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A B S T R A C T

In this study, we propose a mathematical model of a 4D clustered traveling salesman problem (CTSP) to address
the cost-effective security and risk-related difficulties associated with the TSP. We used a multiparent-based
memetic genetic algorithm to optimize paths between all clusters and proposed unique heuristic approaches
to create clusters and reconnect them. We constructed a 4D CTSP considering multiple routes between two
locations and multiple available vehicles on each route. Travel expenses and risks impact every itinerary;
however, the behaviors of these costs and risks are always uncertain. We inspected various standard benchmark
problems from (TSPLIB) using the proposed calculations. Real-life problems in the tourism industry motivate
a longitude–latitude-based CTSP with risk constraints. Thus, we determined the risk of each path based
on longitude and latitude. The contributions of this study are twofold: developing a genetic algorithm and
heuristics based on mathematical modeling of a real problem.
. Introduction

In real life, we face different (NP)-hard issues, such as vehicle rout-
ng problem (VRP), traveling salesman problem (TSP), traveling pur-
haser problem (TPP) and facility location problem. Heuristic method-
logies such as genetic algorithm (GA) and tree growth algorithm and
warm optimization procedures such as ant colony optimization (ACO)
nd particle swarm optimization (PSO) have been proven efficient for
hese genuine NP-hard issues [1]. In this study, we propose a unique
lustering and re-linking technique to construct a 4D clustered TSP
CTSP) and applied memetic GA to optimize each cluster.

Technological advances have led to the globalization of the ex-
hange market from all perspectives. This allows a sales rep or agent to
enture to different places quickly to satisfy their business perspectives.
tineraries for business or other travel plans are prepared without con-
idering any parameters such as cost, comfort, chance, and time. These
arameters are typically uncertain. The tourism industry is profitable
verywhere in the world [2]. Researchers have studied different aspects
f tourism. According to Silva et al. [3], study on low-cost tourism,
ow-cost carriers impact tourists’ behaviors. Ayhan et al. [4] focused
n rural tourism activities and demonstrated the importance of rural
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E-mail addresses: apurba_sukumar@rnlkwc.ac.in (A. Manna), royarindamroy@yahoo.com (A. Roy), maitysamir13@gmail.com (S. Maity),
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1 https://www.hotelmize.com/blog/understanding-the-important-role-of-technology-in-tourism-marketing/.
2 https://www.ems.gov/.

tourism for rural development. Climate and weather act are important
factors for the tourism industry. Perry [5] focused on the significant
role of climate in tourism and how it is an equally important component
that should be included in tourism grades. According to Kubo et al.
[6] different geographical positions base coastal tourism on Japanese
beaches. Researchers have not focused on region-wise tourism based
on geographical positions. The risks may appear from different angles,
such as bad climate situations, travel time, accidental risk, tourist
health conditions, and so on. Focusing on these points, Huang et al. [7]
proposed significant theories to analyze health-related behaviors with
respect to geographical locations.. Thus, there are no solutions where
tourists will get the best comfort with minimum risk at a reasonable
cost, and management can overcome undesirable situations with min-
imum loss. To fill the gap, this study uses a longitude–latitude-based
cluster-wise routing design.

Contemporary communication systems have improved scientific ad-
vances. As there are multiple ways to reach a destination, there are also
various communication systems.1 Therefore, money, time, comfort,
danger, and so on should be kept in mind, in addition to the selected
means of communication. Travel planning does not always depend on
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travel costs; it is also affected by time, comfort, safety, and so on. When
a person is in a medical emergency or another danger, an ambulance or
another conveyance is required for smooth and fast transport. Factors
such as time and safety take precedence over value.2 The concept of
clustering is considered when we operate a set of nodes but use a subset
of nodes to minimize loss. When a natural disaster such as an earth-
quake or heavy cyclone causes damage on a large scale, quick rescue
or relief operations are done cluster-wise. In contrast, if a large-scale
travel plan is organized according to a category, it is beneficial from
the perspectives of travel management as well as finance. Keeping these
real issues in mind, this study is our innovative response. According
to this study, each tour arrangement ought to be 3D (e.g., a route
with more than one vehicle accessible for going between source and
destination) or 4D TSP (e.g., a diverse way is available where more
than one vehicle is affordable on each route). Maity et al. [8] proposed
a hybrid algorithm to solve 4D TSP. To solve an unsealed, constrained
multi-objective solid TSP, Maity et al. [9] proposed a rough multi-
objective GA. In this study, the risk is mathematically formulated based
on latitude and longitude. We considered 3D and 4D CTSPs with risk
constraints. The proposed clustering technique and cluster re-linking
methods were unique. This study focused on the following:

(i) Planning a large-scale trip for a natural disaster rescue operation
or other travel purposes is a complex problem. How might we structure
a refined visit plan on an enormous scale inside a state or a nation?

(ii) Various challenging situations such as accidents and robbery
are likely to be encountered when we set a route to a destination.
What might be a visit plan with an ideal expense while keeping up
the standard risk/comfort factor?

(iii) A problem is divided into various small groups to reduce its
complexity. Getting those groups together as a solution is a com-
plex job. What should be the cluster sequence and cluster re-linking
technique to get the optimal travel plan?

(iv) Management can design a tour plan using the longitude and
latitude of each place to minimize risk or loss and maximize comfort
and reliability. What is the administrative method to deal with issues
such as risk factors arising as an effect of different longitudes and
latitudes?

Questions (i)–(iv) are the key issues that we attempted to address
in this study.

This paper is presented as follows: Section 1 gives a brief introduc-
tion. A short literature review is presented in Section 2. In Section 3, we
describe mathematical prerequisites. The formulation of CTSP showed
in Section 4. In Section 5, the proposed CTSP algorithm is presented.
Section 6 presents some empirical experiments. In Section 7, a brief
discussion is given. Section 8 presents the practical implementation,
and Section 9 focuses on managerial insights. Finally, in Section 10,
the conclusion and future scope are discussed.

2. Literature review

The TSP is a well-known combinatorial optimization problem [10].
Initially, it takes a set of nodes from a complete weighted graph and
finds a concise path by visiting every node except the origin node, just
once. Generalization of the TSP as the family TSP was proposed by
Bernardino and Paias [11]. Here, given cities were distributed within
several families, and the shortest route that visits a given number
of cities in each family was identified. Like TSP, different types of
shortest-path problems have been studied by scholars. A gaussian-
valued neutrosophic shortest path problem was studied by Kumar et al.
[12] and Kumar et al. [13]. Different types of TSPs have been proposed
based on various realistic phenomena [14,15]. The CTSP, the most
popular form of the classical TSP was first observed by Chisman [16].
One of the most significant highlights of CTSP is that nodes inside a
cluster are visited. In the CTSP, a traveler visits different cities with
just a single movement. This study is an initial step for designing a

multi-route and multi-vehicle CTSP as a 4D CTSP. Recently, Maity et al.

2

[9] studied risk as a constraint on TSP. We determined risk based on
the distances between cities and the related longitudes and latitudes.
Determining the risk of a visit depends upon the condition of the streets,
types of vehicles, peace conditions, climate conditions, and so on. Thus
risk can be considered an uncertain factor. This model has a fuzzy
incentive for the risk and cost of a journey. The CTSP has extensive
real-life applications. Laporte and Palekar [17] studied warehousing
problems, Ozgur and Brown [18] considered job scheduling and se-
quence scheduling problems, Lokin [19] focused on manufacturing
problems, Pop et al. [20] considered vehicle routing problems and
Batsyn et al. [21] and Nasiri et al. [22] considered disk defragmentation
problems. This study fills the gap of longitude–latitude-based risk and
routing in terms of 4D (multi-path and multi-vehicle) constraint (risk)
CTSP.

Uncertainty plays an important role in modeling real-life problems
[23–25]. Any traveling or transportation between two locations is
always affected or controlled by parameters such as cost, time, risk,
comfort, demand, and supply, and these parameters are uncertain or
fuzzy. Kumar et al. [26] studied the fuzzy Pythagorean transportation
problem and considered both, the Pythagorean fuzzy arithmetic and
numerical conditions in three different models in a Pythagorean fuzzy
environment. A recent study considered uncertainty using triangular
fuzzy numbers for machine performance with ranking [27].

In this study, a model of latitude-longitude-based CTSP with risk
constraints is considered where clusters are created based on the
latitude–longitude of geographical positions against each node or city.
We assumed that there is more than one route and multiple vehicles
available on each way to move from one town to a different city
and considered a risk factor for each path. The proposed formula
measured risk dynamically, with each city’s or node’s extreme weather
and geographic location influencing the measurements.

Due to their limited computational power and enormous time,
Chisman [16] applied exact solution methods for the CTSP, which were
sufficient for minimal-size instances. Helsgaun [28] solved extensive
cases, up to 85,900 cities, dividing the problem up to 17,180 clusters
with an optimal solution, but it is also a time-consuming, laborious
process. At the same time, most researchers have focused on getting
satisfactory solutions within a reasonable time. Phuong et al. [29]
proposed a priority-oriented constraint, a rule called d-relaxed priority,
constructing an optimum delivery route based on the preference of each
delivery point. This algorithm formed the mixed integer programming
model for small and medium instances with up to 50 nodes. To solve
up to 200 nodes, the proposed method is a metaheuristic approach
following the ideas of the greedy randomized adaptive search proce-
dure. A tabu-clustered TSP is a metaheuristics approach where the
initial node is divided into two types of sub-clusters and a set of tabu
nodes [30]. They suggested that the algorithm may be able to solve
telemetry tracking and bidding resourcefulness scheduling problems.
Laporte et al. [31] also introduced an inquiring method to unfold CTSP
through a taboo search program to access clusters in a prespecified or-
der. Another example of an algorithmic rule to resolve the optimization
problem is the harmony search algorithm. In 2010, Yildiz and Öztürk
[32] proposed a hybridized algorithm for the vehicle manufacturing
industry to resolve shape optimization problems. This algorithm is a
mix of Taguchi’s method and the harmony search procedure. Assuming
a large-scale TSP, the computational time within a limited period is
not easily achievable every time. This study addresses the research
gap of designing and solving large-scale problems in the CTSP. One
of the most discussed evolutionary algorithms is the GA developed by
Goldberg [33]. GA conducts a heuristic search, including exploration
and exploitation. It has proven its efficiency and effectiveness in solving
real-life NP-hard problems in reasonable computational time [34,35].
Several researchers have focused on GA to solve different optimization
problems and their variants [36,37]. Ahmed [38] proposed a heuristic
way to deal with the CTSP. It considers a pre-determined number of
clusters, which are accessed in a prespecified order. A Lexi search



A. Manna, A. Roy, S. Maity et al. Decision Analytics Journal 8 (2023) 100287

a

w

L
n

L
a
1

4
(

4

4

a
𝐺
a

calculation was created to get specific ideal answers for the CTSP. Binh
et al. [39] developed a CTSP to address the clustered briefest-way tree
issue. This problem is a combination of two sub-problems. One is an H-
Problem, which is used to identify an arc set as a connector within the
clusters, whereas the other is the L-Problem, which is used to construct
a spanning tree for the sub-diagram in every group. The specified H-
Problem is a bunch of new evolutionary operators. They are unique
beginning populations, crossovers, and mutation operators. One of the
most important aims of this algorithm is to reduce the search space
of an evolutionary algorithm that applies to solving an optimization
problem. Roy et al. [40] developed a new modified GA with a new
multiparent crossover to solve medium and large-scale TSPs. Except
for GA, other evolutionary algorithms such as the Ant Colony System
studied by Bianchi et al. [41], the ACO studied by Mandala et al.
[42], and PSO [43,44] have also been applied to optimize different
optimization problems such as TSP as well as CTSP. A recent study by
Seyedan et al. [45] proposed demand forecasting using a k-means algo-
rithm with four layered hierarchies for supply chain networks. Though
various developments have been made within the field of optimization
problems, few shortcomings and limitations remain associated with
the formulation of the matter and improving solution procedures. This
study presents a novel cluster ordering and re-linking methodologies for
the proposed 4D constraint-based CTSP. The features of the proposed
work are as follows:

• The proposed CTSP is more realistic.
• In this problem, GA is memetic with multiparent (four parents)

crossover, probabilistic selection, and random mutation.
• The proposed GA was tested with various informational indexes

from (TSPLIB) as well as informative speculative collections. We
accomplished a contextual analysis of the territory of West Bengal
in India with the assistance of Google Maps.

