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Abstract

With the increase in large multimodal cohorts and high-throughput technologies, the

potential for discoveringnovel biomarkers is no longer limitedbydata set size.Artificial

intelligence (AI) andmachine learning approaches havebeendeveloped todetect novel

biomarkers and interactions in complex data sets.Wediscuss exemplar uses and evalu-

ate current applications and limitations of AI to discover novel biomarkers. Remaining

challenges include a lack of diversity in the data sets available, the sheer complex-

ity of investigating interactions, the invasiveness and cost of some biomarkers, and

poor reporting in some studies. Overcoming these challenges will involve collecting
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data from underrepresented populations, developing more powerful AI approaches,

validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By

harnessing rich multimodal data through AI approaches and international collabora-

tive innovation, we are well positioned to identify clinically useful biomarkers that are

accurate, generalizable, unbiased, and acceptable in clinical practice.
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Highlights

∙ Artificial intelligence and machine learning approaches may accelerate dementia

biomarker discovery.

∙ Remaining challenges include data set suitability due to size and bias in cohort

selection.

∙ Multimodal data, diverse data sets, improved machine learning approaches, real-

world validation, and interdisciplinary collaboration are required.

1 INTRODUCTION

Biomarkers are defined as measurable characteristics that are indi-

cators of biological processes, pathogenic processes, or responses to

interventions.1 These can be subtyped by their application, and for this

review we focus on indications of susceptibility or risk, diagnostic, and

prognostic biomarkers asdefined inTable1. Improving the clinicalman-

agement of dementia requires reliable biomarkers that can aid in iden-

tifying high-risk populations, early diagnosis, accurate subtyping, and

predicting prognosis, drug response, or adverse events.2 Biomarkers

from different biological scales have been investigated in people with

dementia, including neuroimaging,3 electrophysiological,4 genetic,5

gene expression,6 protein,7 metabolic,8 gut microbial,9 sleep,10 gait,11

and digital12 biomarkers. Biomarkers from cerebrospinal fluid (CSF),13

as well as minimally invasive collectable biological fluids including

blood,14 saliva,15 tear,16 and urine17 have shown promise in improv-

ing dementia diagnosis. CSF biomarkers such as CSF amyloid beta

(Aβ), total tau (t-tau), and phosphorylated tau (p-tau) have been intro-

duced in some research-based clinical centers and amyloid positron

emission tomography (PET) can be used to estimate plaque density

using florbetapir, flutemetamol, or florbetaben tracers.18 However,

TABLE 1 Focused biomarker subtypes.

Subtype Definition

Susceptibility biomarkers Indicate the risk of developing specific

diseases in future in those without

clinically apparent disease

Diagnostic biomarkers Detect or confirm diseases or their

subtypes

Prognostic biomarkers Indicate the likelihood of disease

progression in those who have the

disease

routine clinical use of dementia biomarkers has not reached most clin-

ical settings,19 and dementia continues to be diagnosed on the basis

of clinical diagnostic criteria.20 Advancing biomarker research using an

interdisciplinary approach is essential for accelerating the discovery of

more reliable and clinically adaptable biomarkers for dementia.21

Alzheimer’s disease (AD), vascular dementia (VaD), dementia with

Lewy bodies (DLB), and frontotemporal dementia (FTD) are the four

most common subtypes of dementia. They differ in their rate of

progression,22 mortality rate,23 medication response,24 and suscep-

tibility to medication-related adverse events. Early diagnosis and

accurate subtyping are important for the safe and effective manage-

ment of dementia,24 but there are currently few biomarkers available

to serve this important clinical need. Moreover, mild neurocognitive

disorder or mild cognitive impairment (MCI) is characterized by objec-

tive evidence of cognitive impairment that is not sufficiently severe to

interfere with independent daily living.25 It is important to be able to

predict conversion to dementia in people with MCI in clinical settings,

butwedonot have anybiomarker that canbeused routinely to address

this need.

Several methodological challenges impede the discovery and clin-

ical validation of dementia biomarkers, yet traditional statistical

approaches are insufficient to help discover novel dementia biomark-

ers using exponentially growing multi-omics and multimodal data.

