
ABCperf: Performance Evaluation of Fault Tolerant State
Machine Replication Made Simple: Demo Abstract

Tilo Spannagel
tilo.spannagel9@kit.edu

KASTEL, KIT
Karlsruhe, Germany

Marc Leinweber
marc.leinweber@kit.edu

KASTEL, KIT
Karlsruhe, Germany

Adriano Castro
adriano.castro9@kit.edu

KASTEL, KIT
Karlsruhe, Germany

Hannes Hartenstein
hannes.hartenstein@kit.edu

KASTEL, KIT
Karlsruhe, Germany

Abstract
We demonstrate a framework that simplifies the performance evalu-
ation of fault tolerant StateMachine Replication in the permissioned
model. ABCperf offers a message passing abstraction with even-
tual delivery on top of which interchangeable Atomic Broadcast
algorithms and decentralized applications can be independently
implemented. Varying network quality (i.e., latency, packet loss)
and attacker behavior (i.e., omission faults) can be directly config-
ured and are emulated by the ABCperf core. The framework allows
the real-time manipulation of configuration options and visualizes
performance indicators and statistics in real time.

CCS Concepts: • Computer systems organization → Relia-
bility; Availability; • Theory of computation → Distributed
algorithms.

Keywords: Emulation, Fault injection, Performance analysis
ACM Reference Format:
Tilo Spannagel, Marc Leinweber, Adriano Castro, and Hannes Hartenstein.
2023. ABCperf: Performance Evaluation of Fault Tolerant State Machine
Replication Made Simple: Demo Abstract. In 24th International Middleware
Conference Demos, Posters and Doctoral Symposium (Middleware Demos,
Posters and Doctoral Symposium ’23), December 11–15, 2023, Bologna, Italy.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3626564.3629101

1 Introduction
State Machine Replication (SMR) is suited to implement decentral-
ized applications where all stakeholders contribute equally to the
decentralized computing system. The Atomic Broadcast (ABC) al-
gorithm used to synchronize the state machine replicas defines the
maximum number of faulty peers 𝑓 depending on 𝑛, the number of
stakeholders. Even if the resulting 𝑓 seems to be reasonably high,
every fault, including simple faults like omission, may have an im-
pact on the overall performance as they typically trigger additional
coordination and communication. Recent work has shown that
the performance of an ABC algorithm may degrade severely when
getting close to the tolerable number of crashed replicas [1]. Thus,
load that is easily handled under ideal conditions may overload
the system when facing simple faults (i.e., omission) that are not
necessarily caused by an attacker. The mere knowledge of 𝑓 is not
sufficient to design a reliable SMR-based decentralized application.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware Demos, Posters and Doctoral Symposium ’23, December 11–15, 2023, Bologna,
Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0429-1/23/12. . . $15.00
https://doi.org/10.1145/3626564.3629101

Rather, precise knowledge of the algorithm behavior under various
conditions is necessary and the ability to evaluate differing system
designs for a use case is needed.

Narwhal [1] is a current work suggesting a state-of-the-art al-
gorithm that evaluates confirmation latency and throughput of
different ABC algorithms under crash faults. Others, e.g., [6], eval-
uate under datacenter conditions with no faults occurring. If code
is available and can be run, e.g., [1], it is work-intensive and error-
prone to extend the experiment setup to another algorithm for com-
parison, implying the need for a generic performance evaluation
framework. Existing evaluation frameworks [2–4] are designed for
the comparison of complete blockchain ecosystems and require a
full-fledged replica software. In particular, it is not sufficient to only
supply the ABC algorithm as an experiment input. BFT-Bench [4]
and Blockbench [2] are not designed for extensibility and are only
capable of emulating crash faults. Diablo [3] is extendable to new
Blockchain systems but not capable of network and fault emulation.
The existing frameworks output various statistical values but do
not offer live observation or raw data analysis.

