 5} are shifting motions.
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autoencoder (VAE) for visual comparison. Predicting both a state of 64 × 64 pixels with
corresponding uncertainties using N = 20 samples needs around 60ms.

While our transition model can generate realistic images, we find two common failure
modes: First, low-level failures like large-scale deviations in the background or blurred
edges. Second, wrong high-level features like cropped, blurred, or visual fused objects. The
latter case occurs in particular for either shifting actions or occluded layers beneath the
grasped object. Regions of high predicted uncertainty can be found primarily near edges, in
particular of regions without depth information (black) and within the manipulated objects
themselves. Examples of iterative predictions are shown in Figure 7.2.

7.4.2 Grasp Rate

We define the grasp rate as the percentage of successful grasps for grasping 15 objects out
of a bin with 25 objects without replacement. For a bin picking scenario with multiple
object types, Figure 7.4 shows the dependency between the grasp rate and the prediction
step t, equivalent to the number of actions since the last image measurement.
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Figure 7.4: Grasp rate and uncertainty of the estimated reward σ2
a depending on the number of

prediction steps after an initial image measurement at t = 0. Based on 1080 grasp attempts in the
defined bin picking scenario.

The grasp rate decreases from 98.7% at t = 0 to around 90% for t = 3. Then, the
average uncertainty of the estimated reward σ2

a increases to around 0.1, resulting in a signif-
icant term in Equation 7.7. In order to minimize the sum of lost time due to both grasping
mistakes and image acquisitions, we estimate an optimal uncertainty threshold σ2

image given
a rough estimate of the execution times of the robot. We identified the durations tG = 6.5 s
of the grasp and tI = 2.5 s of the image measurement and related motions. The picks per
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hour (PPH) are then given by

PPH =
Grasp Rate

tG + 1
t tI

≈ -0.00354 t2 − 0.0228 t+ 0.987

6.5 + 2.5 t−1
(7.8)

with the optimal prediction step t∗ ≈ 3.2. The quadratic regression is plotted in Figure 7.4.
To optimize the PPH in further experiments, we set the threshold σ2

image for taking a new

image to the corresponding uncertainty σ2
a ≈ 0.12.

7.4.3 Benchmarking Picks Per Hour

We evaluate our robotic system against the Box and Blocks Test from the YCB bench-
mark suite [22]. Within 2min, the robot should grasp and place as many cubes (2.5 cm
side length) as possible out of one bin into another. Additionally, we introduce a setting
where the robot is allowed to grasp multiple objects at once. Based on the work of seman-
tic grasping [57], we extend the manipulation NN to predict whether the closed gripper
distance will be larger than 4 cm. This corresponds to grasping at least 2 objects; the
policy π then maximizes the lower bound of the expected number of grasped objects. Ta-

Table 7.1: Results for the Box and Blocks Test, including the grasp success rate, the object count
after 2min, and the corresponding picks per hour (PPH).

GraspRate Count PPH

Heuristic [22] 80% 10.8 324
Random (13± 4)% 2.2± 0.7 66± 20

Single (97± 2)% 12.8± 0.3 384± 10
Single, Prediction (94± 2)% 16.4± 0.5 492± 14
Multiple (96± 2)% 20.4± 1.0 612± 29
Multiple, Prediction (94± 2)% 23.4± 0.5 702± 14

ble 7.1 shows the grasp rate, object count, and final PPH for each combination of grasps
with/without prediction and of single/multiple objects, and in comparison to the heuristic
of Calli et al. [22]. Random grasps are evaluated by sampling randomly from the entire
action space. We repeated every experiment 5 times. Our robot achieves a peak perfor-
mance of (23.5± 0.5) grasps with (3.3± 0.2) images, corresponding to (702± 14)PPH. On
average, using an approach with prediction improves the PPH by 15%.

7.4.4 Planning

We demonstrate the ability to plan ahead for the task of emptying a bin with as few actions
as possible. Given an object configuration of three cubes in a row at the side of the bin,
the robot can grasp all objects in 4 steps by shifting the middle cube first. If an outer
cube is shifted otherwise, the robot needs at least 5 steps. In this configuration, planning
can reduce the average number of action steps from 4.77± 0.20 to 4.14± 0.13, measured
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(a) Start (b) 4 Actions (c) 5 Actions

Figure 7.5: Example scene for evaluating the planning capabilities of the transition model. This
way, the robot can infer and minimize the total number of actions needed to empty the bin depending
on the initial action.

by 25 successful episodes with a success rate of 78%. Further illustrative material can be
found on the project website2. Calculating the planning tree with 3 leaves and a depth of
5 results in a computation time of around 10 s.

7.4.5 Generalization

We qualitatively evaluate the system for objects that were never seen during training (Fig-
ure 7.6). We find that our system is able to generalize well to compact objects, naturally

rt = 1
mt = 1

rt = 1
mt = 2

rt = 1
mt = 2

rt = 1
mt = 1

rt = 1
mt = 1

rt = 1
mt = 0

rt = 1
mt = 1

ŝt ŝt+1 BicycleGAN Uncertainty

Figure 7.6: Example predictions of the visual state ŝt+1 after an executed manipulation primitive
mt for novel (unknown) objects. The uncertainties are shown from low (blue) to high (red).

2https://pantor.github.io/learning-transition-for-manipulation/ (accessed on December 9th, 2022)



140 CHAPTER 7. TRANSITION MODEL FOR COMPOSED PRIMITIVES

depending on the similarity to trained objects. From the perspective of instance segmen-
tation, this problem is challenging for unknown objects, as the system needs to estimate
the connection of objects. For example, the pincers (5th image) are only connected outside
out of the image. For long and irregular objects, the model often splits single objects into
multiple parts. However, it often captures the boundaries for other objects well, e.g. like
the red object in the bottom row.

