
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Enabling the Collaborative Collection of
Uncertainty Sources Regarding

Confidentiality

Bachelor’s Thesis of

Gabriel Gehrig

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: PD Dr. Robert Heinrich

Second examiner: Prof. Dr. Ralf Reussner

First advisor: M.Sc. Sebastian Hahner

Second advisor: M.Sc. Nicolas Boltz

03. July 2023 – 03. November 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Karlsruhe, 03.11.2023

. .

(Gabriel Gehrig)

Abstract

With digitalization in progress, the amount of sensitive data stored in software systems

is increasing. However, the confidentiality of this data can often not be guaranteed, as

uncertainties with an impact on confidentiality exist, especially in the early stages of

software development. As the consideration of uncertainties regarding confidentiality

is still novel, there is a lack of awareness of the topic among software architects. Addi-

tionally, the existing knowledge is scattered among researchers and institutions, making

it challenging to comprehend and utilize for software architects. Current research on

uncertainties regarding confidentiality has focused on analyzing software systems to

assess the possibilities of confidentiality violations, as well as the development of methods

to classify uncertainties. However, these approaches are limited to the researchers’ ob-

served uncertainties, limiting the generalizability of classification systems, the validity

of analysis results, and the development of mitigation strategies. This thesis presents

an approach to enable the collection and management of knowledge on uncertainties

regarding confidentiality, enabling software architects to comprehend better and identify

uncertainties regarding confidentiality. Furthermore, the proposed approach strives to

enable collaboration between researchers and practitioners to manage the effort to collect

the knowledge and maintain it. To validate this approach, a prototype was developed

and evaluated with a user study of 17 participants from software engineering, including 7

students, 5 researchers, and 5 practitioners. Results show that the approach can support

software architects in identifying and describing uncertainties regarding confidentiality,

even with limited prior knowledge, as they could identify and describe uncertainties

correctly in a close-to-real-world scenario in 94.4% of the cases.

i

Zusammenfassung

Mit der zunemenden Digitalisierung nimmt die Menge gespeicherter sensibler Daten

in Softwaresystemen zu. Jedoch kann die Vertraulichkeit dieser Daten in vielen Fällen

nicht garantiert werden, da Ungewissheiten mit Auswirkung auf die Vertraulichkeit der

Daten bestehen, insbesondere in den frühen Phasen der Softwareentwicklung. Da solche

Ungewissheiten noch nicht ausreichend berücksichtigt werden und erforscht sind, besteht

bei Softwarearchitekten ein Mangel an Bewusstsein für das Thema. Darüber hinaus ist das

vorhandene Wissen über verschiedene Forscher und Institutionen verstreut, was es für

Softwarearchitekten schwierig macht, das Wissen gesammelt zu erfassen und zu nutzen.

Die aktuelle Forschung zu Ungewissheiten in Bezug auf Vertraulichkeit konzentriert sich

auf die Analyse von Softwaresystemen, um die Möglichkeiten von Vertraulichkeitsver-

letzungen zu bewerten, sowie auf die Entwicklung von Methoden zur Klassifizierung

von Ungewissheiten. Diese Ansätze beschränken sich jedoch auf die beobachteten Un-

gewissheiten der Forscher, was die Verallgemeinerbarkeit von Klassifikationssystemen,

die Gültigkeit von Analysemethoden und die Entwicklung von Minderungsstrategien

einschränkt. Diese Arbeit zielt darauf ab, zur Sammlung und Verwaltung von Wissen über

Ungewissheiten in Bezug auf Vertraulichkeit beizutragen, um es SoftwarearchitektInnen zu

ermöglichen, Ungewissheiten in Bezug auf Vertraulichkeit besser zu verstehen und diese

in Ihren Software Architekturen zu identifizieren. Darüber hinaus soll der vorgeschlagene

Ansatz die Zusammenarbeit zwischen Forschern und Praktikern ermöglichen, um den

Aufwand für die Sammlung des Wissens möglichst gering zu halten. Um diesen Ansatz

und seine Fähigkeit, die Forschungsziele zu erfüllen zu validieren, wurde ein Prototyp

entwickelt und mit einer Nutzerstudie an 17 Teilnehmern aus dem Bereich Softwaretechnik

evaluiert, darunter 7 Studenten, 5 Forscher und 5 Praktiker. Die Ergebnisse zeigen, dass

der Ansatz Softwarearchitekten dabei unterstützen kann, Ungewissheiten in Bezug auf

Vertraulichkeit zu identifizieren und zu beschreiben, auch bei Personen mit begrenztem

Vorwissen, da sie in einer nahezu realen Umgebung Ungewissheiten in 94,4% der Fällen

korrekt identifizieren und beschreiben konnten.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation and Problem Statement . 1

1.2 Research Questions and Contributions 3

1.3 Outline . 4

2 Foundations 5
2.1 Uncertainties in Software Engineering 5

2.2 Uncertainties with Impact on Confidentiality 6

2.3 Explainability . 7

3 Related Work 9
3.1 Design Decisions and Uncertainty . 9

3.2 Risk Management . 10

3.3 Knowledge Management . 11

3.4 Collaboration in Software Engineering 12

3.5 Software Architecture Modeling and Analysis Support 13

3.6 Collecting Uncertainties with Impact on Confidentiality 14

4 Capturing Uncertainties Regarding Confidentiality 15
4.1 Running Example . 15

4.2 Structure and Requirements . 16

4.3 Meta Model of Uncertainty Description 18

4.4 Explainability of Uncertainties . 19

4.5 Summary . 20

5 Managing Uncertainties by Collaboration 25
5.1 Using the Knowledge on Uncertainties 25

5.2 Extending the Uncertainty Collection . 25

5.3 Collaboration . 27

5.4 Realization . 27

5.5 Summary . 29

6 Evaluation 33
6.1 Goals, Questions and Metrics . 33

v

Contents

6.2 Evaluation Design . 35

6.3 Evaluation Results and Discussion . 36

6.3.1 Theoretical Validation Results . 36

6.3.2 User Study Results . 42

6.4 Threats to Validity . 47

6.5 Limitations . 48

7 Conclusion 49
7.1 Summary . 49

7.2 Future Work . 50

Bibliography 51

vi

List of Figures

4.1 An architecture model of a simple online shop 16

4.2 Meta model for uncertainty and its properties 19

4.3 ER-Model of meta model for uncertainty and its properties 20

4.4 Class diagram modeling uncertainty when using the classification system

of Hahner et al. [25] . 21

4.5 Simple listing vs detailed listing of uncertainty 22

4.6 The hierarchical relationship of Uncertainty “How is Communicated” . . 23

4.7 Simple listing vs detailed listing of classification category “Location” . . 24

5.1 Detailed listing of multiple uncertainties 26

5.2 Welcome screen of prototype . 28

5.3 Table view of prototype . 29

5.4 Uncertainty detail view of prototype . 31

5.5 Category detail view of prototype . 32

6.1 Participants Composition . 42

vii

List of Tables

5.1 Features included in prototype . 30

6.1 Overview of goals and questions for evaluation 33

6.2 Feature-Requirement mapping and presence analysis 37

6.3 Classification categories included in prototype 37

6.4 Uncertainty described by Ramirez et al. [40] transferred to tool 39

6.5 Uncertainty “Are SQL Injections performed” from [24] transferred to tool 40

6.6 Subsets of features and if they still meet the requirements 40

6.7 Requirements used by uncertainties and in existing literature 41

6.8 Participants’ prior knowledge of different knowledge areas 42

6.9 Correctness of uncertainty descriptions in % in Assignment 1, based on

the “gold standard” . 43

6.10 Distribution of correctness across participants in % in Assignment 1 . . . 44

6.11 Correctness of uncertainty descriptions in % in Assignment 2, based on

the “gold standard” . 44

6.12 Distribution of Correctness across Participants in % in Assignment 2 . . 45

6.13 Correctness of uncertainty descriptions in % in Assignment 1.1, based on

the “gold standard”, and the use of collaboration features 45

6.14 Average intuitiveness and usefulness of features 46

6.15 Average opinion on the value of this approach 47

ix

1 Introduction

This chapter establishes the context in which the approach of this thesis arises. First,

Section 1.1 introduces the motivation and fundamental problem to which this thesis

contributes. Then, Section 1.2 presents the research objectives and provides an overview

of the intended contributions. Finally, Section 1.3 outlines the content and structure of the

subsequent chapters.

1.1 Motivation and Problem Statement

As digitalization progresses, more tasks are handled digitally and automated. As more

software systems are developed and deployed, software engineering has become a team

effort. Today’s software often consists of multiple components, also known as Component-

Based Software Engineering (CBSE), developed by different teams. These components are

reused in multiple software systems [41]. This development has led to software systems

becoming complex. Furthermore, organizations are using software systems for more

critical tasks. For example, Cyber-Physical Systems (CPS) used in the medical field or

autonomous driving. As a result, such software systems need to uphold quality standards,

especially reliability and security.

To support people in decision-making, software systems access stored data and process

it to provide the user with information. As such, data creation, storage, and processing

have become a critical part of software systems. When dealing with data, upholding

the confidentiality level is a crucial issue. Confidentiality demands that “information is

not made available or disclosed to unauthorized individuals, entities, or processes” [27].

Sensitive data such as personal information, medical records, and credit card information

must be protected from unauthorized access. Non-sensitive data containing public, product,

and metadata do not need to be protected. Upholding the confidentiality of sensitive data

is not only a moral obligation for satisfied customers but also a legal obligation covered

by the GDPR in Europe [39]. Consequently, there is a need to design software systems

upholding the confidentiality of sensitive data throughout the system’s lifetime. This

task is also part of the role of the software architect, who is responsible for the design of

the software system and builds the software’s architecture. Software architecture is the

structure of a software system, “which comprise software elements, the externally visible

properties of those elements, and the relationships among them” [5]. Software architects

face many challenges as the software is designed before it is implemented and deployed.

With the possibility to use the final software system in many different environments,

1

1 Introduction

input variables, user behavior, and other variables can vary, resulting in uncertainty for

software architects. Uncertainty is “any departure from the unachievable ideal of complete

determinism” [50]. Adaptive Software Systems, for example, are designed to adapt to

changes in their environment, making it a key challenge for them to deal with uncertainty.

From a data security perspective, this consequently means that there is always uncertainty

regarding the structure, behavior, and environment of a software system during design and

runtime [35] that can impact a software system’s quality attributes, such as availability,

reliability, and confidentiality.

A software architect is expected to deal with uncertainty by making assumptions about

the environment and structure of the software system. However, the actual environment

and structure of the software system runtime can overrule these assumptions. Thus,

this can lead to a software system behavior that does not uphold the quality attributes.

Consequently, recent research dedicated to the identification of uncertainties throughout

the different stages of software development and the impact of these uncertainties on the

software system’s quality attributes [38, 17, 1, 25, 23]. In the context of confidentiality,

not identifying uncertainties in software systems can lead to data breaches and data leaks,

which can have severe consequences for the software system’s users and owners, who do

not uphold the law. Recently, the number of cyber-attacks and data breaches has increased

significantly [11]. Thus, the need for software systems that uphold the confidentiality of

sensitive data is more critical than ever.

Recent research that focuses on uncertainties with an impact on confidentiality has in-

troduced methods to classify uncertainties and analyze software systems to assess the

possibilities of confidentiality violations [25, 23]. However, these approaches are limited

to the researchers’ observed uncertainties, limiting the generalizability of classification

systems, the validity of analysis methods, and the development of mitigation strategies.

Consequently, there is a need to raise awareness on the topic of uncertainties regarding

confidentiality and to collect observed uncertainties from researchers and practitioners.

The need for collecting uncertainties is supported in the literature, as it describes the

existence of a gap regarding the distribution of acquired knowledge to use for fostering a

shared understanding [26]. Additionally, the literature describes the need for developing

a “comprehensive understanding of the precise nature of uncertainty” [52]. Without it,

developing mitigation strategies fringes on an ad-hoc, case-by-case basis [52]. Therefore,

the collection of uncertainties regarding confidentiality is a crucial step to developing a

comprehensive understanding of uncertainties regarding confidentiality. Furthermore, it

can help to overcome the challenge of understanding the relation between uncertainties

and confidentiality [22].

As one can only analyze what one knows, the collection of uncertainties regarding confi-

dentiality can help to optimize analysis methods and develop mitigation strategies since

software architects can use not only their uncertainty knowledge but also the uncertainty

knowledge others have collected. This bachelor’s thesis aims to address these issues and

contribute to improving data confidentiality in software systems.

2

1.2 Research Questions and Contributions

1.2 Research Questions and Contributions

This thesis divides its goals into two parts. The first goal involves enabling the possibility to

collect the current state of knowledge on uncertainties regarding confidentiality, allowing

the incorporation of new knowledge, and making it comprehensive to software architects.

Comprehensibility, in the scope of this thesis, refers to the presentation of knowledge on

uncertainties with an impact on data confidentiality in a manner that encompasses various

aspects of uncertainty. It does not only focus on the understanding of uncertainties but also

the ease of retrieving the information on uncertainties. This aspect of comprehensibility

emphasizes easy access and retrieval of information without the need to include support

for people with disabilities. Consequently, to collect knowledge on uncertainties and make

it comprehensive, an approach is needed that allows for the description and relation of

and between uncertainties regarding confidentiality. Additionally, this approach should

allow for the possibility of extending the uncertainty collection with new uncertainty

types to incorporate future findings on uncertainties regarding confidentiality and keep

the knowledge on uncertainties up to date.

The second goal involves managing the effort to collect the knowledge, raise awareness,

and increase understanding of uncertainties regarding confidentiality. While aiming to

prepare uncertainty data for collection with the first goal, the second goal involves the

endeavor to develop a collaborative approach to manage the effort to collect the knowledge

and maintain it. This approach aims to allow for collecting knowledge across institutions

and companies and the incorporation of future findings into the uncertainty collection.

The following research questions handle these goals and will be addressed throughout

this thesis.

RQ1: How can the current state of knowledge on uncertainties regarding confi-
dentiality be collected, managed, and made comprehensible for software
architects?
The goal is to develop an approach for collecting and managing the knowledge on

uncertainties regarding confidentiality, that is understandable and allows for the

description and relation of and between uncertainties. Additionally, this approach

should allow for a comprehensive uncertainty collection that software architects can

use to learn about uncertainties regarding confidentiality and apply the knowledge

to develop software systems with higher confidentiality standards.