We demonstrate ABCperf, a performance evaluation framework
and middleware. ABCperf provides everything necessary to allow
the implementation of ABC algorithms at an abstraction level simi-
lar to pseudocode. In order to evaluate algorithms under conditions
close to real-world setups, ABCperf supports the implementation
of interchangeable replicated state machines and the correspond-
ing load emulation. It is capable of emulating network latency,
packet loss, and omission faults following configurable probability
distributions. We decided to emulate omission faults as they are a
powerful fault type that can be generically generated. In most proto-
cols using cryptographic primitives, Byzantine behavior is reduced
to omission nonetheless (correct replicas drop invalid messages).
To observe the impact of changing environmental conditions and
attacker behavior, ABCperf features a real-time interaction module
that visualizes the system under investigation and allows the ad-
justment of configuration parameters. As our research focuses on
ABC algorithms that make use of Trusted Execution Environments,
we created a MinBFT [7] and a preliminary TEE-Rider implementa-
tion [5] that we use to demonstrate the viability of ABCperf. The
ABCperf and MinBFT implementations are open source1.

2 ABCperf
ABCperf is written in Rust, chosen for its performance and type
safety, and consists of an orchestrator, a core, and three interface
type definitions. The orchestrator is a dedicated ABCperf service
that reads the configuration, assists in establishing the peer-to-
peer network, schedules experiments, generates client requests,
and collects measurements. In an experiment, each replica uses
ABCperf’s peer-to-peer middleware (i.e., the core) providing two

1https://github.com/abcperf

https://orcid.org/0000-0003-4205-523X
https://orcid.org/0000-0002-9638-8526
https://orcid.org/0009-0006-0656-2647
https://orcid.org/0000-0003-3441-3180
https://doi.org/10.1145/3626564.3629101
https://doi.org/10.1145/3626564.3629101
https://github.com/abcperf


Middleware Demos, Posters and Doctoral Symposium ’23, December 11–15, 2023, Bologna, Italy Spannagel et al.

0 5 10 15 20 25 30 35 40
Time [s]

102

103

Co
nf

irm
at

io
n 

La
te

nc
y 

[m
s]

MinBFT Datacenter
TEE-Rider Datacenter
MinBFT Internet
TEE-Rider Internet

Figure 1. Confirmation latency of MinBFT and TEE-Rider (10 repli-
cas, 250 requests/s). After 20s (vertical line), replica 0 drops all future
messages. For datacenter conditions, all replicas are connected via
the same switch. Internet-like conditions are a normally distributed
latency (𝜇 = 4.94ms, 𝜎 = 2.52ms) and a packet loss of 0.128%.

features: First, it offers a message passing interface with eventual
delivery, abstracting the complete communication stack and al-
lowing to send arbitrary messages to replicas by addressing them
with simple integer IDs. Second, it is capable of emulating both
attacker and network behavior transparently. Attacker behavior,
i.e., omission faults, is emulated by dropping messages from or to
replicas marked as faulty following an adjustable probability distri-
bution. Latency and packet loss are emulated using the capabilities
of netem2. ABCperf can be deployed to a cluster (multiple replicas
per physical server are possible), letting it scale with the hardware.
However, our experiments revealed a bottleneck in the replica-to-
replica communication code that is currently investigated.

The users of ABCperf are required to implement three interface
types that are used by core (AtomicBroadcast and Application)
and orchestrator (ClientEmulator). AtomicBroadcast is an inter-
face for ABC algorithms and makes simple replacement of ABC
algorithms possible whilst encouraging a clean implementation
at an abstraction level similar to pseudocode. Users of ABCperf
are only required to implement algorithm state, message handling
and induced state transition, as well as message generation. In
particular, the transport protocol, serialization, peer discovery, or
parallelization do not have to be considered. The code implement-
ing the Application interface implements the decentralized end-
user application and is responsible to handle generated client re-
quests. ABCperf is capable of running full-fledged decentralized
apps. Nonetheless, they are typically simplified to facilitate the
emulation of client requests (e.g., allowing simpler patterns of con-
secutive requests). The orchestrator generates client requests using
an implementation of the ClientEmulator interface correspond-
ing to a decentralized application. The request types, sequences,
and timings can be chosen freely, allowing complex client behavior.