7.5 Discussion

In this chapter, we presented an approach for learning a generative transition model be-
tween the visual states and their pixel-wise uncertainty of a manipulation action. This
way, the robot is able to plan sequences of single-step manipulation primitives, which were
learned data-efficiently without sparse rewards. Furthermore, we demonstrated two more
novel skills of our robot: By skipping image measurements, it was able to increase the PPH
by around 15% in the Box and Blocks Test [22]. Second, the robot was able to optimize
regarding multiple-step criteria in a flexible way, e.g. to minimize the number of actions
for emptying a bin. This becomes possible through three major contributions: First, we
simplify the transition model by conditioning it on the already learned reward estimation
as well as using the spatial invariance of the state space. Second, we propose a model
architecture generating samples from a multi-modal distribution, allowing to estimate a
prediction uncertainty. Third, the latter was propagated efficiently towards the estimated
reward.

Our transition model works in a direct image-to-image setting similar to [17, 37, 32].
In comparison, our model additionally estimates a pixel-wise uncertainty measure and is
applied to more difficult, obstacle-rich environments. From a broader perspective, we see
several advantages in our approach: In comparison to model-based RL, our transition model
does not interact with the single-step policy during training and extends the robotic system
optionally. This allows to condition the transition model on the estimated reward and reuse
the manipulation model learned with model-free RL. Oftentimes, a transition model is used
for model-based policy training to reduce sample complexity [50]. However, we find that
this is not useful for grasping: The following states depend strongly on the grasp success,
which can be measured easily by the gripper and learned explicitly by a manipulation model.

Still, our approach allows for flexible optimization criteria and - even more important
for real-world applications - off-policy RL of time-dependent manipulation sequences. In
this regard, we learned simple manipulation primitives similar to [128], but were able to
combine multiple primitives to more complex action sequences. Although model errors
are inevitable for robotic manipulation [37, 32], our uncertainty-aware policy does actively
avoid these model limitations. However, while our transition model can generate realistic
images, we find that it fails to capture high-level features of the stochastic physics. Instead,
it usually learns the simplest solution and provides low-level pixel uncertainties.



Chapter 8

Garment Folding

Garment handling such as folding and packing are common tasks in textile manufacturing
and logistics, industrial and household laundry, healthcare, and hospitality. These tasks
are largely done manually due to the complex configuration space as well as the highly
non-linear dynamics of deformable objects. In the following, we introduce an end-to-end
system for fast and efficient garment folding. In this regard, we see this chapter as the
extension of our general approach for learning primitives to (1) dual-arm manipulation and
(2) dynamic and more complex applications. This chapter is based on [4].

8.1 Problem Statement

Given a visual observation ot ∈ RW×H×C of the garment’s configuration st at time t,
the objective is to compute and execute an action at to transfer the garment from an
arbitrary configuration to a desired user-defined s∗ goal configuration. In particular, s∗

is invariant under the garment’s position and orientation in the workspace. Moreover, we
ignore which side of the garment (e.g. the front or back of a t-shirt) points upwards in
a smoothed configuration. We assume an overhead observation with a calibrated pixel-to-
world transformation, as well as a garment that is easily distinguishable from the workspace.

We consider a dual-arm robot with parallel-jaw grippers executing actions of type m ∈
M from a discrete set of pre-defined action primitives. In particular, we parameterize each
primitive by two planar gripper poses

at = 〈m, (x1, y1, θ1), (x2, y2, θ2)〉

for each arm respectively, in which (xi, yi) are coordinates in pixel space, and θi is the end-
effector rotation about the z axis. We further assume a flat obstacle-free workspace and a
motion planner that computes collision-free trajectories for a dual-arm robot. However, col-
lision avoidance and limited reachability are common challenges in bimanual manipulation
and especially deformable manipulation that need to be addressed fundamentally.

141
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Figure 8.1: Action primitives for garment folding: Given an overhead RGBD image, we select a
smoothing action from a discrete set of primitives (left box), and compute a pair of end-effector
poses. Coverage calculation (in blue) is insensitive to wrinkles in the fabric (right box, top)
and therefore it learns to classify configurations as Sufficiently Smoothed (right box, bottom)
(in yellow). Folding a t-shirt from a smooth configuration is done through a sequence of folding
primitives (center box).

8.2 Primitives

We are interested in the set of quasi-static and dynamic action primitives that enable the
robot to (1) transfer an arbitrary garment configuration st to a folded goal configuration s∗

(completeness), (2) reduce the number of action steps (efficiency), and (3) with a reduced
number of primitives (minimality). Each action primitive is defined through a pair of poses
as well as a motion trajectory. All primitives share a common procedure to reliably grasp
the garment with parallel jaw grippers: Each gripper moves 4 cm above the grasp pose at,
rotates 8◦ so that one fingertip is below the other, and moves 1 cm towards the direction
of the higher fingertip. This motion improves the success of grasping in particular at the
edge of the garment. We define the following learned primitives (Figure 8.1 left box):

Fling: Given two pick poses, the arms first lift the garment above the workspace and
stretch it until a force threshold is reached, measured using the arms’ internal force
sensors. Next, the arms apply a dynamic motion, flinging the garment forward and
then backward while gradually reducing the height toward the workspace. Similar to
[49], we find the fling motion to be robust under changes of velocity and trajectory
parameters, and therefore we keep these parameters fixed. The fling primitive allows
to significantly increase the garment’s coverage in only a few steps, but oftentimes
does not yield a smooth configuration.
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Pick-and-place: Given a pick and a corresponding place pose, a single arm executes this
quasi-static action, while the second arm presses down the garment at a point on a
line extending the pick from the place pose. Pick-and-place enables the robot to fix
local faults such as corners or sleeves folded on top of the garment.

Drag: Given two pick points, the robot drags the garment for a fixed distance away from
the garment’s center of mask. Dragging leverages the friction with the workspace to
smooth wrinkles or corners such as sleeves folded below the garment.

