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ABSTRACT
An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty
is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input
space, are computationally intractable for a large number of input parameters represented by a high-dimensional input space. It is, therefore,
generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g., a set of experimental results) with a plausible
set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian optimization to minimize
the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability
that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input
parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead
iodide (MAPbI3), which has attracted attention as a light harvesting material in solar cells. From our analysis, we conclude that the formation
of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally
observed temperature dependence of electron mobility.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151747

I. INTRODUCTION

Numerical simulation of physical models typically requires
a large number of input parameters that must be derived from
previous theoretical calculations or measured experimentally.1,2 It
is, therefore, inevitable that model input parameters suffer from
uncertainty, and the effect of this uncertainty on the simulation
output is not often discussed. Quantifying the functional relation-
ship between the model input parameters and simulation output
in the N-dimensional input space, where a set of N model input
parameters is a point in this space, is computationally challeng-
ing due to the combination of a high-dimensional input space
and expensive numerical simulation times.3 The effect of input

uncertainty is thus routinely ignored given that naive methods for
exploring the input space, such as grid or random search, require a
computationally intractable number of simulations. It is, therefore,
difficult to establish whether it is possible to generate a partic-
ular outcome, e.g., matching a set of experimental results, from
a numerical simulation with a plausible set of input parameter
values.

Machine learning, specifically Bayesian optimization,4,5 can
be used to efficiently search the input space in the region
defined by the uncertainty in each input parameter, while min-
imizing the difference between the simulation output and the
experimentally measured result. During optimization a probabilis-
tic function is learned that maps the input parameters to the
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simulation output. This function explicitly evaluates the probabil-
ity that the simulation can reproduce the experimental result in
the region of input parameter space defined by the uncertainty.
With this approach, informed conclusions can be drawn from
the simulation output that allow for the uncertainty present in
the input parameters. The method presented here falls into the
wider field of statistical emulation for sensitivity and uncertainty
analysis.6–8

In the field of semiconductor physics, previous methods have
attempted to manually minimize the error between simulation
and experiment in the context of device parameter estimation for
organic light-emitting diodes (OLEDs).9–11 However, a machine-
learning method for automatically quantifying the effect of input
parameter uncertainty on simulation prediction by minimizing the
error between simulation and experiment has not been established.
A related problem of utilizing simulation prediction to find device
parameters from experimental measurements was demonstrated by
Knapp et al.12

We demonstrate the method with application to the simula-
tion of charge-carrier dynamics in lead-halide perovskites (LHPs).
LHPs as light-harvesting layers in solar cells have been the focus
of intense research activity due to power conversion efficiency
increases of 9%–27% since 200913,14 and low-energy, low-cost man-
ufacturing.15 However, a comprehensive theoretical understanding
of the mechanisms responsible for a number of their electronic
properties is currently lacking.16,17 Specifically, the fundamental
physical mechanisms controlling the transport of photogenerated
charge carriers are actively debated; see, for example, the mea-
surements of Kobbekaduwa et al.18 on ultrafast dynamics that
address the carrier mobility dependence on temperature in LHPs.
Mesoscale simulation models of charge transport in LHPs, such
as BoltMC, an ensemble Monte Carlo approach using Boltzmann
transport theory,19 can provide insight into these mobility-limiting
mechanisms.

Here, we investigate the possibility that the formation of large
polarons,20 quasi-particles resulting from the coupling of charge
carriers with the surrounding polarized ionic lattice, affects the tem-
perature dependence of the carrier mobility in methyl-ammonium
lead iodide, MAPbI3. A large polaron is an itinerant particle with
mobility that decreases with temperature.19 Prior theoretical work
has utilized many approaches for calculating this dependence,20–22

parameterized by electronic structure calculations and/or exper-
imental measurements of material parameters. Yet, the effect of
uncertainty on these material input parameters has been largely
ignored. Here, we show, with calculations from BoltMC, that the
temperature dependence of polaron mobility is a non-linear func-
tion of the input parameters in the region of input space defined
by the uncertainty in each parameter. This finding indicates that
strong conclusions derived from a single point (i.e., a single set
of material input parameters) in the input space are unjustified.
Bayesian optimization has thus been used to efficiently explore the
effect of uncertain inputs on simulation predictions of the temper-
ature dependence of polaron mobilities in comparison to experi-
ments. This approach strengthens any conclusions drawn from the
simulation output as the effect of input parameter uncertainty has
been considered. In addition, context aids our understanding of the
fundamental physical mechanisms influencing charge transport in
MAPbI3.

