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Abstract

Background: Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass
spectrometry (MS) for enhancing the data-processing pipeline from raw data analysis to end-user predictions and rescoring. ML mod-
els need large-scale datasets for training and repurposing, which can be obtained from a range of public data repositories. However,
applying ML to public MS datasets on larger scales is challenging, as they vary widely in terms of data acquisition methods, biological
systems, and experimental designs.

Results: We aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of variability in public
MS repositories. We also examine how these factors affect ML performance and perform a comprehensive transfer learning to evaluate
the benefits of current best practice methods in the field for transfer learning.

Conclusions: Our findings show significantly higher levels of homogeneity within a project than between projects, which indicates
that it is important to construct datasets most closely resembling future test cases, as transferability is severely limited for unseen
datasets. We also found that transfer learning, although it did increase model performance, did not increase model performance
compared to a non-pretrained model.

Keywords: machine learning, deep learning, data mining, statistics, bioinformatics, proteomics, mass spectrometry, transfer learning

Background

Large-scale studies of proteomes are essential to our understand-
ing of the biological processes within an organism. The lead-
ing technology for characterizing thousands of proteins is lig-
uid chromatography-mass spectrometry (LC-MS), which enables
high-throughput quantification of protein abundances in a bio-
logical sample [1, 2] (Fig. 1).

LC-MS has become the standard within proteomics procedures
and continues to generate vast amounts of data, which, due to in-
creasing demands from journals and reviewers, are often made
publicly available in data repositories. This change has led to
numerous public datasets being registered in online repositories
such as the ProteomeXchange (PX) consortium [3]. The PXC con-
tains references to over 17,000 projects, and its largest member,
PRIDE, has more than a million raw files. Each raw file contains
an average of 6.778 MS1 and 32.016 MS2 spectra, which amounts
to over 39 billion mass spectra. These data repositories provide an
invaluable resource for data repurposing to address novel biologi-
cal questions or to benchmark new computational techniques for
proteomics data analysis.

While efforts in harmonizing data accessibility within PX and
standardizing the computational pipelines are ongoing [3], repur-
posing data from these repositories comes with a significant entry
barrier, as they do not yet have any systematic criteria for meta-
data or data types.

Due to the advancements in machine learning (ML) model de-
velopment, there is now an increasing interest in repurposing
these rich LC-MS data to train complex ML models that can pro-
duce new insights and results not achievable by previous compu-
tational methods [4]. However, the large diversity of experimental
procedures and biological systems requires careful consideration
when applying bioinformatics methods to larger extracts of pub-
licly available data, as ML relies on careful balancing to reach op-
timal and correct performance.

Multiple ML algorithms and methods have been applied to
MS data, such as regression models [5], random forest [6], and,
more recently, neural networks [7]. Machine learning applications
in proteomics are primarily focused on 2 aspects: (i) improving
current methodologies such as database searches or de novo se-
quences or (ii) predicting physicochemical peptide properties such
as LC-MS/MS spectra, retention time, or posttranslational mod-
ifications (PTMs) [8-10]. Deep learning (DL) approaches function
by generalizing the data, thereby generating distributions of the
training data. However, due to the high complexity and large noise
found in LC-MS data, many of the current approaches suffer from
limited transferability, as they utilize synthetic, limited, or heav-
ily stratified datasets for the purpose of training and testing their
models [8, 11, 12]. These issues are further exacerbated by techni-
cal advances in the field, such as ion mobility [13], which further
increases the complexity and diversity of the data. The majority
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Figure 1: Simplified workflow of a mass spectrometry-based proteomics experiment. First, proteins are extracted from the biological samples, after
which they are digested into peptides using enzymes, most often trypsin. Next, peptides are chromatographically separated and injected into the
mass spectrometer, where they are measured according to the mass over charge (m/z) and abundance (MS1). MS1 spectra from all peptide precursor
ions are reported, and certain peptides are chosen for tandem mass spectrometry (MS2), where they are fragmented along their amino acid backbone
and identified by having their MS2 spectrum matched to a database of theoretical spectra. Lastly, peptides are quantified and summarized into

proteins [14-16]. Created with BioRender.com.

of current ML methods within computational proteomics also rely
on unique and complex postprocessing pipelines, such as peptide-
specific indexed retention time (iRT) calculations, rendering the
methods difficult to replicate and reducing their application range
outside the original publication.

One of the biggest shortcomings in machine learning, particu-
larly deep learning, is the problem of under- and overfitting. These
refer to situations in which a model performs too well on the train-
ing data (overfitting) and generalizes poorly on unseen test data
or not well enough on the training data (underfitting) and subse-
quently also on unseen test data. Despite multiple attempts and
the breadth of available data, these problems are still present in
the field of predictive proteomics.