We define the following heuristic-based primitives (Figure 8.1 center box):

Fold: Both arms execute a pick-and-place action simultaneously to fold the garment. The
heuristic for calculating the pick and place poses is explained in section 8.6.

Move: While similar to drag, this primitive’s pick poses and its drag distance are calculated
by a heuristic so that the garment’s center of mask is moved to a goal target point.
Usually, the robot drags the garment towards itself to mitigate reachability issues in
subsequent actions. section 8.6 provides details about the pose calculation.

We define an additional learned primitive to switch from garment-smoothing to folding
(Figure 8.1 right box):

Sufficiently Smoothed: We find that deciding whether a garment is ready to be folded
purely from coverage computation, as done in prior works [53, 108, 49], is not sufficient.
In particular, even a high coverage is prone to wrinkles or faults that might reduce the
subsequent fold quality significantly (as described in Figure 8.1). Instead of relying
on the coverage, the system returns a smoothness value given an overhead image.
While this primitive is not used to change the configuration of the garment, it is used
to switch from garment-smoothing to folding.

8.3 Model Architecture

Predicting a single pose from an overhead image is commonly done by first estimating a
pixel-wise value map per gripper z-axis rotation θ, in which each pixel value represents
a future expected reward (e.g., grasp success, increase in garment coverage, etc.), and
then selecting the maximum greedily [128, 8, 44, 49]. Extending this approach to two
corresponding planar poses (x, y, θ)1,2 conditioned on each other is however challenging
primarily due to the exponential scaling of possible end-effector poses with the number of
dimensions. In particular, this is a multi-modal problem, and the predicted unconditioned
value maps Qunc(x, y, θ) have multiple peaks (as in Figure 8.3). While unconditioned value
maps may provide information relevant to downstream bimanual tasks, such as the grasp
success, they provide no information regarding their correspondences. To address this we
define correspondence descriptors

d = (Qunc, x, y, sin θ, cos θ,m,e)
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Figure 8.2: Our BiMaMa-Net architecture first maps an image to a manipulation primitive type
via its shared encoder and classification head. Given a primitive, it predicts dense unconditioned
value maps for a discrete set of gripper orientations. It then calculates pixel-wise correspondence
descriptors. A descriptor pair, representing a bimanual action, is combined in the descriptor head
to predict its joint value.

where e ∈ RM is a predicted embedding for each pixel (disregarding orientations θ) concate-
nated with the unconditioned value Qunc, positional encodings, and the action primitive
type m. Then, the final conditioned value Q(d1, d2) depends on a descriptor pair.

Figure 8.2 shows the complete information flow of BiMaMa-Net: A shared encoder
using a ResNext-50 [127] backbone maps an input image (e.g. depth and grayscale) to
high-level features. First, a classification head predicts the manipulation primitive m.
For a Sufficiently Smoothed primitive, no further action is required. For all other learned
primitives, a U-Net [100] decoder predicts value maps for a discrete numberN of end-effector
orientations θ. We choose a U-Net architecture over fully convolutional NN used in prior
robotics manipulation works [9, 131, 49, 8] as U-Nets are better suited for high-resolution
inputs that we find necessary for detecting edges and wrinkles for garment smoothing.

Then, BiMaMa-Net samples a set of poses from the value map, where pixels with
higher values are more likely to get sampled. During training, BiMaMa-Net samples from
p(a|s) ∼


Qunc(a, s) to allow for sampling also negative examples to better estimate the

underlying distribution of action values. We empirically found that this strategy is a good
compromise between too simple (e.g. uniform randomly) and too hard (e.g. by heatmap
Qunc) counterexamples. For inference, BiMaMa-Net samples from p(a|s) ∼ Qunc(a, s)

2

which emphasize action poses with high values. It then calculates the correspondence
descriptors for each pose, and a final NN head combines all descriptor pairs d1 and d2 to
output the final conditioned action value Q.
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(a) Workspace (b) Reachability mask

Figure 8.3: Reachability for bimanual manipulation. (a) We perform a boundary search to compute
separate reachability masks for the left (yellow) and right (blue) robot arms. (b) BiMaMa-Net
guarantees at least one pick pose (black) from the value map within each mask.

If two poses are interchangeable (e.g., during a fling or a drag action), a single decoder
predicts the value maps per θ. However, if a certain relation between the poses must be
maintained (e.g., the conceptual difference between the pick and the place poses in a pick-
and-place action) then separate decoders compute two value maps Q1

unc and Q2
unc. Due to

this simplification, the robot is not able to consider whether the front or back of the fabric
points upwards after a fling.

At run-time, the NN samples N1 = N2 = 200 descriptors and combines them into a list
of N1 ×N2 = 40 000 correspondence descriptor pairs. The descriptor head is a comparably
small three-layer dense NN to avoid becoming the bottleneck due to the high number of
descriptor combinations. This pre-selection is similar to the approach in chapter 6, and is
also useful for a range of tasks related to garment folding: For example, the robot needs
to grasp first to allow for downstream tasks such as flinging. This requirement reduces
the number of possible poses significantly even without considering two conditioned poses.
While two conditioned action poses arise naturally in bimanual manipulation, we also apply
it to subsequent poses in the pick-and-place primitive. As the NN predicts an unconditioned
Qunc value without knowing about the second pose, the estimated value is only a first
approximation.

8.4 Reachability Calibration

As shown in Figure 8.3, to ensure reliable garment smoothing and folding, the robot should
compute the actions that maximize the expected reward within the reachable space. To find
the robot’s reachable space, we perform a one-time boundary search along a discretized grid
in the action space (x, y, θ) for each gripper, assuming a constant height z above the table.
The search, done separately for each θ, starts with a fixed lower value of y and increases x
until the inverse kinematics fails to find a solution. Afterwards, it repeatedly increases y or
decreases x so that the search is confined to the continuous boundary at which reachability
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fails. As a result, we get separate masks Ml and Mr for the left and right arms

M(x, y, θ) → {0, 1}

that can be incorporated into the algorithm as spatial binary constraints by restricting the
action sampling to the masks. To ensure that each reachability mask contains at least one
pose, we create up to four masked value maps from Q1

unc (or Q2
unc) by multiplying them

with Ml or Mr: {Q1l
unc, Q

1r
unc, Q

2l
unc, Q

2r
unc}. An action value Qunc = 0 is ignored in the

sampling process. We then sample and combine the correspondence descriptors from Q1l
unc

and Q2r
unc, and vice versa for Q1r

unc and Q2l
unc.

