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1. Introduction

1.1. Context and Motivation

The concept of topological interlocking was introduced in an
article by Dyskin et al.[1] The area of topological interlocking
design has maturated over the 20 years since that publication.

A brief overview of these developments
was presented recently.[2] It was posited that
a huge repository of engineering structures
could be built up by designing segmented
structures consisting of interlocked ele-
ments. Here we present one such structure,
based on tessellating a plane and proliferat-
ing the prototype tiles (“prototiles”) in the
third dimension according to helical move-
ment and stacking of 2D space-filling tessel-
lations, generally defined as 2-honeycombs
in the geometry of tessellations.

Tiling and tessellations are central
to many applications such as the
design of architectural forms, functional/
architectured materials (materials whose
behavior is dictated by the geometric
arrangement of material rather than its
microscale constitutive properties).[3,4]

This article focuses on space-filling topo-
logically interlocking blocks, special class
shapes that tessellate volumetric domains.
Topologically interlocking assemblies are

composed of blocks that stay in place purely due to the kine-
matic constraints imposed by their neighboring blocks under
a peripheral force. While several prior studies have demon-
strated topologically interlocked assemblies using polyhedral
blocks (Figure 1), we observe that recent works have introduced
topological interlocking with space-filling blocks.[5,6] The
motivation for our work stems from the observation that these
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An approach for modeling topologically interlocked building blocks that can be
assembled in a water-tight manner (space filling) to design a variety of spatial
structures is introduced. This approach takes inspiration from recent methods
utilizing Voronoi tessellation of spatial domains using symmetrically arranged
Voronoi sites. Attention is focused on building blocks that result from helical
stacking of planar 2-honeycombs (i.e., tessellations of the plane with a single
prototile) generated through a combination of wallpaper symmetries and Voronoi
tessellation. This unique combination gives rise to structures that are both space-
filling (due to Voronoi tessellation) and interlocking (due to helical trajectories).
Algorithms are developed to generate two different varieties of helical building
blocks, namely, corrugated and smooth. These varieties result naturally from the
method of discretization and shape generation and lead to distinct interlocking
behavior. In order to study these varieties, finite-element analyses (FEA) are con-
ducted on different tiles parametrized by 1) the polygonal unit cell determined by the
wallpaper symmetry and 2) the parameters of the helical line generating the Voronoi
tessellation. Analyses reveal that the new design of the geometry of the building
blocks enables strong variation of the engagement force between the blocks.
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recent works either do not guarantee complete topological
interlocking (i.e., only a subset of the shapes interlock in more
than one direction/dimension)[5] or utilize special spatial symme-
tries (e.g., wallpaper[5] or weaves[6]) to generate such blocks. In
this article, the goal is to enable the generation of space-filling
shapes through methods that are 1) guaranteed to produce strong
topological interlocking through corrugation and 2) leverage
simple geometric principles that are not selective regarding the
type of one or the other spatial symmetry (Figure 2).

Toward our goal, we introduce a novel approach for generating
space-filling corrugated blocks that resemble noodle-like
structures, resulting in strong topological interlocking
assemblies. Our approach is based on decomposing a given vol-
ume using helical ruled surfaces as Voronoi sites that populate
volume using Bravais lattices. The shapes are still obtained by
layer-by-layer Voronoi decomposition (see Figure 13), which is
also critical for obtaining strong corrugation. Layer-by-layer
Voronoi decomposition guarantees obtaining genus-0 surfaces,
and the resulting blocks can always be assembled. An important
property of this approach is that it provides access to a large
design space for producing topologically interlocking tessellations.

Using this approach, we introduce two unique varieties, namely
constant cross-sectional noodles (shapes that have the same cross
sections akin to a swept volume, Figure 3) and variable cross-
sectional noodles (shapes that have varying cross sections akin
to lofted volumes, Figure 4). This flexibility in design space is quite
helpful to systematically search for new tessellated forms.

1.2. Background

Our work lies at the intersection of many of these rich domains
of interlocking structures, bioinspired structures, as well as
space-filling structures. Interlocking is a common template in
natural materials and structures such as bone structures, teeth,
and shelled creatures (e.g., moluscs).[7] One of the main advan-
tages of this template is that interlocked mechanical elements
enable multiple desired mechanical behaviors pertaining to stiff-
ness and toughness, leading to exciting avenues in bioinspired
structural materials[8] and bone tissue engineering.[9,10]

Layered ceramics have also been used to create structures with
interesting mechanical responses compared to a monolithic
counterpart.[11] In a similar vein, laminations have been used

(a) (b) (c) (d)

Figure 1. A topological interlocking assembly of cubes.[2] Similar assemblies for other regular polyhedra (the Platonic bodies) were discovered.[2] In this
assembly, there exists a plane that can provide us a cell-transitive 2-honeycomb, which can be used to apply a peripheral force. a) Assembly,
b) Transparent view 1; c) Transparent view 2; d) Cell-transitive 2-honeycombs. Reproduced under terms of the CC BY-NC-ND 4.0, Copyright 2021,
published by Yuri Estrin, Vinayak Krishnamurthy, and Ergun Akleman.

(a) (b) (c) (d)

Figure 2. a) The generation of VoroNoodles is shown where several helices are placed inside an architectured slab, and b) the Voronoi tessellation is
computed at each layer i. c) A tile is created by extruding each layer i, and d) multiple tiles form an assembly.