RQ2: How can uncertainty knowledge be extended and maintained with manage-
able effort?
The goal is to develop an approach that allows for the extension of the uncertainty

collection with new uncertainty types from researchers and practitioners and invite

them to contribute to knowledge building. Additionally, this approach should strive

to increase the awareness and understanding of uncertainties regarding confidential-

ity among software architects.

3

1 Introduction

1.3 Outline

The subsequent chapters of this thesis aim to deliver answers to the stated questions. First,

Chapter 2 presents the foundations of uncertainty and confidentiality. Chapter 3 gives an

overview of related work that addresses this thesis topic. Then, Chapter 4 presents the

approach for answering RQ1. Afterward, Chapter 5 extends the approach to answer RQ2.
Finally, Chapter 6 presents the evaluation of the approach before Chapter 7 concludes this

thesis by giving a summary of the thesis and an outlook on future work.

4

2 Foundations

This chapter gives an overview of the foundations required to understand the topic of

this thesis. First, Section 2.1 gives an overview of uncertainty in software development.

Then, Section 2.2 presents more details on uncertainties with an impact on confidentiality.

Finally, Section 2.3 presents the concept of explainability.

2.1 Uncertainties in Software Engineering

The presence of uncertainties limits the validity of software architecture, as well as software

systems, and poses a threat to successful software analysis, necessitating the mitigation of

their impact. It is crucial to consider the existence of uncertainties and focus on developing

methods to handle them effectively [16], to ensure successful software analysis. Previous

research in software engineering has adopted this approach to deal with uncertainties

systematically during the design phase [17]. However, before effectively dealing with

uncertainties, they must be identified. A common approach for identification involves

the usage of classifications and taxonomies to describe uncertainties and differentiate

them from others. In the domain of model-based decision support systems, there exists a

classification that categorizes uncertainties based on their location, “where the uncertainty
manifests itself within the model complex” [50], nature, “whether the uncertainty is due to

the imperfection of our knowledge or is due to the inherent variability of the phenomena

being described” [50] and level, “where the uncertainty manifests itself along the spectrum

between deterministic knowledge and total ignorance” [50]. These three dimensions

describe the concept of uncertainties, according to the authors. Each dimension can exhibit

predefined characteristics in itself. For instance, the location of uncertainty may reside

within the context of the modeled system, representing its environment. Additionally, it

may lie in the model itself, such as when using predefined variables to describe the model.

A different approach to defining different types of uncertainties involves considering their

sources [17]. In this study, uncertainties differ in their origin, including humans in the loop,

learning, mobility, cyber-physical systems, and rapid evolution. These approaches identify

various uncertainties and develop methods for managing uncertainties in self-adaptive

systems during runtime [38]. As these approaches are specific to their field of software

architecture, a classification of uncertainties intending to apply a broader range of models

and software architecture types incorporates them [1].

5

2 Foundations

2.2 Uncertainties with Impact on Confidentiality

In the domain of uncertainties within software systems affecting confidentiality, prior

research employed a classification incorporating the dimensions of Location, Architectural
Element Type, Type, Manageability, Resolution Time, Impact on Confidentiality, Reducible
by ADD, and Severity of Impact [25]. They have derived their classification from existing

classifications, adapting them to provide a more precise description of uncertainties with

an impact on confidentiality. The Location describes “where uncertainty manifests itself

within the architecture” [25] and can be either within the system structure, its environment,

the system’s behavior, or the input data. With the Architectural Element Type, the au-
thors describe the architectural element affected by the uncertainty, such as a component,

connector, interface, and hardware resource. The Type describes the nature of the uncer-
tainty based on the existing knowledge of the uncertainty. Based on the authors’ research,

the uncertainty type can be Statistical Uncertainty, Scenario Uncertainty, or Recognized

Ignorance. With Manageability, the authors describe the possibility of managing the un-

certainty by acquiring more information or using appropriate means, having the options

of Fully Reducible, Partially Reducible, or Irreducible. The category of Resolution Time de-
scribes the time at which the uncertainty can be resolved, either at Design Time, Runtime,

Requirements Time, or Realization Time. Reducible by ADD describes the possibility of

reducing uncertainty by making an architectural design decision, which can either be Yes

or No. The Impact on Confidentiality describes the “potential impact on confidentiality

requirements” [25] and can be either Direct, Indirect or None. Finally, Severity of Impact
describes the severity of the impact on confidentiality in case of unresolved uncertainties,

which can be either High, Low or None. With their classification evaluation, the authors

presented a dataset of 40 uncertainties with an impact on confidentiality, which they could

identify [24].

Building upon their previous work, the same group of researchers has developed a method

for analyzing software architecture models to uncover violations in confidentiality when

confronted with specific instances of uncertainty [23]. With their approach, they empower

software architects to identify potential threats to confidentiality within their software

systems during design time.

6

2.3 Explainability

2.3 Explainability

Explainability in the context of software system behavior, is “the ability to provide human-

interpretable explanations” [7]. Bersani et al. [7] present a 4-level framework to classify

explainability, with the goal of achieving level four in explaining a phenomenon within a

software system. A phenomenon within a software system is called an explanandum [7].

The first level describes no explainability, which describes the ignorance of an explanandum
that needs an explanation. The second level is the recognition of explainability needs,
the awareness of the existence of explanandum. On this level, a system tries to collect

knowledge to explore the explainability of the explanandum. The third level is local
explainability, which provides a first explanation of an explanandum in a specific context

of the system behavior. This knowledge exists either in one place or pieces of knowledge in

different places. The fourth level is global explainability, which explains an explanandum

in various operating contexts. As this describes a road map to achieve explainability

on phenomena in software system behavior, it can be applied to the explainability of

uncertainties regarding confidentiality.

7

3 Related Work

This chapter gives an overview of existing research related to the topic of this work. The

division of the related research falls into five categories: Architectural Design Decisions and
Uncertainty (Section 3.1), Risk Management (Section 3.2), Knowledge Management (Section
3.3), Collaboration in Software Engineering (Section 3.4), Software Architecture Modeling
and Analysis (Section 3.5), and Collecting Uncertainties with an Impact on Confidentiality
(Section 3.6).

3.1 Design Decisions and Uncertainty

Handling uncertainties during software architectures’ design implies the necessity for

software architects to make fundamental design decisions. Therefore, software archi-

tectures inhabit the knowledge of these design decisions. Based on that fact, previous

research has presented the idea of viewing software architecture “as a composition of

a set of explicit design decisions” [29]. Moreover, their approach aims to help software

architects understand underlying design decisions and establish dependencies between

them. While their model can advise software architects when making design decisions,

their research needs to improve in dealing with uncertainty. Furthermore, their concept

does not provide tool support, limiting its potential for widespread utilization.

To address uncertainty, Garlan et al. [18] reuse a classification of uncertainties in first-order
and second-order unknowns. With their classification, they provide a basis to differentiate

uncertainties based on the level of knowledge about the uncertainty. First-order unknowns
are uncertainties that are known to exist, and thus, mitigation strategies can be developed.

Second-order unknowns are uncertainties unknown due to being outside of the scope and

not being mitigated. While their objective of acknowledging the existence of uncertainties

and aiming to identify them and develop mitigation strategies is important, their research

does not present a solution for that challenge.

A meta-model that describes uncertainties more precisely can be found in the contribution

of the OMG Standards Development Organization [53]. They introduce semantics for

describing and measuring uncertainties in software architecture. As they aim to pro-

vide a standardized way of describing uncertainties and further enable the modeling of

uncertainties in software architecture, their contribution to research assumes prior identi-

fication of uncertainties. Thus not providing a solution for the challenge of identifying

uncertainties.

9

3 Related Work

Approaches that aim to identify uncertainties in software architecture can be found in

the work of Ramirez et al. [40] and Benkler [6]. By offering templates on how to identify

and describe specific uncertainties, they contribute to a better understanding of these

aspects among software architects. However, their approaches fall short of supporting

software architects in making design decisions regarding uncertainties due to the narrow

capabilities of describing uncertainties and difficulties in providing access to knowledge.

Consequently, the impact of their findings on daily software development is limited.

Research covering the aspect of classifying uncertainties and providing support for soft-

ware architects can be found in the work of Lupafya [33]. The author extends existing

classifications of uncertainties in software architecture, like Garlan [18]. He proposes a

classification of uncertainties that categorizes attributes in the dimensions: descriptive
attributes, source attributes, system attributes, manifestation attributes, time attributes, and
mapping attributes. The author also proposes a tool to make uncertainties visible in archi-

tectural models via an extension of a web application, as well as the option to download the

architectural model for analysis purposes. However, as their approach helps in bringing

awareness to the subject of uncertainties, it does not provide support for making design

decisions regarding uncertainties. Furthermore, their tool support does not provide a

concept for verifying new uncertainties, nor does it provide a concept for knowledge

exchange on mitigation strategies. Moreover, their approach emphasizes quality attributes

that do not include confidentiality.

Other research that offers tool support for software architects in making design decisions

can be found in Zimmermann et al. [54] and Gerdes [20]. Zimmermann et al. [54] present

a semi-automatic approach that focuses on reusing architectural design decisions for

similar design problems. As their approach is a valuable contribution to the field of

architectural design decisions, it does not include the aspect of uncertainty. Gerdes [20]

introduce DecisionBuddy, a tool for supporting software architects in redesigning software

architectures based on changed requirements. Their approach is based on the assumption

of the existence of a software system and thus differentiates from the thesis’ approach.

Jasser and Riebisch [30] introduce a completely different approach to making design

decisions. They provide a repository for software architecture design decisions in which

software architects can search for design decisions. They structured the repository based

on classification with the ability to extend the repository with new design decisions. While

their approach is a valuable contribution to the field of architectural design decisions, it

does not include the aspect of uncertainty.

3.2 Risk Management

Risk management is a well-known concept beyond software engineering. It aims to

identify, address, and eliminate software risks [9]. Boehm describes the fundamental

concept of Risk Exposure as the probability of an unsatisfactory outcome multiplied by

the loss from the event [9]. In addition, the author presents the six steps in software

10

3.3 Knowledge Management

risk management: risk identification, risk analysis, risk prioritization, risk management
planning, risk resolution, and risk monitoring [9]. The author also lists software risk items,

including mitigation techniques for each item. Research that picks up on the process

of risk management is in the work of Van Scoy [46]. The author proposes to see a risk

management cycle in the phases of Identify, Analyze, Plan, Track, and Control. Additionally,
the author emphasizes the importance of communication in risk management. While

these approaches focus on the process of risk management in general, they do not provide

a concept for identifying uncertainties in software architecture. Their focus is on the

performance, availability, and reliability of software systems but neglects the aspect of

confidentiality. Their approaches are a top-level approach to risk management, while the

approach in this thesis focuses on a more specific level. While their ideas on building

a list of risk items and the importance of communication can contribute to identifying

uncertainties, they do not provide a concept to extend the list. Without categorization,

the list misses structure. Additionally, their view on communication differs from the one

in this thesis, as this thesis focuses on communication between software architects to

exchange knowledge and experiences and to verify or detect new uncertainties, while

they focus on communication for documentation purposes.

An approach that includes security risks is in the work of Verdon and McGraw [48]. They

detected risks based on the tier of the component in the software architecture. Additionally,

they include risks in the dataflows between components. While their approach includes

security risks and categorizes risks based on their location, their approach does not provide

a concept for collecting and exchanging knowledge about risks and mitigation strategies,

as well as taking into account the aspect of uncertainty.

Khan [31] presents a risk management framework in the cloud computing domain that

includes the aspect of confidentiality. They propose a framework that includes the steps

of Identify, Analyze, Assess, and Action. They categorized the risks and associated threats

in the divisions Availability, Confidentiality, and Integrity. In addition, they associated

priorities and probability with each threat. While their approach contains a template for

identifying risks and threats, it does not include the concept of uncertainty or provide a

concept for extending the list of risks and threats.

3.3 Knowledge Management

A contribution to creating value from knowledge through digital technologies can be found

in the work of North et al. [37]. The authors propose a framework called “Knowledge

Ladder 4.0”, which contains the steps: Symbols, Data, Information, Knowledge, Actions,
Competence, and Competitiveness, based on the Knowledge Ladder [36]. The authors also

present technologies that can support the different steps of the ladder. As such, they

propose the usage of collaboration software to support the step from Knowledge to Actions.
Because their approach focuses on value creation for organizations, it combines far more

aspects than just knowledge management. While their concept of utilizing collaboration as

11

3 Related Work

a support tool aligns with this thesis, it is too general to be applied to the specific domain

of uncertainties in software architecture.

A subdomain of knowledge management contributing to knowledge sharing and collabo-

ration includes Communities of Practice (COP) in knowledge management [28, 47, 12].

Community of Practice are “groups of people who share a concern, a set of problems, or

a passion about a topic, and who deepen their knowledge and expertise in this area by

interacting on an ongoing basis” [51]. As one of the first to introduce the concept of COP

to knowledge management, Iversion and McPhee [28] recognized that COPs could offer

practical benefits for knowledge management. Venkatraman et al. [47] transfer the concept

of COP to the digital world in knowledge management systems. They propose the Wiig

Framework, which consists of the following dimensions: Build Knowledge, Hold Knowledge,
Pool Knowledge, and Use Knowledge. They state that personal experience, education, train-

ing, media, and books build knowledge in people. Additionally, they express that people,

documents, databases, and systems store the knowledge. Knowledge Management Systems

(KMS) can be used to pool knowledge and make it accessible to others with brainstorming.

The pooled knowledge can be used in work contexts and embedded in processes.

Choi et al. [12] conducted an empirical analysis of the impact of COPs on knowledge

management systems on knowledge management activities and knowledge management

performance and found that COPs have a positive impact on knowledge management and

knowledge management systems [12]. Their approaches show the positive impact of COPs

and collaboration on knowledge management but are focused on knowledge management

on an organizational scale, while the approach in this thesis focuses on the specific domain

of uncertainties in software architecture.

3.4 Collaboration in Software Engineering

On the topic of collaboration, most research in the domain of software architecture focuses

on collaboration in software teams [32, 45, 3]. Layzell et al. [32] studied communication

mechanisms within software development practitioner teams. They found that communi-

cation in software development is vital.

Tien et al. [45] developed amodel for collaboration in software teams tomeet the challenges

of time pressure, budget, scope, and quality. They propose a cycle framework that consists

of the following steps: Communication/Requirements, Planning, Modelling, Construction,
and Deployment. In the stages of Planning and Construction, they propose the usage of

collaboration tools to support the process.