We find that using a calibrated reachability mask for each end-effector orientation θ
separately significantly reduces the number of false negatives that arise when using ap-
proximations, such as a circular mask. After selecting the final, reachable poses (x, y, θ)1
and (x, y, θ)2 during run-time, we check for possible collisions due to inter-arm interac-
tion. If a potential collision is detected, the next best action is selected until reachable and
collision-free poses are found.

8.5 Training for Smoothing

We train BiMaMa-Net via self-supervised real-world learning to predict the manipulation
primitive type m and the corresponding action poses (x, y, θ)1 and (x, y, θ)2 given an over-
head image of a garment.

In order to scale real-world interaction, the learning process is designed for minimal hu-
man intervention. First, we collect examples of smooth configurations to train a classifier
outputting the confidence p(Sufficiently Smoothed|s). Additionally, let cov(s) be the cov-
erage of the garment at configuration s observed from an overhead perspective, calculated
by background subtraction and color filtering. We define the reward r

rt = max (tanh [α (cov(st+1)− cov(st)) + β (p(smoothed|st+1)− p(smoothed|st))] , 0)

as the sum of the change of coverage and Sufficiently Smoothed confidence with tuned
weights α and β respectively. It is scaled to r ∈ [−1, 1] first and then clipped to a non-
negative value, so that no change equals zero reward. To ensure continuous training, the
robot resets the garment configuration by grasping it at a random position on its segmented
mask and dropping it from a fixed height. We train the NN using the complete, most recent
dataset in parallel to the real-world, off-policy data collection. The robot explores different
actions by randomly choosing from the set of Ns best possible actions uniformly sampled.

To avoid a purely random and sample-inefficient initial exploration, we kickstart the
training with human annotations. We differentiate between self-supervised and human-
annotated data within the training process in three ways: (1) We set the reward of human-
annotated data to a fixed rh. (2) Besides training the value map at the specific annotated
pixel position and orientation, we follow [44] and introduce a Gaussian decay centered
around each pose as a global target value instead. (3) The classification head is trained
only with data that has a reward higher than a tuned threshold r ≥ rc.
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Figure 8.4: We learn to fold garments from arbitrary configurations: Given a crumpled t-shirt,
the robot unfolds it by applying two fling actions (1, 2), smooths the t-shirt with a drag action (3)
until it is sufficiently smoothed. It then moves the t-shirt for better reachability (4), and applies
three folds (5-6) to achieve the user-defined goal configuration (7).

8.6 Folding Pipeline

We compare three approaches for folding: instruction-based folding, which can be adapted
to different garments and different folding techniques, “2 seconds” fold, a known heuristic
for surprisingly fast t-shirt folding, and fling-to-fold (F2F), a novel technique that can
increase the number of folds-per-hour (FPH) by leveraging prior knowledge about the t-
shirt’s dimensions.

Instruction-based Folding: As shown in Figure 8.5 (left), given a mask of a smoothed
garment, the robot iteratively folds the garment along user-specified folding lines.
These allow to define the goal configuration of a smooth garment precisely without
using high-dimensional visual goal representations [124, 53]. A complete user instruc-
tion includes: (1) A binary mask called template and (2) a list of folding lines relative
to the template (Figure 8.5 left). The folding direction is defined with respect to the
line according to the right-hand rule.

To apply the folding lines to the garment, a particle-swarm optimizer computes an
affine transformation by registering the template with the current image. Afterwards,
the algorithm calculates corresponding poses for a bimanual fold action: Let pent be
the first and pexit be the second intersection point of the line and the mask, where
the line enters and exits the mask respectively. This splits the mask into a base and
a fold-on-top part. On the contour of the latter, the algorithm finds two pick points
p1 and p2 so that the area of the four-sided polygon (pent, p1, p2, pexit) is maximized.
We use the normal at the pick point for the gripper orientation θ. The place poses
are calculated by mirroring the pick poses at the folding line.

“2 Seconds” Fold: For specific garments such as t-shirts, there exist heuristics for effi-
cient folding. Given a smooth configuration, the so-called “2 seconds” fold follows a
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(a) Folding Lines (b) Fling-to-Fold

(c) “2 Seconds” Fold

Figure 8.5: We compare three folding approaches. Left: A template mask with a sequence of
folding lines that is compiled into a number of bimanual pick-and-place actions. Center: A so-called
“2 seconds” folding heuristic that applies only very few steps however is for t-shirts only [1]. Right:
A fling-to-fold primitive that combines a fling with an immediate folding action. Here, the garment
does not need to be fully smoothed, however, prior knowledge is required.

specific set of steps that requires using two arms simultaneously (Figure 8.5), and is
therefore well suited for a bimanual robot [1].

Fling-to-fold (F2F): We observe that (1) a fling action while grasping a sleeve and the
non-diagonal bottom corner is especially effective and (2) the first fold action grasps
the same points. We conclude that these two steps can be merged to reduce imaging
and motion time. We implement F2F by adding a learned primitive to BiMaMa-Net
that computes these pick points if visible. The primitive’s motion is implemented
by combining a fling with a consecutive fold action (Figure 8.5). To ensure that the
t-shirt is folded correctly, prior knowledge about the t-shirt’s dimension is required
to adapt the height of each arm prior to the fold.