(a) (b) (c) (d)

Figure 3. An example of constant cross-section VoroNoodles as an extruded 2-honeycomb. Since the 2-honeycomb is exactly the same in each layer, each
congruent block is exactly the same in each layer. Since it is generated using a single curve, the resulting congruent blocks in each layer are convex
polygons. In this particular case. they are all regular hexagons. Each layer is translated using this parametric equation: x ¼ 2cosð2πtÞ þ cosð2π5tÞ,
y ¼ 2sinð2πtÞ þ sinð2π5tÞ, and z ¼ 4t. We used jv0j � 1 and jv1j � 1 to obtain a long and skinny spaghetti look. a) Single curve; b) A single constant
cross section noodle; c) 2� 2 assembly of constant cross section noodle; d) 4� 4 assemble of constant cross section noodle.
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to create multilayered tiles of layered ceramics.[12] A related class
of materials are random fibrous structures having high fracture
toughness,[13] similar to that of topologically interlocked struc-
tures. Due to this, there is interest in such materials for appli-
cations in various areas, including acoustics[14] and heat
transfer.[15] Another direction where we find significant interest
in interlocked geometries is in the domain of textile fabrics and
composite structures based on such fabrics.[16,17] Woven struc-
tures have been used to create architectured materials through
defining their weaving symmetry[18] as well as the use of inter-
locking tiles.[6,19] These woven structures have a deep history of
use for many fabric patterns and clothing items. The last piece of
our puzzle comes from recent work on space-filling granular
crystals which have the potential to be used as modular building
blocks to enable intriguing mechanical responses.[20] Taking
inspiration from these closely linked structural design concepts
of interlocking, our further goal in this work is to assimilate cor-
rugation as a new aspect within the design of space-filling topo-
logically interlocked structures.

1.3. Basis and Rationale

Our general idea is based on using helical shapes as Voronoi
cells. To picture mentally how we get corrugated block regions,
imagine that N helices are screwed into a thick architectured
shell or slab. We partition this shell into N block regions where
region i consists of all points closest to helix number i. This oper-
ation naturally creates desired corrugated boundaries between
the block regions. It should be clear that shapes and placements
of helices play important roles in obtaining interesting corru-
gated blocks.

The first requirement is that no two helices (or “screws”)
intersect with each other. This is not physically possible, but
our virtual screws can potentially intersect each other if we place
them randomly. To obtain a meaningful decomposition of the
space, we also need screws to be placed as uniformly as possible
inside of the shell. This means no two screws have to be too close
to each other and there should not be any large region left
without a screw. Boris Delaunay introduced the concept of
“Delone Set” to formally describe such as-uniform-as-possible
placements[21–23] (note the two different spellings of the name
of this great mathematician in literature).

Delaunay’s concept involves two principles: 1) uniformly dis-
crete and 2) relatively dense, to define as-uniform-as-possible
placements of points. Let S denote a set of points in
n-dimensional Euclidean space, ℜn. S is called a Delone set
if it is both uniformly discrete and relatively dense.[24] Let
r1 > r0 denote two positive numbers: then 1) the point set S
is uniformly discrete if each sphere of radius r0 contains at most
one point in S; 2) the point set S is relatively dense if every sphere
of radius r1 contains at least one point of S.[25] If we use the
points in S ∈ ℜ3 as Voronoi sites, we can obtain a nice tessella-
tion of space. This partition is “nice” in the sense that the result-
ing Voronoi cells are similarly sized convex polyhedra.

Even though the notions uniformly discrete and relatively
dense are defined and can be intuitively understood for points
only, they are still useful if the sizes of higher-dimensional
Voronoi sites are much smaller than r0, where we can define
the size of the object as the radius of a bounding sphere. Our
problem, however, requires an alternative approach. If the screws
are far away from each other, they will act like points so that
boundaries between Voronoi regions will not have many corru-
gations. In order to produce corrugated boundaries, we need to
place screws as-close-as-possible. In this case, the sizes and
shapes of the screws play an important role in obtaining uni-
formly discrete and relatively dense distributions.

To solve this problem, we make a set of simplifications. We
represent shells/slabs as a tensor-product B-spline volume that
is obtained by bijective mapping. The screws are obtained by
the same bijective mapping of curves and ruled surfaces that
are defined in parametric domain ðx, y, zÞ ∈ ½0, 1�3. They are
defined by a trigonometric function to control frequency of
corrugation intuitively. The intersection of a screw with any z
constant plane is guaranteed to be a point or a line. With points
and lines, it is easy to obtain uniformly discrete and relatively
dense distribution in each plane. This further allows one to pack
long curves or ruled surfaces as close as possible to each other
without intersection.

For placement and arrangement of the Voronoi sites, we
employ a strategy developed by Auguste Bravais[26] that enables
populating the system using only translations. Using Bravais
lattices, symmetric Delone sets in the parametric domain are
obtained.[22] Because of symmetry, the Voronoi decomposition
of the parametric domain results in a Voronoi tessellation that
consists of congruent blocks.