II. RESULTS AND DISCUSSION
A. Polaron mobility temperature exponent

Assuming the polaron mobility varies with temperature as a
power law, Bayesian optimization was used to minimize the abso-
lute value of the difference between the predicted temperature
exponent and an experimentally measured exponent of −1.5 (see
Fig. 1). This power law dependence was assumed to be linear in
the high-temperature limit, found in previous studies to be for
temperatures >200 K.19 The predicted temperature exponent was
determined from the polaron mobility at three temperatures toward
the lower temperature end of this limit (200, 250, and 300 K) in
order for the procedure to be computationally efficient; the simu-
lation time increases with temperature due to increased scattering
at higher temperatures. Our procedure has two stages explained
in more detail in Sec. III C: first, we find that the minimum tem-
perature exponent predicted by BoltMC for a prior uncertainty
range of ±20% is −0.5 ± 0.04. A value of 0.12 me for the effec-
tive mass m∗ minimizes the temperature exponent at the bottom
of the uncertainty range. Second, we increase the prior uncertainty
range to ±40% and find that the predicted temperature exponent is
further reduced to −0.54 with m∗ = 0.098me. Our predictions for
both uncertainty ranges are well above the experimental tempera-
ture exponent, so our predicted minimum temperature exponent is
the same as the prediction we would have found if we had minimized
the difference between the predicted and experimental temperature
exponents.

FIG. 1. Temperature dependent mobilities of electron polarons in MAPbI3 asso-
ciated with material parameters found to minimize the polaron mobility tem-
perature exponent (see Table I). Solid red points show mobilities used during
optimization; open red points show mobilities calculated after optimization to
confirm exponential temperature dependence (for T ≥ 200 K). Errors in the
mobility ensemble average are comparable to the data point size. Experimen-
tal data points are shown in gray with the symbols shown in the legend and
are linked by dashed lines: Shrestha et al.,23 Biewald et al.,24 Milot et al.,25

and Savenije et al.26
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TABLE I. Material parameters for electrons in MAPbI3. Mean values sourced from ab initio calculations reported in the literature and summarized in Ref. 19. In addition, shown
are parameter values associated with the minimum discrepancy found during optimization between the temperature exponent calculated from simulation and an experimental
exponent of −1.5. Here, me is electron mass and ε0 vacuum electric permittivity.

Parameter Mean value Minimum exponent discrepancy value

Conduction band effective mass m∗ 0.15 me 0.12 me
Polar optical phonon frequency ωpop/2π 2.25 THz 2.67 THz
Low frequency permittivity εLF 25.7 ε0 27.1 ε0
High frequency permittivity εHF 4.5 ε0 5.4 ε0
Acoustic deformation potential Ξ 2.13 eV 1.7 eV
Elastic constant cL 32 GPa 32 GPa

Using the approach described in Sec. III, 1269 simulations were
required from 423 points (including the initial set) in the 6-D sim-
ulation input parameter space at temperatures of 200, 250, and
300 K. The minimum temperature exponent of polaron mobility
in MAPbI3 was found to be −0.50 ± 0.04. This prediction resulted
from optimization in the hypervolume of input space defined by
the uncertainty in each of the six material simulation input para-
meters. The optimization procedure was terminated due to Gaussian
Process Regression (GPR) predicting the probability of obtaining
a temperature exponent equal to or more negative than −1.5 of
∼10−24. Table I shows the material parameters associated with the
minimum temperature exponent found during minimization. All
material parameters lie within the assumed uniform uncertainty,
except the effective mass m∗, which was found to minimize the tem-
perature exponent at 0.12 me (bottom of the uncertainty range).
This suggests that the temperature exponent may be further mini-
mized by decreasing m∗. On increasing the prior uncertainty range
to ±40% and allowing the minimization procedure to continue, it
was found that the temperature exponent may be further minimized
to −0.54 with m∗ = 0.098me. This value of m∗ is well within the
±40% range, indicating that the temperature exponent may not be
further minimized by decreasing m∗ (within this range). Addition-
ally, a temperature exponent of −0.54 is within one standard error of
the temperature exponent found within the ±20% uncertainty range
and, therefore, does not affect any conclusions drawn below. Finally,
increasing the material parameter uncertainty range to ±40% also
leads to material parameters that are unphysical for MAPbI3 (see
Refs. 20 and 27–29).