8.7 Experimental Results

We experimentally evaluate the garment smoothing and folding performance of the full
system on a known t-shirt, as well as on two garments unseen during training. For further
details on the implementation, the source code, additional videos, and datasets, we refer to
the project website1

1Available at https://pantor.github.io/speedfolding/ (accessed on December 9th, 2022)

https://pantor.github.io/speedfolding/
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Figure 8.6: Garment smoothing until it is ready to fold. We compare the normalized coverage
(left) and prediction of the learned Sufficiently Smoothed classifier (right) over the number of action
steps with different baseline methods.
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Figure 8.7: The system can generalize to unseen garments of different color, pattern, and material.
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8.7.1 Experimental Setup

We perform experiments on a physical ABB YuMi robot with parallel-jaw grippers. The
gripper’s fingertips are extended by small 3D-printed teeth to improve grasping. A thin
sponge mattress is placed on the workspace to allow the grippers to reach below the garment
without colliding. A Photoneo PhoXi captures overhead grayscale and depth images of the
workspace, generating observations ot ∈ R256×192×2. As the garment is frequently outside
the camera’s field of view, a 1080P GESMATEK RGB webcam is mounted above the
workspace and used for coverage calculation. Computing is done on a system using an Intel
i7-6850K CPU, 32GB RAM, and an NVIDIA GeForce RTX 2080 Ti.

We first perform data collection, and train (section 8.5) on a single t-shirt. Initially,
600 scenes of random garment configuration were recorded and manually annotated. After
training a first NN, the robot collected 2200 self-supervised actions in 16 h. To include data
of less frequently observed actions, we copied and re-annotated 1500 actions, resulting in a
dataset of 4300 actions in total. We used a single t-shirt shown in Figure 8.4 throughout
the training. For training the NN, we make excessive use of data augmentation to offset the
limited data collection due to real-world interaction. This includes random translations,
rotations, flips, resizes, brightness, and contrast changes. We use N = 20 gripper orienta-
tions equally distributed over [0, 2π) to implement the decoder as described in section 8.3.
For training, we set Ns = 50, rh = 0.8 and rc = 0.3.

We designed a set of garment smoothing and folding experiments to evaluate the sys-
tem. Initial garment configurations are generated by environment resets as described in
section 8.5. Each experiment is averaged over 15 trials. We ignore experiments that fail
due to a motion planning error, as this is not the focus of this paper. A trial is considered
unsuccessful if either the garment was not successfully folded according to the majority
vote of three reviewers or the number of actions exceeded a maximal horizon of H = 10.
We define a grasp success if the gripper holds the garment after an executed action. For
known garments, BiMaMa-Net achieves an average grasp success rate of over 96%.

8.7.2 Sufficiently Smoothed

We evaluate garment smoothing using two metrics: The garment coverage, computed from
an overhead image, and a binary Sufficiently Smoothed value, predicted using the Suf-
ficiently Smoothed classifier. We compare BiMaMa-Net to two baselines (1) Max Value
Map, a variant that computes the pick points directly from the value maps Qunc by com-
puting the maximum over the map to find two pick points without using correspondence
descriptors, (2) Only Flings, a variant restricted to fling actions only, and (3) Flingbot, the
pre-trained method from [49] (Figure 8.6). Results suggest that our system can smooth a
known t-shirt to a Sufficiently Smoothed configuration in ∼ 3 fewer steps compared to the
baselines requiring ∼ 5. Although the increase of coverage is similar to Only Flings, the
latter reaches a Sufficiently Smoothed configuration later or even fails to do so, confirming
the need for additional action primitives to fully smooth a garment.

We note that the FlingBot baseline fails to reach an 80% coverage as reported in [49],
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Figure 8.8: Timings for calculating and executing the action primitive types depending on the
folding approach. Instruction-based and “2 seconds” fold share the same smoothing actions (blue),
but differ in folding (orange). By introducing a combined Fling-to-fold primitive, a smoothed state
is not required before folding. However, the “2 seconds” fold is suited for manipulating a t-shirt
only, and Fling-to-fold assumes prior knowledge of the garment.

as we observe frequent grasp failures presumably due to differences in the physical setting.
We ablate the stretching motion before a fling and observe that stretching leads to higher
coverage.

8.7.3 Folds per Hour

Table 8.1 shows results of end-to-end garments folding experiments. BiMaMa-Net manages
to (1) successfully fold garments in over 90% of the trials on known garments and (2)
30% faster than the Max Value Map baseline using the Instruction-based folding approach.
The “2 seconds” fold achieves an additional speedup of 10.4% when executed successfully,
however, we find that it is sensitive to the t-shirt’s orientation in a Sufficiently Smoothed
configuration and suffers from a low fold success rate. With prior information on the t-
shirt’s dimensions, F2F uses 40% less smoothing actions and imaging time. As a result,
it achieves a speedup of over 25% compared to the instruction-based approach, leading to
40.9 folds per hour on average. Calculating an action using the BiMaMa-Net architecture
takes (126.0± 0.9)ms on our hardware.

8.7.4 Generalization to Unseen Garments

We explore how the system, trained on a single t-shirt, can generalize to garments unseen
during training. In these experiments, we use (1) a t-shirt with a different color and stiffness
and (2) a rectangular towel with a different color compared to the original t-shirt. We
evaluate on unseen garments using instruction-based folding, as this is the only approach
that easily adapts to general garments. We run the same experiments on the unseen t-
shirt with no changes to the BiMaMa-Net model or the folding template. In contrast,
when we run the experiments with the towel we observe that the system fails to classify a
Sufficiently Smoothed configuration, as the object’s shape is different from that BiMaMa-
Net was trained on. To address this, we add 20 examples of Sufficiently Smoothed towel
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images to the dataset and re-train BiMaMa-Net. Table 8.1 suggests that the system can
generalize to garments with different color, stiffness, and shape.