Artificial intelligence (AI) approaches have already demonstrated their

potential for discovering novel dementia biomarkers. Moreover, they

may facilitate biomarker discovery by molecular subtyping of demen-

tia and multilayer predictive modeling.26–28 Hence, in this review, we

aim to summarize the contribution of AI toward dementia biomarker

discovery and to present its future potential. This review is one of

a series of eight articles in a Special Issue on “Artificial Intelligence for

Alzheimer’s Disease and Related Dementias” published in Alzheimer’s &

Dementia. Together, this series provides a comprehensive overview

of current applications of AI to dementia, and future opportunities
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WINCHESTER ET AL. 3

for innovation to accelerate research. Each review focuses on a dif-

ferent area of dementia research, including experimental models, drug

discovery and trials optimization, genetics and omics, biomarkers [this

article], imaging, prevention, applied models and digital health, and

methods optimization.

1.1 AI and data science methods used in
biomarker discovery

AI approaches and machine learning (ML), in particular, have been

used successfully in the analyses of many modalities of data for

dementia-related diseases and for exploring different biomarkers.

These approaches are key for robust interrogation of complex andmul-

timodal data sets to identify novel patterns andpotential biomarkers.29

The application of AI methods varies according to the biomarker type,

and these methods are traditionally grouped by input data and algo-

rithm learning style (Figure 1). Supervised learning uses input data

which have a known classification; in the case of biomarker discov-

ery data this is often disease status or a related endophenotype.

RESEARCH INCONTEXT

1. Systematic Review: Artificial Intelligence (AI) and

machine learning are making a unique contribution to

dementia biomarker research and discovery.

2. Interpretation: By summarizing publications on the

advancedmethods used in dementia biomarker discovery

and identifying the exemplar of studies, we identify gaps,

issues, and challenges, and we suggest potential future

applications of AI to biomarker discovery. Although there

havebeen comprehensive reviewsoncurrentAlzheimer’s

disease (AD) and non-AD dementia biomarkers, robust

clinically useful biomarkers have yet to be identified.

3. Future Directions: The key to progress in biomarker dis-

covery using AI is the support of funders to allow the

generation of suitable data sets and collaboration across

cohorts and studies to promote both sharing and scaling

up of sample sizes.

F IGURE 1 Comparison ofMachine Learning approaches. For biomarker discovery twoML approaches are utilized in biomarker discovery
depending on required outcomes. To define biomarkers based on a known patient phenotype supervised learning can be implemented. In contrast,
during data exploration, unsupervisedmethods can be used to identify patient subtypes.
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4 WINCHESTER ET AL.

Supervised learning includes regression, support vector machines

(SVMs), random forest, and advanced deep learning methodology.

Unsupervised learning methods are often used to explore data and

understand structure. These methods include clustering algorithms

or dimensional reduction approaches to reduce data set complexity

or to stratify a data set by feature similarity.29 Targeted fluid-based

biomarker discovery often incorporates a simple classificationmethod,

using a receiver-operating characteristic (ROC) curve to assess the

accuracy and performance of novel biomarkers in validation stages.30

Key to developments in discovery approaches are understanding

the performance of AI/ML in increasing the sensitivity and speci-

ficity to identify biomarkers for dementia-related diseases. More

advanced segmentation and ML techniques including thresholding,

supervised and unsupervised learning, probabilistic techniques, atlas-

based approaches, fusion of different image modalities, and enhanced

probabilistic neural networks have been applied to neuroimaging

biomarkers.31

Among the barriers in current discovery studies, one of the main

issues is the lack of adequate sample sizes, which has been addressed

recently by the rise of large openly available data sets. Furthermore,

with the difficulty of collecting labeled data over time (e.g., due to insuf-

ficient follow-up studies), assessing the predictive power of certain

biomarkers is a challenge, which can be addressed by applying semi-

supervised/unsupervised learning techniques and deep learning (DL)

approaches.32 Good feature representation is reliant on such input

data and, therefore, accurately and deeply phenotyped cohorts allow

the discovery of more robust biomarkers.

2 SUSCEPTIBILITY BIOMARKERS

2.1 State of the science

Methods used in the discovery of biomarkers predictive of disease risk

are diverse due to the data types in use. Large cohorts with multi-

ple measures over time (longitudinal) and across modalities provide

rich opportunities for advanced analytical approaches. In addition to

mining previously generated cohorts using platforms, such as Demen-

tias Platform UK and Accelerating Medicines Partnership Program for

Alzheimer’s Disease (AMP-AD), other researchers are collecting data

with the discovery of susceptibility biomarkers in mind. For exam-

ple, PREVENT-AD (PResymptomatic EValuation of Experimental or

Novel Treatments for AD) is an open-source cohort designed to study

pre-symptomatic AD.33 The Deep and Frequent Phenotyping cohort

captures data from fluid biomarkers, digital wearables, imaging, and

clinical tests assessing cognition repeatedly over a period of time.34

Approaches required to interrogate these diverse resources are com-

plex and often require methods capable of accounting for noise and

confounders.