(a) (b) (c) (d) (e) (f)

Figure 4. An example of congruent VoroNoodles that provide strong topological interlocking. Each layer is translated into a parametric equation in the
form of x ¼ cosð3zÞ and y ¼ sinð3zÞ to produce a helix. To obtain the helical ruled surface shown in (a), we rotated and scaled a 2D vector along this helix.
Translated versions of these ruled surfaces are used as Voronoi sites to obtain VoroNoodles. a) Ruled surface; b) A printed VoroNoodle; c) Two printed
VoroNoodles d) Assembly of three printed VoroNoodles. e) 2� 2 assembly of VoroNoodles; f ) 2� 2 assembly of printed VoroNoodles. Reproduced
under terms of the CC BY-NC-ND 4.0, Copyright 2022, published by Cassie Mullins, Matthew Ebert, Ergun Akleman, and Vinayak Krishnamurthy.[63]
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1.4. Challenges and Approach

Even though previous works have employed similar approaches
to obtain topologically interlocking tiles such as Delaunay lofts
and generalized Abeille tiles (GATs),[5,6] they do not provide
corrugated boundaries. Rather, topological interlocking is pro-
vided by the global structure. Utilizing helical ruled surfaces
as Voronoi sites does lead to intuitive and generalizable design
mechanisms to obtain desired corrugated boundaries. For
instance, an intuitive way of defining such a ruled surface is rotat-
ing and scaling a line while translating its center. To demonstrate
this intuitive approach, we choose a concrete class of helical tra-
jectories wherein we map the motion of each Voronoi site based
on the transformation matrices induced by the helix. Our results
show that the ensuing congruent shapes coming from helical
trajectories have great potential for topological interlocking
assemblies by providing corrugated boundaries.

2. Prior Work

2.1. Topological Interlocking in Mechanics

Topological interlocking is an important concept developed for
material science applications.[1,27–29] Topologically interlocking
assemblies typically consist of identical congruent blocks that
can be arranged in such a repeated way that the assembled
structure is composed of rotated and translated versions of this
prototype block and can be held together only by boundary con-
straints as mentioned earlier. Figure 1 provides an example of
topological interlocking assemblies of regular polyhedra. In
the example in Figure 1, there exists a plane that is a regular hex-
agonal grid, that is, it consists of regular planar hexagons with no
gaps.[2] In each of these cases, if the bounding blocks are “fixed”
(equivalently, if a peripheral force is applied to the bounding
blocks), the internal blocks are kinematically constrained to hold
their positions in space simply due to the geometric interfaces
between the mutually neighboring blocks. In other words, in
these assemblies, each block is kept in place by local kinematic
constrains imposed through its shape and mutual arrangement
of all the blocks.[1]

Interlocking can become stronger if there exist more than one
plane that is composed by planar polygons with no gaps, along
with local kinematic constraints. Figure 5 provides an example of
an assembly that consists of multiple stacked layers of planes that
are composed by planar polygons with no gaps between them.[5]

In such cases, block boundaries become ruled surfaces that can
potentially improve local kinematic constrains.

Another important property of topological interlocking is that
the layers do not have to be planar. For instance, the early his-
torical examples of topological interlocking assemblies in ancient
architecture have been spherical. Many ancient domes, such as
Hagia Sofia, the world’s largest interior space when it was built in
537 AD, were designed and constructed by such topological inter-
locking assemblies.[30–32] These buildings were erected using
stones cut to be assembled into complex structures and held
together by a global peripheral constraint.[1,27–29]

2.2. Topological Interlocking and Architecture

Medieval building masters have also employed topologically
interlocking assemblies under different names. Early examples
of similar assemblies, which are usually referred to as stereo-
tomy, can be found in Villard de Honnecout’s fylfot grillage
assemblies, Leonardo da Vinci’s spatial structures, Sebastiano
Serlio’s planar floors, and John Wallis’s scholarly work.[33] In
these constructions, a discrete load-bearing element supports
two neighboring components and is mutually supported by
two others to span distances longer than their length.[34–36]

Other types of topologically interlocking assemblies are called
nexorades,[37] referring to Asian forms of timber construction.[38]

Joseph Abeille obtained a patent in 1699 for a specific topolog-
ically interlocking assembly to construct flat structures, which are
now known as Abeille vaults.[39] The congruent blocks of Abeille
vaults are constructed by truncating two opposite edges of a tet-
rahedron. These blocks can be assembled in a two-directional pat-
tern resembling a woven fabric to form self-supporting
structures.[40,41] At about the same time, Sébastien Truchet also
discovered and patented another topological interlocked assembly
to construct flat surfaces.[31,42] One of the advantages of both
Abeille’s and Truchet’s topologically interlocking assemblies is
their ability to sustain loads and control the displacement of
the tiles even for flat assemblies.[43–45] Both of these structural
systems are capable of tolerating orthogonal and transverse
forces.[46]

Topological interlocking assemblies lost their popularity[35,47]

with the introduction of modern materials, such as Portland
cement and reinforced concrete, during the 19th century.[48–50]

They received renewed attention recently in architecture,[31,51]

especially after the formalization of topological interlocking in
material science.[1,2] However, most current research in
Architecture has only focused on either analyzing existing

Figure 5. An example of topological interlocking assemblies that consist of cell-transitive 2-honeycombs stacked from the bottom to top.[5] These are
obtained using curves in the form of ðx, y, zÞ ¼ ðf xðtÞ, f yðtÞ, tÞ as Voronoi sites and computing layer-by-layer Voronoi decomposition.[2] Therefore, each
layer consists of congruent convex polygons and boundaries of the blocks are, therefore, ruled surfaces.[2]
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building blocks already proposed by Abeille and Truchet or cre-
ating curved structures from originally known blocks[31,42] with
rare exceptions, cf. e.g.,.[52]

2.3. Geometric Principles for Topological Interlocking

Topological interlocking assemblies are also linked to the con-
cept of 2-honeycombs, which are close packings of planar blocks
so that there are no gaps between them.[53,54] If a 2-honeycomb
consists of congruent (i.e., identical) planar tiles, it is called a
cell-transitive (regular or isochoric) 2-honeycomb.[55] If any
assembly of 3D blocks includes planar regions that correspond
to a compact and connected subset of a 2-honeycomb, that pla-
nar region can potentially provide topological interlocking. If
local kinematic constraints are satisfied, the blocks can hold
together by applying a peripheral force on its boundary of closed
curve.[2]

It is important to note that a deeper understanding of the
mathematical formalization of 2-honeycombs is needed to
design shapes that lead to topological interlocking assemblies
based on Voronoi decomposition.[22] For instance, Figure 1
provides an example of a planar region that is a cell-transitive
2-honeycomb in some specific assembly of cubes. Moreover,
all layers in the example in Figure 5 are cell-transitive
2-honeycombs that are stacked on top of each other.[5,6]

However, note that this assembly is not completely interlocking,
it is interlocking only in directions where the boundary of the
shape contains a saddle point (specifically, a hyperbolic parabo-
loid in this case).