An accurate prediction of the probability of reproducing a tem-
perature exponent of −1.5 relies strongly on the accuracy of the
output variance predicted by GPR. A measure of this accuracy is
easily obtained and is described as follows: In the 6-D simulation
input space, 100 points were randomly generated, and the temper-
ature exponent of the polaron mobility was calculated. Using the
trained Gaussian Process Regressor, the predicted normal distribu-
tion [see Eq. (3)] over the temperature exponent for the 100 points
in the input space was determined, and ±2σ,±3σ (95.5%, 99.7%)
confidence bounds were calculated. 88% of simulated temperature
exponents for the 100 points in the input space fell within 95.5%
predicted bounds, with 100% of simulated temperature exponents
within 99.7% bounds. This indicates that the uncertainty of the GP
(Gaussian Process) model is reasonably accurate. Further uncer-
tainty calibration to systematically correct model uncertainties so

that model errors (with respect to the training data, i.e., the sim-
ulation data) agree with the predicted model uncertainties is not
required.30

The accuracy of predicted GP model uncertainties provides
strong evidence that the probability of obtaining a temperature
exponent more negative than −1.5 is indeed vanishingly small,
∼10−24. Therefore, this modeling indicates that polaron forma-
tion in MAPbI3 cannot explain the observed temperature depen-
dence of electron mobility, even once the effect of a large uncer-
tainty in the material simulation input parameters is considered.
Other mechanisms that regulate charge-carrier dynamics in MAPbI3
must be investigated, such as trapping and recombination, as
polaron formation has been shown to be more limited in its
effect on electron mobilities than previously hypothesized in the
literature.31–33

B. Band electron and polaron mobility at 298 K
Additionally, GPR was fit to both the band electron and polaron

mobility as a function of the 6-D simulation input space at 298 K,
with mobilities calculated as described in Sec. III B. A training
set of 1000 simulations was obtained from randomly generated
sets of simulation input parameters and their calculated band elec-
tron and polaron mobilities. A mean absolute percentage error of
0.5% was achieved for both model predictions of band electron
and polaron mobility on an unseen test set of 200 simulations. The
trained length-scales of the covariance function of the GP for the
two models provide information regarding the physical scattering
mechanisms present in MAPbI3. Specifically, a measure of the sen-
sitivity of the band electron and polaron mobility to each of the six
input parameters (normalized by removing the mean and scaling to
unit variance) is quantified by the inverse of the length-scale for each
parameter (see Fig. 2).34

An understanding of the effect of a small perturbation to an
input parameter on the band electron and polaron mobility is, there-
fore, obtained, providing insight into the physical mechanisms con-
trolling polaron mobility in lead-halide perovskites. For MAPbI3,
this analysis suggests that the polaron mobility is less sensitive to
a perturbation in any input parameter than seen for bare band elec-
tron mobility. Given that the six input parameters define the polaron
scattering rates for acoustic phonons, optical phonons, and ionized
impurities,19 this in turn suggests that the polaron mobility is less
sensitive to perturbations in the scattering rates.
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FIG. 2. The inverse length-scales of covariance function (RBF) for each simulation
input parameter, defined by mean values in Table I, taken from two trained GPs
predicting band electron and polaron mobility from simulation input parameters
at 298 K. The inverse length-scales are plotted such that larger values indicate
greater output (mobility) sensitivity to that parameter. Error bars show the standard
error in the mean in black and were calculated by 10-fold cross validation over the
training set.

Furthermore, comparisons across the magnitude of length-
scales for each parameter (note that comparison between length-
scales for different parameters is possible only as the input data
were normalized before fitting GPR) indicate which perturbed scat-
tering rates the electron mobility is most sensitive to within the
uncertainty in each input parameter. For example, a perturba-
tion in the conduction band effective mass m∗ has the largest
influence on mobility. This can be rationalized from the simple
Drude theory μ = τ(m∗)/m∗, where the mobility is mediated by
the magnitude of the effective mass directly as well as implicitly
through the relaxation time τ(m∗), arising from the dependence
of the scattering rates on m∗. The effective mass can be seen to
strongly regulate electron mobility, a result that is confirmed by this
analysis.

