
How fitting is your abstract domain?

Roberto Giacobazzi1, Isabella Mastroeni2, and Elia Perantoni2

1 University of Arizona Tucson - Department of Computer Science
rgiacobazzi@gmail.com

2 University of Verona - Computer Science Department
isabella.mastroeni@univr.it and elia.perantoni@studenti.univr.it

Abstract. Abstract interpretation offers sound and decidable approxi-
mations for undecidable queries related to program behavior. The effec-
tiveness of an abstract domain is entirely reliant on the abstract domain
itself, and the worst-case scenario is when the abstract interpreter pro-
vides a response of “don’t know”, indicating that anything could happen
during runtime. Conversely, a desirable outcome is when the abstract in-
terpreter provides information that exceeds a specified level of precision,
resulting in a more precise answer. The concept of completeness relates
to the level of precision that is forfeited when performing computations
within the abstract domain. Our focus is on the domain’s ability to ex-
press program behaviour, which we refer to as adequacy. In this paper,
we present a domain refinement strategy towards adequacy and a sim-
ple sound proof system for adequacy, designed to determine whether an
abstract domain is capable of providing satisfactory responses to spec-
ified program queries. Notably, this proof system is both language and
domain agnostic, and can be readily incorporated to support static pro-
gram analysis.

Keywords: Abstract interpretation · Abstract domain precision · Static
analysis.

1 Introduction

The accuracy of an abstract interpretation depends upon many factors [13]. (1)
The quality of the abstract domain: In this case the abstract domain has to
represent in the most precise way all the intermediate invariants that hold at
each program point along a computation trace [10, 11, 19, 5, 6]. (2) The precision
of the fixpoint strategy: In this case an appropriate fixpoint strategy can improve
the precision of the analysis either by delaying widening/narrowing or dynamic
trace partition [8, 2, 12, 27]. (3) The way the code is written: In this case, the non-
compositional nature of the precision of abstract interpretation can be influenced
by the way the code is assembled [20, 3]. All these factors imply that the design of
an optimal (aka, sound and complete) abstract interpretation for static program
analysis is a very complex task.

2 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

In this paper, we address the first of the above mentioned factors: The quality
of the abstract domain. The standard approach is based on the notion of ab-
stract domain refinement [14]. The goal of domain refinement is to remove false
alarms by enhancing the expressive power of the abstract domain. In particular,
in the last two decades, the notion of completeness, with their global and local
refinements [17, 5]—the latter called Abstract Interpretation Repair (AIR), per-
fectly captures the structure of an abstract domain that will produce no false
alarm for a given program. This notion has also been weakened towards what
is known as partial completeness [7] where the precision is evaluated in a metric
space built over the abstract domain.

Rather than focusing on eliminating false alarms to achieve completeness,
or on weaker forms of completeness that tolerate some level of false alarms, our
study is concerned with evaluating the expressiveness of an abstract domain with
respect to its ability to represent intermediate invariants in the computation. In
particular, when dealing with abstract analysis, it is widely recognized that an
abstract domain must allow for the possibility of making no statements regarding
the behavior of a computation. This characteristic is critical for enabling the
analysis to provide decidable answers to otherwise undecidable questions. The
primary objective of adequacy is to prevent excessively imprecise statements with
respect to a given concrete assertion. When the level of imprecision exceeds a
certain threshold, it is deemed unacceptable, namely not fitting, for the purposes
of abstract computation. This domain property will be referred to as adequacy
of the abstract domain.

Like completeness, an abstract domain may be deemed not adequate because
it is overly abstract. In this scenario, we may question whether it is feasible to
adjust the abstract domain to ensure adequacy, just as it is possible to elimi-
nate false alarms for achieving completeness by refinement [17, 5]. This proposed
approach to achieving adequacy involves a refinement strategy that ensures the
refined abstract domain approximates computed invariants more accurately than
a specified bound τ . However, precisely as it happens for completeness, while the
refinement approach is crucial for gaining a deep understanding of adequacy by
identifying the elements necessary for enforcing it, it needs the computation of
the function/semantics, which may render it an undecidable characterization.

To address this issue, in the context of program analysis, we also introduce
a simple proof system, based on structural induction, to verify whether the
approximate invariants generated by the abstract interpreter within an abstract
domain A are kept below a the given (abstract) bound τ . This is achieved by
proving the validity of triples holding on a program r w.r.t. an input concrete
assertions c and an output one d. If JrK♯

A
is the abstract semantics of r given by

an abstract interpreter defined on the abstract domain A, namely JrK♯
A
: A → A,

then if the triple, denoted τ ⊢A ⟨c⟩ r ⟨d⟩, is derived in the proof system then we
can say that A is adequate for r, namely the computation of r semantics on A
is kept under the bound τ . The proof system we introduce, which we refer to as
the abstract domain adequacy logic, is very simple and can be efficiently checked
online using program analysis tools.

Abstract Domain Adequacy 3

Paper roadmap. Sect. 2 provides an overview of abstract interpretation and
programming language semantics. We chose to treat regular commands as the
general programming language to establish a language-agnostic framework. In
Sect. 3, we recall abstract domain completeness and introduce the novel concept
of abstract domain adequacy. Sect. 4 outlines the procedure for adjusting an
abstract domain towards adequacy by refining it. Finally, in Sect. 5, we present
a sound proof system for adequacy, and Sect. 6 concludes the paper with closing
remarks and potential future directions.

Related works. Adequacy is a novel approach here proposed for dealing with
abstract domain precision. Completeness in abstract interpretation [17] is the
closest notion to adequacy, at least in its origin. As we will demonstrate in
Sect. 3, the two concepts are incomparable, meaning that neither one is stronger
than the other. Nonetheless, the proof system and domain refinement procedures
for both concepts employ similar strategies. Specifically, the proof system inherits
the locality of the notion of local completeness introduced in [4] and [6], which
also forms the basis for the refinement strategy in abstract interpretation repair
(AIR) [5]. As a consequence, the proof systems for global completeness in [19]
and local completeness in [6] are logically incomparable with ours. However, the
idea of setting a bound on the approximation, which may be weaker than the
abstract observation, is a novel aspect of our work.

In the context of local adequacy, as it happens AIR, in general, no optimal
(most abstract) refinement exists. Therefore, the process of achieving adequacy
can only provide sub-optimal solutions. It should be noted that completeness and
adequacy are distinct problems, and as such, the computed refinements produced
by the two methods may lead to different domains. An adequate domain may
still be incomplete, and thus not a solution in terms of AIR, and vice versa,
a solution in terms of AIR may not ensure a bounded abstract computation,
and therefore may not be adequate. The technical differences are discussed in
Section 3.

In [7], the concept of partial completeness is introduced as a means of eval-
uating the accuracy of an abstract interpretation. This is accomplished by in-
corporating the abstract domain into a (quasi) metric space, which relaxes the
requirement for local completeness to hold up to a metric neighbor of the exact
(complete) solution. Along with completeness, partial completeness is also not
comparable to adequacy. The latter is not intended to provide any quantitative
estimate of the quality of an abstraction but rather an answer of whether the
resulting invariant is below (is approximated by) a given bound τ in the abstract
domain. This guarantees that at least the information in τ will be included in
the computed approximate invariant.

2 Background

If S, ℘(S) denotes the powerset of S. If f : S → T, then we often abuse no-
tation by calling f also its additive lifting f : ℘(S) → ℘(T) to sets of values:

4 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

f(X)
def
=

{
f(x)

∣∣x ∈ X ⊆ S
}
. If f : S −→ T and g : T → U, we denote by g ◦ f

(or simply gf) their composition. If f : S → S, and n ∈ N we define fn : S → S

inductively as f0 def
= idS (the identity on S), fn+1 def

= f ◦ fn. In a partial ordered
structure C, we use ≤C to denote the partial order relation, ∨C for lub, ∧C for
glb, ⊤C and ⊥C for respectively the greatest and the least elements (we avoid the
pedex C when clear from the context). A function f between ordered structures
is monotone if it preserve the order, i.e., c ≤C d ⇒ f(c) ≤C f(d). It is additive if
it preserves arbitrary lubs (co-additivity is dually defined).

2.1 Abstract Interpretation

Abstract interpretation [10, 11], is a formal framework for approximating pro-
grams semantics defined on a concrete domain C, by means of some abstraction A
of C. Given complete lattices C and A, a pair of functions α : C → A and γ : A →
C forms a Galois connection (GC for shorts) if for any c ∈ C and a ∈ A we have
α(c) ≤A a ⇔ c ≤C γ(a). In this case, α (resp. γ) is the abstraction/left adjoint
(resp. concretization/right adjoint), and it is additive (resp. co-additive). Co-
additive functions g : A → C admits left adjoint g−

def
= λc.

∧
A

{
a
∣∣c ≤C f(a)

}
.

An upper closure operator (uco for shorts) ρ : C → C on a poset C is mono-
tone, idempotent, and extensive, i.e., ∀x ∈ C. c ≤C ρ(c). If in a GC α ◦ γ = idA

then it is a Galois insertion (GI) and γ ◦ α, simply written γα, is an uco. Let
us denote by Abs(C) the class of abstract domains (GI or uco) of C. It is well
known that Abs(C) is isomorphic to the lattice of all ucos on C, therefore when
dealing with GI and clear from the context, we abuse notation by denoting as
A both the domain of abstract objects (A = γα(C)) and the closure operator
(A = γα). Given an abstract domain A ∈ Abs(C) (A = γα) and a concrete

function f : C → C, an abstract function f ♯
A : A → A is a sound approximation

of f when α ◦ f ≤A f ♯
A ◦ α3. The best correct approximation (bca) of f in A is

the function f A def
= α ◦ f ◦ γ, any other abstraction is less precise. In this case

soundness as domain property is defined as A◦f ≤C A◦f ◦A.