The standard mathematical model of an ideal crystal
also involves a specific type of Delone sets, called symmetric
(or crystal) sets,[56,57] which are invariant with respect to
a crystallgraphic group.[22,56] The important property of
symmetric Delone sets is that the Voronoi decomposition[58] of
symmetric Delone sets in 3D can be used to obtain
3-honeycombs and space-filling congruent polyhedra.[22]

The resulting space-filling congruent polyhedra are called
plesiohedra.[18,59–61]

We observe that a 2D version of this approach can directly be
applied to obtain cell-transitive 2-honeycombs and space-filling
congruent flat blocks that could be called plesiogons.[18] To obtain
layers of 2-honeycombs, the key component is the creation of
layers of symmetric Delone sets that are invariant with respect
to a wallpaper group. Our approach is inspired by the recent work
by Subramanian et al. wherein they developed Delaunay lofts[5] by
interpolating three (top, middle, and bottom) symmetric Delone
sets to obtain all intermediate layers as symmetric Delone sets.
This method generates a symmetric Delone set in every layer
because the interpolation of Delone points corresponds to inter-
polations of underlying Bravais lattices.[26,62] Since these Delone
sets comprise points, each layer of a Delaunay loft consists of only
simple convex polygons. In other words, the boundaries of
Delaunay lofts are either ruled or planar surfaces.

2.4. Knowledge Gaps and Our Work

A problem with interpolation is that the resulting assemblies of
congruent blocks do not ensure topological interlocking. The

occurrence of topological interlocking depends on the positions
of the points in the top, middle, and bottom Delone sets.
Therefore, there is no warranty an assembly will have the required
local kinematic constraints. To overcome this issue, GATs have
recently been developed.[6] The basic premise of GATs is the inter-
polation of multiple points to form trees. This flexibility allows one
to proliferate a single polygon by generating a single polygon in
one layer into multiple polygons in another layer, creating tree-like
structures that can interlock better. Although this method is very
powerful in obtaining strong interlocking, it requires creative
interpolation approaches to obtain symmetric Delone sets.
Comparing GATs, curve interpolation for Delaunay lofts is
straightforward and guaranteed to work.

In this article, we used the Bravais lattice approach directly to
obtain an infinite array of ruled surfaces. It is generated by two
discrete Bravais translation operations. Each ruled surface is
described by two trigonometric curves in z direction such that
the intersection of the ruled surface with any z= constant plane
is either a point or a line. The only requirement for these two
trigonometric curves is that they have to be continuous. Using
appropriate Bravais translation vectors, we can always get a
Delone set in every layer. When we use these ruled surfaces
as Voronoi sites, the boundary between Voronoi regions is
guaranteed to be corrugated thus providing strong topological
interlocking. The advantage of this approach is its flexibility
and simplicity for design.

3. Conceptual Framework

To present our approach, we first use an infinite array of a single
curve as Voronoi sites. Such curves create spaghetti-like extruded
structures with the same convex polygon-type cross sections
along z direction, as shown in Figure 3d. We then extend these
curves to ruled surfaces to obtain blocks that we dubbed Voronoi
“Noodles” or VoroNoodles, for short.[63] In VoroNoodles, every
layer can have a different cross section. Moreover, the shapes
of cross sections can be nonconvex and boundary edges do
not have to be straight. Therefore, VoroNoodle boundaries can
be more complex than ruled surfaces.

3.1. Constant Cross-Section VoroNoodles

Consider a continuous curve p∶½0, 1� ! ℜ3 defined as

pðtÞ ¼ ðFxðtÞ,FyðtÞ, atÞ (1)

where t ∈ ½0, 1� and a is any positive real number that is used
to scale VoroNoodles along z direction. The functions
Fx∶½0, 1� ! ℜ and Fy∶½0, 1� ! ℜ can be any functions as long
as they are continuous. They do not need to be C1 or C2.

Now, assume that a Bravais lattice is defined by two linearly
independent (but not necessarily mutually perpendicular) trans-
lation vectors v0 and v1 that can span the x � y vector space given
by the two orthonormal vectors ð1, 0, 0Þ and ð0, 1, 0Þ. We use this
Bravais lattice to produce an infinite array of curves by adding the
vector n0~v0 þ n1~v1 to the curve as
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pðtÞ þ n0~v0 þ n1~v1 (2)

where n0 and n1 are any integers that span the lattice. Regardless
of how we choose the functions Fx and Fy and the Bravais vectors
v0 and v1

pð0Þ þ n0~v0 þ n1~v1 (3)

has to be a symmetric Delone set that consists of points only. Its
symmetry is uniquely defined by the vectors v0 and v1, as shown
in Figure 6. For any given t, we obtain only a translated version of
the same symmetric Delone set, such as in Figure 6c. Therefore,
this formulation can be considered an extrusion of symmetric
Delone set along the curve pðtÞ. The type of extrusion is uniquely
defined by the choice of the functions Fx and Fy.