Large mobility sensitivity to both low and high frequency per-
mittivity, ϵs and ϵ∞, is indicated by large inverse length-scales
for both parameters. This suggests that the band electron/polaron
mobility in MAPbI3 has increased sensitivity to a perturbation in
scattering rates strongly dependent on these parameters, namely,
the scattering rates for polar optical phonons and ionized impu-
rities due to their functional dependence on (1/ϵ∞ − 1/ϵs) and
1/ϵ2

s , respectively.35 Walsh36 discussed the importance of dielec-
tric screening for defect tolerance of perovskites and, we infer, for
charge transport. Despite the dependence of the acoustic phonon
scattering rate on Ξ2 and 1/cL, the mobility sensitivity (inverse
length-scale) to each parameter (Ξ, cL) remains low, suggesting
that a perturbation in the acoustic phonon scattering rate has
a reduced effect on the band electron mobility. This effect on
mobility is significantly decreased for polarons, as indicated by the
smaller inverse length-scale. Indeed, previous studies of polaron
formation in MAPbI3 have concluded that scattering due to acous-
tic phonons is the mechanism most significantly decreased in

comparison to bare band electrons,19 a result confirmed by this
analysis.

However, one must be careful with the physical insight derived
from an analysis of the input parameter length-scales. Specifically,
it is not clear that an input parameter with a larger length-scale
has reduced significance in determining the band electron/polaron
mobility; only that a perturbation in the parameter and, therefore, a
perturbation in the scattering rate, has a smaller effect on the mobil-
ity. For example, it may be found that the magnitude of electron
mobility is not significantly changed by a perturbation in one scat-
tering rate. Yet this does not mean that electron mobility would
be unchanged if this scattering mechanism was not present in the
simulation; only that its contribution to mobility is approximately
constant over the range in which the material parameters were
varied.

Finally, this analysis is useful for guiding future uncertainty
reduction, whereby reducing uncertainty in input parameters with
smaller length scales will result in a greater decrease in the uncer-
tainty over the simulation output. Similarly, an analysis of the
length-scale for each input parameter may be used to determine a
reduction in the dimensionality of the simulation input space by
excluding parameters with comparatively large length-scales, in turn
improving the efficiency of search/optimization methods.

III. METHODS
A. Efficient simulation input space search

Global optimization of an expensive-to-evaluate “black box”
function is a common problem across many disciplines.37 Here, the
“black box” function refers to a numerical simulation of a parame-
terized physical model. Bayesian optimization4,5 is frequently used
in this setting and utilizes a learned probabilistic model of the func-
tion that is being optimized. No knowledge of the functional form
is assumed; e.g., the function is not assumed to be convex, and gra-
dients are not directly accessible. GPR has been used to model the
functional relationship between the simulation input parameters x
and output g(x). GPs38 can be viewed as specifying a distribution
over functions,

g(x) ∼ GP(m(x), k(x, x′)), (1)

where m(x) defines the mean function and k(x, x′) is the covariance
function of the GP. The radial basis function (RBF) was used in this
work to calculate k(x, x′), specifying the ith row and jth column of
the covariance matrix with the addition of additive noise along the
diagonal,

k(xi, xj) = σ2
f exp(− ∣xi − xj ∣2

2l2 ) + σ2
nδij. (2)

The free parameters of the RBF, σ2
f and l, define the output sig-

nal variance and input length-scales, respectively, and σ2
n specifies

the variance of additional Gaussian measurement noise. These para-
meters are optimized during training to maximize the log-marginal
likelihood of the data. The choice of covariance function quantifies
certain modeling assumptions that the underlying numerical func-
tion is expected to obey, such as smoothness, non-stationarity, and
periodicity.39 The RBF kernel encodes a prior assumption that the

APL Mach. Learn. 1, 046106 (2023); doi: 10.1063/5.0151747 1, 046106-4

© Author(s) 2023

 23 N
ovem

ber 2023 09:53:19

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

output of the function to be approximated smoothly varies with
respect to function input parameters.