2.2 Regular Commands

Following [28, 4] (see also [29]) we consider the language RegExp of regular com-
mands in the top of Fig. 1 (where ⊕ denotes non-deterministic choice and ∗
is the Kleene closure), parametric on a grammar of expressions Exp. This lan-
guage is general enough to represent control-flow graphs of basic expressions and
therefore it covers simple deterministic imperative languages.

The Concrete Semantics. Let RegExp be a regular language. We assume the
basic transfer expressions have a semantics (| · |) : Exp → C → C on a complete
lattice C such that (|e|) is an additive function. The concrete semantics [28]

3 By ≤A we denote the partial order relation on A.

Abstract Domain Adequacy 5

RegExp ∋ r ::= e | r; r | r⊕ r | r∗ e ∈ Exp

L = RegLExp

LExp ∋ e ::= skip | x := a | b?
AExp ∋ a ::= x | n | a+ a | a− a | a ∗ a
BExp ∋ b ::= tt | ff | a = a | a ≤ a | a < a | b ∧ b | ¬b
Var ∋ x (variables), n ∈ Z (values)

Fig. 1. The syntax of RegExp, parametric on Exp, and of L.

J·K : RegExp → C → C of regular commands is inductively defined as follows: Let
c ∈ C

JeKc def
= (|e|)c Jr1 ⊕ r2Kc

def
= Jr1Kc ∨C Jr2Kc

Jr1; r2Kc
def
= Jr2K(Jr1Kc) Jr∗Kc def

=
∨

C

{
JrKnc

∣∣n ∈ N
}

The Abstract Semantics. Let A ∈ Abs(C), the abstract semantics of regular

commands J·K♯
A
: RegExp → A → A on the abstract domain A is defined by

structural induction as follows:

JeK♯
A
a

def
= JeKA

a

Jr1; r2K
♯
A
a

def
= Jr2K

♯
A
(Jr1K

♯
A
a)

Jr1 ⊕ r2K
♯
A
a

def
= Jr1K

♯
A
a ∨A Jr2K

♯
A
a

Jr∗K♯
A
a

def
=

∨
A

{
(JrK♯

A
)na

∣∣n ∈ N
}

where we recall that JeKA
is the bca in A of JeK.

By structural induction we can prove that this abstract semantics is monotonic
and correct, i.e., α◦ JrK ≤A JrK♯

A
◦α (or equivalentely α◦ JrK◦γ ≤A JrK♯

A
).

Programs. We consider standard basic transfer functions for expressions used
in deterministic while programs: no-op instruction, assignments and Boolean
guards, i.e., we consider the regular language L defined in Fig. 1. Hence, we
have to deal with integer variables and with stores. Let us denote Var(r) the
set of all the variables in r ∈ RegExp, and let C

def
= ℘(M) the concrete domain of

sets of stores, where the store m ∈ M is a function associating values to a set of
variables, i.e., m : V → Z, V ⊆f Var (finite subset).
In particular, the basic transfer function semantics (|e|) : C → C for the expres-
sions of L, is defined as: M ∈ C (i.e., M ⊆ M)

(|skip|)M def
= M

(|x := a|)M def
=

{
m[x 7→ (|a|)m

∣∣m ∈ M
}

(|b?|)M def
=

{
m ∈ M

∣∣ (|b|)m = tt
}
= M ∩ (|b|)

6 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

where (|a|) : M → Z and (|b|) : M → {tt,ff} are the standard evaluation seman-
tics for arithmetic and boolean expressions, respectively, and where we denote
(|b|) def

=
{

m ∈ M
∣∣ (|b|)m = tt

}
the truth semantics of b.

Note that, the concrete semantics of regular language defined above instantiated
to L corresponds precisely to the denotational semantics defined [9] starting from
standard operational semantics of non deterministic choice and iteration [29].

3 From Completeness to Adequacy

Abstract domain completeness is the standard approach used for the characteri-
zation of abstract domain precision w.r.t. the computation of the semantics [17].
Let us recall its formal definition.

3.1 Abstract Domain Completeness and its limits

Let A ∈ Abs(C) be an abstraction of C and f : C → C a concrete computa-

tion on C, e.g., the program semantics, then the abstract function f ♯
A is said to

be a complete/precise [11, 17] approximation of f on A if α ◦ f = f ♯
A ◦ α. In-

tuitively, it means that if we abstract c ∈ C (the input of f), we apply the f

approximation f ♯
A , we obtain the same abstract element that we would have been

obtained by abstracting the result of f applied directly on c (without an initial

abstraction). Note that, if there exists a complete approximation f ♯
A of f , then

f A is itself complete. Completeness of f A intuitively means that f A is the most
precise approximation of f and, in therefore, completeness can be characterized
as a domain property. A ∈ Abs(C) is said to be a complete abstraction for f if
A◦f ◦A = A◦f .

In a more general setting, let f : C1 → C2 be a function on complete lattices
Ci (potentially different), and let Ai ∈ Abs(Ci) (for i ∈ {1, 2}) be abstractions,
respectively, of input and output domains. In this case, we say that ⟨A1,A2⟩ is
a pair of complete abstract domains for f if A2 ◦f = A2 ◦f ◦A1.

Note that, this is a global property, since it requires the equality of two
functions on all inputs, i.e., ∀c ∈ C. A ◦ f(c) = A ◦ f ◦ A(c). This makes com-
pleteness an extremely strong property and indeed, as proved in [4], it holds
for all programs in a Turing complete programming language only for trivial
abstract domains. This means that the only abstract domains that are complete
for all programs are the straightforward ones: the identical abstraction, making
abstract and concrete semantics the same, and the top abstraction, making all
programs equivalent by abstract semantics. In particular, the authors show that
while global completeness can be hard/impossible to achieve, it could well hap-
pen that completeness holds locally, i.e. just for some store properties, proving
so far what is called local completeness [4], namely A ◦ f(c) = A ◦ f ◦ A(c) for
a fixed point c ∈ C. This weakening makes precision strongly dependent on the
point c, implying that among points with the same abstraction we may have

Abstract Domain Adequacy 7

both complete and incomplete points.

However, both completeness characterizations do not really deal with the
loss of precision due to the choice of the abstract observation, since it charac-
terizes only whether there is an extra loss of precision due to the computation
on observed/abstracted data (compared with the observation of the concretely
computed result). For instance, the ⊤ abstraction, which cannot distinguish any
information, is trivially complete, even if it represents the total loss of preci-
sion in the observation of data. Therefore, completeness is unable to account for
this type of information loss caused by abstraction, which is why we strive to
introduce a new concept of precision for abstract domains that can designate
⊤ as entirely imprecise. Graphically, the idea is depicted in Fig. 2 for program
semantics. Namely, (local) completeness can only avoid the error depicted as
blue area, namely the error due to computation on abstract data compared with
the abstraction of the concrete computation, while we aim at bounding the to-
tal error depicted, namely the error due to the choice of the abstract domain,
independently from its potential completeness.

Abstract Domain Adequacy 7

both complete and incomplete points.

However, both completeness characterizations do not really deal with the
loss of precision due to the choice of the abstract observation, since it charac-
terizes only whether there is an extra loss of precision due to the computation
on observed/abstracted data (compared with the observation of the concretely
computed result). For instance, the > abstraction, which cannot distinguish any
information, is trivially complete, even if it represents the total loss of preci-
sion in the observation of data. Therefore, completeness is unable to account for
this type of information loss caused by abstraction, which is why we strive to
introduce a new concept of precision for abstract domains that can designate
> as entirely imprecise. Graphically, the idea is depicted in Fig. 2 for program
semantics. Namely, (local) completeness can only avoid the error depicted as
blue area, namely the error due to computation on abstract data compared with
the abstraction of the concrete computation, while we aim at bounding the to-
tal error depicted, namely the error due to the choice of the abstract domain,
independently from its potential completeness.

Fig. 2. Program semantics abstraction (a). Complete semantic abstraction (b). Ade-
quacy (c).

3.2 Abstract Domain Adequacy

In order to move the attention to the whole (abstract) image of all the elements
with the same abstraction, loosing the dependency on the chosen point imposed
by local completeness while keeping a locality of the property, we propose a novel
approach referred to as abstract domain adequacy. We can say that abstract
domain adequacy allows us to bound (strictly below a fixed threshold) the total
amount of approximation due to data abstraction and abstract computation4.
The idea is to fix a generic bound ⌧ (at the limit >) that we want to confine
the loss of precision, namely such that any abstract computation is strictly over-
approximated by ⌧ . Formally

4 Similarly to what happens with completeness, adequacy of any sound abstract op-
erator implies the adequacy of the best correct approximation.

Fig. 2. Program semantics abstraction (a). Complete semantic abstraction (b). Ade-
quacy (c).

3.2 Abstract Domain Adequacy

In order to move the attention to the whole (abstract) image of all the elements
with the same abstraction, loosing the dependency on the chosen point imposed
by local completeness while keeping a locality of the property, we propose a novel
approach referred to as abstract domain adequacy. We can say that abstract
domain adequacy allows us to bound (strictly below a fixed threshold) the total
amount of approximation due to data abstraction and abstract computation4.
The idea is to fix a generic bound τ (at the limit ⊤) that we want to confine
the loss of precision, namely such that any abstract computation is strictly over-
approximated by τ .