8.7.5 System Limitations

The YuMi’s reach of 56 cm is the primary limiting factor of our system. Despite using
the presented reachability calibration algorithm, and the use of fling and move primitives
addressing the reachability, the robot may encounter situations in which the desired pick
poses are out of reach. This may happen, for example, while folding a large towel.

Grasp failures, especially during a fling motion, can decrease the garment’s coverage
dramatically. We find that most grasp failures happen due to losing the grip during the
stretching motion prior to a fling action. This limitation can be mitigated using improved
force feedback or by adding visual feedback. We observe a frequent failure case during
top-down grasps while executing the first step of the “2 seconds” fold. These grasps may
require different gripper jaws that are better suited for top-down grasps. If the grasp fails
at an outermost position during stretching, the garment is then not reachable by both arms
after a fling. A single-arm grasp for resetting could be integrated as an additional primitive.

As common with data-driven methods, our system can generalize to similar unseen
garments. For example, textile patterns may be more challenging to detect and classify
correctly. This limitation can be addressed through additional data augmentation. Gener-
alization to different garment shapes may also be limited, and can be addressed by adding
examples of Sufficiently Smoothed configurations to the dataset, as described in subsec-
tion 8.7.4 for the towel example.

8.8 Discussion

While prior works e.g. by Maitin-Shepard et al. [83] or Doumanoglou et al. [30] achieved a
high success rate for end-to-end cloth folding, cycle times for a single fold were on the order
of 3 to 6 folds per hour (FPH). In comparison, our proposed system achieves 30FPH to
40FPH. Inspired by Ha and Song [49], this cycle time reduction is enabled by a dynamic
fling primitive that is able to unfold the garment in a few number of actions. In contrast,
however, we introduce additional action primitives that enable the robot to reach a configu-
ration that is smooth and ready to fold. Ha and Song learns in simulation with the prevalent
sim-to-real gap for deformable objects. By using the techniques introduced in chapter 4
and 5.3, our system can generate real-world data in a self-supervised manner. Moreover,
Ha and Song use a 4DoF parameterization that introduces several constraints for while
being tailored to flings. We assume that these tight restrictions lead to their grasp rate of
below 75% and suboptimal fling actions topping out at 80% coverage. In comparison, our
method uses all 6DoF to parameterize two planar poses for general bimanual actions.

As introduced in chapter 6, pick-and-place is a common robotic task requiring two
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conditioned poses. Prior work has developed NN architectures to predict actions [9, 131].
BiMaMa-Net extends the idea of combining embedding vectors to (1) multiple manipula-
tion primitives and (2) correspondence descriptors by encoding additional information. In
contrast to [131, 49] or prior approaches in this work, however, BiMaMa-Net is not fully
convolutional. As FCNNs disallows the usage of pooling layers, they hinder the usage of
high-resolution input that we found necessary for clothes smoothing (in particular detecting
edges and wrinkles of garments). Moreover, garment folding is not a local problem, as the
garment size can commonly be half the size of the image input. In this regard, section 3.4
and 3.5 introduced FCNNs to utilize the locality and viewpoint invariance of manipulation
actions. As our approach to garment folding could only make limited use of these simplifi-
cations, the focus shifted to human annotations to minimize the general amount of required
data. Similar to 6DoF grasping in section 5.3, we apply imitation learning to compensate
for a large action space and its resulting data-inefficient exploration.



Chapter 9

Conclusion

This work presented an action-centric approach to learning robotic manipulation based on
real-world interaction. We implemented, adapted, and evaluated our approach on various
manipulation tasks like grasping for bin picking, pick-and-place, or garment folding. The
first key idea is to simplify the robot’s actions to manipulation primitives. Then, the
controller reduces to the decision where to apply which pre-defined primitive. Motivated
by the viewpoint invariance and locality of manipulation, we derived a sliding window
approach that predicts the reward of primitives at a grid of poses. We implemented this
efficiently as a fully convolutional neural network (FCNN) for planar DoFs.

Second, we focused on learning from real-world data. The key to scaling real-world data
generation lies in an autonomous and self-supervised implementation. In particular, a safe
and continuous training process for contact-rich manipulation requires online trajectory
generation (OTG). We presented Ruckig, the first algorithm calculating time-optimal tra-
jectories for arbitrary state-to-state motions while considering third-order constraints (for
velocity, acceleration, and jerk). The proposed algorithm is real-time capable for control
cycles as low as 1ms. This enables practical collision handling as well as faster motions.
We apply both key approaches of manipulation primitives and self-supervised learning to
the following manipulation tasks (Figure 9.1):

Grasping We presented an approach to planar (top-down) grasping for bin picking. Here,
an FCNN learns to estimate a grasp’s success as a binary reward. We use multiple pre-
shaped gripper widths as different primitives, leading to over 100 000 reward predictions
that can be calculated in under 40ms. Real-world training collected around 25 000 grasp
attempts in 100 h on a single robot. This way, grasp rates of over 90% for trained objects
could be achieved. As common throughout this work, the data-driven and action-centric
approach allows to generalize to unknown objects and environments.

We proposed two approaches for 6DoF grasping: By making the manipulation prim-
itives parametrizable for lateral orientations, we are able to combine a model-based and
data-driven controller into a hybrid approach. While the planar DoFs and the gripper
width were learned in a data-driven manner as before, the lateral DoFs were optimized

155
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Real-world
data generation

Data-efficient learning

Grasping

Pre-
grasping

Pick-and-
place

Garment
folding

Figure 9.1: The contributions of this work build upon each other to solve common tasks for
robotic manipulation. The images visualize: (left) The overall robot system including an eye-in-
hand camera and the objects to manipulation; (mid) a fully convolutional neural network (FCNN)
for the efficient prediction of an action’s success for a large number of possible positions, orientations,
and manipulation primitives; (right) execution of different tasks.

analytically. This way, we were able to keep an efficient FCNN for the grasp reward estima-
tion. Our approach achieved grasp rates of up to 92% in dense clutter, despite processing
times of less than 50ms.