A newer study by Bang et al. [3] interviewed software architects to get insights into their

collaboration practices. They found that senior architects, who have the most experience

and knowledge, take only a limited participation in the detailed design. Thus, junior

architects are left to make design decisions independently while having less experience

and a more significant number of tasks to complete. While these approaches give more

12

3.5 Software Architecture Modeling and Analysis Support

insights into the collaboration practices of software architects. They focus on the practices

inside organizational borders.

Other research that emphasizes the importance of collaboration can be found in the work

of de Vreede et al. [49] and Sterz et al. [43, 44]. De Vreede et al. [49] ask for more research

on collaboration in software teams and organizations. Sterz et al. [43, 44] investigate the

allocation of responsibilities for upholding standards regarding confidentiality in the realm

of today’s software systems. Their approach emphasizes continuous collaboration and

cooperation among companies developing a software system to clarify responsibilities and

enhance security measures. Although not directly applicable, this approach arguably holds

considerable advantages in enhancing the understanding of uncertainties and reducing

their effects. Consequently, the aim is to modify this approach to align with the goals of

this thesis.

3.5 Software Architecture Modeling and Analysis Support

Software Architecture Modeling and Analysis is a broad field in software engineering. As

such, this section focuses on the aspects of modeling and analysis support on software

architecture for software architects.

Support, which combines both aspects, can be found in the work of Reussner et al. [41].

Their software, Palladio, allows them to reveal performance and reliability issues in soft-

ware architectures based on the Palladio Component Model (PCM). While their approach

gives insights into the performance and reliability of software architectures, it does not

include the aspect of confidentiality. In addition to that, their approach provides analysis

capabilities but does not provide a concept for identifying uncertainties.

An approach that supports those capabilities can be found in the work of Babar et al.

[2]. The authors introduce PAKME, a tool for capturing a broad range knowledge of

software architectural knowledge with additional capabilities of searching for specific

knowledge as well as evaluation capabilities. Quiver by Gopalakrishnan et al. [21] supports

architectural decisions during the design process by providing architectural knowledge

and recommending architectures based on the most critical quality attributes. As these

approaches provide valuable contributions to the field of architectural analysis, they do

not include the aspect of uncertainty.

Colesky et al. [13] introduced their approach to developing privacy patterns, which are

reusable software designs for reoccurring software engineering problems on privacy. To

use their models, they developed an approach that allows software architects to access,

collaborate, and share their knowledge about privacy patterns [14]. While their approach

includes collaboration and knowledge sharing, it is designed for privacy patterns and does

not include the aspect of uncertainty.

Approaches that include the aspect of uncertainties can be found in the work of Lytra

and Zdun [34] and Esfahani et al. [15]. Lytra and Zdun [34] use fuzzy logic to analyze

13

3 Related Work

uncertainties and support software architects by providing reusable architecture design

decisions. Their approach utilizes a semi-automatic approach with limitations on making

architectural design decisions. GuideArch by Esfahani et al. [15] uses fuzzy logic as well.

They map different architectural design decisions to quality attributes to support software

architects in making the correct design decisions based on their priorities. While both

approaches include uncertainty, they do not involve confidentiality as a quality attribute.

As seen, several approaches support software architects through analysis methods and

modeling. As none of them contribute to considering uncertainties regarding confiden-

tiality when analyzing and modeling software architectures, revealing a need for such an

approach, which this thesis aims to address.

3.6 Collecting Uncertainties with Impact on Confidentiality

As far as current knowledge extends, an existing approach for collecting knowledge on

confidentiality uncertainties has yet to be identified. However, it is described in the liter-

ature that there is a need for collecting knowledge on uncertainties with an impact on

confidentiality, as there remains a gap regarding the distribution of acquired knowledge

to use for fostering a shared understanding of that subject matter [26] and to identify

additional uncertainties. Insufficient distribution and collaboration impede identifying

uncertainties, yet unknown to the community. Furthermore, concrete uncertainties are

essential requirements for the practical usage of analysis methods, as findings from anal-

ysis methods are limited to known uncertainties and their impact [23]. Research has

demonstrated the existence of diverse knowledge and opinions regarding uncertainties,

while all agree on the importance of addressing uncertainty [26]. Thus, to address the gap

in the distribution of knowledge on uncertainties with an impact on confidentiality, foster

a shared understanding of that subject matter, and making analysis methods more effective,

collecting knowledge on uncertainties with an impact on confidentiality is needed.

14

4 Capturing Uncertainties Regarding
Confidentiality

This chapter introduces the methodology for capturing knowledge of uncertainties affect-

ing confidentiality and lays the groundwork for the collection of uncertainties. Section 4.1

presents the running example referenced in the subsequent chapters. Section 4.2 intro-

duces the procedural structure designed to achieve the research objectives. Next, Section

4.3 presents the meta-model for mapping uncertainties impacting confidentiality, while

Section 4.4 outlines the data preparation approach for collecting uncertainties. Lastly,

Section 4.5 summarizes the key elements discussed in this chapter.

As discussed in Chapter 2 and Chapter 3, research has acknowledged the issues of un-

certainties software architects are faced with and have developed methods to classify

uncertainties and quantify and minimize their impact. However, Chapter 3 also showed

that there needs to be more research regarding the capturing of knowledge on uncertainties

in software architecture that can have an impact on data confidentiality. This knowledge

is essential to increase the widespread understanding of such uncertainties and thus allow

software architects to identify them in their architectures. As research in the domain of

risk management has shown, the identification of risks is a crucial step before mitigating

them [46]. Thus, capturing knowledge regarding uncertainties is an essential step before

analyzing them through analysis methods like Hahner et al. [23] developed.

4.1 Running Example

To explain the following concept, Figure 4.1 illustrates the example of an Online Shop. It
describes a scenario in which a software architect faces designing an Online Shop. During
the design phase, the architect is aware of the utilization of an On Premise Server and a

Database Service as fundamental components of the infrastructure. Within this simple

structure, incoming customer requests for product information need to be handled by the

Database Service. Furthermore, it manages personal information on checkout, including

delivery address and payment details. While these tasks of the Database Service are already
straightforward during the design phase, the architect has limited knowledge of the

particular manner the Database Service provider uses to operate. As a result, the software

architect faces different uncertainties. This can have an impact on multiple aspects of

the software system. For example, regarding availability, the architect has to assess the

probability of availability outages of the Database Service. As far as confidentiality is

15

4 Capturing Uncertainties Regarding Confidentiality

concerned, the software architect cannot determine with certainty the secure processing

and storage of information, especially sensitive data.

Figure 4.1: An architecture model of a simple online shop

Naturally, a software architect faced with uncertainties will be forced to rely on assump-

tions and make decisions to the best of his or her knowledge. As experience can help

software architects in making such decisions and minimizing uncertainties, there always

remains a risk of software failures. In this case, the unavailability of the service and

unlawful processing and saving of data. This example shows, that uncertainties exist in

simple software architectures with us stating only a few of them. Therefore, it is assumable,

that the amount of uncertainties in complex software systems is significant.

4.2 Structure and Requirements

The approach addressing research questions RQ1 and RQ2 includes the following require-

ments for answering the research questions before it proposes visions to fulfill them.

The following list presents an overview of the requirements that were defined:

R1: Utilization of a clear and comprehensible classification system to describe and struc-

ture uncertainties

R2: Giving an overview of all collected uncertainties and their properties

R3: Stating information about the specific classification terminology, including the dif-

ferent uncertainty types and options

R4: Giving context to each uncertainty, including a visualization to show different levels

of abstraction

R5: Enable hierarchical relationship structures between uncertainties

16

4.2 Structure and Requirements

R6: Enable categorization by keywords

R7: Allowing filtering and sorting mechanisms for the uncertainties

R8: Allowing search mechanisms for the uncertainties

R9: Allow cross-referencing between uncertainties and classification information

These requirements are the result of the following observations. Firstly, using an existing

classification system helps in structuring the data and makes it easier to understand (R1),
especially for inexperienced software engineers and software engineers with little knowl-

edge of uncertainties. Secondly, to motivate software engineers to mitigate uncertainties

and make them aware of the importance of doing so, making clear the advantages of

mitigating uncertainty in the early stages of the software development process is essential.

It helps in the development of a deeper understanding of uncertainties. The advantages

include that it gets more expensive to mitigate uncertainties the later they are discov-

ered [8]. Thirdly, to increase the understanding of uncertainties, knowledge needs to be

comprehensive. Thus, giving an overview of all uncertainties and their attributes (R2)
is essential. Additionally, this can help prevent the creation of duplicate uncertainties.

Fourthly, the current knowledge regarding uncertainties lacks a shared understanding

and terminology. This missing shared understanding can be observed in using different

terminology in classifications regarding uncertainty, such as the terminologies of Hahner

et al. [25] and Ramirez et al. [40]. Consequently, the different types of uncertainties, their

manifestations, and properties (R3) can significantly benefit the description of specific

classification terms.

Another way of making clear the differences between uncertainties, in addition to category

options, is to give context to each uncertainty (R4). By adding descriptions, examples,

or even better visualizations, such as graphs or software architectural models to each

uncertainty, the understanding of the different abstraction levels and manifestations of

specific properties can be increased. This can be advantageous, especially for software

engineers with no or little prior knowledge. Enabling hierarchical relationship structures

between uncertainties (R5) can significantly benefit improving knowledge organization.

Not only can it help in determining if an existing uncertainty already covers a new

uncertainty and thus favors the incorporation of new uncertainties over the creation of

duplicate uncertainties, but it can also help in increasing the understanding of uncertainties.

For example, when taking the presented running example from Section 4.1, there persists

an uncertainty regarding user behavior. This uncertainty contains multiple dimensions,

e.g., regarding the type, correctness, or validation of data the user provides before the data

transfers over to the online shop. While these dimensions pertain to user behavior, they

focus on different aspects. Consequently, one should treat these uncertainties differently.

Including hierarchical relationship structures in the knowledge capture of uncertainties can

help in connecting these uncertainties and thus increase the understanding of uncertainties

as well as the organization of knowledge. Additionally, categorizing uncertainties not only

by classification properties but also by keywords (R6) can help in organizing knowledge.

This benefit is observable through the running example from Section 4.1 when taking the

uncertainty regarding the trustworthiness of the database provider for the online shop.

17

4 Capturing Uncertainties Regarding Confidentiality

At design time, the software architect might need help to determine with certainty the

secure processing and storage of data. Another uncertainty that might exist regarding

trustworthiness is the trustworthiness of the user input. The software architect might need

help to determine with certainty if the user provides validated data before being processed

in the online shop. As those uncertainties differ, both aim to determine the level of trust.

As classification properties might not be able to capture this similarity, using keywords

such as “trust” might improve the organization of knowledge to determine where other

uncertainties fit in. Furthermore, being able to filter through different uncertainties and

be able to sort them by specific aspects (R7), such as manifestations and properties, can

allow software engineers to get a better understanding of the different manifestations and

properties of specific uncertainties.

Another way of making knowledge more comprehensive is to allow search mechanisms

for the uncertainties (R8). Additionally, these requirements show a correlation between

the goals of increasing the understanding of uncertainties (RQ1) and organizing knowl-

edge that enables the incorporation of new uncertainties and specification of known

uncertainties (RQ2). Allowing cross-referencing between uncertainties and classifica-

tion information (R9) is another example of this correlation. Through cross-referencing,

software engineers can get information about the underlying classification while reading

about a specific uncertainty. Additionally, it can help organize knowledge by allowing

software engineers to determine if an existing uncertainty already covers their uncertainty

or if it is new and how it can be specified using the classification terminology.

4.3 Meta Model of Uncertainty Description

For describing uncertainties with an impact on confidentiality, this approach contains

a meta-model. As shown in Figure 4.2, the meta-model consists of the uncertainty at-

tributes: ID, Name, Definition, Example, Keywords, ClassificationProperty. Additionally,
Figure 4.3 shows the meta-model as an Entity-Relationship-Model, which allows for a

better understanding of how the data on uncertainties may be structured to store it in a

database.

Each uncertainty is distinguished by a unique ID, enabling reference to that specific uncer-
tainty. The Name offers a concise depiction, while the Definition provides a more elaborate

explanation. An Example serves as an illustrative instance of the uncertainty in question.

Keywords aid in categorizing the uncertainty, while the ClassificationProperty attribute

allows for classification by a system that assesses uncertainties affecting confidentiality.

The related to relationship establishes connections with other uncertainties that share

associations with the specific uncertainty. Consequently, leaving the ClassificationProp-
erty as general as possible allows for the incorporation of new classification systems at

a later point, as well as adding new properties to the existing classification system and

adding more flexibility and extensibility to the meta-model. For the scope of this thesis,

the approach uses the classification system developed by Hahner et al. [25] to meet the

requirement of utilizing a clear and comprehensive classification system (R1). Figure 4.4

18

4.4 Explainability of Uncertainties

Figure 4.2: Meta model for uncertainty and its properties

illustrates an individual model of that, including the classification system by Hahner et al.

[25].

4.4 Explainability of Uncertainties

Section 2.3 introduced the concept of explainability in the context of software systems. It

described the four levels of explainability, intending to achieve level four in explaining a

phenomenon within a software system. Based on the authors’ framework [7], to support

explainability for uncertainties regarding confidentiality, it is critical to raise awareness

of uncertainties, collect knowledge, and centralize the management of uncertainties as

various software architects have only a partial view of that subject matter. Thus, this

approach emphasizes explaining uncertainties in a way that goes beyond a simple table of

uncertainties, to allow for the exploration of explainability (Level 2). While it is essential

to have a table of uncertainties, as it allows for a quick overview of all uncertainties R2,
it needs more details for a software architect with little knowledge of uncertainties to

understand the different aspects of uncertainties. Figure 4.5 shows the difference between

the descriptive capabilities. It illustrates uncertainty in a table view and detail view from

the running example in Section 4.1 that relates to the trustworthiness of the database

provider for the online shop. While the simple listing only states the ID, Name, and the

different ClassificationProperties, the detailed listing allows more in-depth information, like

Definition, Example, Related, and Keywords attributes, as well as a visual representation of

the uncertainty, which relates to R4, giving context, and R6, using keywords. Moreover,

the detailed listing enables for associating uncertainties with each other. This association

of uncertainties creates a hierarchical relationship structure between uncertainties R5,

19

4 Capturing Uncertainties Regarding Confidentiality

Figure 4.3: ER-Model of meta model for uncertainty and its properties

illustrated in Figure 4.6. It introduces another dimension of possibilities for a deeper

understanding of uncertainties.