In this article, we investigate the general reusability of pub-
lic mass spectrometry data for machine learning applications,
specifically focusing on potential pitfalls that could result in poor
translatability to independently sampled data sets. We will do so
by performing statistical analyses on the effect of the experimen-
tal setups on the variability of the generated data and see how
these effects impact the predictive capabilities of state-of-the-art
deep learning models. This work is expected to have an impact
on the data selection process in predictive proteomics, elevating
the capabilities of current and future models, as well as highlight-
ing the necessity for appropriate preprocessing and algorithmic
choices.

Data description

For a comprehensive representation of publicly available MS data,
we analyzed data from ~60,500 raw files across ~820 PRIDE
projects, totaling ~60 TB of raw files and metadata. In total, 546
projects containing 33.426 raw files were used for neural net-

work testing. All selected data had been previously analyzed with
MaxQuant [17].

The full dataset was gathered from randomly sampled projects
on PRIDE using MS2AI [18]. We restricted the retrieval to data
from standard bottom-up proteomics experiments. We also did
not have any initial queries on experimental or sample prepara-
tion, resulting in data from a wide breadth of sources from which
we have subsampled smaller datasets for in-depth analyses
(Table 1). In total, we gathered spectra and metadata for ~151 M
individual unmodified peptides (Fig. 2).

Results and Discussion

We performed a thorough statistical assessment of the data and
trained multiple neural networks in order to gauge the variability
and evaluate the transferable capabilities of state-of-the-art mod-
els. However, in the field of predictive proteomics, especially in re-
tention time prediction, it is common to apply transfer learning
to pretrained models. This is done as a result of the poor transfer-
ability of the original networks, as the models do not achieve setup
independence by being constrained to the experimental settings
of the training data. However, transfer learning requires a large
amount of data in a format suitable for machine learning, as well
as significant computational expense, making it both data and
computationally intensive. Additionally, it also requires expertise
in both machine learning and programming. To test the effec-
tiveness of transfer learning in predictive proteomics, we exhaus-
tively transferred all of the trained models to every other dataset
in the same section to assess the impact of transfer learning on
performance.

All models were measured with several metrics—namely, re-
tention time error (RTA), mean squared error (MSE), and mean
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Table 1: Overview of datasets used in model training or testing. All subset datasets are randomly sampled from the full ~151 M peptide
dataset, with Andromeda score and subset filters described in the “Minimal score” and “Description” columns, respectively. No other
filters were added when sampling. We also annotated the size of the subset dataset in the “Peptide counts” column, with a 2 M peptide

count limit for each dataset.

Name Section Minimal score Peptide counts Description

PT17 1 100 750,000 Dataset constructed from PXD004732

PT19 1 100 750,000 Dataset constructed from PXD010595

Limit 1 100 750,000 750,000 peptides, excluding PXD004732 and PXD010595
Wide 1 150 2,000,000 2,000,000 peptides, excluding PXD004732 and PXD010595
Long 2 150 2,000,000 Gradient length equal to or above 100 minutes

Short 2 150 2,000,000 Gradient length equal to or below 60 minutes

Lower 3 100 125,000 Peptides with m/z values below 360

Upper 3 100 125,000 Peptides with m/z values above 1,300

Human Supp. 150 2,000.000 “Human (Homo sapiens)” from PRIDE metadata

Mouse Supp. 150 2,000,000 “Mus musculus (mouse)” in PRIDE metadata
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Figure 2: Andromeda score (MaxQuant) distribution plot of the ~151 M
unmodified peptides in the complete data.

absolute error (MAE)—and the performance for all metrics can
be found in the supplementary evaluation_metric_report.pdf file.
However, when analyzing the model performances, we observe
near-identical metric ratios between training, validation, and test-
ing across various evaluation metrics. This suggests that the out-
comes remain invariant across metrics and do not alter the con-
clusions drawn from the models’ performance. For this reason, we
have decided only to report the RTA values and refer to the evalu-
ation metric report for further metric comparison. RTA measures
the average time difference between predicted RT values and ac-
tual values and is the proprietary metric used by the DLOmix
package. DLOmix is a software integration of popular DL mod-
els used in proteomics, which we used to construct the Prosit
model.

In this article, we use the transferability of model predictions as
a measure of data variability by training models to predict the elu-
tion times of identified peptides based on a range of measurable
factors. While we try to stratify datasets to keep certain parame-
ters constant, there is a range of underreported and unextractable
information that we are incapable of controlling, which is often
introduced from the sample preparation or the LC system.

During sample preparation, the efficiency of protein digestion
can cause incomplete digestion or nonspecific cleavage, which
can result in the presence of partially digested peptides. These
altered peptide species can significantly influence the elution be-
havior, adding complexity and variability to the analysis. Addi-

tionally, sample cleanup protocols are employed to remove inter-
fering impurities like salts and detergents, which, based on the
efficiency of the procedure, may leave behind residual impurities
that can affect the peptide elution process. Moreover, the sample
matrix composition introduces the matrix effect, which can im-
pact peptide ionization and detection.