Now, let 0 ≤ s0 ≤ 1, and 0 ≤ s1 ≤ 1 be real numbers; then,
following set of line segments with beginning and ending points

p0ðtÞ ¼ pðtÞ þ n0~v0 þ n1~v1 and

p1ðtÞ ¼ pðtÞ þ ðn0 þ t0Þ~v0 þ ðn1 þ t1Þ~v1
(4)

also forms a Delone set of lines. If we apply a 2D Voronoi tes-
sellation in each of these Delone sets in each layer, we obtain the
same 2-honeycomb in each layer. As a result, this will give us an
extrusion of a 2-honeycomb defined by the Bravais lattice along
with the curve pðtÞ or pðzÞ. In other words, these congruent
blocks that comprise the same convex and congruent polygons
that are stacked on top of each other. These shapes will really
look like long and skinny spaghetti if j~v0j � 1 and j~v1j � 1,
as shown in Figure 3. The shape of convex and congruent poly-
gons depends only on relative orientations and lengths of Bravais
vectors ~v0 and ~v1. The shape can be a square, a rectangle, a
regular hexagon, or a general hexagon.

3.2. Variable Cross-Section VoroNoodles

Let us introduce a vector curve defined on ½0, 1� ! ½0, 1Þ2 as

~vðtÞ ¼ GxðtÞ~v0 þ GyðtÞ~v1 (5)

where t ∈ ½0, 1� and the functions Gx∶½0, 1� ! ½0, 1Þ and
Gy∶½0, 1� ! ½0, 1Þ are continuous. Now, consider the ruled
surface that is defined by the following equation.

pðt, uÞ ¼ pðtÞð1� uÞ þ ðpðtÞ þ~vðtÞÞu (6)

This ruled surface consists of lines in every z ¼ constant layer.
Further consider an infinite array of these ruled surfaces as a
Bravais lattice by adding the vector n0~v0 þ n1~v1 to the surface as

pðt, uÞ þ n0~v0 þ n1~v1 (7)

where the coefficients n0 and n1 are any integers to span the
lattice. In these cases, regardless of how we choose the vector
function~vðtÞ, the infinite array of ruled surfaces never intersect
with each other since we chose the two components of the vector
function to be smaller than j~v0j and j~v1j respectively. Therefore,
the line segment will always stay within the parallelogram
defined by the Bravais vectors~v0 and~v1 (See Figure 6).

This property is useful since we can formally ensure each layer
to be a symmetric Delone set.[25,57] This is based on Dolbilin’s
result[56,57] that demonstrates the following; if n-number of sym-
metric Delone sets represent the same crystallographic (in 2D
wallpaper) group, their union also represents the same wallpaper
group with a crystallographic orbit of n-number points. Using
this result, it is possible to be arbitrarily close to any given
higher-dimensional shape, such as a planar curve, which can
result from 2D crystals. Now, assume that we replace points
in a symmetric Delone set with lines. Their Voronoi decomposi-
tion permits the creation of cell-transitive 2-honeycombs with
congruent planar plesiogon shapes that can have curved edges.

This is not the only method to obtain 2D Delone sets of lines.
For instance, we can start with any two curves p0ðtÞ and p1ðtÞ, and
we can obtain any ruled surface as

pðt, uÞ ¼ p0ðtÞð1� uÞ þ p1ðtÞu (8)

For this ruled surface, we can always construct two Bravais
vectors using two given direction ~n0, and ~n1 as ~v0 ¼ a0~n0,
and~v1 ¼ a1~n1 by choosing a0 and a1 large enough to avoid inter-
section regardless of how initial curves are chosen. Note that the
choice of~n0, and~n1 and a0 and a1 is not unique for any given set
of two curves that define a ruled surface.

In conclusion, this particular approach provides a large design
space to construct topologically interlocking assemblies by gen-
erating a different symmetric Delone set in every layer for any set
of curves and Bravais vectors. If the lines are not identical for all
z ¼ constant planes, the Voronoi partition of each layer produces
a different congruent planar shape, as shown in Figure 7, by pro-
viding additional local constraints.

(a) (b) (c) (d) (e) (f)

Figure 6. Bravais vectors define a Delone set and the line in each layer will stay inside of the parallelogram defined by the Bravais vectors~v0 and~v1.
a) Initial point and Bruvais vector in Layer t; b) Bruvais translation of the point in layer t; c) Delone set of points in layer t; d) Initial line in layer t; e) Bravais
translation of lines in layer t; f ) Delome set of lines in layer t.
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4. Tile Generation Methodology

We present a construction methodology using an extruded 3� 3
Bravais lattice that is given by nine parallelograms given by ~v0
and~v1. Figure 8 demonstrates the steps of the process devised
to obtain one cross section of a VoroNoodle for a given layer.
While we implemented this process in Houdini and Python soft-
ware, this algorithm can be used in many other programs and
coding languages. The process consists of the following steps.

1) Sample

pðt, uÞ ¼ pðtÞð1� uÞ þ ðpðtÞ þ~vðtÞÞu (9)

in the parameters t and u in ½0, 1�2 with ðN þ 1Þ � ðM þ 1Þ equal
samples as ti ¼ i=N where i ¼ 0, 1, : : : ,N and uj ¼ j=M where
j ¼ 0, 1, : : : ,M.