Similarly, information on the classification system can be displayed. Figure 4.7 illustrates

this by using the classification category “Location” from the classification system developed

by Hahner et al. [25]. While the simple listing only states theName, Description andOptions,
the detailed listing can utilize a visual representation of the classification category to make

the differences between the different options clear and meet R3, which requires to give

information on the used terminology.

4.5 Summary

This chapter introduced requirements for addressing the research questions (RQ1 and

RQ2). It presented an approach to capture the knowledge of uncertainties with an impact

on confidentiality (RQ1). This approach included the development of a meta-model in

Section 4.3, which allows for a classification system to classify uncertainties (R1), including
multiple attributes that allow for the description of uncertainties. Section 4.4 addressed

the requirements R2, giving an overview on uncertainties, R3, stating information on

the terminology, R4, give context, R5, represent relationships between uncertainties,

and R6, use keywords. This chapter demonstrated that fulfilling these requirements

individually is achievable through a more detailed description of uncertainties. To answer

RQ1 completely, the information must be provided for software architects to retrieve. This

chapter did not address RQ2 and the requirements R7, R8 and R9.

20

4.5 Summary

Figure 4.4: Class diagram modeling uncertainty when using the classification system of

Hahner et al. [25]

21

4 Capturing Uncertainties Regarding Confidentiality

Simple table listing of uncertainty

Detailed Listing of Uncertainty

Figure 4.5: Simple listing vs detailed listing of uncertainty

22

4.5 Summary

Figure 4.6: The hierarchical relationship of Uncertainty “How is Communicated”

23

4 Capturing Uncertainties Regarding Confidentiality

Simple table listing of category “Location”

Detailed listing of category “Location”

Figure 4.7: Simple listing vs detailed listing of classification category “Location”

24

5 Managing Uncertainties by Collaboration

This chapter, presents an approach to addressing RQ2, which asks for the extendability

and manageability of the knowledge of uncertainties. Section 5.1 provides an overview

of utilizing the knowledge structured in Chapter 4. Subsequently, Section 5.2 discusses

the requirements for ensuring extensibility and maintainability of the knowledge. Section

5.3 introduces a collaborative approach to addressing these aspects. Furthermore, Section

5.4 outlines the necessities for realizing the approach, along with the presentation of a

prototype. Finally, Section 5.5 summarizes the chapter’s achievements.

5.1 Using the Knowledge on Uncertainties

The existence of knowledge on uncertainties related to confidentiality needs to be im-

proved for software architects to identify uncertainties effectively. It requires clarity and

comprehensibility, emphasizing the need for data preparation, including data structur-

ing. Improving user-friendliness by providing an interface for retrieving information can

enhance clarity and comprehensibility. Software architects should retrieve information

on uncertainties via the interface, regardless of location. Additionally, the user interface

should allow for the filtering of uncertainties by different properties (R7), as well as the
possibility of searching for a specific uncertainty (R8). In doing so, the approach can

support users in identifying uncertainties that are relevant to them and their software

architecture. Moreover, considering the various methods through which individuals ac-

quire and comprehend information, incorporating diverse approaches to retrieve data on

uncertainties contributes to an overall comprehension of the collection. In combination

with the explainability covered in Section 4.4, software architects can use the knowledge

to identify possible confidentiality violations in their software architectures, analyze them,

and develop mitigation strategies.

5.2 Extending the Uncertainty Collection

The collection needs to be extendable to be able to incorporate new knowledge and to

keep the collection up to date. A meta-model was presented in Section 4.3 that allows for

the collection extension. For example, the uncertainty Is the data anonymized? and How is
communicated? from the dataset [24] can be added to the collection as new uncertainties

(Figure 5.1). However, while the meta-model allows for the extension of the collection,

25

5 Managing Uncertainties by Collaboration

other aspects need to cover introducing a system to manage and store the actual data on

the uncertainties.

Detail listing “Is the data anonymized?”

Detailed listing “How is communicated?”

Figure 5.1: Detailed listing of multiple uncertainties

26

5.3 Collaboration

5.3 Collaboration

As the knowledge on uncertainties is distributed among researchers and practitioners

[26], the collection needs to be comprehensible and expandable for the community. To do

so, a collaborative approach that allows for collecting knowledge across institutions and

companies can be beneficial. Additionally, it allows for the maintenance of the collection,

as the community can keep the knowledge up to date by refining, revising, and extending

it. Only a few community members are needed to transfer the new knowledge gained from

discussions into the collection. The collaborative approach also helps increase the quality

of the knowledge due to the community being able to discuss the knowledge. In addition,

it helps in creating a common understanding of uncertainties and sharing knowledge on

mitigation strategies. Thus, supporting the explainability of uncertainties to strive to the

fourth level of explainability [7], by enabling the exploration of explanations on a global

level.

A collaborative approach should provide the ability to access an ongoing discussion on the

knowledge without the need to pay for a license or subscription, as well as the ability to

contribute to the discussion. Additionally, discussions on an uncertainty or classification

category should be reachable from the uncertainty or classification category itself.

Consequently, the requirements of this approach from Section 4.2 need an extension with

the following requirement for the collaborative approach:

R10: Enable Collaboration between software architects to capture andmaintain knowledge

on uncertainties without license or subscription constraints.

5.4 Realization

Chapter 4 introduced a set of requirements to tackle research questions RQ1 and RQ2.
Subsequently, Chapters 4 and 5 detailed an approach for fulfilling these requirements.

So far, the approach addressed the requirements individually. Thus, combining them to

address the research questions RQ1 and RQ2 falls upon the implementation phase. This

section presents a realization that integrates these requirements.

To realize the requirements from Section 4.2 in a way that embeds R10, a web application
can be helpful. It allows for reaching a broad audience and thus raises awareness on the

topic of uncertainties regarding confidentiality. That is because it is reached through the

Internet, making installations obsolete. Furthermore, licenses or subscriptions are not

needed, and the location of the software architect is irrelevant. A web application can

also use existing channels to enable communication and collaboration, which arguably

other solutions cannot quickly provide. For example, it can use GitHub, a web-based

platform that provides hosting for software development version control, facilitating

collaboration and code sharing among teams to enable discussions and comments, as

well as to incorporate new uncertainties. The web application can store all data and

27

5 Managing Uncertainties by Collaboration

information about uncertainties and their properties, as well as information about a

chosen classification system.

The web application can employ a user interface, allowing easy information retrieval on

uncertainties. It can also include different views to enable different ways of accessing

the knowledge, fulfilling R2, R3, and R4. For example, using a table view to provide an

overview of all uncertainties, as well as a detailed view of each uncertainty and classification

category. Furthermore, the web application can provide the possibility to access the

discussion on GitHub and allow cross-referencing between uncertainties and classification

properties (R9). Additionally, the web application can provide the possibility to filter

(R7) the uncertainties by different properties, as well as to search (R8) for a specific

uncertainty. By arranging the data based on the meta-model proposed in Section 4.3, the

web application can provide an overview of the relationships between uncertainties (R5)
and applicable keywords (R6).

To show the feasibility of using a web application to implement the requirements, a

prototype of the web application was implemented. It has three main views: The Table
(Figure 5.3), the Uncertainty Detail (Figure 5.4) and the Category Detail (Figure 5.5) view.

At the beginning, the tool presents a welcome screen to the user (Figure 5.2), which states

the purpose (F1). Clicking the button to see the table sends the user to the Table view
(Figure 5.3).

Figure 5.2: Welcome Screen, stating purpose of handling uncertainties (F1)

The Table view shows a set of 19 uncertainties in a table. It allows the user to filter (F3)
the uncertainties by multiple properties, as well as search (F4) for a specific uncertainty.
The user can reset all filters and the search with the reset button (F5). Additionally, the
user can sort (F2) the table ascending and descending by clicking on the column headers.

Clicking on an uncertainty redirects the user to the Uncertainty Detail view.

Here, the user has an overview of the definition (F6), the fitting keywords (F7), and the

classification properties (F8), including a mouseover event to get additional descriptions

on the classification category, as well as an on-click event, which redirects the user to the

Classification Detail view. Additionally, the user can see all uncertainties related to the

current uncertainty (F10), an example scenario, and an illustration of the scenario (F9). A
button at the bottom of the page allows the user to get redirected to the discussion of the

uncertainty on GitHub (F11).

28

5.5 Summary

Figure 5.3: Table View of prototype including sorting (F2), filtering (F3), and searching

(F4)

When a user clicks on a classification category, they get redirected to the Classification
Detail view, where they can see all information about the classification category, includ-

ing a description (F12), the possible options (F13), and a graphic representation of the

classification category (F14). By clicking the buttons next to the options, the user gets

sent back to the Table view with the filter set to the selected option (F15). Thus, the
user gets a filtered view of all uncertainties with the selected option for the classification

option. At the bottom of the page, the user can click on a button to get redirected to the

discussion of the classification category on GitHub (F16). Table 5.1 provides an overview

of all features.

5.5 Summary

This chapter addressed the information retrieval to conclude the Chapter 4 introduced

approach to address RQ1, which asks to collect, manage, and make the knowledge of

uncertainties regarding confidentiality comprehensible for software architects. Section

5.1 proposed using a user interface to increase the comprehensibility and retrieval of the

information on uncertainties. Then, Section 5.3 introduced a collaborative approach to

enable the extension and maintenance of the knowledge (RQ2). This approach allows for

the collection of knowledge across institutions and companies, as well as the maintenance

of the knowledge with manageable effort. Finally, Section 5.4 proposed to merge a web

application with collaborative methods to facilitate the collection and management of

knowledge concerning confidentiality-related uncertainties. The validation of the approach

is still pending.

29

5 Managing Uncertainties by Collaboration

Welcome Screen:

F1: Stating Purpose

Table View:

F2: Sort Table Ascending/Descending

F3: Filter Table by Multiple Properties

F4: Search for specific Uncertainty

F5: Reset Filters and Search

Uncertainty Detail View:

F6: Show Definition

F7: Show Keywords

F8: Show Classification Properties

F9: Show Example

F10: Show Related Uncertainties

F11: Link to Discussion on GitHub

Classification Detail View:

F12: Show Description

F13: Show Options

F14: Show Graphic Representation

F15: Filter Table by Option

F16: Link to Discussion on GitHub

Table 5.1: Features included in prototype

30

5.5 Summary

Figure 5.4: Uncertainty detail view of prototype including definition (F6), keywords (F7),
classification properties (F8), example (F9), related uncertainties (F10) and link

(F11)

31

5 Managing Uncertainties by Collaboration

Figure 5.5: Category detail view of prototype, including description (F12), options (F13),
graphic representation (F14), filtering for examples (F15), and link to

discussion (F16)

32

6 Evaluation

This chapter outlines the evaluation of the proposed approach, conducted primarily based

on the prototype introduced in Section 5.4. Section 6.1 presents the evaluation structure,

employing a GQM-Plan, followed by the presentation of the evaluation design in Section

6.2. Subsequently, Section 6.3 presents and discusses the individual results. Addition-

ally, Section 6.4 outlines the potential threats to validity, while Section 6.5 discusses the

evaluation limitations.

6.1 Goals, Questions and Metrics

This evaluation uses a Goal-Question-Metric (GQM) approach [4] to ensure the quality

of the results. The following gives an overview of the goals, questions, and metrics.

Additionally, Table 6.1 shows the goals and questions in place.

G1: Providing a comprehensive tool for representing uncertainties that impact confiden-

tiality based on the chosen classification [25].

Q1.1: Are the requirements stated in the approach met by the features?

Q1.2: Does the tool contain all classification categories?

Q1.3: Can other observed uncertainties be described within the capabilities of the

tool?

Q1.4: Are any features unnecessary for meeting the requirements?

Q1.5: Are any requirements unnecessary for the description of uncertainties?

G2: Providing an approach to assist software architects in making informed design

decisions on uncertainties with data confidentiality implications in software designs.

Q2.1: Can the tool assist software architects in identifying uncertainties in software

designs?

Q2.2: Does the tool enable software architects to collaborate with others?

Q2.3: Does the tool provide a good user experience?

Table 6.1: Overview of goals and questions for evaluation

33

6 Evaluation

G1. This objective focuses on the representation qualities of the tool. It aims to assess

whether the tool is consistent with the requirements stated in the approach andwhether the

requirements serve the purpose of comprehensively representing uncertainties affecting

confidentiality.

Consequently, the first question, Q1.1, aims to confirm that the tool’s features meet

the requirements. For this purpose, M1.1 measures the coverage of the requirements

by the features. If the features cover all requirements, the coverage is 100%. Since the

requirements include using a classification system, the second question, Q1.2, aims to

validate if the tool includes all classification categories and options. To answer Q1.2,M1.2
measures the ratio of classification categories incorporated in the tool compared to those

not included. Since the approach aims to provide an extensible knowledge capture of

uncertainties, the third question, Q1.3, aims to validate the tool’s capabilities to describe

uncertainties other than those observed during this research. For that, M1.3 measures the

proportion of uncertainties that the tool is capable of describing compared to the total

amount of uncertainties attempted to describe. Questions Q1.4 and Q1.5 seek to confirm

that the tool does not contain features that do not serve to meet the requirements, and no

requirement is removable to simplify the approach without losing the ability to describe

uncertainties. To evaluate onQ1.4,M1.4 counts the number of removable features without

compromising the capacity to fulfill the requirements. To assess Q1.5, M1.5 calculates the

percentage of uncertainties utilizing a requirement for description to the total number of

uncertainties described in the prototype.

G2. This goal focuses on validating that the requirements can meet the intentions of

the approach. It aims to validate that the requirements stated in the approach fulfill the

intention to provide an approach to assist software architects in making informed design

decisions on uncertainties, which may have implications on data confidentiality in software

designs. Upon validating in goal G1 that the prototype fulfills the requirements of the

approach and does not include any additional features, it is deemed capable of presenting

insights into the purpose of the approach via the prototype. Consequently, questions

that aim to address G1 include the usage of the prototype to provide insights into the

approach.