In the LC system, column chemistry determines the interac-
tions between peptides and the stationary phase, while column
dimensions affect separation efficiency and resolution. Modify-
ing either the mobile or stationary phase composition can al-
ter the peptide’s polarity, ionic strength, binding affinity, and so
on, altering the elution time and profile. The use of traps or pre-
columns in the LC system introduces variability by selectively re-
taining peptides or interfering with separation. LC temperature
influences molecular interactions, including solvent viscosity,
peptide conformation, and peptide-solvent interactions, thereby
affecting peptide elution and separation.

These are just some of the unextractable factors that can con-
tribute to the variability and affect the elution times of peptides.
Unfortunately, we are unable to measure or control these fac-
tors. However, by having a sufficiently large dataset and randomly
drawing data points from a range of thousands of raw files, we
aim to mitigate their impact on the model predictions and con-
clusions, also by assuming that the majority is based on standard
LC setups.

Single- vs. multiproject variability
In our model comparisons, we found that the models trained on
the PT17 and PT19 datasets performed significantly better than
those models trained on the Limit and Wide datasets during both
training and validation (Fig. 3). Interestingly, the PT models also
outperformed the Wide model and performed comparably to the
Limit model when testing on the wide and limited datasets.
While we expected the training and validation of the PT mod-
els to outperform the Wide and Limit model, we did not expect
the PT models to outperform the Wide and Limit models on the
Wide and Limit test datasets. Furthermore, we also found that
the Limit model outperformed the Wide model for all test cases,
suggesting that increasing the amount of data and using stricter
scoring criteria does not necessarily improve the performance
of trained models and may even cause the models to underfit.
One possible explanation for this is that longer and more com-
plex peptides, which are easier to detect and generally receive
higher peptide identification scores, also exhibit more variability
in their elution times. We tested this and found that the peptides
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Figure 3: General variability model performance comparison. Each
model was trained and validated on its original source datasets and
then cross-tested for all test datasets. We compared the training and
validation for all models, as well as cross-testing datasets and their
respective model performance in terms of RTA.

in both PT datasets have average peptide lengths of ~12, with the
Limit dataset containing a longer average peptide length of ~13
and the Wide dataset containing an even longer average length of
~14.

The reduced performance observed in the randomly sam-
pled datasets is also possible due to the presence of multiple
variability-inducing factors in the experimental setup. These fac-
tors, such as the type of MS instrument or the selected species,
are often difficult or impossible to account for when relying on
large bulks of public data. Changing these could result in consid-
erably different model performances (Supplementary Fig. S1). In
contrast, the PT datasets were measured under the same condi-
tions on synthetic peptides, which reduces the presence of such
variability-inducing factors. Additionally, the PT datasets have the
advantage of using one single gradient length, while the limited
and wide datasets use multiple different gradient lengths.

In order to evaluate their transferability, we applied transfer
learning to all 4 models and found that, while some of the mod-
els improved performance compared to previous external test-
ing, they mostly performed similarly to nontransferred models
on the same dataset (Fig. 4). In the case of the Wide dataset,
transfer learning actually resulted in reduced performance for
all transferred models. This suggests that the Wide dataset had
significantly higher levels of heterogeneity between training and
testing data compared to the other datasets. While these results
show that transfer learning can be beneficial in certain scenar-
ios, they also showed that most of the models simply improved or
regressed to the transfer dataset. However, even if transfer learn-
ing did not provide significant predictive benefits, it did reduce the
time needed to train the models by an average of 5.5% by converg-
ing faster (Supplementary Table S2).

Gradient lengths

The interactions between the peptide and the stationary and mo-
bile phases of the liquid chromatography system determine the
retention time of a peptide in an LC-MS/MS system. In identical
setups, the retention time of a peptide is considered reproducible
[5].

Plotting the distribution of gradient length for all raw files with
an overlaid cumulative distribution function (Fig. SA), we observe

significant peaks at 60, 90, and 120 minutes, with ~60% of all gra-
dients being 0-120 minutes in length and the longest gradient be-
ing 800 minutes. While we did find single projects with as many as
15 different gradients, we also found that 70% of the 820 projects
kept the same gradient length for all files, while only ~5% em-
ployed more than 2 unique gradients (Fig. 5B), indicating high lev-
els of consistency in instrument configurations within individual
projects.

The results of our deep learning use case showed that the Short
gradient model performed significantly better than the Long gra-
dient model (Supplementary Fig. S2). This is further supported by
its decreased performance on the Long gradient test dataset com-
pared to the Short model.

These findings suggest that peptides from longer gradients
generally express higher variability compared to peptides from
shorter gradients, even after attempted peptide normalization. It
also indicates that our normalization method for the effective
gradient, which aims to mimic the linear iRT calculations used
in the original Prosit study, may not be effective for all gradients
and raw files, reiterating the necessity of targeted postprocessing
pipelines.