4 Similarly to what happens with completeness, adequacy of any sound abstract op-
erator implies the adequacy of the best correct approximation.

8 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

Definition 1 (Abstract domain adequacy w.r.t. τ).
Let C be a concrete domain, f : C → C, A ∈ Abs(C) one of its abstractions,
τ ∈ A (i.e., A = γα and γα(τ) = τ ∈ C). Then A is adequate w.r.t. τ for f if

(Global) C̃A(f)τ ⇔ ∀c ∈ C. A◦f ◦A(c) ⪇C τ and

(Local) C̃A
c(f)τ ⇔ A◦f ◦A(c) ⪇C τ

when τ = ⊤ we simply call A adequate for f , denoted C̃A(f) and C̃A
c(f).

Example 1. Consider C = ℘(Z) and A = Sign, whose abstract counterpart is
depicted on the left of Fig. 3.

8 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

Definition 1 (Abstract domain adequacy w.r.t. ⌧).
Let C be a concrete domain, f : C ! C, A 2 Abs(C) one of its abstractions,
⌧ 2 A (i.e., A = �↵ and �↵(⌧) = ⌧ 2 C). Then A is adequate w.r.t. ⌧ for f if

(Global) eCA(f)⌧ , 8c 2 C. A� f �A(c) �C ⌧ and

(Local) eCA
c(f)⌧ , A� f �A(c) �C ⌧

when ⌧ = > we simply call A adequate for f , denoted eCA(f) and eCA
c(f).

Example 1. Consider C = }(Z) and A = Sign, whose abstract counterpart is
depicted on the left of Fig. 3.

>

?

Z<0

Z0Z�0

Z>0 Z=0

Z 6=0

>

?

Z0Z�0

Z=0

Fig. 3. Abstract domains for signs: Sign (left) and Sign1 (right).

Let f
def
= �c.

�
2 ⇤ n

��n 2 c

and let c
def
= {0, 2, 4, 6, 8}, then we have eCA

c(f) since

Sign � f � Sign(c) = Sign � f (
�

n 2 Z
��n � 0

) = Sign(

�
2n

��n � 0,n 2 Z

) =�

n 2 Z
��n � 0

(Z, but ¬eCA

c0(f) with c0
def
= {�1, 0, 1}, since Sign� f �Sign(c0) =

Sign � f (Z) = Sign(2Z) = Z, which is the top, hence it does not hold globally,

i.e., ¬eCA(f).
If we consider g = �c.

�
n2 + 2

��n 2 c

, and we consider ⌧ = Z�0, then we

have that 8c. Sign�g �Sign(c) ✓
�

n 2 Z
��n > 0

(⌧ . Hence, eCA(g)⌧ .

In general, completeness and adequacy are not comparable when 9c.Af (c) = >,
since in this case we could have completeness, i.e., A � f (c) = A � f � A(c) but
we cannot satisfy adequacy, i.e., A � f � A(c) = A � f (c) = >. Following the
other direction, it is clear that adequacy cannot imply completeness. A similar
reasoning can be done when we consider adequacy w.r.t. ⌧ 6= >. In general, we
can prove the following relation.

Proposition 1. Let C be a concrete domain, f : C ! C and A 2 Abs(C). Then
for any ⌧ 2 A, if 8c 2 C.A� f (c) �C ⌧ then A complete imply A globally adequate
w.r.t. ⌧ for f .

Fig. 3. Abstract domains for signs: Sign (left) and Sign1 (right).

Let f
def
= λc.

{
2 ∗ n

∣∣n ∈ c
}
and let c

def
= {0, 2, 4, 6, 8}, then we have C̃A

c(f) since

Sign ◦ f ◦ Sign(c) = Sign ◦ f(
{
n ∈ Z

∣∣n ≥ 0
}
) = Sign(

{
2n

∣∣n ≥ 0, n ∈ Z
}
) ={

n ∈ Z
∣∣n ≥ 0

}
⊊ Z, but ¬C̃A

c′(f) with c
′ def
= {−1, 0, 1}, since Sign◦f ◦Sign(c′) =

Sign ◦ f(Z) = Sign(2Z) = Z, which is the top, hence it does not hold globally,

i.e., ¬C̃A(f).
If we consider g = λc.

{
n2 + 2

∣∣n ∈ c
}
, and we consider τ = Z≥0, then we have

that ∀c. Sign◦g ◦Sign(c) ⊆
{
n ∈ Z

∣∣n > 0
}
⊊ τ . Hence, C̃A(g)τ .

In general, completeness and adequacy are not comparable when ∃c.Af(c) = ⊤,
since in this case we could have completeness, i.e., A ◦ f(c) = A ◦ f ◦ A(c) but
we cannot satisfy adequacy, i.e., A ◦ f ◦ A(c) = A ◦ f(c) = ⊤. Following the
other direction, it is clear that adequacy cannot imply completeness. A similar
reasoning can be done when we consider adequacy w.r.t. τ ̸= ⊤. In general, we
can prove the following relation.

Proposition 1. Let C be a concrete domain, f : C → C and A ∈ Abs(C). Then
for any τ ∈ A, if ∀c ∈ C.A◦f(c) ⪇C τ then A complete imply A globally adequate
w.r.t. τ for f .

Abstract Domain Adequacy 9

Example 2. Let us consider C and f in Example 1, we have shown above that
¬C̃A(f), but it is trivial to show, and well known, that Sign is complete for f ,
since ∀c ∈ C. Sign ◦ f ◦ Sign(c) = Sign ◦ f(c), since f leaves in the resulting
set precisely the same signs that are in the input set, but ⊤ = Z = Sign ◦
f({−1, 0, 1}) = Sign({−2, 0, 2}). Hence, in this case, completeness does not imply
adequacy. On the other side, let h

def
= λc.

{
(n+ 2)2

∣∣n ∈ c
}
of the same example,

which satisfies adequacy (w.r.t. ⊤ = Z) since ∀c ∈ C. Sign ◦ h ◦ Sign(c) ⊆{
n ∈ Z

∣∣n ≥ 0
}
, but it is not complete, e.g., Sign ◦h ◦Sign({−1, 0, 1}) = Sign ◦

h(Z) = Sign
{
(n+ 2)2

∣∣n ∈ Z
}
=

{
n ∈ Z

∣∣n ≥ 0
}
, while Sign◦h({−1, 0, 1}) =

Sign({1, 2, 3}) =
{
n ∈ Z

∣∣n > 0
}
. Hence, in general, adequacy does not imply

completeness.

3.3 Adequacy for L programs

Let us consider now abstract domain adequacy for L programs, namely where
f = JrK, for some r ∈ L. In this case, the concrete domain is C = ℘(M) and
A ∈ Abs(℘(M)) (namely ≤C is ⊆, while ≤A still depends on the abstract domain,
and in particular on the abstraction α) and we say that A is adequate for r.

For the sake of readability, we will write C̃A
c(r) instead of C̃A

c(JrK) (analogous for
global adequacy). In this context, we look as properties of elements in L related
with adequacy.

In [4] the authors introduce a notion of expressability which has a strong
relation with completeness. Formally, b is expressible in A if its truth semantics
is an element of A, i.e., (|b|) ∈ A. In particular, the authors show that if the
semantics of b? is local complete then b and ¬b are expressible, while the other
implication does not always holds (Lemma III.2 [4]).
As far as adequacy is concerned, the situation is slightly different: while ade-
quacy seems too weak to imply b to be expressible, it is instead implied by the
expressability of b.

Definition 2 (b quasi-expressible w.r.t. τ). Let C = ℘(M) be the concrete
domain, A ∈ Abs(C), τ ∈ A. A boolean expression b, such that (|b|) ≤ τ , is
quasi-expressible w.r.t. τ in A if there exists b′ expressible in A, i.e, (|b′|) ∈ A,
such that (|b|) ⊆ (|b′|), A((|b|)) = A((|b′|)) = (|b′|) ⊊ τ .

In other words, a quasi-expressible, w.r.t. τ , boolean expression b has an ab-
stract semantics approximated in A strictly under τ . It is trivial to observe that,
if b is not quasi-expressible, w.r.t. τ then A((|b|)) = τ . For instance, consider
again the sign domains in Fig. 3. Then the boolean expressions x ≤ 0 and
0 < x are expressible (and therefore quasi-expressible) in Sign, since x ≤ 0 is
expressed by

{
n
∣∣n ≤ 0

}
and 0 < x by

{
n
∣∣n < 0

}
. Note that 0 < x is only

quasi-expressible, instead, in Sign1. If we consider the interval domain Int and
τ = [0,+∞], then 10 < x is still expressible also w.r.t. τ since its semantics,
i.e., [11,+∞] is strictly contained in τ , x > 0 ∧ x mod 2 = 0, i.e., the set of
even numbers greater or equal to 2, is only quasi-expressible w.r.t. τ , since its
semantics is contained in the semantics of x ≥ 2, which is [2,+∞] ⊊ τ , while

10 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

x < 100 is not expressible w.r.t. τ since its semantics is [−∞, 99], and there is
no semantics strictly contained in τ which contains [−∞, 99].

Theorem 1. Given b ∈ BExp, in the hypotheses of Def. 2

1. If b is quasi-expressible w.r.t τ ∈ A then C̃A(b?)τ ;

2. If b is not quasi-expressible w.r.t. τ then ∀c ∈ C.A(c) ⊇ τ we have ¬C̃A
c(b?)τ .

Proof.