The first question, Q2.1, aims to validate that the tool can assist software architects in

identifying uncertainties in software designs. To evaluate the question,M2.1measures the

proportion of uncertainties correctly identified to those not. The second question, Q2.2,
assesses the collaboration capabilities proposed in Section 5.3. Its purpose is to confirm

whether the tool facilitates collaboration among software architects. It is evaluated based

on the percentage of uncertainties accurately identified and described through collaborative

features (M2.2). The third question, Q2.3, focuses on evaluating the user experience of

software architects to determine their inclination toward using the tool. The System

Usability Score (SUS) (M2.3) addresses this question through the SUS questionnaire [10], a

questionnaire commonly employed in diverse fields to evaluate and enhance overall user

experience.

34

6.2 Evaluation Design

6.2 Evaluation Design

The evaluation comprises two stages. First, a theoretical validation evaluates the represen-

tation qualities of the tool (G1). Second, a user study assesses the tool’s purpose (G2). The
following gives a detailed overview of the design of this evaluation.

Theoretical Validation. Firstly, the prototype’s features (Table 5.1) are mapped to the require-

ments stated in the approach (Section 4.2). That allows for validating the requirements

(Q1.1) by measuring the coverage of the requirements by the features (M1.1). Secondly, to
evaluate the containment of the classification (Q1.2), the classification categories stated in

the approach of Hahner et al. [25] are compared to the ones in the prototype. A classifi-

cation category counts as successfully incorporated (M1.2) if its name, description, and

options are included and identical in the prototype. For the evaluation of the extensibility

of the knowledge capture (Q1.3), efforts are made to incorporate uncertainties from the

dataset of Hahner et al. [24] and Ramirez et al. [40] into the prototype. The uncertainties

are then compared to the original uncertainties. If all aspects of the uncertainties are

outlined in the prototype, the uncertainty is considered described (M1.3). Additionally,
the aim is to ensure that the prototype does not contain any features that do not serve to

meet the requirements (Q1.4). Sixteen subsets of features are constructed to achieve this,

each missing a specific feature. This methodology facilitates the evaluation of whether a

subset still fulfills the requirements. When such a subset is identified, the absent feature is

classified as unnecessary (M1.4). Lastly, it is aimed to confirm that no requirement can be

removed without losing the ability to describe uncertainties (Q1.5). This is evaluated by

measuring the ratio of how many uncertainties use a requirement to how many uncertain-

ties are described in the prototype (M1.5). Thus making a requirement most important,

with a ratio of 1. Additionally, the results are compared to the amount of the requirements

that were described in prior literature.

User Study. A user study involving 17 participants from the domain of software engineering

was conducted. It is the author’s opinion that given the objective of evaluating the

supporting capabilities of the approach for software architects to make informed decisions

(RQ1) and the extending capabilities of the approach (RQ2) through collaboration (R10),
compared to interviews or a survey, a user study represents the most suitable choice. That

is because using a user study enables the evaluation of the tool in a more realistic setting

and provides insights into the tool’s usage.

The user study contains three sections. Firstly, the user study asks participants to fill out a

self-assessment in which they state their knowledge in different knowledge areas, such

as software architecture and uncertainties. Additionally, it asks participants to choose the

occupation that fits them best out of student, researcher, practitioner, and others. Secondly,
the user study introduces participants to the research field of uncertainties, the classifi-

cation used, and the tool. In this section, participants get familiar with the tool and its

features. Subsequently, the user study presents two assignments that participants should

complete within 30 minutes. The first assignment asks them to identify uncertainties

in a given software design. They should find two fitting uncertainties in the tool. Only

the first possesses an additional description. This assignment design allows first insights

35

6 Evaluation

on question Q2.1, which inquires about the tool’s supporting capabilities for software

architects in identifying uncertainties. As a subtask, participants should validate if a given

uncertainty describes a given scenario and, if not, find a better-fitting uncertainty. Its

design allows insights into question Q2.2, the collaboration capabilities of the tool, as the

answer lies in the discussion of the given uncertainty on GitHub. This design also enables

to measureM2.2, the amount of uncertainties that are correctly identified and described

through collaboration, as participants explain their reasoning for their choice. The second
assignment asks them to find at least two uncertainties in a given scenario. This assignment

design simulates a scenario close to the real world, where software architects having a soft-

ware architectural model and user stories, want to identify relevant uncertainties that need

mitigation. Consequently, the expectation is to get the most insights on question Q2.1, the
supporting capabilities of the tool for software architects in identifying uncertainties. To

evaluateQ2.1, two people with good knowledge of uncertainties determine the correctness

of the answers given by participants to measureM2.1. They evaluate the correctness based
on a “gold standard”, which results from a consensus on their independent assessment

of correct uncertainties. After the assignments, the feedback section of the user study

asks participants to fill out a System Usability Score (SUS) questionnaire [4] and to give

feedback on their opinion on the usability and intuitiveness of the features on a scale

from 1 strongly disagree to 4 strongly agree which allows measuringM2.3. Together with
feedback on what participants think they learned through using the tool, this should give

insights to answer Q2.3, the user experience.

6.3 Evaluation Results and Discussion

This section presents and discusses the evaluation results for each question individually.

Beginning with the presentation of results for the theoretical validation in Section 6.3.1,

the discussion proceeds to the findings of the user study in Section 6.3.2.

6.3.1 Theoretical Validation Results

Beginning with the outcomes of the feature-to-requirement mapping (Q1.1), Table 6.2
illustrates all features directly corresponding to a requirement. The findings indicate the

presence of at least one feature for each requirement. However, the only requirement

that remained unmapped was R1. That does not come as a surprise since mapping

features to requirements alone does not provide insights into the comprehensibility of the

classification. Fortunately, Hahner et al. [25] already evaluated the comprehensibility of

their classification. With their evaluation of ease of use, they evaluated their classification

with a System Usability Score (SUS) questionnaire and a SUS score of 68.25. With a score

above average, it is assumable that the classification is comprehensible. Thus, being able

to map at least one feature to all other requirements and with a coverage (M1.1) of 100%,
the requirements are met by the features of the prototype.

36

6.3 Evaluation Results and Discussion

Requirement Feature Requirement covered?

R1 F4, F8, F12, F13, F14 ✓

R2 F6, F8, F9, F10 ✓

R3 F12, F13, F14, F15, F16 ✓

R4 F9, F11 ✓

R5 F10 ✓

R6 F7 ✓

R7 F2, F3 ✓

R8 F4 ✓

R9 F7, F10, F15 ✓

R10 F11, F16 ✓

Table 6.2: Feature-Requirement mapping and presence analysis

The next objective is to validate the inclusion of all classification categories within the

prototype, addressing Q1.2. Table 6.3 shows the successful integration of all classification

categories into the prototype, yielding a 100% incorporation rate when calculating the ratio

between the number of classification categories incorporated in the tool (M1.2). This out-
come was anticipated, given that the prototype’s structure incorporates the classification

system.

Classification Category from [25] Classification Category in Prototype Identical

Location Location ✓

Architectural Element Type Architectural Element Type ✓

Type Type ✓

Manageability Manageability ✓

Resolution Time Resolution Time ✓

Reducible by ADD Reducible by ADD ✓

Impact on Confidentiality Impact on Confidentiality ✓

Severity of Impact Severity of Impact ✓

Table 6.3: Classification categories included in prototype

For the evaluation of the knowledge capture’s extensibility (Q1.3), the uncertainties of
Missing Requirements, Unexplored Alternatives, and Incomplete Information from Ramirez et

al. [40], cited as examples in their paper, alongwith uncertainties from the dataset of Hahner

et al. [24], were chosen to be integrated into the prototype. Table 6.4 shows the results. The

main challenge when trying to incorporate the uncertainties from Ramirez et al. [40] was

that the uncertainties are not limited to the impact on confidentiality. Thus, being unable

to describe the Impact on Confidentiality and Severity of Impact categories. Additionally,
with limited knowledge of their uncertainties, it was not possible to adequately fill in the

property for Reducible by ADD without investigating the uncertainties further. That did

not influence the ability to transfer the information from the uncertainties of Ramirez et

al. [40] into the prototype. Consequently, it was not deemed relevant to investigate the

missing attributes further.

37

6 Evaluation

Since the prototype uses the classification system of [25] and Q1.2 verified the use of

the classification system, extending the knowledge with uncertainties from [24] was

straightforward. Table 6.5 shows an example. Regarding the understanding of “described”,

which Section 6.2 specifies, the results show that all aspects of the chosen uncertainties

are describable under the usage ofM1.3. Consequently, the prototype can describe other

uncertainties than the ones observed by Hahner et al. [25], thus addressing question

Q1.3.

Sixteen subsets of features were constructed, each containing all but one feature, to evaluate

the necessity of the features (Q1.4). It was tried to identify subsets that still meet the

requirements, which would make them redundant usingM1.4. The results in Table 6.6

show against which requirements the subsets failed. It shows that features F4, the custom
search feature, and F5, the feature to reset filters, and search values, are not failing, thus

making them initially redundant. However, it implies they are still advantageous features,

especially for the tool’s usability. Otherwise, one would be unable to find uncertainties

based on a single thought or reset filters without effort. Therefore, the results suggest that

all features are essential for the functionality and effectiveness of the tool.

The final evaluation of the theoretical validation addresses Q1.5, which asks for the ne-

cessity of each requirement. To answer Q1.5, M1.5 measures the ratio of how many

uncertainties included in the prototype use a requirement. The results in Table 6.7 show

that most uncertainties use all requirements. Exceptions are the hierarchical structures

(R5) with a requirement usage ratio of 57.9% and keywords (R6), with a requirement usage

ratio of 68.5%. As the requirement ratio of R5 and R6 is still above 50% and combined

with the common usage of the requirements in existing literature in other contexts, the

results suggest that the requirements have their right to be used to describe uncertainties.

Therefore, the results imply that all requirements are necessary to describe uncertainties.

The results of the theoretical validation confirm that the features meet the requirements

(Q1.1). They show that the tool contains all classification categories (Q1.2) and can be

used to describe other uncertainties than the ones observed (Q1.3). Additionally, based on

the results, all features are necessary for the functionality and effectiveness of the tool

(Q1.4), and all requirements are necessary to describe uncertainties (Q1.5). Consequently,
the theoretical validation implies that the tool is capable of representing uncertainties

with an impact on confidentiality comprehensively (G1).

38

6.3 Evaluation Results and Discussion

Property Value Extracted from original Property

Uncertainty: Have all requirements been stated? Name

Keyword: Requirements Classification

Resolution Time: Requirements Time Context

Location: System Behavior Related Resources

Architectural Element Type: Interface/Connector Impact

Type: Scenario Uncertainty Context

Impact on Confidentiality: Indirect Impact

Manageability: Fully Reducible Context

Reducible by ADD:

Severity of Impact:

Example: Illustration Example Sample Illustration

In Discussion: Mitigation Strategies Mitigation Strategies

Relationship: Incomplete Requirements Also Known as

(a) Uncertainty “Missing Requirements” from [40]

Property Value Extracted from original Property

Uncertainty: Have all alternatives been explored? Name

Keyword: Alternatives, Design Classification

Resolution Time: Design Time Context

Location: System Structure Impact/Context

Architectural Element Type: Component/Connector Related Resources

Type: Recognized Ignorance Context/Impact

Impact on Confidentiality: Indirect Impact

Manageability: Fully Reducible Context

Reducible by ADD:

Severity of Impact:

Example: Illustration Example Illustration Sample

In Discussion: Mitigation Strategies Mitigation Strategies

Relationship:

Parent of: How is communicated? (U4), Which

component is chosen? (U39)

(b) Uncertainty “Unexplored Alternatives” from [40]

Property Value Extracted from original Property

Uncertainty: Is all information available? Name

Keyword: Data Context

Resolution Time: Run Time Classification

Location: System Environment Impact

Architectural Element Type: Connector Impact

Type: Scenario Uncertainty Impact

Impact on Confidentiality: Indirect Impact

Manageability: Partial Reducible

Mitigation Strategies,

Context, Impact

Reducible by ADD:

Severity of Impact:

Example: Illustration Example Sample Illustration

In Discussion: Mitigation Strategies Mitigation Strategies

Relationship:

Parent of: Is the data entered correct? (U17),

What data is entered? (U24)

(c) Uncertainty “Incomplete Information” from [40]

Table 6.4: Uncertainty described by Ramirez et al. [40] transferred to tool

39

6 Evaluation

Property Value Extracted from original Property

Uncertainty: Are SQL Injections performed? Uncertainty

Keyword: Data Uncertainty

Resolution Time: Run Time Resolution Time

Location: Input Location

Architectural Element Type: Usage Behavior Architectural Element Type

Type: Scenario Uncertainty Type

Impact on Confidentiality: Indirect Impact on Confidentiality

Manageability: Partial Reducible Manageability

Reducible by ADD: No Reducibly by Add

Severity of Impact: High Severity of Impact

Example:

In Discussion:

Relationship: Child of: How is communicated? (U4)

Table 6.5: Uncertainty “Are SQL Injections performed” from [24] transferred to tool

Subset ID Missing Feature Failing against Reason

1 F1

2 F2 R7 No sorting mechanisms

3 F3 R7 No filtering mechanisms

4 F4 R8 No search mechanisms

5 F5

6 F6 R2 Definition Mandatory in Comprehension of Un-

certainty

7 F7 R6 No keyword categorization possible

8 F8 R1 Not using any classification system for structur-

ing Uncertainties

9 F9 R4 Example Scenario plays important role in giving

context

10 F10 R5 Not supporting any relationships structures be-

tween uncertainties

11 F11 R10 Not supporting collaboration mechanisms

12 F12 R3 Category description essential for classification

terminology comprehension

13 F13 R3 Category options and their description essential

for classification terminology comprehension

14 F14 R4 Another dimension of classification terminol-

ogy dimension missing

15 F15 R4 Missing examples that give context to category

option

16 F16 R10 Not supporting collaboration mechanisms

Table 6.6: Subsets of features and if they still meet the requirements

40

6.3 Evaluation Results and Discussion

Requirement Used Amount Used % Used in Prior Work

R1 19 1 [30]

R2 19 1 [13], [30], [20], [2], [21]

R3 8 1

R4 19 1 [13], [2], [30]

R5 11 0.579 [13], [2], [54], [30]

R6 13 0.685 [13], [2], [30]

R7 19 1 [20]

R8 19 1 [20], [2], [30]

R9 19 1

R10 27 1 [13], [20], [2], [15], [21], [54], [30]

Table 6.7: Requirements used by uncertainties and in existing literature

41

6 Evaluation

6.3.2 User Study Results

During the user study, data was collected from 17 participants, seven of whom were

students, five researchers, and five practitioners (Figure 6.1). None of the participants had

to choose “other” as their occupation.