Performing inference dropout on all models in the previous sec-
tion shows that all of the models exhibit significantly higher un-
certainty for the earliest and latest eluted peptides compared to
those eluted closer to the middle of the gradient (Fig. 6). Addition-
ally, we observe that the PT models show a more linear prediction
gradient than the Limit and Wide models, further suggesting the
controlled nature of the ProteomeTools dataset output peptides in
a more linear gradient, which fits better for our first-last peptide
gradient normalization. We also observe less overall uncertainty
in the PT models, likely because they were trained on datasets
with fewer peptides, lower average peptide retention times of ap-
proximately 32 minutes, and unified gradients, whereas the av-
erage retention times of the limit and wide datasets were signifi-
cantly higher at 60+ minutes from multiple gradient lengths. This
suggests that longer gradients lead to an increase in data variabil-
ity and model uncertainty.

Performing transfer learning on the gradient length models
(Supplementary Fig. S3), we observe that refining the Long model
to the Short dataset resulted in a significant performance improve-
ment. However, refining the Short model to the Long dataset did
not result in any significant change in performance, although it
still outperformed its nontransferred counterpart. Unlike what
we observed in the previous section, transfer learning of the gra-
dient length models came at an increase or a stagnation in per-
formance, indicating that the models retained information from
the initial training datasets. We also note that transferred models
took, on average, 25% longer to train compared to nontransferred
models (Supplementary Table S3).

Mass-to-charge range filter

MS instruments have a range of setup parameters that can tailor
the experiment to the needs of researchers. The m/z range filter is
one of those parameters, as it restricts peptide data acquisition to
a given m/z range. However, for data repurposing, this range can
also lead to a biased dataset for machine learning, as the sample
might have contained a large range of peptides not reported by
the instrument. While the filter settings do exclude certain data
points, it should be noted that most database searches also have
cutoffs for shorter peptides due to noise at the lower end of m/z,
making peptide identifications in this space more unlikely even
when peptides are present.
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Figure 4: General variability transfer model performance comparison. Each model was transferred to each of the external datasets and retested on
all 4 datasets. Datasets are separated by plots, denoting the performance difference of each model when trained on or transferred to identical
datasets. Each bar has the original test metric in blue, and the transfer learning test metric is overlaid in orange.

When plotting the m/z filters of the mass acquisition range
(Fig. 7), we observe significantly more variability in the upper
bound compared to the lower bound, meaning that our upper
bound is highly correlated to the length of the filter. All violin plots
exhibit a peak at 1 specific value, 350 for the lower bound and
1,500 for the upper bound, with a corresponding peak at 1,150 for
the filter lengths. These peaks correspond to the most commonly
used filter, which accounts for 33.9% of all raw files.

We also observed that 47% of all projects applied a single filter
across all raw files, 43% of projects applied 2 filters, and only 10%
of the projects applied more than 2 unique filters. Consequently,
there is significant homogeneity within a project, while between
projects, the filters can differ considerably. If datasets are con-
structed using only 1 or a few unique filters, large portions of the

data space may never be used for training, potentially limiting the
transferability of the models (Supplementary Fig. S4).

We also tested the model performance of the PT17 and PT19
models on peptide datasets only containing peptides outside of
the original filter bounds (out-of-bounds [OOB|, Supplementary
Fig. S5) and found that model performance was significantly
worse when compared to the source test datasets. The OOB testing
performance is also significantly worse when compared to Limit
and Wide testing (see Results and Discussion), which also con-
tained peptides in the OOB range. Interestingly, the models per-
formed slightly worse on heavier OOB peptides than on lighter
OOB peptides (Fig. 8), despite lighter peptides exhibiting higher in-
dividual variability and the distribution of lighter peptides being
more concentrated at one end of the distribution compared to the
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Figure 8: Bayesian model uncertainty estimates for out-of-bounds peptides. For PT17 (A) and PT19 (B), we conducted model inference 25 times with
layer dropouts applied at original rates. Each data point is an average of the inference results, with the colorization of the dots indicating the
normalized relative variability of each peptide. For each of the datasets, we overlaid a distribution plot of the dataset retention time values as a solid
line and a linearity assessment (y = x) to facilitate a comparison of the model predictions with perfect alignment as a dotted line.

heavier peptides (Supplementary Fig. S6). Similarly to Fig. 6, we
observe significantly more model uncertainty tied to earlier and
later eluted peptides.

The significant reduction in performance we observed in
the OOB testing suggests that the models do not learn the
underlying nature of amino acid (AA) weights, folding, and
physicochemical properties, factors that impact RT as well
as the ionization and detectability of peptides, as much as
they memorize the retention times of certain peptide sequence
patterns [12].