For a GP, the predicted marginal distribution of any single
function value y (simulation output) is univariate normal,38

p(y∣x) = N (y; μ, σ2), μ = m(x), σ2 = k(x, x). (3)

Bayesian optimization utilizes this predicted distribution by deter-
mining the optimal next input location with which to query
the ground truth function (here, the simulation model), such
that the probability of finding an optimum is maximized. Specif-
ically, an acquisition function α(x) is defined over the input
space, and the next input location with which to query the
ground truth function is determined by maximizing this acquisition
function,

xn+1 = arg max
x

α(x). (4)

Here, the acquisition function is defined by the probability of
improvement (PI), and if minimization of the ground truth function
is desired, it is given by38

α(x) = P(g(x) ≤ g(x+) − κ), (5)

where x+ represents the input location associated with the mini-
mum function value observed thus far during optimization and κ is a
hyper-parameter that defines the exploration-exploitation trade-off
of the optimization policy.

In this application, the function minimized during optimiza-
tion is the absolute value of the difference between the predicted
simulation output and the experimental result. The optimization
procedure can be terminated once either a simulation output is
found that reproduces the experimental result below a pre-specified
error or the probability of obtaining an output equal to the experi-
mental result falls below a threshold. This probability can be explic-
itly evaluated from the predicted variance of the simulation output
from GPR at each point in the input space; a method for determin-
ing the accuracy of the predicted variances is reported in Sec. III.
Note that the probability of reproducing the experimental result
may increase or decrease with the addition of a further simulation.
The threshold probability must, therefore, be defined conservatively
(i.e., sufficiently low) to ensure sufficient iterations take place and so
avoid incorrect early stopping.

B. Simulation of polaron dynamics
To demonstrate this method, polaron dynamics were simu-

lated by solving an augmented form of Kadanoff’s semiclassical
Boltzmann transport equation40 using the ensemble Monte Carlo
method.35,41 For an ensemble of polarons subject to a constant
electric field E, the Boltzmann transport equation is given by

∂ f
∂t
− e

h̵
E ⋅ ∂ f

∂k
= (∂ f

∂t
)

pop
+ (∂ f

∂t
)

aco
+ (∂ f

∂t
)

imp
, (6)

where k is the polaron wavevector and f (k, t) defines the one-
particle distribution function. The partial derivatives on the right
hand side of Eq. (6) represent the change to the distribution function
due to the scattering of polarons by optical phonons (pop), acoustic
phonons (aco), and ionized impurities (imp). The scattering rates

for each of these three mechanisms were calculated using Fermi’s
golden rule,

S(ki → kj) =
2π
h̵
∣⟨k f ∣H′∣ki⟩∣2δ(ϵ f − ϵi − Δϵ), (7)

where H′ is the time-dependent perturbing Hamiltonian for each
scattering mechanism in the bulk of a polar semiconductor.35 ϵi and
ϵ f are the energies of the initial and final states, respectively, and Δϵ
represents the quanta of energy exchanged as a result of the scat-
tering. A derivation of the scattering rates for the three scattering
mechanisms considered here for both band electrons and polarons
can be found in Ref. 19.

Calculation of the scattering rates requires the polaron eigen-
states ∣k⟩. These eigenstates were obtained from the Feynman model
of a polaron, where an electron is coupled to a second parti-
cle via a harmonic potential that represents the cloud of virtual
phonons associated with the surrounding polarized ionic lattice.42

The Hamiltonian of this system is given by40

HF =
h̵2∣ke∣2
2m∗e

+ h̵2∣kc∣2
2m∗c

+ 1
2

κ(r − rc)2

= h̵2∣k∣2
2m∗

+ h̵ωosc

3

∑
i=1
((aosc)†i (aosc)i +

1
2
), (8)

where r, k, and m∗ are the position, wavevector, and effective mass
for the electron (subscript “e”), phonon cloud (subscript “c”), and
polaron (no subscript). The polaron’s internal harmonic oscillator
state is defined by the angular frequency ωosc, with (aosc)†i and (aosc)i
representing the ladder operators for this harmonic oscillator system
for the three cartesian directions, indexed by i.