Figure 6.1: Participants Composition: blue - Student, orange - Researcher, grey -

Practitioner, green - Other

The participants’ self-assessment in Table 6.8 indicates that the average participant had

good knowledge of software architecture and architectural design decisions, little knowledge
of confidentiality, uncertainty, risk assessment and security analysis, and no knowledge

of knowledge management systems. It also shows that almost none of the participants

described themselves as experts in any of the knowledge areas, except for architectural
design decisions, with 29.4% of the participants. Regarding the essential knowledge areas

for this research, software architecture, confidentiality, and uncertainties, more than half

of the participants had good knowledge of software architecture and little knowledge in

confidentiality, and uncertainties.

Knowledge Area No Knowledge Little Knowledge Good Knowledge Expert

Software Architecture 0 0.176 0.706 0.118

Architectural De-

sign Decisions

0 0.294 0.412 0.294

Confidentiality 0.235 0.588 0.059 0.118

Uncertainty 0.294 0.412 0.235 0.059

Risk Assessment 0.294 0.353 0.353 0

Knowledge Man-

agement Systems

0.353 0.294 0.353 0

Security Analysis 0.353 0.471 0.118 0.059

Table 6.8: Amount of knowledge participants have of different knowledge areas, based on

their self-assessment.

To answer Q2.1,M2.1 measured the accuracy of participants in describing uncertainties

correctly. In Assignment 1, 79.4% of all answers described a correctly identified uncertainty,

42

6.3 Evaluation Results and Discussion

as shown in Table 6.9. 94,1% of all participants described at least one correct uncertainty

(Table 6.10). The results of Assignment 1 show that participants described Uncertainty One

correctly more often than Uncertainty Two. That is likely because, for Uncertainty One,

participants received an additional description elucidating the underlying uncertainty.

In contrast, for Uncertainty Two, they were tasked with identifying the uncertainty

solely based on the scenario and the software architectural model, with an indication

of the uncertainty’s position. Examining the correctness concerning the participants’

occupations reveals that the researchers accurately outlined all uncertainties, whereas

the students encountered the most challenges, exhibiting an average accuracy of 71.4%.

When taking into account the prior knowledge of the participants, the results show that

participants with no prior knowledge in the domain of uncertainties were the ones with
the lowest correctness of 50%. Given the predictable nature of this outcome, due to the

missing knowledge of the subject, the correctness of 92.9% among participants possessing

limited expertise in the domain of uncertainties is particularly surprising. The suggested

explanation is that these participants effectively utilized their limited knowledge to engage

with the prototype, leading to a better understanding of the domain of uncertainties and
thereby enabling accurate articulation of the uncertainties. They performed better than the

participants with good knowledge in the domain of uncertainties, who had a correctness

score of 87.5%. These results might suggest that their relatively poorer performance

than participants with limited knowledge stems from their higher confidence in their

understanding, resulting in underutilization of the prototype’s full potential.

Category

Uncertainty One Uncertainty Two Total

Correct Incorrect Correct Incorrect Correct Incorrect

Overall 0.824 0.176 0.764 0.235 0.794 0.206

P
r
o
f
-

e
s
s
i
o
n

Student 0.714 0.286 0.714 0.286 0.714 0.286

Researcher 1 0 1 0 1 0

Practitioner 0.8 0.2 0.8 0.2 0.8 0.2

P
r
i
o
r

U
n
c
e
r
t
a
i
n
t
y

K
n
o
w
l
e
d
g
e

No 0.4 0.6 0.6 0.4 0.5 0.5

Little 1 0 0.857 0.143 0.929 0.071

Good 1 0 0.75 0.25 0.875 0.125

Expert 1 0 1 0 1 0

Table 6.9: Correctness of uncertainty descriptions in % in Assignment 1, based on the

“gold standard”

The design of Assignment 2 is the closest to the reality use case of the prototype. Ex-

hibiting an overall ratio of accurately identified uncertainties (M2.1) at 95.3%. Table 6.11
presents these results. Alongside with 100% of participants accurately describing at least

two uncertainties (6.12), the findings surpass initial expectations. Participants described

uncertainties correctly, even though they were only given a scenario and an unedited

software architectural model with no additional description. Examining the correctness

concerning participants’ occupations, it becomes evident that, similarly to Assignment 1,

the researchers accurately described all uncertainties. Even students surpassed practition-

ers, attaining an average of 94.4% correct answers compared to practitioners’ average of

43

6 Evaluation

Category All Wrong One Correct Two Correct ≥ One Correct

Overall 0.059 0.294 0.647 0.941

P
r
o
f
-

e
s
s
i
o
n

Student 0.143 0.286 0.571 0.857

Researcher 0 0 1 1

Practitioner 0 0.6 0.4 1

P
r
i
o
r

U
n
c
e
r
t
a
i
n
t
y

K
n
o
w
l
e
d
g
e

No 0.2 0.6 0.2 0.8

Little 0 0.143 0.857 1

Good 0 0.25 0.75 1

Expert 0 0 1 1

Table 6.10: Distribution of correctness across participants in % in Assignment 1

92.9%. When taking into account the prior knowledge of the participants, results show

that participants with no prior knowledge in the domain of uncertainties were the ones
with the lowest correctness of 92.3%. As the lowest performance is not a surprise, being

able to describe uncertainties correctly with a score of 92.3% without any prior knowledge

of the domain of uncertainties is unexpected. Thus, considering the results of Assignment

1 and Assignment 2, they imply that the prototype can support software architects in

identifying uncertainties, which addresses Q2.1.

Category Correct Incorrect

Overall 0.953 0.047

P
r
o
f
-

e
s
s
i
o
n

Student 0.944 0.556

Researcher 1.000 0.000

Practitioner 0.929 0.071

P
r
i
o
r

U
n
c
e
r
t
a
i
n
t
y

K
n
o
w
l
e
d
g
e

No 0.923 0.077

Little 0.944 0.0556

Good 1.000 0.000

Expert 1.000 0.000

Table 6.11: Correctness of uncertainty descriptions in % in Assignment 2, based on the

“gold standard”

The design of Assignment 1.1 aims to estimate the collaboration capabilities of the proto-

type (Q2.2). The results show that none of the explanations included the correct answer,

which could be found in the discussion section 6.13. When using M2.2 to measure the

collaboration capabilities of the prototype, the percentage of participants who correctly

described the uncertainty using collaboration features is 0%. That nobody used the collab-

oration features to describe the uncertainty correctly might be because this user study

was not conducted in a collaborative environment. Thus, participants might not have

considered using the GitHub issue to find the correct answer. Furthermore, the wrong

answer stated in the user study was too close to the correct answer, thus making it hard

for the participants to identify the correct answer without the help of the discussion. The

44

6.3 Evaluation Results and Discussion

Category All Wrong One Correct Two Correct Three Correct ≥ Two Correct

Overall 0 0 0.588 0.412 1

P
r
o
f
-

e
s
s
i
o
n

Student 0 0 0.571 0.429 1

Researcher 0 0 0.8 0.2 1

Practitioner 0 0 0.4 0.6 1

P
r
i
o
r

U
n
c
e
r
t
a
i
n
t
y

K
n
o
w
l
e
d
g
e

No 0 0 0.6 0.4 1

Little 0 0 0.571 0.429 1

Good 0 0 0.75 0.25 1

Expert 0 0 0 1 1

Table 6.12: Distribution of Correctness across Participants in % in Assignment 2

initial idea behind this choice was that users would be inclined to use collaboration support

over information stated in the prototype when they cannot decide between two answers

that are very close to each other. Hence, the hints to utilize the discussion for answering

Assignment 1.1 were insufficient, as there was no indication that the participants had

even read the discussion entry. Nevertheless, 64.7% of the participants described the

uncertainty correctly without using the collaboration features. The results concerning the

participants’ occupations show that practitioners struggled to describe the uncertainties

correctly. As people with no knowledge described the uncertainty correctly in more cases

than people with little knowledge of uncertainties, it underlines that the user study design

for Assignment 1.1 has been flawed. Consequently, the results imply that the user study

design needs to be optimized to evaluate the collaboration capabilities of the prototype. It

can be summarized that in the prototype’s evaluation, the collaboration capabilities cannot

be claimed, leaving Q2.2, which asks about the collaboration capabilities of the approach,

unanswered.

Category Correct Incorrect Correct using Collaboration

Overall 0.647 0.353 0

P
r
o
f
-

e
s
s
i
o
n

Student 0.857 0.143 0

Researcher 0.8 0.2 0

Practitioner 0.2 0.8 0

P
r
i
o
r

U
n
c
e
r
t
a
i
n
t
y

K
n
o
w
l
e
d
g
e

No 0.6 0.4 0

Little 0.429 0.571 0

Good 1 0 0

Expert 1 0 0

Table 6.13: Correctness of uncertainty descriptions in % in Assignment 1.1, based on the

“gold standard”, and the use of collaboration features

To evaluate the user experience of the participants (Q2.3), they filled out the System

Usability Scale (SUS) questionnaire (M2.3). Additionally, participants gave feedback on

their opinion on the intuitiveness and usefulness of the different features on a scale from 1

to 4. With a SUS score of 69.7 [19], the prototype is above the average SUS score of 68.0 and

45

6 Evaluation

thus can be considered usable. Table 6.14 shows the average intuitiveness and usefulness

of the features. The results suggest that filtering (F3), examples (F9), and visualizations

(F14) as features are most helpful. That implies that additional dimensions of support, such

as graphical representations of uncertainties, are beneficial for the user experience. On

the other hand, while the participants assessed the usefulness of most features as valuable,

the hierarchical relationships feature (F10) was assessed as less valuable. A reason for that

comes from the limited amount of uncertainties in the prototype, making it impractical

to utilize the feature entirely. Additionally, as the participants assessed this feature as

less intuitive, it implies that the implementation of this feature in the prototype was not

intuitive enough, which impacts the usefulness of the feature. The additional participant

feedback supports these results, as participants often mentioned the need for a better

UI/UX experience [19]. Thus, addressing Q2.3, results suggest that the prototype would
benefit from a better UI/UX experience to increase the intuitiveness and usefulness of the

features. Nevertheless, the results show that participants assessed most of the prototype’s

features as useful and intuitive by the participants.

Participants also gave their opinions on what they learned about different topics during

the user study. They evaluated the topics software architecture, confidentiality, uncertainties
and their impact, different types of uncertainties, benefits of collaboration, and benefits of
the tool vs. a list on a scale from 1 to 4, with one strongly disagreeing and four strongly

agreeing. Table 6.15 shows the average opinion of the participants. The results show

that participants learned the most about different types of uncertainties and uncertainties
and their impact, with an average value of 3.69 and 3.38, respectively. Additionally, they

learned about confidentiality and benefits of the tool vs. list, with an average value of 3.08.

As the participants could not use the collaboration features properly, as stated in prior

results, it is not surprising that they did not learn about the benefits of collaboration, with
an average value of 1.77. The results support the research goal G2, as the participants
learned about the different uncertainties and their impact.

Feature Usefulness Intuitiveness

F3 3.563 3.235

F4 3.214 3.588

F7 3.2 3.5

F10 2.333 2.067

F9 3.765 3.176

F14 3.765 3.375

F11, F16 3 3.25

F8 (OnClick) 2.867 2.667

F8 (Mouseover) 3 2.313

Table 6.14: Average intuitiveness and usefulness of features. Scale: 1 - Strongly Disagree,

2 - Disagree, 3 - Agree, 4 - Strongly Agree

Consequently, the results of the user study suggest that the prototype can assist software

architects in identifying uncertainties in software designs (Q2.1), and it provides a reason-

46

6.4 Threats to Validity

able user experience (Q2.3). However, it would benefit from a better UI/UX experience.

Unfortunately, the results were inconclusive regarding the collaboration capabilities of the

prototype (Q2.2). Subsequently, the results suggest that the approach can assist software

architects in making informed design decisions on uncertainties with data confidentiality

implications in software designs (G2), with the validation of the collaboration capabilities

being left for future work.

I learned about. . . Average Value

Software Architecture 2.85

Confidentiality 3.08

Uncertainties and their Impact 3.38

Different Types of Uncertainty 3.69

Benefits of Collaboration 1.77

Benefits of Tool vs List 3.08

Table 6.15: Average opinion on the value of this approach by participants. Scale: 1 -

Strongly Disagree, 2 - Disagree, 3 - Agree, 4 - Strongly Agree

6.4 Threats to Validity

The threats to validity are discussed based on the guidelines of Runeson et al. [42]. Themost

significant threat identified regarding internal validity is the assessment of the assignment

results of the user study by two people with good knowledge in the context of this research.

Although it was endeavored to minimize the subjectivity of the assessment by defining

a clear set of rules and assessing the results independently, the results could have been

different if other people had assessed the assignments. Additionally, the user study was

conducted in 9 online meetings, which could have led to different information given to

the participants and thus led to different results. A clear structure of the meetings and

the information given to the participants attempted to minimize this threat. However,

there is a chance that participants received different information, especially when they

had questions before they started the assignments. Regarding external validity, the most

significant threat identified is the number of participants. Despite attempts to diversify the

participants based on occupation, 17 participants do not provide a representative sample of

all software architects. Nonetheless, the results still give a good indication of the usefulness

of the approach, as the participants described the uncertainties correctly throughout their

diversified occupations and prior knowledge. Another threat to external validity is the

chosen set of uncertainties included in the prototype and used in the user study. Although

the set of uncertainties was chosen based on the literature, other uncertainties could have

led to different results. A GQM-based evaluation plan was applied (Section 6.1) to limit the

threat of construct validity. For the reliability and replicability of the results, the prototype

and user study are published [19].

47

6 Evaluation

6.5 Limitations

The most significant limitation identified for this approach is using a single classification

system, R1. Thus, the limitations of the chosen classification system are also limitations of

this approach. In this case, the limitations of the classification system described by Hahner

et al. [25], such as the “focus on confidentiality as central quality attribute” [25], are also

limitations of this approach. Additionally, this approach does not support downloading

or exporting the identified uncertainties directly into analysis or mitigation approaches.

That is a limitation, as it requires the user to manually transfer the identified uncertainties

into the analysis or mitigation approaches, which is time-consuming and error-prone. As

other limitations may exist, the extensibility capabilities of this approach might allow the

possibility to address them with manageable effort in future work.

48

7 Conclusion

This chapter summarizes the research and contributions this thesis offers in Section

7.1. Finally, Section 7.2 provides an overview of future work derived from the research

findings.