1. Let b be quasi-expressible w.r.t. τ , hence there exists b′ ∈ BExp such that
A((|b|)) = A((|b′|)) = (|b′|) ⊊ τ and let c ∈ C. Then

AJb?KA(c) = A(|b?|)A(c) = A(A(c) ∩ (|b|)) ⊆ A(A(c) ∩ A((|b|)))
= A(A(c) ∩ A((|b′|))) = A(c) ∩ A((|b′|))
⊆ A((|b′|)) = (|b′|) ⊊ τ

2. Suppose b is not quasi-expressible w.r.t. τ , i.e., A((|b|)) = τ , and (|b|) ⊆ τ ,
and suppose A(c) ⊇ τ , then (|b|) ⊆ τ ⊆ A(c) and therefore we trivially have
AJb?KA(c) = A(A(c) ∩ (|b|)) = A((|b|)) = τ .

In other words, when b is quasi-expressible we have the adequacy of the abstract
domain w.r.t. its semantics, when we have adequacy of the abstract domain
w.r.t. its semantics, we cannot say anything about the possibility to express b,
in particular if A(c) ⊊ τ we always have adequacy w.r.t. τ .

Corollary 1. Given b ∈ BExp and A ∈ Abs(C)

1. If b is quasi-expressible then C̃A(b);
2. If b is not quasi-expressible (w.r.t. ⊤), then ∀c ∈ C. A(c) = ⊤ we have

¬C̃A
c(b?).

4 Adjusting abstract domains

In this section, we wonder whether it is possible to adjust abstract domains in
order to make them locally adequate. First, we realize that, differently from com-
pleteness, even when we deal with different input and output abstract domains,
i.e., A1 ◦ f ◦A2, we have only one possible direction for adjusting the domains,
we can only refine them.
A second observation is that it is not always possible to adjust an abstract do-
main towards adequacy.
Finally, even when possible there may not exist a shell [17], namely a most ab-
stract refinement guaranteeing adequacy, but anyway we can adjust the domain
towards an optimal refinement guaranteeing adequacy.
For the sake of simplicity, in the following we consider the same domain of input
and output, but similar results hold in the most general case.

Abstract Domain Adequacy 11

Proposition 2. Let C be concrete the domain, f : C → C, and A ∈ Abs(C). Let
c ∈ C and τ ∈ A, if f(c) ̸⪇C τ then the abstract domain A cannot be adequate.

For a generic τ , f(c) ̸⪇C τ means that τ ≤C f(c) or not comparable, when τ = ⊤,
it means f(c) = ⊤. The result is trivial, since if A is such that A◦f ◦A(c) ⪇C τ
then also f(c) ⪇C τ by extensivity, contradicting the hypothesis. Hence surely
adequacy is violated for any possible abstraction A. For instance, if we con-
sider f of Example 1, c =

{
n ∈ Z

∣∣n ≥ 0
}

and τ =
{
n ∈ Z

∣∣n > 0
}
, then

f(c) =
{
2n ∈ Z

∣∣n ≥ 0
}
̸≤C τ meaning that there not exist abstract domains

A adequate for f on c.

Suppose now f(c) ⪇C τ , then we may adjust the abstract domain. The fol-
lowing step consists in fixing a first necessary (not sufficient) condition, namely
f ◦A(c) ⪇C τ . Indeed it is necessary since, if A◦f ◦A(c) ⪇C τ then, by extensiv-
ity, f ◦A(c) ≤C A◦f ◦A(c) ⪇C τ . Let us define the following set of elements and
domain refinement

RiτA(c)(A)
def
= A⊞ {d′} with d′ ∈ max

{
d ∈ C

∣∣d ≥ c, f(d) ⪇C τ ∧ A(c) = A(d)
}

5

where the domain operation ⊞ [5] is defined as follows. Let A ∈ Abs(C) and
R ⊆ C

A⊞R
def
= M(A ∪R)6

Proposition 3. Let C be the concrete domain, f : C → C monotone, and A ∈
Abs(C). Suppose f(c) ⪇C τ and f ◦ A(c) ̸⪇C τ Then Ai

def
= RiτA(c)(A) is such that

f ◦Ai(c) ⪇C τ .

Proof. Let us denote R
def
= max

{
d
∣∣d ∈ C, f(d) ⪇C τ ∧ A(c) = A(d)

}
for the

sake of readability. Suppose, in particular Ai = A ⊞ {d}, with d ∈ R. Note that
Ai ∈ Abs(C) by construction, and Ai ⊑ A. Now, let us observe that c ∈ R since
f(c) ⪇C τ by hypothesis, hence c ≤C d. Then, by monotonicity of Ai, this means
that Ai(c) ≤C Ai(d) = d, where the last equality holds by construction. But then,
by definition of R, we have f(d) ⪇C τ , and therefore f ◦Ai(c) ≤C f(d) ⪇C τ .

The following step consists in fixing another necessary (not sufficient) condition,
namely A ◦ f(c) ⪇C τ , which still may not hold. First of all, let us observe that
if f(c) ⪇C τ , being τ ∈ A, by monotonicity we have A◦f(c) ≤C A(τ) = τ , hence
A◦f(c) ̸⪇C τ means A◦f(c) = τ . In this case we can refine the output abstract
domain to force A◦f(c) ⪇C τ .
Let us define the following refinement

RoτA(c)(A)
def
= A⊞{d′} with d′ ∈ max

{
f(d)

∣∣c ≤ d ∈ C, f(d) ⪇C τ ∧ A(c) = A(d)
}

Proposition 4. Let C be the concrete domain, f : C → C monotone, and A ∈
Abs(C). Suppose f(c) ⪇C τ and A ◦ f(c) = τ . Then Ao

def
= RoτA(c)(A) is such that

Ao ◦f(c) ⪇C τ .
5 Where max extracts the upper bounds from a set.
6 Let us recall that M is the Moore closure, namely the operator closing a set by
concrete greatest lower bound, hence making a set a Moore family.

12 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

Proof. Let us denote the set R
def
= max

{
f(d)

∣∣d ∈ C, f(d) ⪇C τ ∧ A(c) = A(d)
}

for the sake of readability. Suppose, in particular Ao = A ⊞ {d′}, with d′ ∈ R.
Note that Ao ∈ Abs(C) by construction, and Ao ⊑ A, namely it is more concrete
than A, which means that Ao ◦ f(c) ≤C A ◦ f(c) = τ . Now, let us observe that
f(c) ∈ R since f(c) ⪇C τ by hypothesis, hence f(c) ≤C d

′. Then, by monotonicity
of Ao, this means that Ao ◦ f(c) ≤C Ao(d

′) = d′, where the last equation holds
by construction. But then, by definition of R, we have d′ ⪇C τ , and therefore
Ao ◦f(c) ≤C d

′ ⪇C τ .

Now we can make the final step, combining the two transformations.

Theorem 2. Let C be the concrete domain, f : C → C monotone, and A ∈
Abs(C). Suppose f(c) ⪇C τ , then let Ai

def
= RiτA(c)(A) and Rτ

A(c)(A)
def
= RoτAi(c)(Ai),

then Rτ
A(c) ◦f ◦Rτ

A(c) ⪇C τ .

Proof. By the hypotheses and by Prop. 3 we have that f ◦ Ai(c) ⪇C τ . Let us
denote c′

def
= Ai(c), then f(c′) ⪇ τ , hence we can build Ao

def
= RoτAi(c′)(Ai). At this

point, by definition and indempotence of Ai we have that

RoτAi(c′)(Ai) = max
{
f(d)

∣∣d ∈ C, f(d) ⪇C τ ∧ Ai(c
′) = Ai(d)

}

= max
{
f(d)

∣∣d ∈ C, f(d) ⪇C τ ∧ Ai(Ai(c)) = Ai(d)
}

= max
{
f(d)

∣∣d ∈ C, f(d) ⪇C τ ∧ Ai(c) = Ai(d)
}
= RoτAi(c)(Ai)

Hence Ao = RoτAi(c)(Ai) = Rτ
A(c)(A) and Ao ⊑ Ai. Then by Prop. 4 we have

that Ao ◦ f(c′) ⪇C τ , namely Ao ◦ f ◦ Ai(c) ⪇C τ . But then, by Ao ⊑ Ai and
by monotonicity of the functions involved, we have Ao ◦ f ◦ Ao(c) ≤C Ao ◦ f ◦
Ai(c) ⪇C τ .

Let us consider a very simple example just to show the process.

Example 3. Consider the sign abstraction A = Sign on the concrete domain
C = ℘(Z) and g

def
= λc.