2) Create a 3� 3 Bravais lattice ~v0 �~v1 in each layer using
pðtiÞ as its center point as shown in Figure 8b. These are
parallelograms that can actually correspond to bivectors of
geometric algebra 9~v0 �~v1. This operation creates a crystal with
9� ðN þ 1Þ � ðM þ 1Þ unit cells.

3) Classify the nine set of points into two groups using one
label for the points that belong to the original ruled surface
pðt, uÞ and another label for all other points. A cross section
of lines is shown in Figure 8c.

4) Decompose the 3� 3 parallelogram region using points as
Voronoi sites and take the union of the Voronoi regions that
share the same label. The process creates two volumetric regions.
The Voronoi region that comes from the ruled surface pðt, uÞ is
the VoroNoodle. The union of the rest provides a shape that can
be used as a mold for VoroNoodle. A cross section is shown in
Figure 8e. Note that even the planar cross-section region is not

necessarily convex or polygonal. Boundaries most likely are par-
abolic curves in these cross sections, as shown in Figure 8e.

5. Finite-Element Modeling

In order to perform systematic testing of the structures, we limit
our focus to constant cross-section noodle geometries, that is,
tiles that are identical at every layer. Furthermore, as the goal
of this work is to perform initial testing of the structures, we only
used a square cross-sectional layer. It is possible in future work to
use different 2D tesselation patterns or to extend the work to
VoroNoodles where layers change throughout the height of
the blocks. We controlled the resolution of the shape to be iden-
tical, meaning that the square at each layer for every test is the
same size. Additionally, the height of the block as well as the
radius and pitch of the helix were varied to create several differ-
ent structures.

5.1. Interfacing Criteria: Stepped Versus Smooth

While stacking of 2D Voronoi layers simplifies the creation pro-
cess, a number of problems arise when using the mesh for FEA.
For a small number of stacked layers, stress concentrations are
formed because of the steps (Figure 9a). In order to avoid this, a
large number of steps can be taken to approximate a smooth
mesh so that there are no stress concentrations. This is often
the case for the blocks shown in this work. The problem with
this approach is that the resulting mesh requires a very high res-
olution and can increase computational time manyfold with a
high number of layers.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7. An example of VoroNoodles with a different 2-honeycomb in each layer. This is obtained using a ruled surface as a Voronoi site, created by
scaling a line. Each layer is translated using the function pðtÞ in the form of x ¼ cosð2πtÞ, y ¼ sinð2πtÞ, and z ¼ t to create a helix. For~vðtÞ, we scaled and
rotated a 2D vector. a) Ruled surface; b) Single VoroNoodle; c) Printed single VoroNoodle; d) Assemble of two printed VoroNoodles; e) Assemble of three
printed VoroNoodles; f ) Rendered assemble of four VoroNoodles; g) Assemble of four printed VoroNoodles; h) Five VoroNoodles; i) Ruled Surface that is
used as Voronoi site. Reproduced under terms of the CC BY-NC-ND 4.0, Copyright 2022, published by Cassie Mullins, Matthew Ebert, Ergun Akleman,
and Vinayak Krishnamurthy.[63]

(a) (b) (c) (d) (e)

Figure 8. The process of construction of VoroNoodle shapes shown in a planar cross section. (Note labeling by color). a) The parallelogram and the line
in layer t; b) 3� 3 parallelograms in layer t.; c) Labeling the lines to partition them into two groups; d) Sampling the lines. The sampled points inherit the
original labels. e) Voronoi decomposition by using two types of Voronoi sites. Reproduced under terms of the CC BY-NC-ND 4.0, Copyright 2022,
published by Cassie Mullins, Matthew Ebert, Ergun Akleman, and Vinayak Krishnamurthy.[63]
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In order to keep the benefit of a low-resolution mesh while
also ensuring no stress concentrations, we employ a method that
smooths a rough stepped mesh. When designing VoroNoodles
with point sites, each layer is identical to the layers above and
below; using this fact, instead of thickening a given layer, the
mesh is triangulated by connecting points from adjacent layers.
This results in an approximately smooth block that does not
develop any stress concentrations between layers (Figure 9b).
Another perspective is that since every layer is an identical poly-
gon, the resulting approximately smooth geometry is just a
sweep of the polygon. This process allows for a lower-resolution
mesh to be used while maintaining the benefit of a smooth
mesh.

5.2. Computational Model

The study of the mechanical properties of interlocked Voronoi
noodles was carried out using finite-element modeling in the
dynamic explicit mode using the ABAQUS software package.
As a material model, a homogeneous, isotropic linear–elastic
body with the Young’s modulus of E=GPa and Poisson’s ratio
of ν ¼ 0.3 was chosen. The contact interaction between the
blocks was set considering the normal component (hard contact)
and the tangential component in the form of the Coulomb fric-
tion law with a friction coefficient of 0.3. The calculation involved
nine blocks. For all blocks except the central one, the boundary
conditions in the form of rigid embedment (displacements equal
to zero) were applied along the outer perimeter. The geometric
parameters varied in these finite element method (FEM) simu-
lations are shown in Figure 9. As follows from the general
description of the geometric features of a block, there are many
more variable geometry parameters. Based on the experience
with preliminary modeling of Voronoi noodles, four main
parameters were identified, and their influence was studied in
this work. The dimensionless parameters H=L and R=L are
the characteristics of the noodle length and the distance of a cross
section from the center of the helix. The cross section of the noo-
dles, a square with side L, and the pitch of the helix were constant
along a noodle. To characterize the angle of rotation ϕ, the num-
ber of revolutions N was used (which is generally not an integer).
Also, one of the important factors is the method of connecting
the “slices” of a noodle. The stepped method (Figure 9a) has
many advantages, as mentioned earlier, since it allows one to
connect the “slices” along a generating curve of any geometry,
which greatly simplifies the design. When the step size tends

to 0, the geometry of the noodle is transformed to the smoothed
type (Figure 9b). The effect of this factor will be discussed in
more detail below, in the discussion section. Here we only note
that the smoothed geometry is preferable from the point of view
of FEM. Accordingly, most of the modeling was done for these
types of noodles. A list of the parameters used in computational
experiments is presented in Table 1.