Fragmentation patterns

We also investigated the variability and content of fragmentation
spectra in public data. In this case, as fragmentation does not in-
fluence peptide retention time, we will only consider the theoret-
ical impact on deep learning applications like fragmentation pat-
tern predictions and rescoring.

A perfect peptide fragmentation spectrum is a theoretical con-
cept that consists of a discrete set of all characteristic peaks
defined only by the peptide sequence. In reality, fragmentation
spectra only contain subsets of these theoretical peaks with pat-
terns based on the background contaminants from the instru-
ment, fragmentation technique, collision energy, and more. In
order to understand the challenges and limitations of the MS2
spectra for machine learning algorithms, we analyzed MS?2 spec-
tra peaks from 86 randomly sampled raw files containing more
than 768 million peaks, allowing us to visualize the peak distribu-
tions found in MS2 spectra.

When looking at the distribution of all m/z values found in
the 86 randomly sampled files, we observe a clear bimodal dis-
tribution independent of peak selection or bin sizes; 1 distribu-
tion is located at ~50 to 250 m/z and the second distribution at
~250 to 2,000 m/z. The distribution at the lower m/z range dis-
rupts the expected normally distributed peptide fragment ions
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found at 250 to 2,000 m/z and consists of clearly distinguish-
able high-density peaks corresponding almost exclusively to sin-
gle amino acid residues (Fig. 9E, F) and some background noise.
The cumulative distribution plots in Fig. 9 show the singly charged
amino acid residues, where amino acids are annotated if the m/z
of the peak matches the collision ions a, b, or y or the electron-
transfer ions ¢ or z. The most abundant amino acid peaks are
highlighted in Supplementary Table S1, and we observe that these
peaks become more frequent at higher levels of peak selection
(Supplementary Figs. S7-S8). It should be noted that the exact
AA contribution to some peaks is uncertain, as multiple AA ions
match the same m/z peaks.

One thing not taken into consideration in this analysis is the
method and energies used during fragmentation. The fragmenta-
tion technique, such as collision-induced dissociation (CID), high-
energy C-trap dissociation (HCD), or electron-transfer dissocia-
tion (ETD), has a significant impact in determining the patterns
of peptide fragmentations. This is due to each technique apply-
ing varying amounts and types of energy to the precursor ions,
leading to distinct bond cleavage pathways and producing spe-
cific fragmentions [8]. Along with the fragmentation technique, it
is also essential to discuss the fragmentation energy, often called
normalized collision energy (NCE) for CID and HCD, and charge
state-dependent reaction time for ETD. The stability of the cre-
ated fragment ions depends primarily on the size, polarity, and
charge on either side of the cleavage, and the energy with which
the fragmentation occurs determines which bonds can be bro-
ken [19, 20]. This also means that higher energy fragmentations
are more likely to create single AA ions [21, 22]. Utilizing the
fragmentation-specific ion patterns, either by inclusion or strat-
ification, has already been proven successful for both top-down
and bottom-up predictive proteomics [7, 8, 23, 24]. Due to the com-
plexity of LC-MS/MS fragmentation patterns across fragmenta-
tion techniques and energy, some projects utilize project-specific
peptide libraries to increase the identification of desired peptides.
Even though the usage of peptide libraries will not directly af-
fect the variability of peptide patterns in LC-MS or LC-MS/MS,
they can still affect identified variability by having a significantly
higher probability of identifying peptides in the library while not
identifying a large number of otherwise present peptides. Re-
cent developments in DL methods have enabled enhanced or
library-free peptide identifications, which, with future improve-
ments, could increase efficacy without biasing the identification
[25, 26].

Conclusions

Mass spectrometry remains a powerful tool to quantify thousands
of protein abundances in biological samples. Analysis of the raw
experimental data is increasingly dependent on suitable compu-
tational methods [27], with a major focus on algorithms for pep-
tide identifications and protein quantifications. However, despite a
variety of different statistical, conceptual, and graph approaches,
methods such as database search engines still suffer from lim-
itations in both accuracy and runtime. Novel machine learning
methods hold the promise of advancing the analysis of upcoming
data, as well as having a high potential for repurposing the am-
ple body of public data for the retrieval of valuable new biological
information.

In this article, we have investigated and highlighted some of
the main sources of variability found within the high-throughput
MS data. We identified a range of factors that increase variabil-

ity in the data-generating process and analyzed the homogene-
ity of the variability within a project when comparing different
projects. Our main finding from the statistical analyses was that
global variability, which is found between projects, is significantly
larger than internal variability, which is found between files in the
same projects. This is exhibited through instrument settings, sam-
ple preparation, and experimental choices, all of which are sig-
nificantly more homogeneous within any given project compared
between projects. Furthermore, we also wanted to see how these
sources of variability impacted ML capabilities by training Prosit
retention time predictors on each source individually, whenever
applicable.