• The proposed algorithm efficiently solved large-scale multi-route
and multi-vehicle routing problems.

We formulated different risk factors depending on the geographical
position or location of the city for different routes considering different
vehicle availabilities. The prescribed models exhibited improved crisp
cost and risk as well as fuzzy cost and risk. Cluster generation and re-
linking were successfully performed using a novel heuristic technique.
The developed GA was a combination of probabilistic selection based
on the analogous parameter 𝑃𝑠 (say, probabilistic selection), multi
parents crossover, and simple random mutation. The proposed multi-
parent crossover technique was based on social mimicry such as child
adoption. When parents adopt a child, the child picks up behavior from
both the biological and adopted parents. Initially, we randomly selected
four solutions (say, parents) for the crossover operation. Then, offspring
were created using the multiparent crossover method by comparing
the values between the nodes of all four parents. Table 3 proves the
efficiency of our applied GA over classical GA.

3. Mathematical preliminaries

3.1. Fuzzy possibility and necessity approach

Say �̃� is a fuzzy number with membership function 𝜇�̃�(𝑥) and
nother one is �̃� with membership function 𝜇�̃�(𝑥). At that point, as

indicated by Zadeh [46],

𝑝𝑜𝑠(�̃� ∗ �̃�) = 𝑠𝑢𝑝{𝑚𝑖𝑛(𝜇�̃�(𝑥), 𝜇�̃�(𝑦)), 𝑥, 𝑦 ∈ ℜ, 𝑥 ∗ 𝑦} (1)

here the multitude pos describes the possibility, ∗ is any one of the
relations >,<,=,≤,≥ and ℜ represents set of real numbers.

𝑛𝑒𝑠(�̃� ∗ �̃�) = 1 − 𝑝𝑜𝑠(�̃� ∗ �̃�) (2)

here the multitude nes represents necessity.
 l

3

Fig. 1. Triangular fuzzy number 𝑎 = (𝑎1 , 𝑎2 , 𝑎3).

If �̃�, �̃� ⊆ ℜ and 𝑐 = 𝑓 (�̃�, �̃�) where 𝑓 ∶ ℜ × ℜ → ℜ is a binary
operation then the membership function 𝜇𝑐 of 𝑐 is defined as

For each 𝑧 ∈ ℜ, 𝜇𝑐 (𝑧) = 𝑠𝑢𝑝{𝑚𝑖𝑛(𝜇�̃�(𝑥), 𝜇�̃�(𝑦)), 𝑥, 𝑦 ∈ ℜ and 𝑧 = 𝑓 (𝑥, 𝑦)}

(3)

Triangular Fuzzy Number (TFN) [47]:

If �̃� is a TFN and �̃� = (𝑎1, 𝑎2, 𝑎3) (cf. Fig. 1) then 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 are
three parameters such as 𝑎1 < 𝑎2 < 𝑎3. Now, we can characterize the
TFN through the membership function 𝜇�̃� such as

𝜇�̃�(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥−𝑎1
𝑎2−𝑎1

for 𝑎1 ≤ 𝑥 ≤ 𝑎2
𝑎3−𝑥
𝑎3−𝑎2

for 𝑎2 ≤ 𝑥 ≤ 𝑎3

0 otherwise.

(4)

We can derive the following lemmas based on the above definitions.

Lemma 3.1a. If �̃� = (𝑎1, 𝑎2, 𝑎3) be a TFN with 0 < 𝑎1 and 𝑏 is a crisp
number then 𝑝𝑜𝑠(�̃� < 𝑏) ≥ 𝛼 iff 𝑏−𝑎1

𝑎2−𝑎1
≥ 𝛼.

emma 3.1b. If �̃� = (𝑎1, 𝑎2, 𝑎3) be a TFN with 0 < 𝑎1 and b is a crisp
umber then 𝑛𝑒𝑠(�̃� < 𝑏) ≥ 𝛼 iff 𝑎3−𝑏

𝑎3−𝑎2
≤ 1 − 𝛼.

Lemma 3.1c. If �̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3) be TFNs with 0 < 𝑎1
and 0 < 𝑏1 then 𝑝𝑜𝑠(�̃� < �̃�) ≥ 𝛼 iff 𝑏3−𝑎1

𝑏3−𝑏2+𝑎2−𝑎1
≥ 𝛼.

emma 3.1d. If �̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3) be TFNs with 0 < 𝑎1
nd 0 < 𝑏1 then 𝑛𝑒𝑠(�̃� < �̃�) ≥ 𝛼 iff 𝑎3−𝑏1

𝑏2−𝑏1+𝑎3−𝑎2
≤

− 𝛼.

. Formulation of multi-path multi-vehicle clustered TSP
4D CTSP) with risk constraints

.1. Nomenclature

Some basic notations are available in Table 1.

.2. Classical TSP with risk constraints

The TSP optimization problem involves creating an ideal tour with
finite set of unique cities, excluding the starting town or node. Say
= (𝑉 ,𝐴) is a graph with 𝑉 as a set of 𝑁 vertices and 𝐴 as a set of

rcs. Let 𝑐(𝑖, 𝑗) be the traveling cost and 𝑟(𝑖, 𝑗) be the traveling risk factor
evel in traveling from 𝑖th city to 𝑗th city. Then we can mathematically



A. Manna, A. Roy, S. Maity et al. Decision Analytics Journal 8 (2023) 100287
Table 1
Notations and descriptions.

Notation Description

𝑁 Number of nodes/city (1, 2, 3, …, N)
𝑖, 𝑗, 𝑘 Index set
𝑐(𝑖, 𝑗) Traveling cost from 𝑖th city to 𝑗th city
𝑟(𝑖, 𝑗) Risk from 𝑖th city to 𝑗th city
𝑐(𝑖, 𝑗, 𝑙) Traveling cost from 𝑖th city to 𝑗th city using 𝑙th vehicle
𝑟(𝑖, 𝑗, 𝑙) Risk from 𝑖th city to 𝑗th city using 𝑙th vehicle
𝑐(𝑖, 𝑗, 𝑙, 𝑔) Traveling cost from 𝑖th city to 𝑗th city using 𝑙th vehicle and 𝑔th route
𝑟(𝑖, 𝑗, 𝑙, 𝑔) Risk from 𝑖th city to 𝑗th city using 𝑙th vehicle and 𝑔th route
𝑐(𝑖, 𝑗, 𝑙) Fuzzy traveling cost from 𝑖th city to 𝑗th city using 𝑙th vehicle
𝑟(𝑖, 𝑗, 𝑙) Fuzzy risk from 𝑖th city to 𝑗th city using 𝑙th vehicle
𝑐(𝑖, 𝑗, 𝑙, 𝑔) Fuzzy traveling cost from 𝑖th city to 𝑗th city using 𝑙th vehicle and 𝑔th route
𝑟(𝑖, 𝑗, 𝑙, 𝑔) Fuzzy risk from 𝑖th city to 𝑗th city using 𝑙th vehicle and 𝑔th route
𝑥𝑖𝑗 Decision variable
𝑟𝑚𝑎𝑥 Highest allowable risk
𝑚 Number of clusters
𝑄 Set of nodes {1, 2, 3, ⋯, N}
𝐺 A graph
𝑉 Set of 𝑁 vertices
𝐴 Set of arcs of graph 𝐺
𝑟𝑘−𝑚𝑎𝑥 Maximum allowable risk of 𝑘th cluster
𝑟𝑘(𝑖, 𝑗) Risk between 𝑖th node of 𝑘th cluster and 𝑗th node of 𝑘th + 1 cluster
𝑟𝑚(𝑖, 𝑗) Risk between 𝑖th node of 𝑚th cluster and 𝑗th node of 1st cluster
Table 2
Research questions, solutions and managerial insight.

Research questions Solutions (with reference) Managerial insight

Q1: How might we structure Tables 10, 11 Management can take
a refined visit plan on an and Fig. 5 appropriate decision to
enormous scale like inside a draw profitable cluster
state or a nation? wise tour plan.

Q2: What might be a visit Tables 3 to 11 Management can design
plan with an ideal expense and Fig. 5 cluster wise tour plan with
keeping up the standard standard risk factor to
risk or comfort factor? maintain the profit.

Q3: What should be the cluster Algorithm 5 Management should try
sequence and cluster re-linking to maximize profit while
technique to be get the optimal maintaining the risk
travel plan? of each cluster.

Q4: What is the administrative Tables 10 and 11, and Fig. 5 Management can design
method to deal with such Section 9 clusters based on
issues like as risk factors arising longitude and latitude of
as an effect of different each place.
longitude and latitude?
formulate the problem as:

Minimize 𝑍 =
∑

𝑖≠𝑗
𝑐(𝑖, 𝑗)𝑥𝑖𝑗

subject to
𝑁
∑

𝑖=1
𝑥𝑖𝑗 = 1 for 𝑗 = 1, 2,… , 𝑁

𝑁
∑

𝑗=1
𝑥𝑖𝑗 = 1 for 𝑖 = 1, 2,… , 𝑁

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑟(𝑖, 𝑗)𝑥𝑖𝑗 ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(5)

where 𝑥𝑖𝑗 is the decision variable,

𝑥𝑖𝑗 =
{

1 if the salesman visits from 𝑖th 𝑡𝑜 𝑗th 𝑐𝑖𝑡𝑦 (6)

0 otherwise.