The orchestratormeasures each client request and collects utiliza-
tion (i.e., CPU, memory, and network usage) as well as algorithm
measurements from the replicas. The raw data of the measure-
ments is stored in a database to allow flexible and complex analysis.
Additionally, the orchestrator offers a REST API that allows live

2https://man7.org/linux/man-pages/man8/tc-netem.8.html

manipulation of configuration parameters and that supplies the
aforementioned metrics. The demonstrator is a web application
that connects to the orchestrator’s REST API. The metrics graphed
in real-time are confirmation latency and throughput over time,
both being the primary performance indicators of a decentralized
application. Furthermore, the CPU, memory, and network usage of
each replica are illustrated and, if applicable, the current leader is
highlighted. The web application allows the adjustment of network
and omission fault emulation as well as the choice of faulty repli-
cas. An example for the confirmation latency of MinBFT [7] and
TEE-Rider [5] under non-ideal conditions is depicted in Fig. 1. The
parameters for the emulation of Internet conditions are derived
from RIPE Atlas3 for Central Europe. After 20s of experiment time,
replica 0 drops every future incoming and outgoing message. In
case of MinBFT, this leads to a view change, making replica 1 the
new leader, and to a corresponding increase in latency caused by a
temporary interruption of request handling. Under Internet condi-
tions, the impact of the view change overhead is higher and lasts
longer in comparison to datacenter conditions, where all replicas
are connected via the same switch, minimizing network latency
while maximizing network throughput. TEE-Rider, being a lead-
erless algorithm, tolerates the omission of replica 0 considerably
better and only has a very small but ongoing latency penalty caused
by the randomized leader election choosing replica 0. Under data-
center conditions, TEE-Rider outperforms MinBFT.

In conclusion, ABCperf simplifies the evaluation of fault tolerant
state machine replication and visualizes the effects of non-ideal
conditions. We are currently finalizing implementations of state-of-
the-art partially synchronous and asynchronous ABC algorithms
and will compare them in a range of conditions that vary by load,
network connectivity, and fault patterns.

Acknowledgments
This work was supported by funding from the topic Engineering
Secure Systems of the Helmholtz Association (HGF).

References
[1] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman. 2022. Narwhal

and Tusk: a DAG-based mempool and efficient BFT consensus. In EuroSys ’22:
Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8,
2022. ACM, 34–50. https://doi.org/10.1145/3492321.3519594

[2] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan. 2017. BLOCK-
BENCH: A Framework for Analyzing Private Blockchains. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1085–1100. https://doi.org/10.1145/
3035918.3064033

[3] V. Gramoli, R. Guerraoui, A. Lebedev, C. Natoli, and G. Voron. 2023. Diablo:
A Benchmark Suite for Blockchains. In Proceedings of the Eighteenth European
Conference on Computer Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023. ACM,
540–556. https://doi.org/10.1145/3552326.3567482

[4] D. Gupta. 2016. Towards Performance and Dependability Benchmarking of Dis-
tributed Fault Tolerance Protocols. Ph. D. Dissertation. Grenoble Alpes University,
France. https://tel.archives-ouvertes.fr/tel-01376741

[5] M. Leinweber and H. Hartenstein. 2023. Brief Announcement: Let It TEE: Asyn-
chronous Byzantine Atomic Broadcast with n ≥ 2f+1. In 37th International Sym-
posium on Distributed Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy
(LIPIcs, Vol. 281). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 43:1–43:7.
https://doi.org/10.4230/LIPIcs.DISC.2023.43

[6] J. Liu, W. Li, G. O. Karame, and N. Asokan. 2019. Scalable Byzantine Consensus via
Hardware-Assisted Secret Sharing. IEEE Trans. Computers 68, 1 (2019), 139–151.
https://doi.org/10.1109/TC.2018.2860009

[7] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veríssimo. 2013.
Efficient Byzantine Fault-Tolerance. IEEE Trans. Computers 62, 1 (2013), 16–30.
https://doi.org/10.1109/TC.2011.221

3https://atlas.ripe.net/

https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3552326.3567482
https://tel.archives-ouvertes.fr/tel-01376741
https://doi.org/10.4230/LIPIcs.DISC.2023.43
https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1109/TC.2011.221
https://atlas.ripe.net/

	Abstract
	1 Introduction
	2 ABCperf
	Acknowledgments
	References