We trained 9 Prosit models, tested these models on 27 datasets,
and performed transfer learning 14 times. An alternative ap-
proach would have involved performing multiple randomized
data splits for each model and averaging the results to provide
a more comprehensive assessment of model performance. How-
ever, we chose not to pursue this option due to their compu-
tational costs. Our findings show that training models on data
most closely resembling real-life test cases are crucial, as the
models’ ability to generalize outside the training data confine-
ments was severely limited. This was illustrated by the PT mod-
els outperforming any other model during training and valida-
tion while having considerable performance drops when tested
on randomly acquired data or peptides not in the original m/z
range.

Our results also found evidence that transfer learning can oc-
casionally improve the performance of a pretrained model. How-
ever, the most common scenario we observed was that models
ended up mimicking nontransferred models for the same dataset
while not reducing the average amount of epochs needed for con-
vergence. This tendency resulted in model regression in 5 of the
14 cases and only resulted in model improvement in 1 of 14 cases.
While our findings do indicate that models need to be trained
on datasets from representative sources, they do not indicate
that transfer learning outperforms training a new model in terms
of accuracy or computational needs (Supplementary Tables S4
and S5).

Since a representative dataset is needed, we argue that a re-
search environment either has to train specialized models to their
data collection methods or generate an unbiased dataset from
publicly available data sources that attempt to mimic the in-
tended posttraining application through software such as MS2AI
[18].

We further found that fragmentation spectra are rich in yet
neglected information. Given the abundant single-residue frag-
ment ions, particularly at higher activation energies, consider-
able amounts of internal ions should be present. This informa-
tion has been so far mostly untapped due to the complexity of
including internal ions in database search and spectrum predic-
tion. Advanced machine learning methods might be capable of
making sense of these ions despite their noisy and ubiquitous
nature.

We note that a prevailing issue with the current data reposito-
ries is the missing or mislabeling of metadata. With the ongoing
standardization efforts in large repositories such as PRIDE [28],
this issue should fade over time. Through the analysis, we also
identified the need to report more details about the experimental
design, the data acquisition, and the postprocessing in a compre-
hensive and standardized way to make them amenable as addi-
tional input for machine learning applications and thus allow for
the direct training of the confounding factors.
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Figure 9: Illustration of how peak picking and peak binning affect the MS2 peak density plot and single amino acid density. The density distributions
of peak m/z values shown were obtained without peak picking (C, D) and with the top 50 peaks (A, B). The spectra were then imposed into 50 (A, C)
and 500 (B, D) bins. E,F: for each value of peak picking, we also illustrated the cumulative distribution plot of the peaks in 50 to 250 m/z with single
AA residues overlaid. No stratification on the fragmentation method or its settings has been considered during this analysis.

Methods

We use different methods to evaluate the variability caused by dif-
ferent setup parameters of the LC-MS experiments and their ef-
fect on ML transferability to unseen data. To assess the impact of
biases and experimental heterogeneity, we trained identical deep
learning models over a range of data properties and compared
their results. We used the Prosit retention time model with peptide
sequence and retention time as input and output, respectively.
The Prosit model architecture consists of a sequence embedding
layer, a bidirectional GRU layer, and an attention layer, followed
by fully connected dense layers. The retention time of all peptides
in a raw file has been linearly normalized to an effective gradi-
ent, spanning between the first (0) and last (1) identified peptide
to mimic the iRT calculations performed in the original study. No
further data refinement or reannotation has been applied to the
files. Initially, we followed the hyperparameter setup described in
the Prosit study but found that 32 epochs were not sufficient for
model training convergence. As a result, we increased the training
to 100 epochs and applied a 20-epoch patience for early stopping
instead. All other parameters were identical to those described in
the original study [8]. The Prosit deep learning architecture was
implemented by using the DLOmix framework [29], and all modi-
fied peptides were removed due to DLOmix constraints.

For all trained networks, we sampled 10% of each dataset
as a hold-out test set on which all testing was conducted.
The remaining data was split into training and validation sets
with a ratio of 80:20. For datasets composed of multiple PRIDE

(RRID:SCR_003411) projects, the hold-out datasets consist of sep-
arate projects that were randomly sampled, whereas for datasets
consisting of a single project, the hold-out dataset consists of ran-
domly sampled raw files. This provided the most accurate het-
erogeneous test scenarios without overlap across projects or MS
runs. Furthermore, the training and validation datasets were split
by peptide sequences, meaning that no peptide will be present
in either the training or the validation datasets. However, since
the testing data were randomly split at the project or file level,
these may contain sequences that are also present in the training
datasets.