4

and 𝑟𝑚𝑎𝑥 is the maximum allowable risk factor. Then the above TSP
reduces to determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1)

to minimize 𝑍 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1) + 𝑐(𝑥𝑁 , 𝑥1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1) + 𝑟(𝑥𝑁 , 𝑥1) ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(7)

along with sub-tour elimination criteria

𝑁
∑

𝑖∈𝑆

𝑁
∑

𝑗∈𝑆
𝑥𝑖𝑗 ≤ |𝑆| − 1,∀𝑆 ⊂ 𝑄

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, 2,… , 𝑁
𝑄 = {1, 2, 3,… , 𝑁} set of nodes.

⎫

⎪

⎪

⎬

⎪

⎪

(8)
⎭
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4.3. Clustered TSP (2D CTSP) with risk constraint

The number of nodes is 𝑁 , and it is divided into 𝑚 clusters. The size
of the clusters is |𝑣𝑘|, ∀ 𝑘 ∈ 𝑚. Each cluster has a unique set of nodes,
and 𝑉 = {∪𝑚

𝑖=1𝑣𝑖 ∶ 𝑣𝑖 ∩ 𝑣𝑗 = 𝜙, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, 2,… , 𝑚}}. There is a
decision variable 𝑥𝑖𝑗 , 𝑥𝑖𝑗 = 1 iff a tour is completed between 𝑖th node to
𝑗th node; otherwise, 𝑥𝑖𝑗 = 0; 𝑖, 𝑗 ∈ 𝑉 . Let 𝑐(𝑖, 𝑗) be the cost of traveling
from 𝑖th city to 𝑗th city. The mathematical formulation of CTSP can be
represented as follows:

Minimize 𝑍 =
∑

𝑖≠𝑗
𝑐(𝑖, 𝑗)𝑥𝑖𝑗

subject to
𝑁
∑

𝑖=1
𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑗 = 1, 2,… , 𝑁

𝑁
∑

𝑗=1
𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑁

∑

𝑖∈𝑣𝑘

∑

𝑗∈𝑣𝑘

𝑥𝑖𝑗 = |𝑣𝑘| − 1, ∀ 𝑣𝑘 ⊂ 𝑉 , |𝑣𝑘| ≥ 1, 𝑘 = 1, 2, 3,… , 𝑚
∑

𝑖∈𝑣𝑘

∑

𝑗∈𝑣𝑘

𝑟(𝑖, 𝑗)𝑥𝑖𝑗 ≤ 𝑟𝑘−𝑚𝑎𝑥, 𝑘 = 1, 2, 3,… , 𝑚

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(9)

where 𝑚 denotes the number of clusters. 𝑟𝑘−𝑚𝑎𝑥 is the 𝑘th cluster’s
maximum allowable risk. and 𝑟𝑚𝑎𝑥 represents the maximum risk of the
entire tour. Where, 𝑟𝑚𝑎𝑥 ≤ {

∑𝑚−1
𝑘=1 𝑟𝑘−𝑚𝑎𝑥 + 𝑟𝑘(𝑖, 𝑗) + 𝑟𝑚−𝑚𝑎𝑥 + 𝑟𝑚(𝑖, 𝑗) ∶

𝑖, 𝑗 ∈ {𝑣𝑖, 𝑣𝑗}, 𝑣𝑖 ∩ 𝑣𝑗 = 𝜙, 𝑖 ≠ 𝑗, 𝑟𝑘(𝑖, 𝑗) represents the risk between 𝑖th
node of 𝑘th cluster, and 𝑗th node of 𝑘𝑡ℎ+1 cluster. 𝑟𝑚(𝑖, 𝑗) stands for risk
between 𝑖th node of 𝑚th cluster and 𝑗th node of 1st cluster}. Then the
salesman has to determine a tour inside a cluster based on (𝑥𝑖, 𝑥𝑗 ∈ 𝑣𝑘),
𝑖, 𝑗 ∈ {1, 2,… , 𝑁}. Now, each cluster is optimized according to the
following equation.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑘 =
|𝑣𝑘|
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
|𝑣𝑘|
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1) ≤ 𝑟𝑘−𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = {1, 2⋯ , 𝑁}, 𝑘 ∈ {1, 2⋯ , 𝑚}.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(10)

Finally, a complete tour(𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) will be discovered by
appending all clusters together. Then the above CTSP reduces to de-
termine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1)

𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1) + 𝑐(𝑥𝑁 , 𝑥1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1) + 𝑟(𝑥𝑁 , 𝑥1) ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(11)

along with Eq. (8).

4.4. Multi vehicle clustered TSP (3D CTSP) with risk constraint

Let 𝑐(𝑖, 𝑗, 𝑡) be the cost for traveling from 𝑖th city to 𝑗th city using
𝑡th vehicle and 𝑟(𝑖, 𝑗, 𝑡) be the risk factor in traveling from 𝑖th city to
𝑗th city using 𝑡th vehicle. The framing of 3D CTSP with risk constraint
can be represented as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
∑

𝑖≠𝑗
𝑐(𝑖, 𝑗, 𝑡)𝑥𝑖𝑗𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁
∑

𝑖=1
𝑥𝑖𝑗𝑡 = 1 𝑓𝑜𝑟 𝑗 = 1, 2,… , 𝑁,

∀𝑡 ∈ {1, 2,… , 𝑤}
𝑁
∑

𝑗=1
𝑥𝑖𝑗𝑡 = 1 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑁, ∀𝑡 ∈ {1, 2,… , 𝑤}

∑

𝑖∈𝑣𝑘

∑

𝑗∈𝑣𝑘

𝑥𝑖𝑗𝑡 = |𝑣𝑘| − 1, ∀ |𝑣𝑘| ⊂ 𝑉 , |𝑣𝑘| ≥ 1,

𝑘 = 1, 2, 3,… , 𝑚, ∀𝑡 ∈ {1, 2,… , 𝑤}
∑

𝑖∈𝑣𝑘

∑

𝑗∈𝑣𝑘

𝑟(𝑖, 𝑗, 𝑡)𝑥𝑖𝑗𝑡 ≤ 𝑟𝑘−𝑚𝑎𝑥, ∀𝑡 ∈ {1, 2,… , 𝑤},

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(12)
𝑘 ∈ {1, 2⋯ , 𝑚}
⎭

5

where 𝑚 is the highest number of clusters and 𝑤 is the highest number
of vehicles, 𝑟𝑘−𝑚𝑎𝑥 is the maximum allowable risk of 𝑘th cluster and
𝑟𝑚𝑎𝑥 is the maximum risk of a complete tour. Now the salesman has to
determine a tour inside a cluster based on (𝑥𝑖, 𝑥𝑗 ∈ 𝑣𝑘) with correspond-
ing available vehicle types (𝑝1, 𝑝2,… , 𝑝𝑤), where 𝑥𝑖 ∈ {1, 2,… , 𝑁} and
𝑝𝑖 ∈ {1, 2,… , 𝑜𝑟 𝑤}. The following equation is used to minimize the cost
and risk of each cluster.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑘 =
|𝑣𝑘|
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
|𝑣𝑘|
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) ≤ 𝑟𝑘−𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = {1, 2⋯ , 𝑁}, 𝑘 ∈ {1, 2⋯ , 𝑚}, 𝑎𝑛𝑑
𝑝𝑖 ∈ {1, 2, 3,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(13)

Finally, a complete tour(𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) will be discovered by
appending all clusters together. Then the above 3D CTSP reduces to
determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1)

𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝1) ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2..., 𝑁. 𝑎𝑛𝑑 𝑝𝑖, 𝑝𝑙 ∈ {1, 2, 3,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(14)

along with Eq. (8).

4.5. Multi vehicle clustered TSP (3D CTSP) in fuzzy environment

If costs and risk factors are considered fuzzy numbers for the above
problem in Eq. (14), then 𝑐(𝑖, 𝑗, 𝑡) is the fuzzy cost and 𝑟(𝑖, 𝑗, 𝑡) is the
fuzzy risk value, where 𝑟𝑚𝑎𝑥 is also a fuzzy number. Now the above
problem reduces to electing a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) choosing
anyone available corresponding conveyances in each journey from the
vehicle types (𝑝1, 𝑝2,… , 𝑝𝑤) so as

𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝1) ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁. 𝑎𝑛𝑑 𝑝𝑖, 𝑝𝑙 ∈ {1, 2, 3,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(15)

4.5.1. Possibility approaches (Optimistic)
By writing the fuzzy objective and constraints in an optimistic sense

using Eq. (1), we have the following:
Determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) using any one avail-

able corresponding conveyances in each step from the vehicle types
(𝑝1, 𝑝2,… , 𝑝𝑤)

to minimize 𝐹

subject to 𝑃𝑜𝑠(
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙) < 𝐹 ) ≥ 𝛼3

𝑃𝑜𝑠(
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙) ≤ 𝑟𝑚𝑎𝑥) ≥ 𝛽3

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑝𝑖, 𝑝𝑙 ∈ {1, 2,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(16)

where 𝛼3, 𝛽3 are predefined levels of possibility respectively which
are entirely determined by the salesman. If we consider the fuzzy
numbers as TFNs, 𝑐(𝑖, 𝑗, 𝑘) = (𝑐(𝑖, 𝑗, 𝑘)1, 𝑐(𝑖, 𝑗, 𝑘)2, 𝑐(𝑖, 𝑗, 𝑘)3), 𝑟(𝑖, 𝑗, 𝑘) =
(𝑟(𝑖, 𝑗, 𝑘)1, 𝑟(𝑖, 𝑗, 𝑘)2, 𝑟(𝑖, 𝑗, 𝑘)3), 𝑟𝑚𝑎𝑥 = (𝑟1, 𝑟2, 𝑟3). Then the above prob-
lems can be reduced accordingly Lemmas 3.1a and 3.1c as:
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Determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) using any one avail-
able corresponding conveyance in each step from the vehicle types
(𝑝1, 𝑝2,… , 𝑝𝑤) so as

to minimize 𝐹

subject to
𝐹 − 𝐹1
𝐹2 − 𝐹1

≥ 𝛼3

𝑟3 − 𝑅1
𝑟3 − 𝑟2 + 𝑅2 − 𝑅1

≥ 𝛽3

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(17)

where 𝐹𝑗 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖)𝑗 + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙)𝑗 , 𝑗 = 1, 2, 3.

and 𝑅𝑗 =
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖)𝑗 + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙)𝑗 , 𝑗 = 1, 2, 3.

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁. 𝑝𝑖, 𝑝𝑙 ∈ {1, 2,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(18)

The objective function in Eq. (17) changed to

minimize 𝐹1 + 𝛼3(𝐹2 − 𝐹1)

subject to
𝑟3 − 𝑅1

𝑟3 − 𝑟2 + 𝑅2 − 𝑅1
≥ 𝛽3

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(19)

Here 𝛼3, 𝛽3 are predefined possibility levels.