Finally, steady-state solutions to the Boltzmann transport equa-
tion were obtained by the ensemble Monte Carlo method35,41

(additional information on this calculation and its computational
implementation can be found in Ref. 19), and the polaron mobil-
ity μ was determined from the ensemble average of the polaron
wavevector,

μ = h̵∣k∣
∣E∣m∗ . (9)

Band electron dynamics were also simulated, and the mobility was
calculated as described earlier, but the band electron state ke was
determined from the effective mass Hamiltonian,

H0 =
h̵2∣ke∣2
2m∗e

. (10)

C. Polaron dynamics under input uncertainty
To calculate the polaron scattering rates, six material para-

meters were required that define the semiconductor to be simu-
lated and can be viewed as specifying a 6-D input space. These
parameters for MAPbI3, as predicted by electronic structure cal-
culations, can be seen in Table I. The uncertainty in each of the
six MAPbI3 input parameters was assumed to be ±20% in the
absence of uncertainty estimation accompanying ab initio predic-
tion.19 This assumed uncertainty results in input parameter values
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that align with values presented in a range of previous studies,
both theoretical predictions and experimental measurements.20,27–29

In the hypervolume of the 6-D input space defined by the uncer-
tainty in each input parameter, 300 points (sets of input parameters)
were randomly generated, and the polaron mobility was calcu-
lated at 200, 250, and 300 K. The temperature dependence of the
polaron mobility has been characterized by fitting the power-law
relationship,

μ(T) = μ0Tβ, (11)

where β is the temperature exponent obtained from the gradient of
a linear fit performed on log–log axes,

log (μ(T)) = log (μ0) + β log (T). (12)

The temperature exponent β was used as the predicted variable y for
GPR as a function of the 6-D input space x. We explore the temper-
ature dependence of the mobility from 150 to 300 K, for which Fig. 1
shows there is a linear fit using log–log axes.

As noted in Sec. III A, Bayesian optimization could then be
used to minimize the absolute value of the difference between
the predicted temperature exponent and an experimentally mea-
sured exponent of −1.5 (see Fig. 1). The Python codes used for
performing this procedure, along with the supporting data used
to run the code, can be found in Ref. 43. Correlations between
input parameters have not been considered during optimization,
as constraining the optimization procedure by considering para-
meter correlations would only decrease the searched parameter
space. In this specific application, reducing the searched parameter
space may result in a temperature exponent optimum further from
the experimental exponent but never closer (as the space consid-
ered is inclusive of the correlation constrained space). While any
correlations between input parameters will be important in other
applications, their inclusion here would not affect any conclusions
drawn.

IV. CONCLUSIONS
We have demonstrated that Bayesian optimization can effi-

ciently search a region of the simulation input space defined by
the uncertainty in each input parameter to minimize the difference
between the simulation output and a set of experimental results.
This was achieved through an explicit evaluation of the probabil-
ity that the simulation can reproduce the measured experimental
results in this region of input space. With this method, 1269 sim-
ulations using the code BoltMC were required from 423 points in
the 6-D simulation input parameter space (three temperatures at
each point in the input space). A naive grid search of any simulation
input space would require nd points for n discrete parameter values
along each input dimension d, rendering a quantification of input
uncertainty computationally intractable for most numerical physics
simulations. Here, a coarse grid (n = 10) would require 2 × 106 sim-
ulations. Given the generality of the method, application to other
numerical simulations (in semiconductor physics and other fields)
is straightforward. For physical models known to exhibit a non-
linear functional dependence on model inputs, this method allows

for more complete conclusions to be drawn from the results as the
effect of input parameter uncertainty on the simulation output has
been determined.

The minimum temperature exponent of the polaron mobility
found during optimization was −0.50 ± 0.04, with the probability of
reproducing an experimental exponent of −1.5 found to be ∼10−24.
This result suggests that the formation of large polarons in MAPbI3
cannot explain the observed temperature dependence of electron
mobility; other mechanisms that regulate charge-carrier dynamics in
lead-halide perovskites, such as trapping and recombination, must
therefore be investigated.

Additionally, with analysis of the length-scales of the covari-
ance function for GPR, polaron mobility was found to be less
sensitive to perturbations in the scattering rates than observed for
band electrons. Both band electrons and polarons in MAPbI3 dis-
played greater mobility sensitivity to perturbations in the scattering
rates for polar optical phonons and ionized impurities, with the
effect on the mobility of a perturbation in the acoustic phonon
scattering rate significantly decreased. This analysis demonstrates
the predictive possibilities of BoltMC, giving insight on the ori-
gins of the temperature dependence of the mobility from a com-
parison of physical scattering for band electrons and electron
polarons.
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