Second, we extended grasping to a fully convolutional actor-critic architecture. The
key idea is to rank a large number of grasps along the planar DoFs that can be imple-
mented efficiently, and generate only a few grasp hypotheses for the non-planar DoFs. To
kickstart the real-world training and reduce the required exploration, we recorded human
grasp demonstrations. Afterwards, the robot started a self-supervised training phase for
transferring and adapting the human policy. After 40 000 grasp attempts, the robot was
able to grasp objects with a success rate of over 95% in typical bin picking scenarios. For
unknown objects, it can achieve a grasp rate of over 92% in isolated settings.

Pre-grasping manipulation We proposed an approach to self-supervised learning for
pre-grasping manipulation to improve the expected grasp success afterwards. First, this
allowed to empty a bin completely even with planar grasping. Second, we integrated prior
knowledge into the learning algorithm by making the reward of one skill (shifting) dependent
on the other (grasping). This way, we were able to bypass sparse rewards for data-efficient
learning. By choosing between a grasp with an estimated probability and a pre-grasping
action for improving said probability, the system can optimize the grasping speed to 274± 3
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PPH. Again, the robot is able to generalize to unknown objects.

Semantic grasping We extended planar grasping by choosing a specific goal object type
at run-time. By using an image of the goal object as input, the object type doesn’t need
to be known at training time. Data is generated in a self-supervised manner by grasping
objects out of clutter and taking an isolated image afterwards. The system makes use of
contrastive learning to choose an object based on similarity: Here, an embedding is used to
combine semantic grasping with an already learned grasp reward estimator. For a diverse
set of trained objects, selection rates of 90% were achieved using a dataset of 400 semantic
grasps only.

Pick-and-place We presented an approach for learning pick-and-place tasks in a self-
supervised manner. Since our approach does not depend on an object model but instead
takes a demonstrated goal image as input, it allows for the flexible yet precise placing
of unknown objects. Similar to semantic grasping, it predicts an embedding to combine
a grasping primitive with a corresponding placing primitive. The evaluated system was
trained in the real world with up to 25 000 pick-and-place actions, resulting in average
placement errors of (2.7± 0.2)mm and (2.6± 0.8) ◦ for trained objects. A separated ap-
proach, where grasp and place actions are calculated independently, resulted in over four
times lower precision. For unknown objects, the translational placement error increased to
around 6mm and 9mm for grasping in clutter. The robot learns to select the demonstrated
objects out of five alternatives with up to 86% accuracy. Moreover, we demonstrated the
robot’s capability to pick-and-place multiple objects from a single goal state.

Transition model A transition model for robotic manipulation, for both the next visual
state and its pixel-wise uncertainty, allowed the robot to plan sequences of single-step ma-
nipulation primitives. This way, they could be reused and learned data-efficiently without
sparse rewards. By skipping image measurements, the robot was able to increase the PPH
by around 15%. Furthermore, the robot was able to optimize regarding multiple-step cri-
teria in a flexible way, e.g. to minimize the number of actions for emptying a bin. This
becomes possible through three major contributions: First, we simplify the transition model
by conditioning it on the already learned reward estimation as well as using the locality
of the state space. Second, we propose a model architecture generating samples from a
multi-modal distribution, allowing to estimate a prediction uncertainty. Third, the latter
was propagated efficiently towards the estimated action’s success reward.

Garment folding Garment folding showed that manipulation primitives can scale to
more complex real-world tasks. We presented a bimanual robotic system for the efficient
folding of garments from arbitrary initial and crumpled configurations. At its core, a novel
bimanual NN architecture predicts two poses to parameterize a rich set of manipulation
primitives. A correspondence descriptor, extending the embedding introduced for pick-and-
place, was proposed to efficiently calculate conditioned bimanual poses. After learning from
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4300 human-annotated or self-supervised actions, the robot can fold garments in under 120 s
on average with a success rate of 93%. Again, the presented approach allowed the robot
to generalize to unknown garments.

In the bigger picture, these various manipulation tasks offered some common insight.
Throughout, a NN predicted the reward of manipulation primitives at a large number of
possible poses. We find that ranking actions (by a critic) is easier than generating them
(by an actor), which might be caused by the inherent multi-modality of manipulation. This
affects both the data generation, as there is no “best grasp” that could be used for training,
as well as the NN itself due to the high non-linearity of manipulation. While ranking is, as
implemented in this work, limited to a discrete action space, we find that this has negligible
effects on the evaluated manipulation tasks.

Many tasks like semantic grasping, pick-and-place, or bimanual garment folding require
multiple actions (or inputs) to be calculated jointly. Then, embeddings can be used to
condition actions on each other. Pre-selecting actions based on a tentative metric allows
to keep the number of combinations small and mitigates an exploding action space for fast
calculation.

Semantic grasping or pick-and-place require human input during run-time. Contrastive
learning allows to compare multiple images in a one-shot manner. Given a current image
of the scene, the approach learns the probability that a human-given image might be the
outcome of a specific action, in contrast to a task-specific and pre-defined noise distribution.
This way, we allow flexible task executions based on a single human-demonstrated goal state.

Most importantly, we confirm that “it is often much better to gather more data than
to improve the learning algorithm” (Goodfellow et al. [43, p. 414]). Of course, different
approaches regarding action spaces, control frequency, or machine learning algorithms might
have a large impact on the task performance. Still, the task performance scales with the
amount, quality, and variety of the data. We argue that data generation is, and should be
seen, as a primarily scientific problem. Setting up training pipelines remains cumbersome,
mostly due to robotic issues that pop up in unpredictable contact-rich manipulation. If
a task, e.g. garment folding, is not solvable by purely self-supervised learning in practical
time, we added an initial solution either by human imitation or annotation. This way, the
self-supervised learning was kickstarted to transfer the policy to the robot. Throughout
this work, we restricted ourselves to methods that allow generalization to new objects
or environments. Given that premise, we found generalization to be mostly a matter of
training data, again.