4.5.2. Necessity approaches (Pessimistic)
Similarly, converting the fuzzy expression in Eq. (15) in a pes-

simistic sense using Eq. (2), we get as follows:
Using necessity measure, we have

minimize 𝐹

subject to 𝑁𝑒𝑠(
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙) < 𝐹 ) ≥ 𝛼4

𝑁𝑒𝑠(
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙) ≤ 𝑟𝑚𝑎𝑥) ≥ 𝛽4

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑝𝑖, 𝑝𝑙 ∈ {1, 2,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(20)

where 𝛼4, 𝛽4 are predefined levels of necessity, respectively, which are
entirely determined by the salesman. Then the above problems can be
reduced accordingly Lemmas 3.1b and 3.1d as:

Determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) using any one avail-
able corresponding conveyance in each step from the vehicle types
(𝑝1, 𝑝2,… , 𝑝𝑤) so as

minimize 𝐹

subject to
𝐹3 − 𝐹
𝐹3 − 𝐹2

≤ 1 − 𝛼4

𝑅3 − 𝑟1
𝑟2 − 𝑟1 + 𝑅3 − 𝑅2

≤ 1 − 𝛽4

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(21)

The objective function in Eq. (21) changed to

to minimize 𝐹3 − (1 − 𝛼4)(𝐹3 − 𝐹2)

subject to
𝑅3 − 𝑟1

𝑟2 − 𝑟1 + 𝑅3 − 𝑅2
≤ 1 − 𝛽4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(22)

Here 𝛼4 and 𝛽4 are predefined necessity levels.

4.6. Multi vehicle multi path clustered TSP (4D CTSP) with risk constraint

Let 𝑐(𝑖, 𝑗, 𝑡, 𝑔) be the cost of traveling from 𝑖th city to 𝑗th city
using 𝑡th vehicle and 𝑔th route and 𝑟(𝑖, 𝑗, 𝑡, 𝑔) be the risk factor for
traveling from 𝑖th city to 𝑗th city using 𝑡th vehicle and 𝑔th route.
6

The mathematical formulation of 4D CTSP with risk constraint can be
represented as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
∑

𝑖≠𝑗
𝑐(𝑖, 𝑗, 𝑡, 𝑔)𝑥𝑖𝑗𝑡𝑔

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁
∑

𝑖=1
𝑥𝑖𝑗𝑡𝑔 = 1 𝑓𝑜𝑟 𝑗 = 1, 2,… , 𝑁,

∀𝑡 ∈ {1, 2,… , 𝑤}, ∀𝑔 ∈ {1, 2,… , ℎ}
𝑁
∑

𝑗=1
𝑥𝑖𝑗𝑡𝑔 = 1 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑁,

∀𝑡 ∈ {1, 2,… , 𝑤}, ∀𝑔 ∈ {1, 2,… , ℎ}
∑

𝑖∈𝑉𝑘

∑

𝑗∈𝑉𝑘

𝑥𝑖𝑗𝑡𝑔 = |𝑉𝑘| − 1, ∀|𝑉𝑘| ⊂ 𝑉 , |𝑉𝑘| ≥ 1, 𝑖 ≠ 𝑗,

𝑘 = 1, 2, 3,… , 𝑚, ∀𝑡 ∈ {1, 2,… , 𝑤}, ∀𝑔 ∈ {1, 2,… , ℎ}
∑

𝑖∈𝑉𝑘

∑

𝑗∈𝑉𝑘

𝑟(𝑖, 𝑗, 𝑡, 𝑔)𝑥𝑖𝑗𝑡𝑔 ≤ 𝑟𝑘−𝑚𝑎𝑥, 𝑖 ≠ 𝑗,

∀𝑡 ∈ {1, 2,… , 𝑤}, ∀𝑔 ∈ {1, 2,… , ℎ}, 𝑘 ∈ {1, 2⋯ , 𝑚}

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(23)

where 𝑟𝑘−𝑚𝑎𝑥 is the maximum allowable risk of 𝑘th cluster and 𝑟𝑚𝑎𝑥 is
the maximum risk of a complete tour. Now the salesman has to deter-
mine a tour inside a cluster based on (𝑥𝑖, 𝑥𝑗 ∈ 𝑣𝑘) with corresponding
available vehicle types (𝑝1, 𝑝2,… , 𝑝𝑤) with route types (𝑠1, 𝑠2,… , 𝑠ℎ),
where 𝑥𝑖 ∈ {1, 2,… , 𝑁}, 𝑝𝑖 ∈ {1, 2,… , 𝑜𝑟 𝑤} and 𝑠𝑖 ∈ {1, 2,… , 𝑜𝑟 ℎ}.
The following equation is used to minimize the cost and risk of each
cluster.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑘 =
|𝑣𝑘|
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖 + 1, 𝑝𝑖, 𝑠𝑖)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
|𝑣𝑘|
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖 + 1, 𝑝𝑖, 𝑠𝑖) ≤ 𝑟𝑘−𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑘 ∈ {1, 2… , 𝑚}

𝑎𝑛𝑑 𝑝𝑖 ∈ {1, 2, 3,… , 𝑤}, 𝑠𝑖 ∈ {1, 2, 3,… , ℎ}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(24)

Finally, a complete tour(𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) will be discovered by
appending all clusters together. Then the above 4D CTSP reduces to
determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1)

𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝1, 𝑠1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠1) ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁,

𝑎𝑛𝑑 𝑝𝑖, 𝑝𝑙 ∈ {1, 2, 3,… , 𝑜𝑟 𝑤} 𝑠𝑖, 𝑠𝑙 ∈ {1, 2, 3,… , 𝑜𝑟 ℎ}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(25)

along with Eq. (8).

4.7. Multi vehicle multi path clustered TSP (4D CTSP) in fuzzy environment

If costs and risk factors are considered fuzzy numbers for the above
problem, then 𝑐(𝑖, 𝑗, 𝑡, 𝑔) is the fuzzy cost, and 𝑟(𝑖, 𝑗, 𝑡, 𝑔) is the fuzzy
risk value, where 𝑟𝑚𝑎𝑥 is also a fuzzy number. Now the above problem
reduces to electing a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) choosing anyone

available corresponding conveyances in each journey from the vehicle
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e
r

a

types (𝑝1, 𝑝2,… , 𝑝𝑤) and route types (𝑠1, 𝑠2,… , 𝑜𝑟 𝑠ℎ) so as

𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝1, 𝑠1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝1, 𝑠1) ≤ 𝑟𝑚𝑎𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁,

𝑎𝑛𝑑 𝑝𝑖 ∈ {1, 2, 3,… , 𝑜𝑟 𝑤}, 𝑠𝑖, 𝑠𝑙 ∈ {1, 2, 3,… , 𝑜𝑟 ℎ}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(26)

4.7.1. Possibility approaches (Optimistic)
By writing the fuzzy objective and constraints in an optimistic sense

using Eq. (1), we have the following:
Determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) using any one of the

available conveyances from the vehicle types (𝑝1, 𝑝2,… , 𝑝𝑤) and from
the available route types (𝑠1, 𝑠2,… , 𝑜𝑟 𝑠ℎ).

to minimize 𝐹

subject to 𝑃𝑜𝑠(
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠𝑙) < 𝐹 ) ≥ 𝛼3

𝑃𝑜𝑠(
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠𝑙) ≤ 𝑟𝑚𝑎𝑥) ≥ 𝛽3

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁,
𝑎𝑛𝑑 𝑝𝑖, 𝑝𝑙 ∈ {1, 2,… , 𝑜𝑟 𝑤}, 𝑠𝑖, 𝑠𝑙 ∈ {1, 2, 3,… , 𝑜𝑟 ℎ}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(27)

where 𝛼3, 𝛽3 are predefined levels of possibility respectively which are
entirely determined by the salesman. If we consider the fuzzy numbers
as TFNs,

𝑐(𝑖, 𝑗, 𝑘, 𝑙) = (𝑐(𝑖, 𝑗, 𝑘, 𝑙)1, 𝑐(𝑖, 𝑗, 𝑘, 𝑙)2, 𝑐(𝑖, 𝑗, 𝑘, 𝑙)3),

𝑟(𝑖, 𝑗, 𝑘, 𝑙) = (𝑟(𝑖, 𝑗, 𝑘, 𝑙)1, 𝑟(𝑖, 𝑗, 𝑘, 𝑙)2, 𝑟(𝑖, 𝑗, 𝑘, 𝑙)3),

𝑟𝑚𝑎𝑥 = (𝑟1, 𝑟2, 𝑟3).

Then the above problems can be reduced accordingly Lemmas 3.1a and
3.1c as:

Determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) using any one avail-
able conveyance in each journey from the vehicle types (𝑝1, 𝑝2,… ,
𝑜𝑟 𝑝𝑤) and available route types (𝑠1, 𝑠2,… , 𝑜𝑟 𝑠ℎ) so as

to minimize 𝐹

subject to
𝐹 − 𝐹1
𝐹2 − 𝐹1

≥ 𝛼3
𝑟3 − 𝑅1

𝑟3 − 𝑟2 + 𝑅2 − 𝑅1
≥ 𝛽3

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(28)

where 𝐹𝑗 =
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖)𝑗 + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠𝑙)𝑗 , 𝑗 = 1, 2, 3.

and 𝑅𝑗 =
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖)𝑗 + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠𝑙)𝑗 , 𝑗 = 1, 2, 3.

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁,
𝑎𝑛𝑑 𝑠𝑖, 𝑠𝑙 ∈ {1, 2,… , 𝑜𝑟 ℎ}, 𝑝𝑖, 𝑝𝑙 ∈ {1, 2,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(29)

The objective function in Eq. (28) changed to

minimize 𝐹1 + 𝛼3(𝐹2 − 𝐹1)

subject to
𝑟3 − 𝑅1

𝑟3 − 𝑟2 + 𝑅2 − 𝑅1
≥ 𝛽3

⎫

⎪

⎬

⎪

⎭

(30)

Here 𝛼3, 𝛽3 are predefined possibility levels.