The key genetic risk biomarkers can be divided into early- and late-

onset forms of AD.35 Family inheritance and mutations in key genes

(amyloid precursor protein, presenilin 1, and presenilin 2) can be used

to identify the rarer early onset subtypeof the disease. The apolipopro-

tein E (APOE) gene is the prominent risk factor for late-onset AD,

although carriers of the pathogenic ε4 allele have only an increased

risk of disease rather than a clear positive diagnosis. Genome-wide

association studies (GWASs) continue to identify additional single

nucleotide polymorphisms (SNPs) linked to late-onset AD. However,

each SNP individually provides only a very small contribution toward

AD susceptibility.5 By combining these SNPs, we can create more

powerful polygenic risk scores (PRS) that act as better predictors of

disease susceptibility.36 PRS are generated by summing the weighted

effect sizes from relevant SNPs in previousGWASs, which are linked to

genes frommultiplemechanistic pathways. Prediction accuracy is opti-

mized by including two main components: the APOE risk alleles and a

combination of supporting SNPs from other risk genes.37,38

Other analyses use common biomarkers as a starting point to

understand more about the dataset. Palmqvist et al.39 combined a

series of known biomarkers using cross validation to understandwhich

biomarkers gave thehighest accuracyof prediction for conversion from

MCI to AD. Discovery of novel biomarkers, which is key to advance

the field, is more likely in datasets where there is a larger selection

of assays. For example, in GWAS or imaging studies, where multiple

measures can be derived from scans. Here, it is often necessary to

usemore advancedmethods. For example, where RNA sequencingwas

used for risk biomarker discovery, the authors used network analysis

to prioritize relevant genes from the differentially expressed results

in a larger data set containing MCI, controls, and AD cases. When hub

geneswere tested in a prospective cohort, an overall accuracy of 0.727

was achieved.40

An important step in the prediction of AD is the conversion from

MCI classification and pre-clinical stages of disease to AD. Biomark-

ers used in diagnosis can also be used as markers of change. Serum

neurofilament light (NfL) chain was used in multivariate linear mixed-

effectsmodels alongside estimated years to symptomonset as an early

biomarker.41 Using data from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI), researchers performed a comparison between

genomic and imaging variables using four different ML approaches to

understand the potential of cost-effective, minimally invasive transi-

tion biomarkers. The researchers found that by combining relatively

easily obtained measurements (i.e., plasma biomarkers, genetic risk,

and cognitive scores) the prediction results were competitive with

imaging data. When random forest and gradient boosting approaches

were applied, plasma analytes measuring APOE and C-reactive protein

were ranked among the most important features.42 The multimodal

data set of ADNI was also used by Gupta et al. for the classification

of AD and MCI subjects. They integrated structural magnetic reso-

nance imaging (MRI), PET, CSF (proteins), and APOE genotype using

a multiclass SVM classifier with stratified cross-validation to show

the improvement of combining modalities.43 Proteins measured in

the CSF were Aβ42, t-tau, and p-tau181 ,and although the CSF fea-

tures outperformed other modalities in individual comparisons, the

best predictions were acquired using a combination of the modali-

ties. These results show that using advanced methods and multimodal

datawill generate integratedmarkers to improve current susceptibility

biomarkers.
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2.2 Remaining challenges

Some of the major remaining challenges faced by risk biomarker stud-

ies are basic in nature: many studies focus exclusively on one or a few

measurements or modalities. This limits the scope for the application

of AI andML approaches and, in line with that, currently applied meth-

ods tend to be more traditional and regression-based,44 such as the

Cox proportional-hazards model for time-to-event predictions.45,46 A

variety of potential biomarkers are studied in the context of disease

risk predictions, spanning neuropsychiatric and clinicalmeasurements,

socioeconomic and lifestyle factors, neuroimaging, genetics and omics,

as well as peripheral blood biomarkers. Some of these modalities,

such as omics40 and neuroimaging,47 may lend themselves better to

AI approaches, due to their high-dimensional nature. Within omics

biomarkers, genetic risk factors are possibly the best-studied subset,

with predictions based on individual variants as well as combined poly-

genic scores. However, these approaches are generally limited to basic

summing of risk and assume uniform additive genetic effects.