{
n+ 2

∣∣n ∈ c
}
. Then, if c

def
= ⊤ = Z we have g(c) = ⊤,

meaning that for the ⊤ element the sign domain cannot be make adequate.
Let us consider now the f function in Example 1, on the same domains and
suppose τ

def
= Z≥0. Let c = {0, 2, 4}, then f(c) = {0, 4, 8} ⊊ τ , but f ◦Sign(c) =

f(Z≥0) = Z≥0 = τ hence we can try to make the abstract domain adequate for
c. Let us observe that for any n > 0

Z≥0 ∖ {n} ∈ max
{
d
∣∣f(d) ⊊ Z≥0 ∧ Sign(d) = Z≥0

}

since f(Z≥0∖{n}) = Z≥0∖{2n} ⊊ τ , but Sign(Z≥0∖{n}) = Z≥0 since 0 is still
in the result. Let us define Sign′

def
= Sign⊞(Z≥0∖{8}). Now f ◦Sign′(c) = f(Z≥0∖

{8}) = Z≥0∖{16} ⊊ τ , but unfortunately Sign′ ◦f(c) = Sign′({0, 4, 8}) = Z≥0 =
τ , hence we have to further refine. Then, we have that

Z≥0 ∖ {16} ∈ max
{
f(d)

∣∣f(d) ⊊ Z≥0 ∧ Sign′(d) = Z≥0 ∖ {8}
}

Let Sign′′
def
= Sign′⊞Z≥0∖{16}, and in this case Sign′′ ◦f(c) = Sign′′({0, 4, 8}) =

Z≥0 ∖ {16} ⊊ τ and Sign′′ ◦ f ◦ Sign′′(c) = Sign′′ ◦ f(Z≥0 ∖ {8, 16})7 =

7 Z≥0 ∖ {8, 16} is introduced by ⊞ in Sign′′.

Abstract Domain Adequacy 13

Sign′′(Z≥0 ∖ {16, 32}) = Z≥0 ∖ {16} ⊊ τ . In this example, we can also ob-
serve that, in general, the refinements do not induce local completeness [5] but
only adequacy.

5 Abstract domain adequacy logic

In this section we define a proof system for program analysis of regular com-
mands, parameterized by an abstraction A = γα(C) on the concrete domain of
sets of stores C = ℘(M). The provable triples of our logic are judgements of the
form τ ⊢A ⟨c⟩ r ⟨d⟩, with c, d ∈ C, τ ∈ A and r ∈ L. τ ⊢A ⟨c⟩ r ⟨d⟩ guarantees that:

1. C̃A
c(r)τ ;

2. JrK♯
A
α(c) ≤A α(d) ⪇A τα

def
= α(τ).

The rules are provided in Fig. 4. It is worth noting that, the rule relax is
added, even if less common, since the rules work with the concrete elements
c, and the rule seq could be not directly applicable also in cases where the
first statement has an output assertion greater than the input assertion of the
following statement. In this case the rule relax2 may not be used or may increase
imprecision getting closer to τ .
For instance, consider r = r1; r2, and consider as output property of r1 the
property c = {0, 10, 20, 30}, while the input property for r2 is c′ = {0, 10, 30},
then we would have to reduce c or enlarge c′ in order to apply rule seq. It should
be clear that the first direction is surely preferable for not losing precision and
only the rule relax allows to follow such direction.

Lemma 1. Let C = ℘(M), A ∈ Abs(C) (A = γα), τ ∈ A and τα
def
= α(τ). Then

∀c ∈ C we have that C̃A
c(r)τ iff α(JrKγα(c)) ⪇A τα.

Proof. Suppose C̃A
c(r)τ , namely such that AJrKA(c) ⊊ τ , written in terms of the

GI it is γαJrKγα(c) ⊊ τ , then by monotonicity of α and by properties of GI, we
have that

αJrKγα(c) = αγαJrKγα(c) ≤A τα

Suppose, towards contradiction, that αJrKγα(c) = τα, then since γ(τα) = γα(τ) =
τ being τ ∈ A, we would have also

AJrKA(c) = γαJrKγα(c) = γ(τα) = τ

contradicting the hypothesis, hence αJrKγα(c) ⪇A τα.
Suppose now αJrKγα(c) ⪇A τα, then by monotonicity of γ, we have

AJrKA(c) = γαJrKγα(c) ⊆ γ(τα) = τ

Suppose, towards contradiction, that γαJrKγα(c) = γ(τα) then being γ one-
to-one, this would imply αJrKγα(c) = τα contradicting the hypothesis. Hence
AJrKA(c) ⊊ τ .

14 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

transfer:
C̃A
c(e)τ

τ ⊢A ⟨c⟩ e ⟨JeKγα(c))⟩

relax:
c′ ⊆ c ⊆ γα(c′) τ ⊢A ⟨c′⟩ r ⟨d′⟩ d ⊆ d′ ⊆ γα(d)

τ ⊢A ⟨c⟩ r ⟨d⟩

relax2:
c ⊆ c′ τ ⊢A ⟨c′⟩ r ⟨d′⟩ α(d′) ≤A α(d) ⪇A τα

τ ⊢A ⟨c⟩ r ⟨d⟩

seq:
τ ⊢A ⟨c⟩ r1 ⟨d′⟩ τ ⊢A ⟨d′⟩ r2 ⟨d⟩

τ ⊢A ⟨c⟩ r1; r2 ⟨d⟩
iterate:

τ ⊢A ⟨c⟩ r ⟨d⟩ α(d) ≤A α(c) ⪇A τα

τ ⊢A ⟨c⟩ r∗ ⟨c⟩

join:
τ ⊢A ⟨c⟩ r1 ⟨d1⟩ τ ⊢A ⟨c⟩ r2 ⟨d2⟩ α(d1 ∪ d2) ⪇A τα

τ ⊢A ⟨c⟩ r1 ⊕ r2 ⟨d1 ∪ d2⟩

Fig. 4. A logic for adequacy w.r.t. τ (τα
def
= α(τ)).

Theorem 3. Let c, d ∈ C = ℘(M), A ∈ Abs(C) (A = γα), τ ∈ A and τα
def
= α(τ).

If τ ⊢A ⟨c⟩ r ⟨d⟩ then (1) C̃A
c(r)τ and (2) JrK♯

A
α(c) ≤A α(d) ⪇A τα.

Proof. We prove the soundness of the rule system in Fig. 4 by structural induc-
tion on the derivation tree of τ ⊢A ⟨c⟩r ⟨d⟩, by distinguishing the cases depending
on the last rule applied.

(transfer): In this case (1) holds by hypothesis, being the premix of the rule.

Then, by Lemma 1 we have α(JeKγα(c)) ⪇A τα, and by definition of JeK♯
A
we have

JeK♯
A
α(c) = (αJeKγ)α(c) = α(JeKγα(c)) ⪇A τα

(relax): First of all, let us observe that the hypotheses, by monotonicity
and idempotence of γα, imply γα(c) = γα(c′), and therefore, being γ one-
to-one, this means that α(c) = α(c′). Analogously, α(d) = α(d′). This means

that α(JrKγα(c)) = (αJrKγ)α(c) ≤A JrK♯
A
α(c) by definition of bca, but then

JrK♯
A
α(c) = JrK♯

A
α(c′) ⪇A τα since by hypothesis τ ⊢A ⟨c′⟩ r ⟨d′⟩, and therefore by

inductive hypothesis JrK♯
A
α(c′) ≤A α(d′) ⪇A τα. But then, by definition of bca

and by transitivity of ≤A we have α(JrKγα(c)) ⪇A τα. Hence, by Lemma 1 we
have (1). As far as (2) is concerned, by we have proved above we have

JrK♯
A
α(c) = JrK♯

A
α(c′) ≤A α(d

′) = α(d) and α(d) = α(d′) ⪇A τα

(relax2): Note that, by hypothesis τ ⊢A ⟨c′⟩r⟨d′⟩, hence by inductive hypothesis,

Abstract Domain Adequacy 15

as before, we have JrK♯
A
α(c′) ≤A α(d

′) ⪇A τα, and therefore

αJrKγα(c) ≤A JrK♯
A
α(c) ≤A JrK♯

A
α(c′) ⪇A τα

Then by Lemma 1 this implies AJrKA(c) ⊊ τ (condition (1)), and moreover,
again by the rule hypotheses and by inductive hypothesis, we have

JrK♯
A
α(c) ≤A JrK♯

A
α(c′) ≤A α(d

′) ≤A α(d) ⪇A τα

proving condition (2).

(seq): Let us prove (1). By inductive hypotheses, we have that Jr1K
♯
A
α(c) ≤A

α(d′) ⪇A τα and Jr2K
♯
A
α(d′) ≤A α(d) ⪇A τα, then by definition of bca and of

abstract semantics, and by the monotonicity of the abstract semantics we have
that

αJr1; r2Kγα(c) ≤A Jr1; r2K
♯
A
α(c) = Jr2K

♯
A
(Jr1K

♯
A
α(c)) ≤A Jr2K

♯
A
α(d′) ⪇A τα

Hence, by Lemma 1, we have AJrKA(c) ⊊ τ . As far as (2) is concerned, we have

already proved that Jr1; r2K
♯
A
α(c) ≤A Jr2K

♯
A
α(d′), and Jr2K

♯
A
α(d′) ≤A α(d) ⪇A τα

by hypothesis (2) on r2, and therefore by transitivity we have the thesis.

(iterate): Let us prove that if we have τ ⊢A ⟨c⟩ r ⟨d⟩ with α(d) ≤A α(c),
then we have τ ⊢A ⟨c⟩ r∗ ⟨c⟩. We first prove by induction on n ≥ 1 that

(JrK♯
A
)nα(c) ≤A α(d). The base (n = 1) is the hypothesis of the rule, suppose it

holds for (JrK♯
A
)n, let us prove for n + 1, recalling that by structural inductive

hypothesis we have that JrK♯
A
α(c) ≤A α(d) ⊊ τα, and by the rule hypothesis we

have α(d) ≤A α(c)

(JrK♯
A
)n+1α(c) = ((JrK♯

A
)n ◦ JrK♯

A
)α(c)

= (JrK♯
A
)n(JrK♯

A
α(c)) ≤A (JrK

♯
A
)nα(d)

≤A (JrK
♯
A
)nα(c) ≤A α(d) ⪇A τα

where the last relations hold by inductive hypothesis on n. Hence, for all n ≥ 1
we have (JrK♯

A
)nα(c) ≤A α(d) ⪇A τα. At this point we have condition (2)

α(Jr∗Kγα(c)) ≤A Jr∗K♯
A
α(c) =

∨
A{n≥0}(JrK

♯
A
)nα(c)

= (JrK♯
A
)0α(c) ∨A

∨
A{n≥1}(JrK

♯
A
)nα(c)

≤A α(c) ∨A α(d) ≤A α(c) ⪇A τα

by additivity of α and by the rule hypothesis α(c) ⪇A τα. Finally, condition (1)
comes by Lemma 1.