4.7.2. Necessity approaches (Pessimistic)
Similarly, converting the fuzzy expression in Eq. (26) in a pes-

simistic sense using Eq. (2), we get as follows:
7

Using necessity measure, we have

minimize 𝐹

subject to 𝑁𝑒𝑠(
𝑁−1
∑

𝑖=1
𝑐(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑐(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠𝑙) < 𝐹 ) ≥ 𝛼4

𝑁𝑒𝑠(
𝑁−1
∑

𝑖=1
𝑟(𝑥𝑖, 𝑥𝑖+1, 𝑝𝑖, 𝑠𝑖) + 𝑟(𝑥𝑁 , 𝑥1, 𝑝𝑙 , 𝑠𝑙) ≤ 𝑟𝑚𝑎𝑥) ≥ 𝛽4

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≠ 𝑥𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁,
𝑎𝑛𝑑 𝑠𝑖, 𝑠𝑙 ∈ {1, 2,… , 𝑜𝑟 ℎ}, 𝑝𝑖, 𝑝𝑙 ∈ {1, 2,… , 𝑜𝑟 𝑤}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(31)

where 𝛼4, 𝛽4 are predefined levels of necessity respectively which are
ntirely determined by the salesman. Then the above problems can be
educed accordingly Lemmas 3.1b and 3.1d as:

Determine a complete tour (𝑥1, 𝑥2,… , 𝑥𝑁 , 𝑥1) using any one of the
vailable conveyance in each journey from the vehicle types (𝑝1, 𝑝2,… ,
𝑜𝑟 𝑝𝑤) and available route types (𝑠1, 𝑠2,… , 𝑜𝑟 𝑠ℎ) so as

minimize 𝐹

subject to
𝐹3 − 𝐹
𝐹3 − 𝐹2

≤ 1 − 𝛼4
𝑅3 − 𝑟1

𝑟2 − 𝑟1 + 𝑅3 − 𝑅2
≤ 1 − 𝛽4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(32)

The objective function in Eq. (32) changed to

to minimize 𝐹3 − (1 − 𝛼4)(𝐹3 − 𝐹2)

subject to
𝑅3 − 𝑟1

𝑟2 − 𝑟1 + 𝑅3 − 𝑅2
≤ 1 − 𝛽4

⎫

⎪

⎬

⎪

⎭

(33)

Here 𝛼4 and 𝛽4 are predefined necessity levels.

5. Proposed genetic algorithm

5.1. Novel memetic genetic algorithm

We used a GA named novel memetic genetic algorithm (NMGA)
[40]. It is a combination of probabilistic selection (Boltzmann proba-
bility), four parents’ memetic crossover, and random mutation. NMGA
is applied to find a new set of solutions among a set of potential
solutions. It proceeds until the ending conditions are reached. The
NMGA procedures are as follows:

• Representation: Considering 𝑁 cities are available to make a
complete tour, which comprises a solution. An integer vector X𝑖
of 𝑁 dimension is assumed, where X𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑁 ) were
cities, and x𝑖1, x𝑖2, …, x𝑁 were 𝑁 successive cities in a tour. In
the beginning, a group of paths (tours) is required for a salesman.
These paths were randomly generated for the GA. These initial
paths were a group of possible solutions for the GA part of this
algorithm.

• Probabilistic Selection: The main objective of TSP was to mini-
mize the path cost and distance. Thus, the minimum fitness value
(f𝑚𝑖𝑛) of a chromosome plays a vital role. The Matting pool was
formed using the Boltzmann-Probability of all chromosomes in
the initial population.
Now, p𝐵 = 𝑒((𝑓𝑚𝑖𝑛−𝑓 (𝑋𝑖))∕𝑇 ), T = T0(1-a)𝑘, k = (1 + 100*(g/G)),
g = ongoing generation number, G = maximum generation, T0
= rand[10,150], f(X𝑖) is fitness/objectives of chromosome corre-
sponding to X𝑖, 𝑎 = rand[0,1], i = chromosome number.

• Multiparent Crossover: Child adoption is a contemporary preva-
lent matter due to different practical circumstances. Here, aside
from unique parents (father and mother), one additional parent
(father and mother) is considered as a section. Based on this
practical instance, we considered using a methodology with four
parents (the initial two are unique parents and the other two
are new parents) to deliver offspring. This methodology urged
the crossover method to choose four individuals or parents in an
ergodic manner to create offspring. The journey started with one
node and then onto the next node, keeping the lowest traveling
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cost depending on TSP conditions. Following the above origina-
tion, we performed the crossover procedure in the accompanying
state. From the outset, four people (parents) from the mating pool
were randomly selected. PR1, PR2, PR3, and PR4 were the parents
and CH1 and CH2 were the offspring.

• Random Mutation: An ergodic number 𝑟 was created for every
solution of P(t). Here, 𝑟 was generated from the range [0,1],
with the condition 𝑟 < 𝑝𝑚; if the condition was true, then the
solution was selected for mutation. Two nodes were selected in an
ergodic manner from each chromosome, and they interchanged
their positions and were replaced in the offspring set.

5.2. Proposed ripple clustering for cluster creation and re-linking

The objective of a TSP is for a salesman to find a perfect way or
route. An ideal way implies that the shortest possible route. At the same
time, the salesman finishes his visit in a limited number of urban areas,
visiting every city just once and reaching the starting city. The CTSP has
a challenge in creating the clusters and re-linking them to construct an
optimized route. The proposed algorithm has three sections as a CTSP
namely, cluster creation (CC), cluster optimization (CO), and cluster
re-linking (CR), as algorithms 4 and 5. We developed two approaches
to CC, namely, 𝐶𝐶: Algorithm 1 (𝐶𝐶1) based on Euclidean distance and
Algorithm 2 (𝐶𝐶2) based on the longitude and latitude of the respective
city or node. The CC algorithm named ‘‘Ripple Clustering’’ mimicked
the natural phenomenon of ripples on water. If a drop of water falls
in the middle of still water, then waves were created originating
from the center of the drop. Each circular wave was a cluster. The
proposed heuristic for cluster creation and re-linking was based on the
distance determined from the centroid and the centroids were randomly
updated. A local search was used to find the nearest points to the
cluster. In each cluster, NMGA works to find the optimal path. Again for
re-linking the clusters, a heuristic is designed. The main advantage of
this algorithm is that CC, path generation and re-linking of the clusters
are simultaneous. The proposed algorithms are described in the next
subsection.

5.2.1. Proposed 𝐶𝐶1 algorithm
𝑁 is the set of given nodes, and 𝐾 is the total number of prespecified

clusters. The proposed algorithm is as follows:

Algorithm 1: Cluster Initialization (𝐶𝐶1)
Data: Set of the given city 𝑁
Result: A prespecified number of clusters with a unique set of

nodes that belong to 𝑁
1 Initial the number of clusters 𝐾;
2 Store the size of each cluster;
3 Select a random number 𝑟 (node) as the centroid between 0

and 𝑁 − 1;
4 𝑖 = 1;
5 while 𝑖 ≠ 𝐾 do
6 𝑐𝑜𝑢𝑛𝑡 = 1;
7 while 𝑐𝑜𝑢𝑛𝑡 ≠ |𝑖| do
8 store the nearest nodes (Euclidean distance) from 𝑟;
9 selected nodes for one cluster would be ignored and not

selected for another cluster ;
10 end
11 end

5.2.2. Proposed 𝐶𝐶2 algorithm
𝑁 is the set of given nodes, and 𝐾 is the total number of pre-

specified clusters. We consider all cities with their respective longitude
and latitude.
8

Algorithm 2: Cluster Initialization ( 𝐶𝐶2)
Data: Set of the given city 𝑁
Result: A prespecified number of clusters with a unique set of

nodes that belong to N
1 Initialize the number of clusters, 𝐾;
2 Store the size of each cluster;
3 Sorted the latitude or longitude of each node ;
4 Select a random node 𝑟 as the centroid from 𝑁 ;
5 𝑖 = 1;
6 while 𝑖 ≠ 𝐾 do
7 𝑐𝑜𝑢𝑛𝑡 = 1;
8 while 𝑐𝑜𝑢𝑛𝑡 ≠ |𝑖| do
9 select the nearest node from 𝑟 based on its latitude and

longitude;
10 selected nodes for one cluster would be ignored and not

selected for another cluster ;
11 end
12 end

Algorithm 3: Cluster Initialization
Data: A set of given cities or nodes 𝑁
Result: A specified number of clusters, each with a unique set

of nodes belonging to 𝑁
1 Initialize the number of clusters 𝐾;
2 Initialize the predefined size of each cluster;
3 Choose a random node from the total nodes as the centroid of

the initial cluster;
4 Build the initial cluster consisting of the nearest nodes from the

centroid up to the predefined size;
5 while 𝑖 ≠ 𝐾 do
6 Randomly select a node from the remaining nodes as a

centroid for the next cluster;
7 Create the next cluster based on the centroid;
8 while 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ≠ 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 do
9 Calculate the centroids of all cluster centroids using the

following formula:
10 �̄� =

∑

𝑥𝑖∕𝐾,
�̄� =

∑

𝑦𝑖∕𝐾
11 Calculate the middle point from (�̄�, �̄�) to the centroid of

each cluster as the new centroid of each corresponding
cluster;

12 From these new centroids, modify all clusters using step
6;

13 Find the longest edge between the centroid and a node
of each cluster;

14 Update the centroids of each cluster by considering the
middle point of the longest edge of each cluster;

15 end
16 end

5.2.3. Proposed 𝐶𝑂 algorithm
To optimize a cluster, we used NMGA, which is a memetic GA. It is a

combination of Boltzmann probabilistic selection, four parent memetic
crossover, and a random mutation. The proposed 𝐶𝑂 Algorithm is given
in Algorithm 4.
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Algorithm 4: Cluster Optimization ( 𝐶𝑂)
Data: A set of initial nodes within a cluster
Result: Nodes are in a sequence to produce a Hamiltonian path

1 Initialize the total nodes and size of a cluster;
2 Produce initial solutions ergodic manner;
3 Judge fitness of these initial solutions;
4 𝑖 = 1;
5 while 𝑖 ≠ 𝑚𝑎𝑥_𝑔𝑒𝑛 do
6 Apply the Probabilistic selection procedure to prepare a

mating pool;
7 Apply Multi parents crossover (see [40]);
8 Apply the random mutation;
9 Store the best solution from the population;
10 end
11 Store the best solution among all generations, as the final

solution;

5.2.4. Proposed 𝐶𝑅 algorithm
To construct a complete tour, the proposed 𝐶𝑅 Algorithm, i.e., Al-

gorithm 5, was applied to assemble all optimized clusters together. The
proposed 𝐶𝑅 Algorithm was as follows:

Algorithm 5: Cluster re-linking ( 𝐶𝑅)
Data: A set of optimized clusters where each cluster is a

unique set of nodes
Result: A Hamiltonian tour

1 Put the number of clusters (𝐾);
2 𝑖 = 1;
3 while 𝑖 ≠ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
4 Randomly generate a cluster number between 1 and 𝐾;
5 Concatenate the clusters by joining the sub-path

contiguously ;
6 end
7 Store the best solution among all solutions as the final result;

5.3. Proposed algorithm

Two types of cluster creation methods were developed. The NMGA
was applied to each cluster to optimize it. The proposed algorithm is
given in Algorithm 6 to solve the CTSP. Fig. 2 presents three flowcharts
for each of our three proposed algorithms.