Genetic risk prediction has great potential to expand with novel AI

and ML approaches, leveraging large training data sets and allowing

for more complex genetic relationships. Delivering on this promise will

pose several challenges to ensure that the predictions are robust and

do not suffer from overfitting. In addition, AI approaches to time-to-

event prediction in dementia face specific methodological challenges

including missing data and heterogenous phenotypes.48 Dementia is

a highly heterogeneous syndrome, encompassing multiple diseases,

and characterized by substantial variability on neuropathological pro-

files. Current risk-prediction tools focus on modifiable risk factors49

and although the Cardiovascular Risk Factors, Aging and Dementia

(CAIDE) score incorporates APOE ε4 status, the accuracy of these pre-

dictions may be increased by including other key biomarkers. In order

to improve risk prediction generally, a focus on the prediction of neu-

ropathological signatures and deep phenotyping rather than disease

status or clinical symptomsmay provemore effective.50

3 DIAGNOSTIC BIOMARKERS

3.1 State of the science

Numerous studies have sought plasmabiomarkers relevant toADdiag-

nosis, and the past decades have seen several analytes being tested for

this purpose.51 For example, recent studies have demonstrated that

AD hallmarks in plasma such as Aβ42/40, p-tau181, p-tau231, and p-

tau217 can identify brain pathology with high accuracy, further adding

significant weight to the growing body of evidence in their use as a

non-invasive diagnostic tool for AD.52–54 Apart from AD hallmarks in

blood, an increasingnumberof studieshavediscovereda rangeof other

proteins and metabolites in plasma that might also act as diagnostic

biomarkers.55,56 ML has demonstrated to be very useful to extract

reliable predictors for the development of diagnostic biomarkers of

AD in the past decade. These techniques have been applied to tra-

ditional biomarkers, such as neuroimaging,31 nuclear medicine,57 and

electroencephalography,58 aswell as promising ones, for example, neu-

ropsychological measures59 and speech-based digital biomarkers.60

An example is the use of ML in the construction of metabolite pan-

els from top discriminant metabolites in biofluids.61 To date, studies

have included assays run inCSF, plasma, saliva, and brain tissue, detect-

ing associations with AD outcomes.62 Stamate et al.63 showed that

plasma metabolites have the potential to match the area under the

curve (AUC) of well-established AD CSF biomarkers. Comparing the

accuracy of a number of ML methods (decision trees and DL) they

reported aspartate and dodecanedioate as the top ranked features.

Prompt and precise diagnosis of dementia subtype is of clinical rel-

evance and might be of paramount importance for studies aimed at

assessing neuroprotection or disease-modifying approaches to early

stages of the disease. Despite the growing amount of data, ML has not

yet been incorporated into a clinically available diagnostic tool for AD

or other types of dementia. Toschi et al.64 used a clustering approach

on CSF biomarkers to address the heterogeneous AD pathology. Five

distinct clusters of samples were generated with unique cellular and

molecular profiles. Of them, two clusters showed biomarker profiles

linked to neurodegenerative processes not associated with classical

AD-related pathophysiology. One cluster was characterized by the

neuroinflammation biomarker YKL-40. However, the clinical relevance

of these clusters has yet to be established.

3.2 Remaining challenges

ML and more-conventional statistical models have been applied previ-

ously to clinical phenotypes in dementia for the prediction of clinical

outcomes. However, reaching an adequate performance or prediction

accuracy to allow for the use of suchmodels in clinical practice remains

challenging.65 The poor performance of such models highlights the

limited informative contribution of clinical phenotypes without bio-

logical data.66 Therefore, using supervised ML techniques based on

clinical phenotypes and the integration of known and newly discovered

biomarkers to build a more-informed predictive model for prognostic

and diagnostic purposes might be a solution.67 For example, Ashton

et al.67 used data from multiple cohorts to explore the accuracy of

plasmaNfLassay’s diagnostic performanceacrossdiseases. They found

that plasma NfL is clinically useful in identifying atypical parkinso-

nian disorders in patients with parkinsonism, dementia in individuals

with Down syndrome, dementia among psychiatric disorders, and

frontotemporal dementia in patients with cognitive impairment.