(join): Let us prove (2). By inductive hypotheses we have that Jr1K
♯
A
α(c) ≤A

α(d1) ⪇A τα and that Jr2K
♯
A
α(c) ≤A α(d2) ⪇A τα. Hence, by additivity of α we

16 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

have

α(Jr1 ⊕ r2Kγα(c)) = (αJr1 ⊕ r2Kγ)α(c) ≤A Jr1 ⊕ r2K
♯
A
α(c)

= Jr1K
♯
A
α(c) ∨A Jr2K

♯
A
α(c) ≤A α(d1) ∨A α(d2)

= α(d1 ∪ d2) ⪇A τα

By Lemma 1 what we have proved implies also (1), proving the thesis.

Corollary 2. Let C = ℘(M), A ∈ Abs(C) (A = γα). If ⊢A ⟨c⟩ r ⟨d⟩ then

(1) C̃A
c(r) and (2) JrK♯

A
α(c) ≤A α(d) ⪇A ⊤A.

Let us investigate about completeness of this rule system.

Theorem 4. Let c, d ∈ C = ℘(M), A ∈ Abs(C) (A = γα), r ∈ L, τ ∈ A and

τα
def
= α(τ). (1) C̃A

c(r)τ and (2) JrK♯
A
α(c) ≤A α(d) ⪇A τα do not imply τ ⊢A ⟨c⟩r⟨d⟩.

Proof (Sketch). We provide an example that cannot be deduced by using the
rule system. Consider r

def
= (x := x ∗ 2;x < 0?), let us denote by r1

def
= x := x ∗ 2

and by r2
def
= x ≤ 0?. Consider the sign domain A

def
= Sign = γSαS in Fig. 3 and

let us denote by αS : ℘(Z) → Sign, and γS the function associating with each
abstract element the represented set, e.g., γS(Z≤0) =

{
n ∈ Z

∣∣n ≤ 0
}
, and let

τ
def
= γ(Z≤0). Let c

def
= {−10, 0, 10} and d

def
= {−10} Then we have that

(1) C̃A
c(r)τ , since SignJrKSign({−10, 0, 10}) = SignJrKZ = Sign(

{
n
∣∣n < 0

}
) ={

n
∣∣n < 0

}
⊊ τ ;

(2) JrK♯
A
Sign(c) = JrK♯

A
Sign({−10, 0, 10}) = JrK♯

A
Z = Z<0 = αS(d) ⪇Sign Z≤0,

where trivially Z≤0 = αS(τ)

But, C̃A
c(r1)τ does not hold, since SignJr1KSign({−10, 0, 10}) = SignJr1KZ =

Sign(Z) = Z ̸⊆ τ , and therefore we cannot find d′ ∈ ℘(Z) such that τ ⊢A ⟨c⟩r1⟨d′⟩,
making not possible to apply rule seq.

The logic above becomes complete if we add/substitute rule (seq) with the
following rule computing code semantics

seq1:
τ ⊢A ⟨Jr1Kγα(c)⟩ r2 ⟨d⟩

τ ⊢A ⟨c⟩ r1; r2 ⟨d⟩

and the rule, with infinite premixes

iterate1:
∀n ∈ N. τ ⊢A ⟨c⟩ rn ⟨d⟩

τ ⊢A ⟨c⟩ r∗ ⟨d⟩

where rn is a syntactic sugar defined as : r0
def
= skip and rn+1 def

= rn; r. But it is
worth noting that in this way the logic itself becomes undecidable requiring to
compute a code semantics and to prove infinite conditions for being applied. Let
us denote as τ ⊨A ⟨c⟩ r ⟨d⟩ the derivation in the rule system in Fig. 4 extended
with rules seq1 and iterate1.

Abstract Domain Adequacy 17

Theorem 5. Let c, d ∈ C = ℘(M), A ∈ Abs(C) (A = γα), r ∈ L, τ ∈ A and

τα
def
= α(τ). If (1) C̃A

c(r)τ and (2) JrK♯
A
α(c) ≤ α(d) < τ then we have τ ⊨A ⟨c⟩r ⟨d⟩.

Proof. Let us prove by structural induction on the language L.

r = e: If (1) and (2) hold, then trivially by rule (transfer) we have τ ⊨A ⟨c⟩e⟨d⟩.

r = r1 ⊕ r2: Let us consider condition (2), if Jr1 ⊕ r2K
♯
A
α(c) ≤A α(d) ⪇A τα

then we have that Jr1K
♯
A
α(c) ∨A Jr2K

♯
A
α(c) ≤A α(d) ⪇A τα, implying that we have

both the relations Jr1K
♯
A
α(c) ≤A α(Q) ⪇A τα and Jr2K

♯
A
α(c) ≤A α(Q) ⪇A τα. By

properties of bca, this means that (αJr1Kγ)α(c) ≤A Jr1K
♯
A
α(c) ⪇A τα, but then

by Lemma 1 we have C̃A
c(r1)τ . Analogously we also have C̃A

c(r2)τ . Hence, by in-
ductive hypothesis implies that τ ⊨A ⟨c⟩ r1 ⟨d⟩ and τ ⊨A ⟨c⟩ r2 ⟨d⟩, and therefore,
by rule (join) we have that τ ⊨A ⟨c⟩ r ⟨d⟩, being α(d ∨ d) = α(d) ⪇A τα.

r = r1; r2: Suppose C̃A
c(r)τ together with JrK♯

A
(α(c)) ≤A α(d) ⪇A τα. First of

all let us observe that, by definition JrK♯
A
(α(c)) = Jr2K

♯
A
(Jr1K

♯
A
(α(c))). Then, by

monotonicity and by construction of abstract semantics we have

Jr2K
♯
A
(αJr1Kγα(c)) ≤A Jr2K

♯
A
(Jr1K

♯
A
(α(c))) ≤A α(d) ⪇A τα

which is condition (2) for the hypothesis of rule (seq1). As far as (1) is concerned
let us observe that

AJr2KA(Jr1Kγα(c)) = γαJr2KγαJr1Kγα(c) ⊆ γ(Jr2K
♯
A
(αJr1Kγα(c)))

where the last holds by definition of Jr2K
♯
A
, and for what we have proved above

we have
γ(Jr2K

♯
A
(αJr1Kγα(c))) ⊆ γ(τα) = τ

Finally, by Lemma 1 it must be γ(Jr2K
♯
A
(αJr1Kγα(c))) ⊊ τ , since we proved above

that Jr2K
♯
A
(αJr1Kγα(c)) ⪇A τα. Therefore we have (1), i.e., AJr2KA(Jr1Kγα(c)) ⊊

τ . At this point, by inductive hypothesis we conclude that τ ⊨A ⟨Jr1Kγα(c)⟩r2 ⟨d⟩,
and by rule (seq1) we derive τ ⊨A ⟨c⟩ r1; r2 ⟨d⟩.

r = r∗1: Suppose C̃A
c(r)τ together with JrK♯

A
(α(c)) ≤A α(d) ⪇A τα. By defini-

tion of abstract semantics, we have
∨

A
(Jr1K

♯
A
)nα(c) = Jr∗1K

♯
A
α(c) ≤A α(d) ⪇A

τα, which implies, by definition of least upper bound, that for all n, we have
(Jr1K

♯
A
)nα(c) ≤A α(d) ⪇A τα. As before, we can also show that

αJrn1 Kγα(c) ≤A Jrn1 K♯
A
α(c) = (Jr1K

♯
A
)nα(c) ≤A α(d) ⪇A τα

since, by induction and by definition, we can observe that Jrn1 K♯
A
= (Jr1K

♯
A
)n. Now,

by Lemma 1 we also have C̃A
c(r

n
1)τ for each n ∈ N, hence by inductive hypothesis

we have that ∀n ∈ N. τ ⊨A ⟨c⟩ rn1 ⟨d⟩. Finally, by rule (iterate1) we have that
τ ⊨A ⟨c⟩ r∗1 ⟨d⟩.

18 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

Let us consider some simple examples of derivation. For the sake of simplic-
ity, since the following programs have only one variable x, we abuse notation
identifying the domain of stores M with the domain of values Z. Hence, in the
following examples, we will define A directly on ℘(Z).

Example 4. Let us consider the regular command in Reg

r
def
= (x ≤ 0?;x := x ∗ 2)∗; 0 ≤ x?

and τ = ⊤. Let us consider the abstract domain A = Sign (let A = γSαS) on the
left of Fig. 3. For the sake of readability, in the following we identify each abstract
element with its meaning, e.g., Z≤0 with {n | n ≤ 0}. As observe previously, both
the boolean expressions in r are expressible (and therefore quasi-expressible) in
Sign, since x ≤ 0 is expressed by Z≤0 and 0 ≤ x by Z≥0. By Th. 1 we have

that both C̃A
d
(x ≤ 0?) and C̃A

d
(0 < x?) hold for any d. Let us consider an input

property c
def
= {−100,−10, 0} (Sign(c) = Z≤0), then C̃A

c(x ≤ 0?) and therefore by
rule (transfer):

C̃A
c(x ≤ 0?)