7.1 Summary

This thesis addressed the missing awareness of uncertainties regarding confidentiality

across software architects and the need for an overview of current knowledge on uncer-

tainties regarding confidentiality. It aimed to contribute to the collection, management,

and improvement of comprehensibility of the knowledge on uncertainties regarding confi-

dentiality (RQ1). Furthermore, it aimed to enable extensibility and maintainability of the

uncertainty collection through collaboration (RQ2). Firstly, this included the engineering

of requirements, which resulted from observations and findings in existing literature,

for an approach that allows for the collection and management of the knowledge on

uncertainties regarding confidentiality (Section 4.2). These requirements included the use

of a classification system (R1), adding context to uncertainties like an example or visual

representation (R4), and the possibility of relating uncertainties to each other (R5). The
approach used the requirements to develop solutions to address the research questions.

That included a meta-model that allows for the description and relation of and between

uncertainties regarding confidentiality (Section 4.3). Furthermore, the meta-model can

describe uncertainties that might be identified in future research (Section 5.2). The initial

approach was adjusted to maintain and extend the collection of uncertainties. That adjust-

ment enabled the collaboration between researchers and practitioners (Section 5.3). These

collaboration mechanisms enable discussions about uncertainties regarding confidentiality

and new findings, as well as enable the collection of knowledge across institutions and

companies. Then, this thesis presented the realization of the approach as a web application

in the form of a prototype (Section 5.4). The prototype served as the base to evaluate the

approach. The evaluation was funded on a Goals-Question-Metrics Plan (GQM) (Section

6.1) and resulted in an evaluation design based on a theoretical evaluation and a user

study (Section 6.2). The theoretical evaluation assessed the approach’s ability to fulfill

RQ1. It showed that the approach allows the description and relation of uncertainties and

can improve the comprehensibility of the knowledge on uncertainties. The user study

evaluated the approach’s ability to fulfill RQ2 and was conducted with 17 people from

the field of software engineering, divisible into seven students, five researchers, and five

practitioners. The results showed that in a close-to real-world scenario, the approach

49

7 Conclusion

could support software architects to identify uncertainties regarding confidentiality, as

the participants identified and described uncertainties correctly with an accuracy of 95.3%.

The results also showed that little knowledge about uncertainties is enough to use the ap-

proach effectively, as the participants with little prior knowledge identified and described

uncertainties with an accuracy of 92.9% in Assignment 1 compared to 50% accuracy on

participants with no knowledge of uncertainties. However, the results also show that

the approach’s collaborative qualities require further investigation, as the results were

inconclusive on the approach’s ability to enable collaboration between researchers and

practitioners due to the user study’s design. Consequently, the proposed evaluation could

not fully evaluate RQ2 regarding the extendability and maintainability of the uncertainty

collection. Thus, this thesis could not provide a funded answer for RQ2.

This thesis contributes to the ongoing efforts to improve the confidentiality of software

systems by providing an approach that allows for the collection and management of knowl-

edge on uncertainties regarding confidentiality. Software architects can use the collection

of Uncertainties to identify and understand uncertainties regarding confidentiality and

use it to improve analysis methods and develop mitigation strategies. Furthermore, the

approach can raise awareness and increase the understanding of uncertainties regarding

confidentiality across software architects.

7.2 Future Work

The evaluation results indicated that there is still progress to be made in addressing

RQ2. Collaboration between researchers and practitioners remains a crucial aspect of

this approach. The evaluation design employed needs to be revised in assessing the

collaborative qualities of the approach, leaving it to future work to evaluate its ability to

enable collaboration qualities for the collection of knowledge on uncertainties regarding

confidentiality. As the approach prototype insinuated the possibility of collaboration

and adding new uncertainties to the uncertainty collection, this is a potential foundation

for future work in this domain. Integrating bots for validating new uncertainties and

thus potentially automating the process of adding new uncertainties could be a valuable

addition to managing the effort to maintain the uncertainty collection.

Moreover, the existing research on the correlations among uncertainties concerning confi-

dentiality is limited. The proposed approach could facilitate the collection of additional

uncertainties, consequently fostering further research on the interconnections between

uncertainties. Furthermore, by expanding the pool of uncertainties within the collection,

this approach could serve as a valuable foundation for investigating the prioritization

of confidentiality-related uncertainties and the potential trade-offs between quality at-

tributes.

50

Bibliography

[1] Maribel Acosta et al. “Uncertainty in coupled models of cyber-physical systems”.

In: Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. MODELS ’22. New York, NY, USA:

Association for Computing Machinery, Nov. 9, 2022, pp. 569–578. isbn: 978-1-4503-

9467-3. doi: 10.1145/3550356.3561539. url: https://dl.acm.org/doi/10.1145/

3550356.3561539 (visited on 06/08/2023).

[2] Muhammad Ali Babar, Xiaowen Wang, and Ian Gorton. “PAKME: A Tool for Captur-

ing and Using Architecture Design Knowledge”. In: 2005 Pakistan Section Multitopic
Conference. 2005 Pakistan Section Multitopic Conference. Dec. 2005, pp. 1–6. doi:

10.1109/INMIC.2005.334419.

[3] Jae Young Bang et al. “How software architects collaborate: Insights from collabo-

rative software design in practice”. In: 2013 6th International Workshop on Cooper-
ative and Human Aspects of Software Engineering (CHASE). 2013 6th International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).

San Francisco, CA, USA: IEEE, May 2013, pp. 41–48. isbn: 978-1-4673-6290-0. doi:

10.1109/CHASE.2013.6614730. url: http://ieeexplore.ieee.org/document/

6614730/ (visited on 10/21/2023).

[4] Victor R. Basili and David M. Weiss. “A Methodology for Collecting Valid Software

Engineering Data”. In: IEEE Transactions on Software Engineering SE-10.6 (Nov. 1984).
Conference Name: IEEE Transactions on Software Engineering, pp. 728–738. issn:

1939-3520. doi: 10.1109/TSE.1984.5010301.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Google-
Books-ID: mdiIu8Kk1WMC. Addison-Wesley Professional, 2003. 572 pp. isbn: 978-0-

321-15495-8.

[6] Niko Benkler. “Architecture-based Uncertainty Impact Analysis for Confidentiality”.

Master’s thesis. Karlsruher Institut für Technologie, Feb. 23, 2022.

[7] Marcello M. Bersani et al. “A Conceptual Framework for Explainability Require-

ments in Software-Intensive Systems”. In: 2023 IEEE 31st International Requirements
Engineering Conference Workshops (REW). 2023 IEEE 31st International Require-

ments Engineering Conference Workshops (REW). Hannover, Germany: IEEE, Sept.

2023, pp. 309–315. isbn: 9798350326918. doi: 10.1109/REW57809.2023.00059. url:

https://ieeexplore.ieee.org/document/10260808/ (visited on 11/01/2023).

[8] Manoj Bhat et al. “The Evolution of Architectural Decision Making as a Key Focus

Area of Software Architecture Research: A Semi-Systematic Literature Study”. In:

2020 IEEE International Conference on Software Architecture (ICSA). 2020 IEEE Inter-

national Conference on Software Architecture (ICSA). Mar. 2020, pp. 69–80. doi:

10.1109/ICSA47634.2020.00015.

51

https://doi.org/10.1145/3550356.3561539
https://dl.acm.org/doi/10.1145/3550356.3561539
https://dl.acm.org/doi/10.1145/3550356.3561539
https://doi.org/10.1109/INMIC.2005.334419
https://doi.org/10.1109/CHASE.2013.6614730
http://ieeexplore.ieee.org/document/6614730/
http://ieeexplore.ieee.org/document/6614730/
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/REW57809.2023.00059
https://ieeexplore.ieee.org/document/10260808/
https://doi.org/10.1109/ICSA47634.2020.00015

Bibliography

[9] Barry Boehm. “Software risk management”. In: ESEC ’89: 2nd European Software
Engineering Conference University of Warwick, Coventry, UK September 11-15, 1989
Proceedings (1989). Ed. by C. Ghezzi and J. A. McDermid, pp. 1–19.

[10] John Brooke. “SUS - A quick and dirty usability scale”. In: (1996), pp. 189–194.

[11] Bundeskriminalamt. Cybercrime Bundeslagebild. May 9, 2021. url: https://www.bka.

de/SharedDocs/Downloads/DE/Publikationen/JahresberichteUndLagebilder/

Cybercrime/cybercrimeBundeslagebild2021.html?nn=28110 (visited on 05/30/2023).

[12] Hyun-Ju Choi et al. “Communities of practice and knowledge management sys-

tems: effects on knowledge management activities and innovation performance”. In:

Knowledge Management Research & Practice 18.1 (Jan. 2, 2020), pp. 53–68. issn:

1477-8238, 1477-8246. doi: 10 . 1080 / 14778238 . 2019 . 1598578. url: https : / /

www.tandfonline.com/doi/full/10.1080/14778238.2019.1598578 (visited on

10/21/2023).

[13] Michael Colesky and Julio C. Caiza. “A System of Privacy Patterns for Informing

Users: Creating a Pattern System”. In: Proceedings of the 23rd European Conference
on Pattern Languages of Programs. EuroPLoP ’18. New York, NY, USA: Association

for Computing Machinery, July 4, 2018, pp. 1–11. isbn: 978-1-4503-6387-7. doi: 10.

1145/3282308.3282325. url: https://dl.acm.org/doi/10.1145/3282308.3282325

(visited on 08/15/2023).

[14] Michael Colesky et al. “A system of privacy patterns for user control”. In: Proceedings
of the 33rd Annual ACM Symposium on Applied Computing. SAC ’18. New York, NY,

USA: Association for Computing Machinery, Apr. 9, 2018, pp. 1150–1156. isbn:

978-1-4503-5191-1. doi: 10.1145/3167132.3167257. url: https://dl.acm.org/doi/

10.1145/3167132.3167257 (visited on 08/15/2023).

[15] Naeem Esfahani, Sam Malek, and Kaveh Razavi. “GuideArch: Guiding the explo-

ration of architectural solution space under uncertainty”. In: 2013 35th Interna-
tional Conference on Software Engineering (ICSE). 2013 35th International Confer-

ence on Software Engineering (ICSE). ISSN: 1558-1225. May 2013, pp. 43–52. doi:

10.1109/ICSE.2013.6606550.

[16] S. O. Funtowicz and J. R. Ravetz. Uncertainty and Quality in Science for Policy. Google-
Books-ID: lINAsNfN7i4C. Springer Science & Business Media, Oct. 31, 1990. 254 pp.

isbn: 978-0-7923-0799-0.

[17] David Garlan. “Software engineering in an uncertain world”. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research. FoSER ’10. New York,

NY, USA: Association for Computing Machinery, Nov. 7, 2010, pp. 125–128. isbn:

978-1-4503-0427-6. doi: 10.1145/1882362.1882389. url: https://dl.acm.org/doi/

10.1145/1882362.1882389 (visited on 05/30/2023).

[18] David Garlan. “The Unknown Unknowns Are Not Totally Unknown”. In: 2021 Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). 2021 International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS). ISSN: 2157-2321. May 2021, pp. 264–265. doi:

10.1109/SEAMS51251.2021.00047.

[19] Gabriel Gehrig. Data Companion Set - Bachelor’s Thesis - Gabriel Gehrig. 2023. doi:
10.5281/zenodo.10034692. (Visited on 10/23/2023).

52

https://www.bka.de/SharedDocs/Downloads/DE/Publikationen/JahresberichteUndLagebilder/Cybercrime/cybercrimeBundeslagebild2021.html?nn=28110
https://www.bka.de/SharedDocs/Downloads/DE/Publikationen/JahresberichteUndLagebilder/Cybercrime/cybercrimeBundeslagebild2021.html?nn=28110
https://www.bka.de/SharedDocs/Downloads/DE/Publikationen/JahresberichteUndLagebilder/Cybercrime/cybercrimeBundeslagebild2021.html?nn=28110
https://doi.org/10.1080/14778238.2019.1598578
https://www.tandfonline.com/doi/full/10.1080/14778238.2019.1598578
https://www.tandfonline.com/doi/full/10.1080/14778238.2019.1598578
https://doi.org/10.1145/3282308.3282325
https://doi.org/10.1145/3282308.3282325
https://dl.acm.org/doi/10.1145/3282308.3282325
https://doi.org/10.1145/3167132.3167257
https://dl.acm.org/doi/10.1145/3167132.3167257
https://dl.acm.org/doi/10.1145/3167132.3167257
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1145/1882362.1882389
https://dl.acm.org/doi/10.1145/1882362.1882389
https://dl.acm.org/doi/10.1145/1882362.1882389
https://doi.org/10.1109/SEAMS51251.2021.00047
https://doi.org/10.5281/zenodo.10034692

[20] Sebastian Gerdes, Mohamed Soliman, and Matthias Riebisch. “Decision Buddy:

Tool Support for Constraint-Based Design Decisions during System Evolution”. In:

Proceedings of the 1st InternationalWorkshop on Future of Software Architecture Design
Assistants. FoSADA ’15. New York, NY, USA: Association for Computing Machinery,

May 6, 2015, pp. 13–18. isbn: 978-1-4503-3438-9. doi: 10.1145/2751491.2751495.

url: https://dl.acm.org/doi/10.1145/2751491.2751495 (visited on 05/30/2023).

[21] Abhilash Gopalakrishnan and Abhinna Chandra Biswal. “Quiver — An intelligent

decision support system for software architecture and design”. In: 2017 International
Conference On Smart Technologies For Smart Nation (SmartTechCon). 2017 Interna-
tional Conference On Smart Technologies For Smart Nation (SmartTechCon). Aug.

2017, pp. 1286–1291. doi: 10.1109/SmartTechCon.2017.8358574.

[22] Sebastian Hahner. “Dealing with Uncertainty in Architectural Confidentiality Anal-

ysis”. In: Software Engineering (Satellite Events) (2021).
[23] Sebastian Hahner, Robert Heinrich, and Ralf Reussner. “Architecture-Based Un-

certainty Impact Analysis to Ensure Confidentiality”. In: SEAMS, IEEE/ACM. 2023,

p. 7.

[24] Sebastian Hahner, Robert Heinrich, and Ralf Reussner. Data Companion Set. Ver-
sion 2.0. 2022. doi: 10.5281/zenodo.6855567. (Visited on 10/18/2023).