Heterogeneity within dementia is compounded by the overlap

between dementia and other clinically defined neurodegenerative dis-

eases, which complicates the identification of relevant subgroups for

personalized treatment.50 Understanding the relationship between

dementia phenotypes and underlying causes is, therefore, key to

the development of targeted approaches to therapy beyond clearly

defined genetic subtypes. In response to this impasse, several inter-

national consortia are collecting large data sets with multi-layered

genomic, environmental, and clinical data.29 Supervised and unsuper-

vised ML methods such as DL are valuable and promising tools to
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exploit these complex data sets, but their use involves dealing with

petabytes of data andmillions of data features, only easilymanipulated

on secure high-performance computing networks.68 This is a non-

trivial problem. Challenges for storage, computing, and data analysis

makes e-infrastructure and expertise mandatory.

4 PROGNOSTIC BIOMARKERS

4.1 State of the science

Neuroimagingwith computerized tomography (CT) orMRI has become

a standard tool in the diagnosis of neurodegenerative disease and

shows prognostic potential.69 PET can also provide objectivemeasures

to indicate the presence and progression of dementia. By improving

the specificity of PET tracers, we are gaining insights into disease

stages in vivo that were only possible in the past using pathological

examination.70 However, PET imaging is expensive and not yet widely

available.

One of the first biomarker changes in AD is a 50% decrease in

the levels of CSF Aβ42; however, CSF Aβ42 is a marker of amyloid

pathology rather than cognitive decline.71 CSF t-tau and p-tau72 are

increased in AD but not in other tauopathies. CSF tau levels corre-

late with rapid disease progression.73 As such, CSF Aβ42 combined

withCSFp-tau accurately predicts futureADdementia in patientswith

MCI.74 Certified reference materials and methods are now available,

making it possible to standardize CSF Aβ42 thresholds for prognosis

globally.75 Although CSF and imaging markers have a good prognos-

tic accuracy, their high cost and invasive nature create a need for the

development of more accessible markers that may be found in blood,

urine, faeces, saliva, or tear fluid.15,76 Despite accessibility concerns,

data sets generated from CSF are ideal for discovery of novel markers

due to decreased experimental noise. Newmarkers can then be tested

in other modalities such as blood plasma.67 Repeated, non-invasive

measures will also be possible using eye imaging, where deposition of

Aβ and tau, atrophy of neuronal layers, and vascular changes could all

be potentially monitored.34,77

Most of the current prognostic biomarkers for AD were discovered

through hypothesis-driven research using conventional statistical

approaches to predict disease outcomes. However, AI algorithms have

been gaining traction as an alternative approach for prediction, and

combining biomarkers from multiple modalities, such as a CSF, MRI,

and cognitive performance biomarkers, has been shown in recent

studies to improve model performance.78,79 A recent prime example

showed four distinct trajectories of tau deposition in AD.80 This

study highlighted the power of pooled images from diverse studies

to identify disease trajectories and individual variability that would

be lost when using the Braak staging system, which is more suitable

for population-level description. Complex data from a single modality

can also benefit from advanced methods; for example, multi-level

autoencoder models were used for interpretation of longitudinal

methylation data.81 In a detailed comparison, Chen et al. showed that

for this data set, convolutional neural networks were outperformed by

other autoencoders and that the informative methylation sites were

enriched for expected gene ontologies.

4.2 Remaining challenges

Early diagnosis of AD is important for prevention and planning ther-

apeutic strategies. To develop screening tests with greater specificity,

further research is needed to identify additional biomarkers beyond

the main CSF biomarkers currently in use for AD (Aβ42, t-tau, and
p-tau), such as Aβ42/Aβ40 ratio and α-synuclein.82,83

Blood-based biomarkers hold immense promise for evaluating AD

prognosis due to their high accessibility and low cost. However, stan-

dardized assays and procedures need to be developed to facilitate the

comparison of biomarker measurements across different batches and

laboratories.44 In addition, the introduction of specified cutoffs would

facilitate the use of plasma biomarkers in a clinical setting.44

Metabolites may also serve as useful prognostic biomarkers for

dementia. A metabolomics study that used an SVM classifier and ran-

dom forests identified distinct sphingolipids and glycerophospholipids

associated with AD pathology and preclinical disease progression.84

The metabolites were implicated in several biologically relevant path-

ways in AD, including tau phosphorylation, Aβ metabolism, calcium

homeostasis, acetylcholine biosynthesis, and apoptosis.