6. Results

Figure 10 shows the distribution of stresses in the assemblies at
the initial stage of displacement of the intender loading applied
to the central block. For all the options considered, the stress
distribution is significantly nonuniform, which is associated
with the asymmetry of the block. The blocks 2 and 4 exhibit
the highest contact stresses. The stresses are distinctly lower
in the assemblies shown in the upper row (Figure 10a,c,e,g,i),
which unambiguously correlates with the shorter noodle length.
The greater length of the noodle (Figure 10b,d,f,h,j), as well as a
greater rotation angle, lead to the rise of the resistance to the
removal of the central block for the block geometries 8 and 6.
Qualitatively, the distribution of stresses in the assembly for
geometries with stepped architecture (Figure 10i,j) does not dif-
fer from the smooth type, but quantitatively, the stresses in the
former case turned out to be almost an order of magnitude
higher.

Figure 11 shows the distribution of stresses in the central
block. The stress state of the inner blocks correlates well with
the stresses acting on the outer blocks, as depicted in
Figure 10. An increase of the length of the noodles leads to
an increase in stress. The stress distributions in the blocks seen
in the bottom row show that nearly the entire block is deformed,
while the blocks of the top row have a significant part remaining
in the undeformed state. The variation of the radius of the helix
affects the stress distributions to a much lesser extent, but the
trend of increasing stress with increasing radius can be observed
still. A significant difference between smoothed and stepped
blocks is quite remarkable. In the latter, the stresses are much
higher and localized within the steps, rather than extending over
the whole block.

The simulation results in the form of the force versus indenter
displacement dependence are presented in Figure 12. The

Figure 9. Schematics of the VoroNoodle geometry for FEM simulations:
a) stepped and b) smoothed geometry.

Table 1. Summary of the FEM simulations conducted.

Test number H/L R/L N ½ϕ, °� Noodle geometry

1 0.6 0.5 0.2 [72] Smoothed

2 1.2 0.5 0.4 [114] Smoothed

3 0.6 0.25 0.2 [72] Smoothed

4 1.2 0.25 0.4 [144] Smoothed

5 0.6 0.5 0.3 [108] Smoothed

6 1.2 0.5 0.5 [180] Smoothed

7 0.6 0.25 0.3 [108] Smoothed

8 1.2 0.25 0.5 [180] Smoothed

9 0.6 0.5 0.2 [72] Stepped

10 1.2 0.25 0.4 [144] Stepped

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2023, 2300831 2300831 (8 of 12) © 2023 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

 15272648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adem

.202300831 by K
arlsruher Institution F. T

echnologie, W
iley O

nline L
ibrary on [23/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.aem-journal.com


characteristic skewed parabolic shape of the curves is typical for
interlocking materials; see refs..[52,64,65] In all cases, the load
increases rapidly and drops off after reaching a peak. The rate
of decrease is smaller than the rate of growth. An increase in
the length of the noodle, the radius of the helix, and the degree
of rotation lead to an increase in the force required to extract the
block from the assembly. Although increasing the length and
increasing the degree of twist raises the engagement force, these
parameters are highly correlated, so it is difficult to assess their
separate influence at this stage. The type of interlocking also has
a very strong effect on the engagement force. As shown in
Figure 12c,d, with the same other noodle parameters, the
stepped surface gives rise to a force that is a multiple of the force
associated with a smooth surface.

7. Discussion

From a geometric modeling perspective, it it natural to imagine
that the type of tiles presented in this work could be generated
using 3D (i.e., volumetric) Voronoi tessellation for a set of helical
sites wherein each helix curve is one site rather than a layered
collection of points. Here, our choice of using layer-by-layer strat-
egy in contrast to 3D Voronoi decomposition played a critical role
in terms of 1) controlling the level of corrugation, 2) the genus
(i.e., the number of holes) of generated tiles, and 3) the ability to
generate, assemble and disassemble tiles (see Figure 13 for a
comparison between 3D and layerwise or 2.5D strategy).

An analysis of the influence of the geometric parameters of the
VoroNoodle on the mechanical behavior of the assembly shows

Figure 10. Distribution of the von Mises equivalent stresses in the assembly. Extraction of the central block is carried out in the viewing direction.
(The label of each part corresponds to the varients listed in Table 1).

Figure 11. Distribution of the von Mises equivalent stresses in the central block. (The label of each part corresponds to the varients listed in Table 1).