[25] Sebastian Hahner et al. “A Classification of Software-Architectural Uncertainty

Regarding Confidentiality”. In: E-Business and Telecommunications. Ed. by Pierangela
Samarati et al. Cham: Springer Nature Switzerland, 2023, pp. 139–160. isbn: 978-3-

031-36840-0.

[26] Sara M. Hezavehi et al. “Uncertainty in Self-adaptive Systems: A Research Commu-

nity Perspective”. In: ACM Trans. Auton. Adapt. Syst. 15.4 (Dec. 20, 2021), 10:1–10:36.
issn: 1556-4665. doi: 10.1145/3487921. url: https://dl.acm.org/doi/10.1145/

3487921 (visited on 06/20/2023).

[27] ISO. Information technology - Security techinques - Information security management
systems - Overview and vocabulary (ISO/IEC 27000:2018). 2018.

[28] Joel O. Iverson and Robert D. Mcphee. “Knowledge Management in Communities

of Practice: Being True to the Communicative Character of Knowledge”. In: Man-
agement Communication Quarterly 16.2 (Nov. 2002), pp. 259–266. issn: 0893-3189,

1552-6798. doi: 10.1177/089331802237239. url: http://journals.sagepub.com/

doi/10.1177/089331802237239 (visited on 10/21/2023).

[29] A. Jansen and J. Bosch. “Software Architecture as a Set of Architectural Design

Decisions”. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05).
5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05). Nov. 2005,

pp. 109–120. doi: 10.1109/WICSA.2005.61.

[30] Stefanie Jasser and Matthias Riebisch. “Reusing security solutions: a repository for

architectural decision support”. In: Proccedings of the 10th European Conference on
Software Architecture Workshops. ECSAW ’16. New York, NY, USA: Association for

Computing Machinery, Nov. 28, 2016, pp. 1–7. isbn: 978-1-4503-4781-5. doi: 10.

1145/2993412.3007556. url: https://dl.acm.org/doi/10.1145/2993412.3007556

(visited on 05/31/2023).

53

https://doi.org/10.1145/2751491.2751495
https://dl.acm.org/doi/10.1145/2751491.2751495
https://doi.org/10.1109/SmartTechCon.2017.8358574
https://doi.org/10.5281/zenodo.6855567
https://doi.org/10.1145/3487921
https://dl.acm.org/doi/10.1145/3487921
https://dl.acm.org/doi/10.1145/3487921
https://doi.org/10.1177/089331802237239
http://journals.sagepub.com/doi/10.1177/089331802237239
http://journals.sagepub.com/doi/10.1177/089331802237239
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1145/2993412.3007556
https://doi.org/10.1145/2993412.3007556
https://dl.acm.org/doi/10.1145/2993412.3007556

Bibliography

[31] Afnan Ullah Khan. “Data Confidentiality and Risk Management in Cloud Comput-

ing”. engd. University of York, Apr. 7, 2014. url: https://etheses.whiterose.ac.

uk/13677/ (visited on 10/05/2023).

[32] P. Layzell, O.P. Brereton, and A. French. “Supporting collaboration in distributed

software engineering teams”. In: Proceedings Seventh Asia-Pacific Software Engeering
Conference. APSEC 2000. Seventh Asia-Pacific Software Engineering Conference.

ASPEC 2000. Singapore: IEEE Comput. Soc, 2000, pp. 38–45. isbn: 978-0-7695-0915-0.

doi: 10.1109/APSEC.2000.896681. url: http://ieeexplore.ieee.org/document/

896681/ (visited on 10/21/2023).

[33] Chawanangwa Lupafya. “A conceptual framework for uncertainty in software sys-

tems and its application to software architectures”. Accepted: 2023-02-06T11:14:14Z.

Thesis. The University of St Andrews, June 14, 2023. doi: 10.17630/sta/264. url:

https://research-repository.st-andrews.ac.uk/handle/10023/26909 (visited

on 07/03/2023).

[34] Ioanna Lytra and Uwe Zdun. “Supporting architectural decision making for systems-

of-systems design under uncertainty”. In: Proceedings of the First International Work-
shop on Software Engineering for Systems-of-Systems. SESoS ’13. New York, NY, USA:

Association for Computing Machinery, July 2, 2013, pp. 43–46. isbn: 978-1-4503-

2048-1. doi: 10.1145/2489850.2489859. url: https://doi.org/10.1145/2489850.

2489859 (visited on 07/03/2023).

[35] Steve McConnell. Software project survival guide. Redmond, Wash: Microsoft Press,

1998. 288 pp. isbn: 978-1-57231-621-8.

[36] Klaus North and Gita Kumta. Knowledge Management. Springer Texts in Business

and Economics. Cham: Springer International Publishing, 2018. isbn: 978-3-319-

59977-9 978-3-319-59978-6. doi: 10.1007/978-3-319-59978-6. url: http://link.

springer.com/10.1007/978-3-319-59978-6 (visited on 10/26/2023).

[37] Klaus North, Ronald Maier, and Oliver Haas, eds. Knowledge Management in Digital
Change: New Findings and Practical Cases. Progress in IS. Cham: Springer Interna-

tional Publishing, 2018. isbn: 978-3-319-73545-0 978-3-319-73546-7. doi: 10.1007/

978-3-319-73546-7. url: http://link.springer.com/10.1007/978-3-319-73546-

7 (visited on 10/21/2023).

[38] Diego Perez-Palacin and Raffaela Mirandola. “Uncertainties in the modeling of

self-adaptive systems: a taxonomy and an example of availability evaluation”. In:

Proceedings of the 5th ACM/SPEC international conference on Performance engineering.
ICPE ’14. New York, NY, USA: Association for Computing Machinery, Mar. 22, 2014,

pp. 3–14. isbn: 978-1-4503-2733-6. doi: 10.1145/2568088.2568095. url: https:

//dl.acm.org/doi/10.1145/2568088.2568095 (visited on 05/30/2023).

[39] Oliver Radley-Gardner, Hugh Beale, and Reinhard Zimmermann, eds. Fundamental
Texts On European Private Law. Hart Publishing, 2016. isbn: 978-1-78225-864-3 978-
1-78225-865-0 978-1-78225-866-7 978-1-78225-867-4. doi: 10.5040/9781782258674.

url: http://www.bloomsburycollections.com/book/fundamental- texts- on-

european-private-law-1 (visited on 10/23/2023).

[40] Andres J. Ramirez, Adam C. Jensen, and Betty H. C. Cheng. “A taxonomy of un-

certainty for dynamically adaptive systems”. In: 2012 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 2012 7th

54

https://etheses.whiterose.ac.uk/13677/
https://etheses.whiterose.ac.uk/13677/
https://doi.org/10.1109/APSEC.2000.896681
http://ieeexplore.ieee.org/document/896681/
http://ieeexplore.ieee.org/document/896681/
https://doi.org/10.17630/sta/264
https://research-repository.st-andrews.ac.uk/handle/10023/26909
https://doi.org/10.1145/2489850.2489859
https://doi.org/10.1145/2489850.2489859
https://doi.org/10.1145/2489850.2489859
https://doi.org/10.1007/978-3-319-59978-6
http://link.springer.com/10.1007/978-3-319-59978-6
http://link.springer.com/10.1007/978-3-319-59978-6
https://doi.org/10.1007/978-3-319-73546-7
https://doi.org/10.1007/978-3-319-73546-7
http://link.springer.com/10.1007/978-3-319-73546-7
http://link.springer.com/10.1007/978-3-319-73546-7
https://doi.org/10.1145/2568088.2568095
https://dl.acm.org/doi/10.1145/2568088.2568095
https://dl.acm.org/doi/10.1145/2568088.2568095
https://doi.org/10.5040/9781782258674
http://www.bloomsburycollections.com/book/fundamental-texts-on-european-private-law-1
http://www.bloomsburycollections.com/book/fundamental-texts-on-european-private-law-1

International Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS). ISSN: 2157-2321. June 2012, pp. 99–108. doi: 10.1109/SEAMS.

2012.6224396.

[41] Ralf Reussner, ed. Modeling and simulating software architectures: the Palladio ap-
proach. Cambridge, Massachusetts: MIT Press, 2016. 377 pp. isbn: 978-0-262-03476-0.

[42] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empir Software Eng 14.2 (Apr. 1, 2009), pp. 131–
164. issn: 1573-7616. doi: 10.1007/s10664-008-9102-8. url: https://doi.org/10.

1007/s10664-008-9102-8 (visited on 07/03/2023).

[43] Leonie Sterz, Christoph Werner, and Oliver Raabe. “Intelligente Verkehrssysteme

– IT-Sicherheit in offenen Infrastrukturen Teil 1”. In: Recht der Datenverarbeitung
(RDV) Heft 6 2022 (2022).

[44] Leonie Sterz, Christoph Werner, and Oliver Raabe. “Intelligente Verkehrssysteme

– IT-Sicherheit in offenen Infrastrukturen Teil 2”. In: Recht der Datenverarbeitung
(RDV) Heft 2 2023 (2023).

[45] Tien Fabrianti Kusumasari et al. “Collaboration model of software development”.

In: Proceedings of the 2011 International Conference on Electrical Engineering and
Informatics. 2011 International Conference on Electrical Engineering and Informatics

(ICEEI). Bandung, Indonesia: IEEE, July 2011, pp. 1–6. isbn: 978-1-4577-0753-7. doi:

10.1109/ICEEI.2011.6021769. url: http://ieeexplore.ieee.org/document/

6021769/ (visited on 10/21/2023).

[46] Roger L. Van Scoy. Software Development Risk: Opportunity, Not Problem: Fort Belvoir,
VA: Defense Technical Information Center, Sept. 1, 1992. doi: 10.21236/ADA258743.

url: http://www.dtic.mil/docs/citations/ADA258743 (visited on 10/20/2023).

[47] Sitalakshmi Venkatraman and Ramanathan Venkatraman. “Communities of Practice

Approach for KnowledgeManagement Systems”. In: Systems 6.4 (Sept. 27, 2018), p. 36.
issn: 2079-8954. doi: 10.3390/systems6040036. url: http://www.mdpi.com/2079-

8954/6/4/36 (visited on 10/21/2023).

[48] D. Verdon and G. McGraw. “Risk analysis in software design”. In: IEEE Secur. Privacy
2.4 (July 2004), pp. 79–84. issn: 1540-7993, 1558-4046. doi: 10.1109/MSP.2004.55.

url: https://ieeexplore.ieee.org/document/1324606/ (visited on 10/20/2023).

[49] Gert-Jan de Vreede et al. “Collaboration technology in teams and organizations:

Introduction to the special issue”. In: Inf Syst Front 18.1 (Feb. 1, 2016), pp. 1–6. issn:
1572-9419. doi: 10.1007/s10796-016-9632-3. url: https://doi.org/10.1007/

s10796-016-9632-3 (visited on 10/21/2023).

[50] W.E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Man-

agement in Model-Based Decision Support”. In: Integrated Assessment 4.1 (Mar. 1,

2003). Publisher: Taylor & Francis _eprint: https://doi.org/10.1076/iaij.4.1.5.16466,

pp. 5–17. issn: 1389-5176. doi: 10.1076/iaij.4.1.5.16466. url: https://doi.org/

10.1076/iaij.4.1.5.16466 (visited on 05/30/2023).

[51] Etienne Wenger, Richard A. McDermott, and William Snyder. Cultivating commu-
nities of practice: a guide to managing knowledge. Boston, Mass: Harvard Business

School Press, 2002. 284 pp. isbn: 978-1-57851-330-7.

[52] Danny Weyns et al. “Towards a Research Agenda for Understanding and Man-

agingUncertainty in Self-Adaptive Systems”. In: SIGSOFT Softw. Eng. Notes 48.4

55

https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/ICEEI.2011.6021769
http://ieeexplore.ieee.org/document/6021769/
http://ieeexplore.ieee.org/document/6021769/
https://doi.org/10.21236/ADA258743
http://www.dtic.mil/docs/citations/ADA258743
https://doi.org/10.3390/systems6040036
http://www.mdpi.com/2079-8954/6/4/36
http://www.mdpi.com/2079-8954/6/4/36
https://doi.org/10.1109/MSP.2004.55
https://ieeexplore.ieee.org/document/1324606/
https://doi.org/10.1007/s10796-016-9632-3
https://doi.org/10.1007/s10796-016-9632-3
https://doi.org/10.1007/s10796-016-9632-3
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1076/iaij.4.1.5.16466

Bibliography

(Oct. 13, 2023), pp. 20–36. issn: 0163-5948. doi: 10.1145/3617946.3617951. url:

https://dl.acm.org/doi/10.1145/3617946.3617951 (visited on 11/03/2023).

[53] Tao Yue. Precise Semantics for Uncertainty Modeling (PSUM). Version 1.0. 2023. url:

https://www.omg.org/spec/PSUM/1.0/.

[54] Olaf Zimmermann et al. “Reusable Architectural Decision Models for Enterprise

Application Development”. In: Software Architectures, Components, and Applications.
Ed. by Sven Overhage et al. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 2007, pp. 15–32. isbn: 978-3-540-77619-2. doi: 10.1007/978-3-540-77619-

2_2.

56

https://doi.org/10.1145/3617946.3617951
https://dl.acm.org/doi/10.1145/3617946.3617951
https://www.omg.org/spec/PSUM/1.0/
https://doi.org/10.1007/978-3-540-77619-2_2
https://doi.org/10.1007/978-3-540-77619-2_2

	Abstract
	Zusammenfassung
	Introduction
	Motivation and Problem Statement
	Research Questions and Contributions
	Outline

	Foundations
	Uncertainties in Software Engineering
	Uncertainties with Impact on Confidentiality
	Explainability

	Related Work
	Design Decisions and Uncertainty
	Risk Management
	Knowledge Management
	Collaboration in Software Engineering
	Software Architecture Modeling and Analysis Support
	Collecting Uncertainties with Impact on Confidentiality

	Capturing Uncertainties Regarding Confidentiality
	Running Example
	Structure and Requirements
	Meta Model of Uncertainty Description
	Explainability of Uncertainties
	Summary

	Managing Uncertainties by Collaboration
	Using the Knowledge on Uncertainties
	Extending the Uncertainty Collection
	Collaboration
	Realization
	Summary

	Evaluation
	Goals, Questions and Metrics
	Evaluation Design
	Evaluation Results and Discussion
	Theoretical Validation Results
	User Study Results

	Threats to Validity
	Limitations

	Conclusion
	Summary
	Future Work

	Bibliography