Algorithm 6: Proposed CTSP
Data: For Crossover procedure (𝑝𝑐), 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑔𝑒𝑛(𝑆0),

(pop−size) or 𝑛𝑜𝑐 and for Mutation procedure (𝑝𝑚)
Result: The best solution

1 Put the number of clusters (𝐾);
2 Call Algorithm 1 or Algorithm 2;
3 for steps = 1 to 𝐾 do
4 Call Algorithm 4;
5 end
6 Call Algorithm 5;
7 for steps = 1 to 𝑛𝑜𝑐 do
8 Evaluate fitness;
9 end
10 Store the minimum fitness;
t

9

5.4. Time complexity

The genetic algorithm has three operators: the selection operator,
the crossover operator, and the mutation operator. 𝑂(𝑆𝑁) is the time
complexity of the selection operator, and 𝑂(𝑆𝑝𝑐𝑁

2) is for the crossover
perator. The time complexity of the mutation operator is 𝑂(𝑆𝑝𝑚𝑁

2),
here 𝑆 is the size of the population. Usually 𝑝𝑐 > 𝑝𝑚, then 𝑂(𝑆𝑝𝑐𝑁

2) >
(𝑆𝑝𝑚𝑁

2) > 𝑂(𝑆𝑁). If we consider 𝑔0 as the maximum number of
enerations, then the time complexity would be 𝑂(𝑔0𝑆𝑁2). 𝑂(𝑆𝑁) is
he time complexity to construct the initial population, and 𝑂(𝑔0𝑆𝑁2)
s for fitness function calculation. Now 𝑂(𝑆𝑁) < 𝑂(𝑔0𝑆𝑁2). Thus, the
ime complexity of the GA is 𝑂(𝑔0𝑆𝑁2).

. Empirical test

.1. Test results for TSPLIB instances

To prove the efficiency of the proposed algorithm, standard TSPLIB
48] benchmark problems were studied. Three separate data sets were
onsidered for the empirical test. The first dataset considered 11 bench-
ark instances with 29-575 vertices or nodes from TSPLIB. The second
ataset was a hypothetical dataset of 10 nodes [49,50], and the third
ataset was created using Google Maps. Here is the latitude and longi-
ude of 38 places situated in the province of West Bengal, India. The
esults are presented in Table 3. Here, classical GA stands for the com-
ination of RW selection, cyclic crossover, and random mutation. The
esults show the comparison between NMGA and classical GA. The rest
f the result sections are divided into 10 cities (2D, 3D, and 4D CTSP)
nd another section for uncertain 2D, 3D, and 4D CTSP. The parameters
ere tuned for a different number of clusters (2–80 clusters), optimum

olutions were taken from 100 independent runs, and maximum 500
enerations were considered to determine the optimum path in each
luster. The value of the risk factor for each edge was taken randomly
etween 0 and 1.

Based on information in Table 3, we can make the following ob-
ervations: First, the performance of NMGA was better than that of
A in all instances. Second, for all the cases, changing the number
f clusters affected the optimal objective value and the corresponding
bsolute risk. When the optimal objective value increased, the risk
actor decreased. However, it was not valid in all cases. In some cases,
he number of clusters increased, but the optimum value as well as
nd risk decreased. In one instance, such as the rat −575 instance, the
umber of clusters increased from 60 to 70, but the objective value
ecreased from 17,185 to 17,155 with risk factor decline from 288.28
o 283.35. Thus, the final observation from Table 3 is that the selection
f the number of clusters plays a vital role for the traveler concerning
ptimal cost and risk. Consideration of the risk in the proposed model
as significance for the traveler, as shown in Table 3.

.2. Test results for a 10-city problem

Herein we considered a problem of 10 cities based on hypothetical
ata in a crisp and fuzzy environment (see supplementary section),
onsidering three routes between each node and four vehicles in each
oute. The results were found using NMGA in Tables 4 to 6 for 2D, 3D,
nd 4D CTSPs respectively. Here, a path (8 5 0 3 2 9 4 6 7 1) meant
hat a journey started from node 8 then, the next destination was node
, and so on, finally coming back to node 8 after visiting node 1. The
ath, vehicle, and route sequence were indicators of the 4D CTSP. For
xample, in Table 6, path (4 5 3 6 2 8 1 9 7 0), vehicle (1 1 2 1 1 2 3
1 3), and route (2 1 1 2 1 2 1 2 2 2) implied traveling from node 4

o node 5 through vehicle 1 and route 2 similar interpretation can be
sed for other cases too.

As shown in Table 4, in the 2D CTSP, when there were two clusters,
he minimum objective value was 187 and the risk was 6.47. However,
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when three clusters were considered, the risk was 6.40 and the ob-
jective value was 165. Thus, considering approximately the same risk,
the three-cluster concept is better than two clusters. Data presented in
Table 5 are similar to those in Table 4. We get one of the best solutions
(objective value of 159 and risk of 5.52), considering three clusters.
The 3D CTSP performed better than the 2D CTSP when considering
four vehicles between each node. For the sake of simplicity, the routes
and vehicles were uniform.

Table 6 shows the benefits of the 4D CTSP over 2D and 3D CTSPs,
considering three routes between each node and a maximum of four
vehicles per way. A better solution was obtained when an objective
value of 116 and a risk of 3.34 were considered. Tables 4 to 6 have a
common scenario with the conflicting measure that the minimum risk
should not produce the maximum objective and vice versa.

6.3. Test results of a 10-city problem with fuzzy data

Tables 7 to 9 show the results based on fuzzy data presenting the
real phenomenon of a tour. Here, the objective value was the same for
more than one solution, but with different risks because we considered
a standard distance between two nodes along with the fuzzy traveling
cost and risk between two nodes. For example, in Table 7, the objective
value was 200 for multiple solutions, but their paths showed different
risks. Table 8 shows test results for the 3D CTSP in fuzzy values. Here,
cluster 2 performed better (objective value of 137 and risk of 7.42)
than cluster 3 (objective value of 152 and risk of 7.63) demonstrating
10
the benefits of the 3D CTSP over the 2D CTSP. Table 9 presents the
test results for the 4D CTSP. The 4D CTSP is superior to the 2D and 3D
CTSPs with the objective value of 100 and risk of 3.06.

7. Discussion

The overall empirical test was conducted using the Ripple clustering
technique. Furthermore, a comparison between the proposed Ripple
clustering technique and k-means was performed (Fig. 3). The results
are shown in Tables 4–9 based on the hypothetical data considering
clusters 2 and 3. In most cases, in a crisp and fuzzy environment, the
D CTSP identified the minimum cost and risk incurred. Introducing
ultiple vehicles and paths, i.e., 3D and 4D CTSPs with risk constraints
elped measure real-life observations. The results shown in a fuzzy en-
ironment were better than those in a crisp environment. Our empirical
tudies aimed to answer the following questions:

1. How do the applied NMGA and GA act on TSPLIB instances as
CTSPs with risk constraints?

2. How does the NMGA act with 3D and 4D CTSPs with risk
constraints in crisp and fuzzy environments?

3. How does the NMGA act with a realistic dataset of 38 nodes
based on their latitude and longitude?

4. How do we consider a managerial implementation in the tourism
industry and routing in the supply chain?
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Table 3
Performance of benchmarks from TSPLIB.

Instances Algorithm Clusters Cluster wise risk Total cost Total risk

wi-29 NMGA

2 8.52, 7.11 33 675 15.48
3 5.63 3.19 4.73 44 653 14.32
4 3.86 4.14 1.99 4.18 44 713 14.92
5 1.57 3.69 2.62 3.37 4.38 48 835 15.73

GA 4 4.71 3.64 4.33 3.22 65 737 17.14

eil-51 NMGA

5 4.58 3.50 3.87 3.23 5.03 716 20.83
10 2.66 3.79 1.43 3.48 1.86 1.5 3.13 2.6 3.25 1.99 804 24.05

15 2.49 0.39 0.89 2.66 1.75 863 25.211.35 0.77 1.4 1.26 1.93 1.36 1.01 1.54 1.45 10.34

GA 10 2.08 1.93 2.66 1.63 2.50 3.09 2.14 2.70 3.72 3.06 904 26.45

berlin-52 NMGA

5 5.03 5.8 4.2 5.05 6.95 11 093 25.91
10 1.7 2.43 1.29 3.37 2.68 3.3 3.61 3.18 2.72 3.99 14 290 29.27

15 2.16 0.93 1.7 1.77 0.16 13 026 24.081.18 2.38 1.65 2.12 0.68 0.89 0.81 0.93 1.42 4.66

GA 10 1.79 2.15 2.60 3.39 2.19 3.21 2.64 3.04 3.20 5.14 19 383 28.59

eil-76
NMGA

10 2.26 2.93 3.42 3.75 2.67 2.11 4.9 3.45 3.99 6.97 885 36.23

15 1.22 2.81 1.54 1.58 1.81 1116 33.301.68 2.33 2.14 2.67 2.32 1.71 1.8 0.86 3.49 3.4

20 2.36 1.15 1.97 1.82 1.27 1.09 0.7 2.09 1.66 1.61 1127 37.141.69 1.8 1.83 1.2 0.96 0.78 0.45 2.18 0.79 10.59

25
2.36 1.15 1.96 1.82 1.27

1294 38.061.09 0.7 2.09 1.66 1.61 1.69 1.8 1.83 1.2 0.96
0.78 0.44 2.18 0.79 1.62 1.06 1.63 1.7 1.2 1.45

GA 20 1.66 1.74 1.61 0.34 0.40 1.44 2.14 1.54 1.89 1.59 1489 36.361.93 0.41 1.11 1.45 0.84 0.99 1.90 1.31 1.64 8.86

kroA-100
NMGA

15 4.24 3.11 3.68 3.03 3.2 47 980 53.093.72 2.25 2.69 2.05 4.09 3.63 1.89 4.33 3.06 8.73

20 2.78 3.72 2.05 2.06 2.92 3.03 2.89 3.82 2.72 2.39 53 992 52.412.47 2.99 2.32 2.35 2.88 1.98 1.89 3.54 3.06 2.19

25
1.03 1.29 2.68 1.67 2.41

60 800 53.042.29 1.35 3.13 1.86 1.46 1.64 2.19 1.75 1.81 2.07
1.88 1.22 0.83 2.31 1.35 1.59 2.44 1.98 2.17 3.28

30
0.89 2.04 1.25 0.75 1.17 2.19 1.16 1.72 2.24 0.94

64 441 48.531.35 1.85 1.78 2.24 1.63 1.19 1.97 0.82 1.53 1.44
0.41 1.47 2.06 1.35 0.90 1.14 2.48 0.73 1.27 5.49

GA 20 2.82 2.48 2.34 1.63 2.21 2.24 3.07 1.55 2.60 3.71 67 103 48.181.78 2.59 3.38 2.80 2.21 1.66 2.06 2.00 3.63 3.41

eil-101

NMGA

15 2.14 3.13 3.05 2.25 2.32 1193 46.113.36 3.35 1.64 3.41 4.39 2.91 1.81 3.77 2.63 7.21