However, there are particular challenges when it comes to employ-

ing ML for defining progression from MCI to AD. In addition to the

lack of large enough data sets to train ML models effectively and the

variability of data, the key challenge with feature selection is due to

the complex and heterogeneous nature of MCI. This, in combination

with the myriad of factors that contribute to disease progression and

the limited understanding of underlying disease mechanisms, means

that prognostic biomarker discovery will require both clinical and AI

knowledge for optimal analysis.

5 COMMON ISSUES WITH AD BIOMARKER
DISCOVERY USING ML METHODOLOGY

5.1 Improvements in methods

Our field is someway frommaking full use of this approach for specific

management pathways or targeted disease-modifying therapies,which

would enable individualized precision medicine.85 With the advent

of drugs targeting specific proteinopathies, the role of biomarkers

specific to underlying pathologies will be increasingly important.

The majority of AI studies in dementia use the ADNI data set,

which has advantages in its size and availability, but has draw-

backs in the limited recruitment of non-Alzheimer’s dementias and

biases within the data set.86 We call for wider recruitment of people

attendingmemory clinics with longitudinal data to permit the develop-

ment and real-world validation of biomarkers, such as that collected

by the National Alzheimer’s Coordinating Center.87 In these real-

world settings, biomarkers will need to demonstrate clinically relevant
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benefits. These include cost savings for health systems and quality of

life measures for patients.88

The dementia field may be able to learn from other fields of

medicine. AI and big data approaches for developing cancer biomark-

ers have had a significant impact on cancer care,89 for example,

the use of RNA profiling for treatment. Molecular biomarkers, for

example, mutations in the estrogen receptor 1 in breast cancer, are

used to predict both treatment outcomes and prognosis. Discovery

studies of both prediction and prognosis markers in different cancer

types have applied advanced approaches including DL and decision

trees.90 Oncology also leads the field on the use of multi-omics data

for patient stratification and personalization with clinically validated

biomarkers; however, a gene expression panel is also used in tests for

coronary artery disease and a test for cardiac allograft rejection.91

In amyotrophic lateral sclerosis, open access data cohorts and data

challenges have led to the development and comparison of DL models

to predict disease progression.92 Pancotti et al. have rankedmodel fea-

tures to better understand the predictive power of different measures

and markers but key to interpretability and clinical translation will be

the replication and explainability of thesemodels. Appropriatemethod

selection is also a key issue for replicable biomarkers. Accessible

coding libraries allow users to apply many new methods; however,

overfitting due to sample size can be a limiting factor with these

approaches and, in many cases, decision tree–based approaches (e.g.,

random forest or gradient boosting) will still outperform advanced

neural networkmodels.93

Replication of complex models on non-standard data sets, such

as those found in primary care or brain health clinics, also raises

issues. Few ML algorithms have been tested in prospective replica-

tion studies and discrepancies between training data and real-world

clinical data make biomarker translation more challenging.94 Adding

to these models, higher-order features from different modalities make

the assessment of performance and ranking of features more com-

plex. Additional considerations for the successful application of ML

models include the balance of classes within the data set (e.g., case

and control) and the use of a suitable training set.95 Careful testing

of optimized models to take forward for further study is necessary

where the order of feature ranking can change between ML meth-

ods or even model iterations. Successful features must be robust to

these changes. Feature selection itself can be used to improve model

performance and a comparison of methods to find the most appro-

priate model for the data set is recommended to promote feature

stability.96

Sustained and strategic funding will be required to realize the

vision of biomarkers in clinical practice. Given its social and economic

impact, government funding is likely to play a big role in facilitating

this work. Therefore, we welcome initiatives such as the U.S. National

Institutes of Health’s (NIH) National Institute on Aging, the Cana-

dian Institute Health Research (CIHR), and the United Kingdom the

National Institute for Health Research (NIHR) highlighting AD and

related dementias as a priority area with multiple grants to facilitate

biomarker development and AI translation (e.g., https://www.nia.nih.

gov/research/grants-funding/announcements; https://cihr-irsc.gc.ca/

e/43629.html; and https://www.nihr.ac.uk/documents/nihr-highlight-

notice-dementia/27316).