Figure 12. Force–displacement diagrams for different kinds of blocks: a) short smoothed, b) long smoothed, c) short smoothed versus stepped, d) long
smoothed versus stepped. (The numbers correspond to the variants listed in Table 1).
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their very strong effect. The proposed block architecture allows,
by varying the geometry in a small window of parameters
(see. Table 1), to change the engagement force by almost an order
of magnitude. In this study, we deliberately narrowed the ranges
of variation of geometric parameters. This was because this
architecture allows an assembly to go into a state of complete
jamming very quickly. For example, in case 1 for N= 1, all other
parameters being the same, extracting the loaded central block is
no longer possible. This distinctive feature makes the architec-
ture of VoroNoodle assemblies attractive due to the extremely
high sensitivity of mechanical properties to the design parame-
ters. However, our statement about the possibility of complete
blocking holds true only when considering linear elasticity.
The engagement force increases as the contact surface grows.
As long as the element has a small contact surface, it can be
pushed (or pulled) out of the assembly, while its behavior
remains consistent with the linear elastic model. However, with
an increase in the contact surface, the ejection forces and contact
stresses increase and the calculation becomes less meaningful
when the stresses exceed those corresponding to the elastic
regime and nonlinearity or plasticity set in. Another feature of

this architecture is the entanglement of the interlocked blocks.
While for many other topological or geometrical interlocked
structures, it is possible to push or pull out a locally loaded block
from the assembly; to achieve that for VoroNoodle, the indenter
would have to move along the corresponding helix. There are
known examples of helical architectures that show a remarkably
high load-bearing capacity of the assembly due to high resistance
to crack propagation.[66,67] This may also be the case for the
VoroNoodle architecture considered in the article. The concomi-
tant increase in fracture toughness is an aspect that needs to be
explored further in future work.

The method is not limited to flat assemblies only. It is possible
to construct more complicated shapes by bijective transforma-
tions, as shown in Figure 14 and 15. Note that the congruence
property of the corrugated blocks can be preserved for some
bijective mapping such as scale, shear, or cylindrical transforma-
tions (see Figure 14 for a cylindrical assembly of congruent cor-
rugated blocks). However, for many bijective transformations, it
is not preserved. The resulting corrugated block appears similar
but not exactly the same (see Figure 15 for a dome assembled
from noncongruent corrugated blocks).

(a) (b) (c)

Figure 13. Comparison of 3D versus 2.5D (i.e., layer-by-layer) Voronoi decomposition[5] using the same datasets. Note that 3D Voronoi can even produce
high-genus tiles that may not necessarily be assembled. 2.5D provides strong corrugations and guarantees to create genus-0 surfaces. a) 3D Voronoi at
the left does not provide strong corrugarion; b) 3D Voronoi at the left is not genus-0; c) 3D Voronoi at the left cannot be disassembled. Reproduced under
terms of the CC BY-NC-ND 4.0, Copyright 2022, published by Cassie Mullins, Matthew Ebert, Ergun Akleman, and Vinayak Krishnamurthy.[63]

(a) (b) (c) (d) (e)

Figure 14. An example of congruent VoroNoodles on a cylindrical domain. a) Cylindrical assembly of eight printed VoroNoodles; b) Cylindrical assemble
of ten printed Voronoodles; c) Cylindrical assembly of 12 printed VoroNoodles; d) Cylindrical assembly of 14 printed Voronoodles; e) Cylindrical assembly
of 16 printed VoroNoodles. Reproduced under terms of the CC BY-NC-ND 4.0, Copyright 2022, published by Cassie Mullins, Matthew Ebert, Ergun
Akleman, and Vinayak Krishnamurthy.[63]

(a) (b) (c) (d) (e)

Figure 15. An example of noncongruent VoroNoodles on a spherical domain. Reproduced under terms of the CC BY-NC-ND 4.0 a) Base for Dome
Construction; b) Dome Construction with seven printed VoroNoodles; c) Dome Construction with 15 printed VoroNoodles; d) Dome Construction with
26 printed VoroNoodles; e) Dome construction with 34 printed VoroNoodles. Copyright 2022, published by Cassie Mullins, Matthew Ebert, Ergun
Akleman, and Vinayak Krishnamurthy.[63]
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8. Conclusion

In this article, we presented a new class of segmented structures
that extends the repertoire of topological interlocking-based
design. At the core of it is a combination of Voronoi tessellation
of a plane with a particular recipe for proliferating it in the
direction normal to the plane along helical ruled surfaces. The
resulting volumetric bodies—the building blocks of a 3D assem-
bly we dubbed VoroNoodles—are space-filling shapes. A recipe
for VoroNoodle design based on the concept of Delone sets has
been outlined. Examples of topologically interlocked planar,
cylindrical, spherical, and saddle-point assemblies constructed
from such building blocks have been given in Figure 16.

The spiral shape and full interlockability of the blocks
promise interesting mechanical properties. First finite-element
calculations presented in the article have demonstrated that
VoroNoodle-based assemblies exhibit mechanical response in
terms of the force–displacement profile–a skewed inverse
parabola that is qualitatively similar to that known for the
polyhedra-based topological interlocking structures.

The FEM simulations conducted for an idealized isotropic
linear–elastic model material have revealed a strong effect of a sec-
ondary step relief on the surface of a VoroNoodle on the force level
under concentrated load applied to the middle block. What is
remarkable is the sensitivity of this response to the geometric
parameters: by varying the radius and pitch of the helix within a
narrow range, radically different behavior has been demonstrated.

Even though this work demonstrates the geometric modeling
of variable cross-section noodles, the parameter space for enu-
merating different designs for these varieties is exceptionally
large. Therefore, our study was focused on evaluating the effect
of corrugation using constant cross-sectional noodles which are
easier to parametrize. Using point sites allowed us to shed light
on the mechanical properties of corrugation-based interlocking.
The variable cross-section cases are important for further
development of VoroNoodle design, which will be the focus of
our future work. We recognize that with the present study, we
just scratched the surface of a huge hidden repository of topolog-
ical interlocking structures yet to be uncovered. This should be
motivation for further investigations in this area.
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