The data acquisition, filtering, model training, and testing
were managed using MS2AI with MongoDB (RRID:SCR_021224) in
Python 3.8 with an NVIDIA v100 GPU. The data were acquired in
November 2021 with the extractor API with the options “-p -mo
-t 128,” which allows for en masse data acquisition from PRIDE
(-p) while only fetching MaxQuant (RRID:SCR_014485) informa-
tion (-mo) and increasing thread counts to 128 to allow for faster
runtime (-t 128). This requires the current version of the PRIDE
metadata, which is downloaded using the scraper API and the -db
option. The filtering was performed using the filter API using the
-q option with MongoDB or string filters available in the GitHub
repository. The model training and testing were performed using
the network API with “-t prosit -e 100 -sos -s n” to train a Prosit
model for 100 epochs, with training and validation being split
based on unique sequences and a given seed for consistent train-
ing, validation, and test splitting. When performing transfer learn-
ing, the only difference is “-t prosit-ID,” which uses the weights of
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the trained model with the same ID. Model training times varied
from 4 to 10 hours based on the dataset size and epochs needed
to converge. All code and seeds for the runs are available in the
GitHub repository.

We utilized a Bayesian approximation of the model uncertainty
by performing model inference with dropout enabled (30, 31]. The
real retention time values are then plotted against the mean pre-
dicted values, with the color of the data point corresponding to
the normalized variances of the predicted values. The dropout for
inference testing was applied to all layers where dropout was orig-
inally applied, with original dropout rates. This allowed us to not
only evaluate the models on their metric performances but also
determine the retention time ranges where the models are least
certain of their predictions. This method is available in MS2AI net-
work API using the “-id n” option to run n dropout tests and auto-
matically generate the data visualization plots.

Single- vs. multiproject variability

In order to measure the difference in variability not caused by in-
dividual factors but instead caused by systemic changes in ex-
perimental protocol, we compared the model performance of 2
single-project models to the performance of 2 multiproject mod-
els. We did this by training 4 Prosit models on data from 4 dif-
ferent sources: 2017 [32] and 2019 [33] ProteomeTools (RRID:SCR_
018535) datasets (PT17 and PT19, respectively) and 2 sets of ac-
quired data from randomly sampled PRIDE projects—one limited
to the 750,000 peptides filtered at 100 Andromeda score thresh-
old, which is the score reported by MaxQuant (Limit), and one
with 2,000,000 peptides filtered at 150 Andromeda score thresh-
old (Wide). Alongside the initial training and testing, we also per-
formed transfer learning on all models for all nonsource datasets
to compare their initial performance to posttransfer learning
performance.

Spectra and gradient lengths

To compare and analyze the variability in gradient lengths, we ex-
tracted the metadata from each raw file (found in the files.bson.gz)
and the gradient lengths of all runs individually, which we plotted
in a histogram against the probability of each gradient length. We
then calculated the cumulative distribution function of the gradi-
ent lengths for all files, which is overlaid on the histogram. Then,
we calculated the number of unique gradients across all files from
the same PRIDE accession, allowing us to visualize the variability
found within projects when plotting the number of unique gra-
dients in a histogram against the probability of each number of
unique gradients.

Along with gradient length visualizations, we also trained 2
Prosit models to evaluate the effect of gradient length on model
performance. The models were trained datasets that were divided
into 2 groups based on their gradient lengths: short (<60-minute
gradients) and long (>100-minute gradients). The data were ran-
domly sampled from the entire 151 M peptide dataset, and only
peptides with >150 Andromeda scores were kept. We also per-
formed transfer learning of both gradient models to the opposing
datasets. Furthermore, to test model uncertainty across the gra-
dient, we performed model inference with dropout enabled on all
4 models, as described above.

m/z range filter

To visualize and compare m/z filters across files and projects, we
extracted the m/z filter bounds from each raw file and plotted the
lower bounds, upper bounds, and the difference between the up-

per and lower bounds to get the lengths. We then visualized these
values in a violin plot in order to see possible patterns or key val-
ues in the distributions.

In order to evaluate the impact of m/z filters on model perfor-
mance, we created 2 subsets of data, this time much smaller due
to low peptide count: one in which all peptides lie below 360 m/z
(lower) and one in which all peptides lie above >1,300 m/z (Upper).
These bounds were chosen as we are going to reuse the PT17 and
PT19 models, which have m/z filter bounds of 360 to 1,300 m/z,
and using these datasets allowed us to evaluate peptides that are
outside original filter bounds. As we did not train new models for
this section, no transfer learning was applied. Again, we also per-
formed model inference with dropout enabled in order to assess
the model uncertainty for these OOB peptides.