5.2 Improvements in data sets

As well as improving the speed and power of algorithms,97 to move

toward biomarkers that have clinical applicability, much of the future

development in the field lies in data sets. Many studies rely on single

data sets for discovery,with cross-validation toestimate algorithmper-

formance. Given the generalizability issues of unseen data, accuracy

drops when tested on other research data sets, and substantially when

tested on clinical data.98 This is particularly problematic for AD, a het-

erogeneous condition, but crucial for successful translation into clinical

practice. It is also symptomatic of a larger issue, which is that current

data sets used for biomarker discovery lack diversity of participants.99

Comparisons of known biomarkers between populations have shown

a discrepancy in prediction with CSF biomarkers p-tau and t-tau,

confirming the need for more representative cohorts.100 In direct

response to this bias, the ADNI 4 will be focused on enrolling 50% to

60%of new participants from underrepresented populations.101 How-

ever, in addition to the collection of representative data, consideration

of the analysis approach is important and care should be taken not to

simply use a variable to delineate subgroups but rather to consider the

complexities in a full analysis.102

Without addressing this crucial need tobetter represent thepopula-

tions forwhichbiomarkers shouldultimately improvehealthoutcomes,

improving performance metrics using increasingly complex algorithms

built on homogenous input data is likely to be unproductive. This is

reflected in recent policy updates, including a European Commission

White Paper, which places requirements on training data such that it

does not lead to discrimination.103

An advantage of ML is that algorithms can be adaptive, continually

learning in response to new data even after deployment. This could

help overcome the lack of diversity in current training sets but means

that published performance metrics hold less meaning. Thus another

future direction for the field is tomove away from single summarymet-

rics such as accuracy, instead evaluating health outcomes and impact,

such as in clinical trials of Software as a Medical Device (SaMD), pro-

posed by the U.S. Food and Drug Administration (FDA) to regulate

AI.104 Improving riskdetectionwill onlyhaveapositive impact if results

are followed up appropriately.104,105 This relies on a number of factors,

including health service infrastructure and resources, as well as trust

from stakeholders in AI. Ensuring interpretability of models can help

foster trust, as can reporting analgorithm’s confidence in its decision.27

Ultimately, policy and regulation must be based on outcomes for

patients.105 While we move toward this goal, a consensus on report-

ing performance metrics would aid in comparing results of different

biomarkers andML approaches, which lack standardization.21

The capabilities of ML to handle high-dimensional data sets mean

that it is tempting to continue extending algorithms with multi-

ple biomarkers to try and further improve accuracy. This should be

weighed against the clinical feasibility of requiring multiple, often
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expensive, tests that may not be available equitably. Rather, the power

of harnessing ML to analyze multi-omics data sets lies in the ability

to develop biomarkers that are sensitive to the multifactorial nature

of neurodegenerative diseases, while ruling out those that are redun-

dant. Using both complementary and uniquemethods across biological

scales of information, and modalities, is essential.61 Similarly, although

larger data sets seem attractive in ML, they do not necessarily help

the issue of bias106; rather, more-diverse data sets are needed.107

We suggest that the future of biomarker discovery lies in testing

of biomarkers in other data sets to ensure against cohort effects,

their ability to distinguish different types of dementia to improve dif-

ferential diagnosis, and building infrastructure to improve diversity

in data.63,97,108

6 FUTURE DIRECTIONS OF AD BIOMARKER
DISCOVERY

The search for novel biomarkers to further dementia and AD pheno-

types in addition to disease pathogenicity is key. Clinical biomarkers

extracted from electronic health records have been used to iden-

tify coronavirus disease 2019 (COVID-2019) patients and when data

becomes available, unsupervised approaches can be used to profile AD

cases.109 For dementia biomarkers, the first step would be to under-

stand the translation ofCSFmarkers to blood (plasmaor serum) assays,

followed by that in other biofluids (e.g., saliva, urine). The discovery of

novel biomarkers and replicating their application requires large data

sets, and therefore the collection of new cohorts continues as well as

the need for meta-analysis. Replication in multimodal data sets is key

in the pathway to translation to a clinically applicable biomarker. It is

likely that fluid biomarkers will be used as part of a battery of tests

in a clinical setting alongside clinical assessment of psychiatric and

neurological features, cognitive testing, and structural brain imaging.94

Therefore, the key to the success of novel biomarker is its performance

alongside other measures and whether it can increase the accuracy of

the test panel.