⊢A ⟨c⟩ x ≤ 0? ⟨Z≤0⟩
being Jx ≤ 0?KSign(c) = Jx ≤ 0?KZ≤0 = Z≤0.
Now, note that Sign Jx := x ∗ 2K Sign(Z≤0) = Sign Jx := x ∗ 2K Z≤0 = Z≤0 ⊊ ⊤,

hence C̃A

Z≤0
(x := x ∗ 2), and therefore we can apply again rule (transfer)

C̃A

Z≤0
(x := x ∗ 2)

⊢A ⟨Z≤0⟩ x := x ∗ 2 ⟨Z≤0⟩

since Jx := x ∗ 2KSign(Z≤0) = Z≤0. Finally by rule (seq)

⊢A ⟨c⟩ x ≤ 0? ⟨Z≤0⟩ ⊢A ⟨Z≤0⟩ x := x ∗ 2 ⟨Z≤0⟩
⊢A ⟨c⟩ x ≤ 0?;x := x ∗ 2 ⟨Z≤0⟩

Now, we can apply rule (iterate) obtaining

⊢A ⟨c⟩ x ≤ 0?;x := x ∗ 2 ⟨Z≤0⟩ Sign(Z≤0) = Z≤0 = Sign(c) ⊊ ⊤
⊢A ⟨c⟩ (x ≤ 0?;x := x ∗ 2)∗ ⟨c⟩

Finally, by Th. 1 we have C̃A
c(0 ≤ x?), implying again by rule (transfer)

C̃A
c(0 ≤ x?)

⊢A ⟨c⟩ 0 ≤ x? ⟨Z=0⟩

since J0 ≤ xKSign(c) = J0 ≤ xKZ≤0 = Z=0 In this way we can conclude, by rule

(seq), that ⊢A ⟨c⟩ (x ≤ 0?;x := x ∗ 2)∗; 0 ≤ x? ⟨Z=0⟩, meaning that C̃A
c(r).

Abstract Domain Adequacy 19

Example 5. Let us consider the regular program r
def
= r1 ⊕ r2, where

r1
def
= (0 < x?;x := x− 1)∗

r2
def
= (x < 100?;x := x+ 1)∗

Let us consider as abstract domain A = Int (let A = γiαi), τ = γi([0,+∞]) and
c

def
= {0, 10, 20, 30} (αi(c) = [0, 30]). In the following, for the sake of readability,

we identify [n,m] with its meaning {i | n ≤ i ≤ m}. As already observed, in
the considered abstract domain 0 < x is expressible w.r.t. τ , while x < 100 is
not. By Th. 1, we have ∀d ∈ C that C̃A

d(0 < x?)τ while we have that ∀d ⊊ τ

C̃A
d(x < 100?)τ , since Int(Jx < 100?Kd) ⊆ [0, 100] ⊊ τ .

Let us consider r1 first. By rule (transfer)

C̃A
c(0 < x?)τ

τ ⊢A ⟨c⟩ 0 < x? ⟨[1, 30]⟩

Now we have that Jx := x− 1KInt([1, 30]) = [0, 29], hence again by rule (transfer)
we derive

C̃A

[1,30](x := x− 1)τ

τ ⊢A ⟨[1, 30]⟩ x := x− 1 ⟨[0, 29]⟩
being Int(Jx := x− 1KInt([1, 30])[0, 29] ⊊ τ , and therefore by rule (seq) we have
⊢A ⟨c⟩ 0 < x?;x := x− 1 ⟨[0, 29]⟩. Now, by rule (iterate), we prove

τ ⊢A ⟨c⟩ 0 < x?;x := x− 1 ⟨[0, 29]⟩ Int([0, 29]) = [0, 29] ⊆ Int(c) = [0, 30] ⊊ τ

τ ⊢A ⟨c⟩ (0 < x?;x := x− 1)∗ ⟨c⟩

Let us consider r2. By rule (transfer)

C̃A
c(x < 100?)τ

τ ⊢A ⟨c⟩ x < 100? ⟨[0, 30]⟩

Now we have that Jx := x+ 1K[0, 30]) = [1, 31], hence again by rule (transfer)
we derive ⊢A ⟨c⟩ x := x + 1 ⟨[1, 31]⟩, and therefore ⊢A ⟨c⟩ x < 100?;x :=
x + 1 ⟨[1, 31]⟩ by rule (seq). In this case, unfortunately Int([1, 31]) = [1, 31] ̸⊆
Int(c) = [1, 30], hence we cannot apply rule (iterate). Let us consider, instead
c′

def
= {0, 10, 20, 30, 100} (Int(c′) = [0, 100]). Then by rule (transfer)

C̃A

c′(x < 100?)τ

τ ⊢A ⟨c′⟩ x < 100? ⟨[0, 99]⟩

then being Jx := x+ 1K[0, 99]) = [1, 100], we have by rule (transfer)

C̃A

[0,99](x := x+ 1)τ

τ ⊢A ⟨[0, 99]⟩ x := x+ 1 ⟨[1, 100]⟩

20 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

and therefore ⊢A ⟨c′⟩ x < 100?;x := x + 1 ⟨[1, 100]⟩ by rule (seq). Now by rule
(iterate)

τ ⊢A ⟨c′⟩ x < 100?;x := x+ 1 ⟨[1, 100]⟩ Int([1, 100]) = [1, 100] ⊆ Int(c′) = [0, 100] ⊊ τ

τ ⊢A ⟨c′⟩ (x < 100?;x := x+ 1)∗ ⟨c′⟩

At this point, by rule (relax2)

c ⊆ c′ τ ⊢A ⟨c′⟩ (x < 100?;x := x+ 1)∗ ⟨c′⟩
τ ⊢A ⟨c⟩ (x < 100?;x := x+ 1)∗ ⟨c′⟩

and therefore we can apply rule (join)

τ ⊢A ⟨c⟩ (0 < x?;x := x− 1)∗ ⟨c⟩ τ ⊢A ⟨c⟩ (x < 100?;x := x+ 1)∗ ⟨c′⟩ α(c′) ⪇A τα

τ ⊢A ⟨c⟩ r ⟨c′⟩

since c ∪ c′ = c′, meaning that C̃A
c(r)τ .

Example 6. In this example, we show that we can derive limits also for diverging
loops. Consider r = (x ≤ 0?;x := 2∗x)∗, A = Int (let A = γiαi) and τ

def
= [−∞, 0].

In this case we can observe that if we start from a finite c then it is not possible
to apply rule iterate since we enlarge at least one bound of the interval, while
if we compute adequacy on a point including the limit we can prove adequacy.
Let c be such that αi(c) = [n, 0] ⊊ [−∞, 0], then τ ⊢A ⟨c⟩ x ≤ 0? ⟨c⟩, while
τ ⊢A ⟨c⟩ x := 2 ∗ x ⟨d⟩ with −2n ∈ d, hence αi(d) ̸⊆ αi(c). It is trivial to observe
that the only case in which we obtain a result contained in the starting point
c is when c = [−∞, n] (n ≤ 0), since in this case we can derive, in the proof
system, that τ ⊢A ⟨c⟩ x := 2 ∗ x ⟨d⟩ with d ⊆ [−∞, 2n] ⊆ [−∞, n].
Let, for instance n = −10, then trivially τ ⊢A ⟨[−∞,−10]⟩ x ≤ 0? ⟨[−∞,−10]⟩,
τ ⊢A ⟨[−∞,−10]⟩ x := 2 ∗ x ⟨[−∞,−20]⟩, hence, by using the composition rule,
we prove τ ⊢A ⟨[−∞,−10]⟩x ≤ 0?;x := 2 ∗x ⟨[−∞,−20]⟩ and being [−∞,−20] ⊆
[−∞,−10], we can derive τ ⊢A ⟨[−∞,−10]⟩x ≤ 0?;x := 2∗x ⟨[−∞,−10]⟩. Hence,

∀c ∈
{
[−∞, n]

∣∣n < 0
}
we have that C̃A

c(r)[−∞,0].

Example 7. Let us consider the regular command in Reg

r
def
= (even(x)?;x := x+ 1)∗;⊕(¬even(x)?;x := x ∗ 2)

supposing to add to the language the operator even(x) returning true if x is even,
false otherwise, with A = Int (let A = γiαi) and τ = ⊤. It should be clear that
even(x) is not quasi-expressible in A, however we can prove adequacy on some
points c. Let c = [n,+∞], with n > 0, then we have that τ ⊢A ⟨c⟩even(x)?⟨c∩2Z⟩,
since we can trivially prove that C̃A

c(even(x))τ . At this point, it holds that τ ⊢A

⟨c∩2Z⟩x := x+1⟨[n+1,+∞]∩2Z+1⟩ by rule (transfer). Hence, by rule (seq)
we have τ ⊢A ⟨c⟩even(x);x := x+1⟨[n+1,+∞]∩2Z+1⟩, and being n > 0 we have
d = [n + 1,+∞] ⊆ [n,+∞] meaning that αi(d ∩ 2Z + 1) = d ⊆ αi(c) = c, and
therefore τ ⊢A ⟨c⟩ (even(x)?;x := x+ 1)∗ ⟨c⟩, rule (seq) and by rule (iterate).