20 2.26 2.80 2.47 1.95 2.13 1.89 2.19 2.71 2.02 2.17 1326 48.941.52 2.53 2.39 2.03 4.00 1.72 2.85 1.77 2.55 3.77

25
2.12 1.80 1.69 1.87 2.16

1522 53.182.78 1.54 2.12 1.65 1.77 1.89 1.21 1.16 1.85 2.87
2.14 1.87 1.31 1.75 2.35 2.93 1.93 2.59 1.16 2.07

30
1.64 1.57 1.38 2.33 0.75 1.15 1.85 1.54 1.82 0.62

1578 50.491.54 0.50 2.16 0.39 2.51 1.98 1.49 1.13 0.71 1.25
1.21 2.01 1.61 1.24 1.83 2.05 2.63 1.04 2.23 6.83

GA 25
2.68 2.53 1.38 2.03 2.55

1702 49.132.44 1.71 1.24 1.88 0.94 0.83 2.10 1.24 1.85 2.77
1.34 2.10 1.69 1.72 1.57 1.92 2.40 2.63 1.75 1.80

bier-127

NMGA

20 3.73 2.96 3.24 2.14 2.80 3.25 3.72 2.53 3.21 2.80 224 006 64.752.56 3.38 4.85 4.39 3.11 2.74 2.43 2.47 1.95 6.55

25
3.62 2.49 1.23 1.13 2.04

241 503 62.942.06 1.96 1.59 1.73 2.43 2.19 2.03 2.50 2.40 3.11
2.75 2.22 3.44 2.32 2.23 2.28 2.89 1.52 3.28 3.06

30
2.56 0.96 2.42 3.08 2.46 1.21 1.09 1.94 1.19 2.90

254 888 59.581.73 2.85 1.79 1.81 1.69 3.63 1.38 3.02 2.71 2.88
1.14 3.06 1.85 1.83 1.55 2.06 2.23 1.87 2.15 6.29

40

0.47 2.34 0.51 1.24 0.96 2.44 2.09 0.89 1.33 1.39

292 883 65.041.31 1.69 0.86 1.31 1.92 1.06 1.03 0.91 1.41 2.00
0.64 1.26 1.82 1.94 1.51 1.55 1.48 1.89 1.22 1.69
1.35 1.30 0.91 2.15 2.04 1.41 1.51 1.86 1.71 6.37

(continued on next page)
11
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Table 3 (continued).

GA 30
2.59 1.87 1.26 2.32 1.67 2.35 1.41 2.64 2.42 0.79

279 861 64.582.00 1.84 1.70 0.89 2.34 2.39 1.71 1.70 1.99 1.36
2.59 2.82 1.92 2.41 1.21 2.44 2.68 1.63 2.48 7.33

ch-150

NMGA

25
3.33 2.99 3.48 2.63 3.69

15 362 73.683.76 2.25 3.00 1.81 1.52 2.94 2.96 4.49 2.43 1.95
3.51 3.09 3.30 4.19 3.39 2.62 2.86 2.85 3.13 10.91

30
2.76 3.34 1.32 3.21 2.52 2.39 3.93 1.87 2.60 3.66

17 216 80.251.43 2.94 2.62 2.36 2.34 1.80 2.74 1.94 2.56 2.33
2.79 3.32 2.82 2.43 2.91 4.49 2.65 2.56 3.07 2.87

40

1.78 0.68 1.12 2.12 1.24 2.21 1.79 2.25 1.81 2.34

16 591 74.891.24 1.52 2.63 1.11 0.96 0.44 1.37 0.95 0.94 0.92
2.23 1.50 1.77 1.15 0.88 0.42 1.82 1.91 0.75 0.87
1.56 0.77 1.22 2.65 2.22 1.58 2.35 1.06 1.76 16.86

50

1.77 0.68 1.12 2.12 1.24 2.21 1.79 2.25 1.81 2.34

19 668 74.44
1.24 1.52 2.63 1.11 0.96 0.44 1.37 0.95 0.94 0.92
2.23 1.50 1.77 1.15 0.89 0.42 1.82 1.91 0.75 0.87
1.56 0.77 1.22 2.65 2.21 1.58 2.35 1.24 1.76 2.07
2.33 1.04 0.95 1.53 2.20 1.24 1.68 0.63 1.72 1.94

GA 30
1.87 2.51 2.71 2.68 2.09 1.27 2.50 0.68 2.44 2.14

20 908 74.563.27 3.25 3.32 3.07 1.97 2.01 2.25 1.63 3.11 2.49
2.33 2.87 2.46 2.87 2.14 2.96 2.51 1.99 3.51 3.20

gil-262

NMGA

30
3.55 3.01 4.95 4.61 4.11 3.85 4.50 2.92 4.59 3.56

5669 132.772.17 3.93 5.26 3.29 3.49 4.05 5.48 4.71 3.49 3.83
4.30 4.08 4.49 3.31 4.20 4.18 4.67 5.62 4.35 13.90

40

2.72 2.19 2.30 3.67 3.11 3.27 2.71 3.37 2.55 2.92

6452 133.652.39 2.49 2.39 1.73 2.40 2.47 3.70 3.51 2.60 1.94
3.62 3.14 2.76 3.65 3.55 2.30 2.91 1.62 2.72 4.02
2.69 2.33 3.24 3.21 3.16 2.27 3.61 2.70 3.24 16.72

50

2.79 2.67 1.41 3.17 1.82 3.32 1.87 2.16 1.97 2.03

7870 126.62
2.26 3.43 2.18 2.23 1.64 1.24 2.61 2.48 2.66 2.04
1.86 2.43 2.07 2.48 4.41 2.37 2.51 3.49 2.62 1.89
2.72 1.46 2.17 3.20 3.36 2.70 1.75 1.17 2.24 1.43
2.57 1.75 2.32 3.91 3.27 2.51 2.95 2.32 3.42 7.97

GA 30
5.41 5.66 4.11 4.17 3.96 4.12 2.59 4.47 3.83 3.13

9107 132.633.88 3.44 3.89 5.22 3.43 3.97 3.00 5.57 2.91 2.76
3.12 4.72 4.26 3.78 4.12 4.90 4.33 2.90 4.23 15.73

rd-400

NMGA

40

4.13 5.96 4.08 6.38 6.21 4.96 4.68 5.84 3.61 4.01

39 637 204.065.09 4.42 4.44 4.97 5.23 4.13 5.24 4.83 4.36 8.18
5.23 5.02 4.03 5.25 4.22 5.63 5.39 5.21 5.61 5.93
6.12 5.52 5.91 2.84 5.98 4.29 5.60 5.24 5.70 5.32

60

3.07 4.02 3.96 3.42 3.79 2.61 1.59 2.51 3.41 2.95

47 972 201.83

3.72 2.44 2.44 3.80 2.49 3.06 3.52 2.67 3.36 3.49
2.10 3.03 2.61 4.27 2.27 3.71 2.09 2.69 3.31 2.57
2.87 2.23 3.42 2.05 2.96 2.75 2.73 3.67 3.44 3.65
3.81 3.63 3.70 3.04 1.18 3.14 2.56 3.88 2.59 4.55
1.83 3.84 3.46 2.03 2.41 1.55 3.31 3.75 3.12 22.99

80

2.99 3.19 3.16 2.55 1.61 2.21 2.87 1.84 2.16 2.54

57 869 194.68

2.25 2.80 3.20 2.85 1.79 3.93 1.78 3.03 2.59 1.77
2.69 2.87 2.35 3.48 1.74 3.15 2.42 3.13 3.25 1.74
3.15 2.42 3.13 1.61 3.38 1.98 1.88 2.68 3.25 2.28
1.43 3.84 1.98 1.61 3.53 1.27 2.49 1.18 2.05 2.38
2.31 1.88 2.99 2.14 2.03 2.21 2.86 2.93 2.48 2.15
2.74 2.43 2.48 3.75 2.74 2.37 2.19 1.73 3.34 1.94
2.36 1.46 2.08 1.92 3.89 1.85 2.60 2.22 2.33 2.93

GA 40

5.80 5.40 3.62 3.77 5.34 5.57 4.53 4.06 4.59 5.70

52 341 202.784.76 6.07 5.47 4.29 5.37 4.04 3.92 4.41 5.35 3.66
5.24 3.98 6.24 5.63 6.56 5.75 5.28 4.46 4.44 5.60
6.11 5.65 4.91 4.20 4.88 4.56 5.21 4.1 5.91 5.31

rat-575

NMGA

60

2.67 3.80 3.76 4.63 3.70 5.86 3.79 4.75 3.91 3.60

17 185 288.28

4.17 5.23 5.19 5.74 4.04 4.01 4.34 5.24 5.59 4.37
3.16 5.11 5.20 4.64 3.98 5.10 2.66 4.57 3.59 4.51
4.79 5.16 5.00 4.70 4.08 4.19 3.90 4.32 3.97 4.77
5.17 6.69 4.84 4.31 3.51 4.16 3.34 4.19 4.07 3.69
3.27 4.11 3.21 3.65 2.98 5.32 5.64 4.23 4.45 21.78

70

1.92 3.71 3.09 4.82 5.72 3.19 3.56 4.95 3.63 4.06

17 155 283.35

2.37 5.06 2.68 3.61 4.13 2.46 4.31 3.93 3.51 2.18
6.04 4.44 3.27 3.70 4.02 4.11 4.13 3.92 4.40 4.75
4.76 4.26 3.84 4.52 4.00 4.34 3.77 2.77 3.38 4.76
2.24 4.79 4.21 3.57 4.90 2.85 4.07 4.47 3.35 3.37
3.81 4.09 3.39 3.69 3.96 5.62 4.20 3.86 2.71 4.67
5.20 3.13 3.46 3.75 3.39 4.67 6.42 4.18 3.20 10.53

(continued on next page)
12
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Table 3 (continued).

80

2.09 3.23 3.82 3.90 1.69 3.23 2.41 2.49 4.62 3.17

18 827 285.07

3.39 2.47 3.52 2.94 3.72 4.38 3.66 3.60 3.39 4.37
3.45 4.82 3.28 4.56 4.72 2.52 2.91 3.21 3.92 2.43
3.67 3.97 3.77 2.67 4.61 4.01 3.26 2.56 2.83 4.75
1.94 3.71 3.78 2.99 4.42 4.11 3.26 4.33 3.04 4.10
2.62 4.17 4.28 4.26 3.21 3.08 3.87 3.41 2.91 2.47
3.45 2.99 4.19 1.99 3.53 3.63 4.95 2.98 2.89 2.82
2.47 3.53 4.09 2.73 3.74 3.90 5.11 4.82 3.59 10.71

GA 60

3.29 3.62 4.10 6.40 4.23 2.93 4.21 5.55 4.54 4.04

20 194 282.80

4.91 4.25 4.01 5.07 5.26 4.17 4.28 4.94 4.25 3.70
4.08 3.99 4.05 3.78 2.97 4.37 4.20 3.87 4.41 5.61
3.21 4.05 3.63 5.85 5.40 3.15 3.90 3.66 5.89 5.00
4.07 3.29 5.03 4.90 4.42 4.77 3.75 6.63 4.40 3.40
3.68 4.21 3.42 4.71 5.38 4.97 4.74 4.26 3.67 21.60
Table 4
Test results for 2D CTSP in crisp.