AI methods are used increasingly in the discovery of imaging-

based biomarkers—or example, the use of measures of structural

complexity, specifically a mathematical measure called fractal dimen-

sionality, which can be derived from conventional 3D segmented T1

MRI scans.110 In addition,MR elastography can be used as a biomarker

by examining regional brain stiffness111 to understand tissue biome-

chanical properties. Using this approach, stiffness in affected regions

has been found to be lower for dementia patients than for healthy

controls.112 More mainstream use of these example measures, which

involve specific data-acquisition methods, will allow for richer mul-

timodal data to be integrated within AI models that can be used to

classify dementia type and severity.

Both brain and eye imaging can provide a significant resource

for analysis. AI techniques, especially DL, are used widely used in

image processing in the brain. In the eye and brain, DL-based solu-

tions have already created opportunities for clinical and research use

for automated approaches.113 The emergence of combined molecu-

lar imaging, in combination with brain and eye phenotyping, has just

shown promising preliminary data providing evidence of how mul-

timodal imaging could generate information for AI approaches.114

State-of-the-art AI algorithms show an exceptional capability to learn

fromcomplex imagingdata.Despite these successes, there is a continu-

ous need for improved image segmentation and classification andnoise

or artifact reduction to improve image interpretation that still require

human decision-makers for prognosis, diagnosis, and monitoring of

response to treatment.115,116 However, with the improvedmethodolo-

gies and the widening biomarker platforms, cross-modality translation

and synthesis are on the near horizon.

The evaluation of AI devices by regulatory agencieswill be critical to

their implementation in real-world settings, and like other modalities

these biomarkers will need to demonstrate clinically relevant benefits.

The FDA maintains a current list of AI applications at different stages

of approval.117 These are assessed for both safety and effectiveness

of the tool. In Europe, there is no AI-specific list, although recom-

mendations have been made and a literature review by Muehlematter

et al. includes dementia-specific devices.118 Further streamlining and

demystifying of regulatory processes will be essential for translating

this growing academic field for patient benefit.

7 RECOMMENDATIONS AND CONCLUSIONS

Once identified and validated, novel biomarkers can be considered for

clinical translation. Robust analytical pipelines are critical to the long-

term use of AI approaches. Guidelines for generating these pipelines

are available (e.g., the Findable, Accessible, Interoperable andReusable

(FAIR) Cookbook; https://fairplus.github.io/the-fair-cookbook/

content/recipes/introduction/FAIR-cookbook-audience.html), but

a commitment to their use is a key recommendation for incorpora-

tion of new biomarkers. In addition, reporting guidelines to support

publication of prediction studies are under development by the EQUA-

TOR network. TRIPOD-AI will provide guidelines for diagnostic and

prognostic model publication.119

For new biomarker discovery, however, collaboration and an inter-

disciplinary approach will be necessary, which is increasingly recog-

nized by funders. The EU Joint Programme—Neurodegenerative Dis-

ease Research—seeks multinational, consortium grants. In the United

Kingdom, the UK Dementia Research Institute was recently launched

with the single biggest investment in dementia research, with collabo-

ration at the heart of its approach. In North America, both theNational

Institutes of Health Bridge2AI program and Canadian Institutes of

Health Research Training Platform grants have an interdisciplinary and

intersectoral focus. Theseprogramsalso recognize theneed to improve

diversity in the workforce, as well as in participants, so that studies

using AI are also representative of society. International initiatives are

underway to improve research infrastructure and sharing of data, such

as the Deep Dementia Phenotyping (DEMON) Network (demonde-

mentia.com), and the Canadian Consortium on Neurodegeneration in

Aging. The inclusion of any newly discovered biomarkers will be reliant

on sufficient replication and performance in multiple cohorts. Here,
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data sharing is key and steps made by these communities will be vital

in the following stages of developing reproducible markers.

To overcome the remaining challenges in dementia biomarker

research, it will be essential to collect additional data from under-

represented populations to reduce bias, develop even more powerful

AI approaches to enhance accuracy, validate the use of noninvasive

biomarkers to improve practicality and improve adherence to report-

ing guidelines, which are coproduced by multiple stakeholders to

improve reproducibility. By harnessing rich multimodal data through

AI approaches and international collaborative innovation, we are well

positioned to identify biomarkers that are accurate, generalizable,

unbiased, and ready for translation to clinical practice.
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