Abstract Domain Adequacy 21

On the other hand, τ ⊢A ⟨c⟩ ¬even(x)? ⟨c ∩ 2Z + 1⟩, while τ ⊢A ⟨c ∩ 2Z + 1⟩ x :=
2x ⟨[2n,+∞] ∩ 2Z⟩, both by rule (transfer), with [n,+∞] ⊇ [2n,+∞].
Finally, we have that c ∪ ([2n,+∞] ∩ 2Z) = [n,+∞] ∪ ([2n,+∞] ∩ 2Z) = c,
which means that αi(c) = [n,+∞] ⊊ τ . Then we conclude, by rule (join), that
τ ⊢A ⟨c⟩ r ⟨c⟩, i.e., adequacy w.r.t. τ is satisfied.

Example 8. Let us consider a final example with a relational domain such that
Octagons [25, 26] for the regular command in Reg

r
def
= (y − x ≤ 0?; y := y − 1)∗;x− y ≤ 0;

with A = Oct (let A = γOαO) and τ = {x ≤ 5, y ≤ 7}. In this case, the guard is
quasi-expressible. Let us consider c

def
= {y ≤ 2, x ≤ 1, y − x ≤ 2}. By Th. 1, we

have ∀d ∈ C that C̃A
d(y − x ≤ 0?)τ , hence, by rule (transfer), τ ⊢A ⟨c⟩ y − x ≤

0? ⟨{y ≤ 2, x ≤ 1, y − x ≤ 0}⟩. Then, by rule (transfer) we have also that
τ ⊢A ⟨{y ≤ 2, x ≤ 1, y − x ≤ 0}⟩ y := y − 1 ⟨{y ≤ 1, x ≤ 1, y − x ≤ −1}⟩ and by
rule (seq) we have τ ⊢A ⟨c⟩ y − x ≤ 0?; y := y − 1 ⟨{y ≤ 1, x ≤ 1, y − x ≤ −1}⟩.
Then, since {y ≤ 2, x ≤ 1, y − x ≤ −1} ≤A c, we can apply rule (iterate)

obtaining τ ⊢A ⟨c⟩ (y − x ≤ 0?; y := y − 1)∗ ⟨c⟩.
Now, also x − y ≤ 0 is expressible, hence we have that, by rule (transfer),
τ ⊢A ⟨c⟩x−y ≤ 0?⟨{y ≤ 2, x ≤ 1, x−y ≤ 0, y−x ≤ 2}⟩, Hence, we can prove that
τ ⊢A ⟨c⟩ (y−x ≤ 0?; y := y−1)∗;x−y ≤ 0? ⟨{y ≤ 2, x ≤ 1, x−y ≤ 0, y−x ≤ 2}⟩,
again by rule (seq), and therefore we prove adequacy on c.

y=7
≤

x=5
≤

x=1
≤

≤

≤

y-x=2

y=2

y-x=0 ≤

y=1
≤

y-x=-1
≤

0
x

y

Fig. 5. Graphical representation of octagons in Example 8

22 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

6 Conclusions

We introduced the novel notion of adequate abstract domain together with a
refinement strategy to adjust abstract domains to make them adequate and a
program logic to check whether the abstract interpretation designed on a given
abstract domain is adequate. Our program logic is simple and can be checked
online during program analysis.
Adequacy is particularly interesting when we are interested to prove whether
our abstract interpreter incorporates enough information (here encoded by the
bound τ) in the computed invariant. This can have applications beyond pro-
gram analysis, for instance in language-based security and code protection. In
language-based security, as specified by abstract non-interference [21, 23, 15], ad-
equacy could guarantee that certain amount of information is kept secret or du-
ally it is released in the case of declassification, and this could be analyzed also for
dynamic code [1, 24]. In code protection the notion of adequacy become stronger
than completeness. The standard approach to protect code against program
analysis is to make the abstract interpreter maximally imprecise with respect to
the given program, which means incomplete [18, 16, 22]. In this case we may re-
place completeness with adequacy, and imagine code protecting transformations
making an abstract interpreter inadequate for the transformed code. When the
chosen bound is ⊤ this corresponds to have a code transformation for which the
abstract interpreter is totally blind and cannot extract any meaningful informa-
tion. Finally, for program verification, it could be interesting to exploit the idea
introduced for partial completeness [7], i.e., the use of a metric for weakening
completeness, for strengthening adequacy by fixing a maximal distance that we
want to guarantee from the fixed bound τ .

References

1. Arceri, V., Mastroeni, I.: Analyzing dynamic code: A sound abstract interpreter
for evil eval. ACM Trans. Priv. Secur. 24(2), 10:1–10:38 (2020)

2. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. Journal of Func-
tional Programming 2(4), 407–435 (1992)

3. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract ex-
tensionality: on the properties of incomplete abstract interpretations. Proc. ACM
Program. Lang. 4(POPL), 28:1–28:28 (2020). https://doi.org/10.1145/3371096,
https://doi.org/10.1145/3371096

4. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A logic for locally complete ab-
stract interpretations. In: Symposium on Logic in Computer Science, LICS. pp.
1–13. IEEE (2021)

5. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: Abstract interpretation repair. In:
Jhala, R., Dillig, I. (eds.) PLDI ’22: 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, San Diego, CA, USA, June
13 - 17, 2022. pp. 426–441. ACM (2022)

6. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A correctness and incorrectness
program logic. J. ACM 70(2) (2023)

Abstract Domain Adequacy 23

7. Campion, M., Preda, M.D., Giacobazzi, R.: Partial (in)completeness in ab-
stract interpretation: limiting the imprecision in program analysis. Proc.
ACM Program. Lang. 6(POPL), 1–31 (2022). https://doi.org/10.1145/3498721,
https://doi.org/10.1145/3498721

8. Cousot, P.: Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice. Res. rep. R.R. 88, Laboratoire IMAG,
Université scientifique et médicale de Grenoble, Grenoble, France (Sep 1977), 15
p.

9. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the 4th ACM Symposium on Principles of Programming Languages
(POPL ’77). pp. 238–252. ACM Press (1977)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conference Record of the 6th ACM Symposium on Principles of Programming
Languages (POPL ’79). pp. 269–282. ACM Press (1979)

12. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation (Invited Paper). In: Bruynooghe, M., Wirs-
ing, M. (eds.) Proc. of the 4th Internat. Symp. on Programming Language Im-
plementation and Logic Programming (PLILP ’92). Lecture Notes in Computer
Science, vol. 631, pp. 269–295. Springer-Verlag (1992)

13. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
14. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design.

ACM Comput. Surv. 28(2), 333–336 (1996)
15. Giacobazzi, R., Mastroeni, I.: Adjoining classified and unclassified information by

abstract interpretation. Journal of Computer Security 18(5), 751 – 797 (2010)
16. Giacobazzi, R., Mastroeni, I.: Making abstract interpretation incomplete - model-

ing the potency of obfuscation. In: Miné, A., Schmidt, D. (eds.) 19th International
Static Analysis Symp. (SAS ’12). Lecture Notes in Computer Science, vol. 7460,
pp. 129 – 145 (2012)

17. Giacobazzi, R., Ranzato, F., Scozzari., F.: Making abstract interpretation com-
plete. Journal of the ACM 47(2), 361–416 (March 2000)

18. Giacobazzi, R., Jones, N.D., Mastroeni, I.: Obfuscation by partial evaluation of
distorted interpreters. In: Kiselyov, O., Thompson, S.J. (eds.) Proceedings of the
ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation,
PEPM 2012, Philadelphia, Pennsylvania, USA, January 23-24, 2012. pp. 63–72.
ACM (2012)

19. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: Raja-
mani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mum-
bai, India, January 15-17, 2015. pp. 261–273. ACM (2015)

20. Giacobazzi, R., Mastroeni, I.: Making abstract models complete. Mathematical
Structures in Computer Science 26(4), 658–701 (2016)

21. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: A unifying framework for
weakening information-flow. ACM Trans. Priv. Secur. 21(2), 1–31 (2018)

22. Giacobazzi, R., Mastroeni, I., Preda, M.D.: Maximal incompleteness as obfuscation
potency. Formal Aspects Comput. 29(1), 3–31 (2017)

23. Mastroeni, I.: Abstract interpretation-based approaches to security - A survey on
abstract non-interference and its challenging applications. In: Banerjee, A., Danvy,

24 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni

O., Doh, K., Hatcliff, J. (eds.) Semantics, Abstract Interpretation, and Reasoning
about Programs: Essays Dedicated to David A. Schmidt on the Occasion of his
Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th September 2013. EPTCS,
vol. 129, pp. 41–65 (2013)

24. Mastroeni, I., Arceri, V.: Improving dynamic code analysis by code abstraction. In:
Lisitsa, A., Nemytykh, A.P. (eds.) Proceedings of the 9th International Workshop
on Verification and Program Transformation, VPT@ETAPS 2021, Luxembourg,
Luxembourg, 27th and 28th of March 2021. EPTCS, vol. 341, pp. 17–32 (2021)

25. Minè, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001. pp. 310–319.
IEEE, IEEE CS Press (October 2001)

26. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1),
31–100 (2006). https://doi.org/http://dx.doi.org/10.1007/s10990-006-8609-1

27. Müller, M.N., Fischer, M., Staab, R., Vechev, M.: Abstract interpretation of fix-
point iterators with applications to neural networks. Proc. ACM Program. Lang.
7(PLDI) (2023)

28. O’Hearn, P.W.: Incorrectness logic. Proceedings of the ACM on Programming
Languages (POPL) 4(10) (2020)

29. Winskel, G.: The formal semantics of programming languages: an introduction.
MIT press (1993)