Chapter 10

Outlook

Flexible robotic manipulation remains an essential and challenging problem and will con-
tinue to do so in the foreseeable future. Robot learning promises to deal with the great
complexity of manipulation, in particular regarding the required flexibility and possible de-
viations of the exact task. Usually, this refers to manipulating unknown objects in changing
states or environments. Learned approaches are, in principle, able to generalize to these sit-
uations when trained on a sufficiently large dataset. Amongst others, this work has shown
trade-offs between the robustness, the flexibility, and the training effort for a manipulation
task. Future work should further focus on improving one or multiple criteria for various
manipulation tasks.

Improving the manipulation robustness, for example for unknown objects, remains first
and foremost a matter of training data. Reducing the required training data for learning
tasks is an active field of research, both in the machine learning as well as the more applied
robotics community. However, various tasks in machine learning, such as natural language
synthesis [21] or image generation [98], show that the task performance scales with ever-
growing datasets and NN capacity. We expect this effect to transfer to manipulation tasks.

We are therefore interested in increasing the general dataset size by order of magni-
tudes. Unfortunately, real-world data generation is comparably difficult and expensive in
robotics. Moreover, datasets are often specific to a robotics setup or environment, and
are therefore not easily shareable. An increased focus on techniques and tools for fast and
large-scale data generation might be helpful instead. Still, very large datasets might not
be achievable to gather in academic research. We argue that, for this reason, future work
should see learning for manipulation even more in an industrial context. While industrial
tasks are constrained by their relevance for applications, they might scale larger according
to their business model. In addition, they can be defined and controlled precisely, allowing
for a good learning environment as well as various tasks of incremental difficulty. In the
end, large-scale data generation might not be a research problem but a question of a valid
business model.

159
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Novel tasks could be investigated for primitive-based manipulation, in particular by
using new and more complex primitives. For example, robotic assembly consists of longer
sequences of actions to solve multiple sub-tasks sequentially. Common subtasks include peg-
in-hole or fitting that might be solved by extending adaptive primitives from section 5.2.
A peg-in-hole primitive might include force feedback and be parametrized by the robot’s
stiffness. More complex primitives like a (classical) spiral search strategy or even a sub-
policy learned by RL could be incorporated.

Mechanical search is the task of searching objects for semantic grasping. Then, pre-
grasping primitives similar to section 5.4 for excavating objects become necessary. They
could be extended by merging into a grasp-push primitive.

Soft object or fabric manipulation offers various interesting tasks beyond garment fold-
ing. Industrial use cases need methods that can learn to manipulate a garment with a
novel shape given a few demonstrations. Combining garment folding with an upstream bin
picking task would allow the isolation of various garment types.

For many complex tasks, the agent needs to take information about the goal into ac-
count. In contrast, naive RL specifies the goal entirely in the reward definition. In chapter 6,
we proposed to use a goal image for the pick-and-place task. However, this might not be
easily transferable to novel tasks. Instead, more abstract instructions, logical sequences, or
even language input might be a better solution. We think that the goal description of a
task so that it can be useful for a wide range of applications is a crucial field within robot
learning.

6DoF pick-and-place could be a straightforward extension of this work. Combining the
approach of pick-and-place (chapter 6) based on a single goal image and a fully convolu-
tional actor-critic architecture (section 5.3) could enable flexible and precise pick-and-place
tasks with 6DoF. In particular, placing unknown objects like shown in a single human
demonstration could be applied for machine tending, simple assembly, or many service
robotics tasks.

Bimanual grasping could allow the robots to grasp objects larger than the maximum
gripper width by using two grippers to hold the object in between. This way, grasping
could become even more flexible for a wider range of object sizes. We think that general
bimanual grasping could be solved similarly to the primitives for garment folding (chap-
ter 8). Bimanual grasping might become more important in the future if costs for robots
and grippers decrease.

Closed-loop primitives could bridge the gap to more flexible end-to-end learning. The
manipulation primitives introduced in chapter 3 are open-loop and therefore are required
to have a predictable outcome. This might not hold in practice, either due to incomplete
information or underlying process stochasticity. Then, intermediate sensor feedback might
help to adapt the current primitive and improve its task performance. For example in
pick-and-place (chapter 6), sensor information about the pose of the object within the
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gripper is essential for a precise place pose. Similarly, sensor information about the pose of
a garment within a closed gripper might be useful for high-quality garment folding. An in-
hand camera or tactile sensors within the fingers might be beneficial, but require expensive
open-loop training with long time horizons and sparse rewards. Keeping the number of
sensor feedback events small allows for a comparably small action space. From a more
general perspective, closed-loop primitives can be interpreted as a discrete simplification of
continuous end-to-end learning.

Representation learning might find an intermediate representation between lower-level
perception and higher-level manipulation features. So far, the reward of each manipulation
primitive is estimated by taking low-level sensor data as input. An intermediate represen-
tation would allow learning a separate perception and a manipulation NN, and therefore
sharing and reusing the perception NN for different manipulation tasks. The challenge is
finding a task objective for the intermediate representation that is universal and generaliz-
able. For example, one could estimate the mass density or material properties of objects,
as they are relevant information for all downstream manipulation. Pick-and-place benefits
from correspondence information between objects in different images. A spatial perception
model of the environment might combine different cameras and a memory buffer for a re-
fined scene understanding. However, splitting the NN into a perception and manipulation
module might come with downsides: In general, manipulation of unknown objects is not
really abstractable, as arbitrary small and low-level geometric information might influence
an action’s outcome.

In the long term, general artificial intelligence might lead to human-like performance and
robustness even for arbitrarily complex manipulation tasks. Even these high expectations
might be insufficient, as infants need years to learn robust grasping or manipulation. In
the meantime, it remains the puzzle of the robotics community to find, design, and solve
useful tasks with restricted domain knowledge.
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