Fragmentation pattern

To analyze the distribution of MS2 peaks, we extracted every peak
from 86 raw files [34], where we compared the raw spectra with
all peaks preserved to spectra filtered by top n peaks based on in-
tensity for 3 values of n: 50, 100, and 200. MS2 spectra are often
annotated or binned to make them fit into typical ML architec-
tures. To illustrate how this type of binning affects the outcome
distribution, we also binned each of the combined peak selected
spectra at 50, 100, 200, and 500 total bins from 0 to 2,000 m/z.
We then calculated the collision ions a, b, and y as well as the
ETD ions ¢ and z for all amino acids separately. This was done by
adding —27, 1, 19, 18, and 2 mass to their single charged molecu-
lar residue weights for a, b, y, ¢, and z ions, respectively using the
web tools "Amino acid residues molecular masses" (http://www?2.
riken.jp/BiomolChar/Aminoacidmolecularmasses.htm) and "Pro-
teomics Toolkit" (http://db.systemsbiology.net/proteomicsToolkit/
FraglonServlet.html), both accessed 2023, March 20.

Source Code and Requirements

Project name: MS Review Paper

Project homepage: https://gitlab.com/tjobbertjob/ms-review-
paper

Operating system(s): Platform independent

Programming language: Python

Other requirements: Python 3.8, MongoDB

License: e.g., GNU AGPLv3

RRID:SCR_024531.

Additional Files

1. DOME-ML Registry File

2. Evaluation metric report

3. Supplementary figures

Supplementary Fig. S1. Species model performance compari-
son. Each model was trained and validated on individual inter-
nal datasets and cross-tested on all external datasets as a basis
for model comparisons. The x-axis denotes datasets, and the bars
denote model performance on the given dataset.
Supplementary Fig. S2. Gradient model performance compari-
son. Each model was trained and validated on individual inter-
nal datasets and cross-tested on all external datasets as a basis
for model comparisons. The x-axis denotes datasets, and the bars
denote model performance on the given dataset.
Supplementary Fig. S3. Gradient-based refinement model perfor-
mance comparison. Each model was refined on all previous exter-
nal datasets and retested on both datasets. Datasets are separated
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by plots, denoting the performance difference of each model when
trained on, or refined to, identical datasets. Each bar has the orig-
inal test metric in blue and the refinement test metric overlaid in
orange.

Supplementary Fig. S4. Illustration of the unseen data space
caused by limited search space filters. lllustrated are 3 theoreti-
cal search spaces superimposed on top of a theoretical MS1 chro-
matogram, with unreported peptides at both ends of the data
space.

Supplementary Fig. S5. Out-of-bounds performance comparison
of PT models. The PT17 and PT19 model comparison for their in-
dividual internal datasets (initial), peptides with m/z below 360
(lower), and above 1,300 (upper).

Supplementary Fig. S6. Bayesian model uncertainty estimates for
out-of-bounds peptides split into 2 datasets. The out-of-bounds
datasets are splitinto 2 datasets: peptides with m/z below 360 (left)
and above 1,300 (right). Models are separated into rows with PT17
in the first row (A, B) and PT19 in the last row (C, D).
Supplementary Fig. S7. Density distribution of MS2 peaks with
different levels of peak picking imposed at 50 and 100 bins. For
each value of peak picking, we also illustrated the cumulative dis-
tribution plot of the peaks in 50 to 250 m/z with single AA fragmen-
tations overlaid.

Supplementary Fig. S8. Density distribution of MS2 peaks with
different levels of peak picking imposed at 200 and 500 bins. For
each value of peak picking, we also illustrated the cumulative dis-
tribution plot of the peaks in 50 to 250 m/z with single AA fragmen-
tations overlaid.

Supplementary Table S1. Corresponding single amino acid peak
table. m/z, amino acid, and fragmentation type of MS2 peaks in
Fig. 9. “x” does not meet the threshold of 1% in the given n and is
not annotated on the CDF. Note that 129.1 and 129.2 have been
merged to 1 peak, due to rounding error.

Supplementary Table S2. Model epochs for training convergence
overview of transfer learning models.

Supplementary Table S3. Model epochs for training convergence
overview of gradient-length models..

Supplementary Table S4. Model epochs for training convergence
overview of models trained for organisms.

Supplementary Table S5. Model epochs for training convergence
overview of models trained for instruments.

Data Availability

The database files, reference texts, and trained mod-
els supporting the results of this article are available
in the FigShare repository [34]. The DOME-ML Registry
file containing annotations supporting this work is avail-
able as a supplementary file attached with this article.
Snapshots of our code are archived in Software Heritage,
https://archive.softwareheritage.org/browse/origin/directory/
?origin_url=https://gitlab.com/tjobbertjob/ms-review-paper.
git&snapshot=1246a52{5717c414df138b746e6d54a2712673al.
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CID: collision-induced dissociation; DL: deep learning; ET-
ciD: electron-transfer and collision-induced dissociation; ETD:
electron-transfer dissociation; EThcD: electron-transfer and
higher-energy collision dissociation; HCD: high-energy C-trap
dissociation; LC-MS or MS1: liquid chromatography-mass spec-
trometry; LC-MS/MS, MS/MS, or MS2: tandem mass spectrometry;
ML: machine learning; MS: mass spectrometry; m/z: mass to
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