Node Clusters Cluster wise risk Total cost Total risk Path

10 2

2.91 2.63 187 6.47 8 5 0 3 2 9 4 6 7 1
2.21 2.83 197 6.00 4 9 0 3 7 1 2 6 8 5
2.21 2.83 199 5.58 1 2 4 8 5 6 9 0 3 7
2.91 2.63 206 5.57 2 9 0 3 8 5 4 6 7 1
2.91 3.84 249 5.39 8 9 0 3 2 4 5 6 7 1
2.91 3.83 222 5.34 1 2 6 8 5 4 9 0 3 7

10 3

2.21 1.76 2.59 205 6.91 4 6 9 0 3 2 7 1 8 5
2.21 1.76 2.59 169 6.78 6 8 5 3 2 4 7 1 9 0
2.21 2.13 2.55 195 6.41 0 3 2 7 6 9 4 1 8 5
2.21 1.76 2.59 165 6.40 7 1 9 0 6 8 5 3 2 4
2.21 1.76 2.59 225 6.26 1 8 5 3 2 4 7 6 9 0
2.21 1.76 2.59 190 6.20 3 2 4 7 1 9 0 6 8 5
2.21 1.76 2.59 198 6.06 3 2 7 1 8 5 4 6 9 0
Table 5
Test results for 3D CTSP in crisp.

Node Clusters Cluster wise risk Total cost Total risk Path Vehicle

10 2

2.63 3.69 193 5.70 7 0 4 5 3 2 6 1 9 8 3 3 2 2 1 4 3 4 3 3
2.67 2.92 194 5.59 7 0 5 3 4 8 2 6 1 9 4 4 2 4 2 3 2 4 4 2
2.67 4.47 206 5.58 7 0 5 3 4 2 6 1 9 8 4 4 4 4 1 4 2 4 2 1
4.09 2.77 185 5.31 0 5 2 4 8 6 7 1 9 3 3 3 1 2 2 4 4 2 3 2
2.65 3.95 245 4.94 8 7 5 1 2 6 9 0 3 4 1 2 4 4 2 4 4 4 4 2

10 3

1.72 1.55 3.71 200 5.54 5 3 4 2 6 7 0 1 9 8 2 1 3 2 2 4 4 4 4 4
1.62 1.45 3.22 161 5.52 4 5 3 2 6 7 0 1 9 8 1 2 1 2 3 1 4 3 2 4
1.65 1.55 3.72 159 5.52 4 5 3 2 6 7 0 1 9 8 1 1 2 3 2 1 3 4 2 2
1.65 1.55 3.72 217 5.17 1 0 9 8 3 4 5 2 6 7 3 4 2 4 1 1 2 2 3 1
1.66 1.54 3.77 196 5.08 0 1 4 8 9 5 3 2 6 7 3 2 1 2 4 2 2 2 2 3
Table 6
Test results for 4D CTSP in crisp.

Node Clusters Cluster wise risk Total cost Total risk Path Vehicle Route

10 2

3.13 3.22 141 5.45 4 5 3 6 2 8 1 9 7 0 1 1 2 1 1 2 3 2 1 3 2 1 1 2 1 2 1 2 2 2
3.13 3.22 134 5.38 4 5 3 6 2 7 1 9 8 0 1 1 2 1 1 1 1 2 2 3 2 1 1 2 2 1 2 2 2 1
3.13 3.22 142 5.38 4 5 3 6 2 7 1 9 8 0 1 1 2 1 1 3 2 2 2 2 2 1 1 2 2 1 2 2 2 1
2.05 3.22 165 4.17 8 1 9 7 0 5 4 6 3 2 2 1 2 2 3 1 1 2 1 1 2 1 2 2 1 1 2 1 2 2
1.29 2.84 124 3.67 4 5 3 2 6 1 9 7 8 0 1 1 3 1 1 1 2 3 1 1 2 1 2 1 1 1 2 2 2 1
1.29 3.22 120 3.63 0 1 9 7 8 4 5 3 2 6 2 3 2 3 2 1 1 3 1 2 1 2 2 1 2 2 1 2 1 2

10 3

1.30 1.44 1.69 141 4.51 0 9 4 8 3 5 1 2 6 7 3 2 2 3 2 1 3 1 1 1 2 1 1 2 1 2 2 1 1 2
1.43 0.49 2.02 136 3.98 5 3 2 1 4 6 0 9 7 8 1 3 1 2 2 2 1 2 3 2 1 2 2 2 2 2 2 2 2 1
1.43 0.49 2.02 143 3.49 1 4 6 0 9 7 8 5 3 2 2 2 2 1 2 3 2 1 3 3 2 2 2 2 2 2 2 1 2 2
0.55 1.23 0.73 116 3.34 7 1 9 0 5 4 8 3 2 6 1 1 1 1 2 2 2 3 1 3 2 1 2 1 2 2 2 2 1 2
1.3 1.75 1.65 149 2.92 3 5 4 7 1 2 6 0 9 8 2 2 3 1 2 2 2 1 2 1 1 2 2 1 2 2 2 2 1 1
13
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Table 7
Test results for 2D CTSP in fuzzy.

Node Clusters Cluster wise risk Total cost Total risk Path

10 2

3.75 3.65 200 7.56 4 9 0 3 7 1 2 6 8 5
3.43 3.65 204 7.22 1 2 4 8 5 6 9 0 3 7
3.75 3.65 200 7.22 1 2 6 8 5 4 9 0 3 7
3.75 3.65 202 6.89 6 2 0 3 7 1 9 4 8 5
3.75 3.65 211 6.80 1 2 4 8 5 6 9 3 0 7

10 3

2.04 2.53 3.11 205 7.62 3 2 7 1 8 5 4 6 9 0
2.04 2.53 3.11 178 7.21 6 8 5 3 2 4 7 1 9 0
2.04 2.53 3.11 178 7.16 7 1 9 0 6 8 5 3 2 4
2.04 2.53 3.11 188 7.13 3 2 4 6 8 5 7 1 9 0
2.04 2.53 3.11 178 7.00 3 2 4 7 1 9 0 6 8 5
Table 8
Test results for 3D CTSP in fuzzy.

Node Clusters Cluster wise risk Total cost Total risk Path Vehicle

10 2

3.63 3.41 137 7.42 0 5 3 6 7 2 1 9 4 8 1 1 2 2 2 2 1 1 1 1
3.69 3.41 144 7.26 6 0 5 3 4 8 9 7 1 2 2 1 1 2 2 1 1 1 1 2
3.69 3.41 161 7.07 2 1 9 7 4 8 0 5 3 6 2 1 1 2 2 1 1 1 2 1
3.63 3.41 160 6.65 8 9 7 1 6 0 5 3 2 4 1 1 1 1 2 1 1 2 2 3
3.63 3.41 180 6.38 0 5 3 6 1 2 4 9 7 8 1 1 2 2 1 2 1 1 2 3

10 3

2.40 2.38 2.79 152 7.63 7 1 3 2 6 0 5 9 4 8 1 2 2 1 2 1 2 2 2 1
2.40 2.38 2.87 152 7.53 2 6 0 5 9 4 8 7 1 3 1 2 1 3 2 2 2 1 2 3
2.11 2.33 2.65 173 7.51 6 3 5 4 7 1 9 8 0 2 1 2 2 3 1 1 2 2 1 3
2.40 2.38 2.87 155 7.34 7 5 3 2 6 0 1 9 4 8 1 1 3 1 2 1 2 2 2 2
2.24 2.38 2.40 167 7.27 7 1 3 0 5 4 8 9 2 6 1 2 2 2 2 2 3 2 1 2
Table 9
Test results for 4D CTSP in fuzzy.

Node Clusters Cluster wise risk Total cost Total risk Path Vehicle Route

10 2

3.14 1.60 104 4.79 0 5 4 9 7 8 1 3 6 2 1 1 1 2 1 2 1 2 3 2 1 1 2 2 1 2 2 1 2 2
3.14 1.60 124 4.79 8 1 3 6 2 0 5 4 9 7 2 1 2 3 3 1 1 1 2 1 2 2 1 2 2 1 1 2 2 1
2.20 1.60 144 4.17 0 5 4 9 6 3 2 7 8 1 1 1 1 2 2 1 2 1 2 1 1 1 2 2 2 1 2 1 1 2
2.20 1.60 148 4.17 1 2 6 8 3 0 5 4 9 7 1 3 2 3 3 1 1 1 2 1 2 1 2 1 2 1 1 2 2 1
1.41 1.60 100 3.06 8 1 3 2 6 0 5 4 9 7 1 1 3 1 2 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1
1.41 1.60 100 3.06 0 5 4 9 7 8 1 3 2 6 1 1 1 2 1 1 1 3 1 2 1 1 2 2 1 1 2 2 1 2
1.41 1.60 101 3.06 8 1 3 2 6 0 5 4 9 7 2 1 3 1 2 1 1 1 2 1 2 2 2 1 1 1 1 2 2 1

10 3

1.15 1.88 0.96 158 4.67 9 1 8 0 2 6 4 7 3 5 1 1 3 2 1 2 2 3 2 1 1 1 2 2 1 2 2 2 1 2
0.37 1.06 1.75 141 3.86 4 2 6 0 7 8 9 1 3 5 1 1 2 2 1 1 2 2 2 1 1 1 1 2 1 2 2 1 1 2
0.37 1.88 1.15 132 3.71 8 1 9 0 7 3 5 4 2 6 1 1 3 2 3 2 1 1 1 3 1 1 2 1 2 1 2 1 1 2
0.76 1.73 1.15 105 3.38 3 6 7 8 1 9 0 5 4 2 2 1 3 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1
0.76 1.73 1.15 117 3.38 5 4 2 3 6 7 8 1 9 0 1 1 3 2 1 2 1 1 3 3 1 1 2 1 1 2 1 1 2 2
0.76 1.46 0.87 113 2.44 5 4 2 6 7 8 3 9 1 0 1 1 1 1 1 1 2 1 2 3 1 1 1 1 1 2 2 1 2 2
0.76 1.46 0.87 113 2.44 6 7 8 3 9 1 0 5 4 2 1 1 1 2 1 2 3 1 1 1 1 1 2 2 1 2 2 1 1 1
Fig. 3. Comparison of performance between k-means and Ripple clustering technique.

In Tables 3–11, we found a common trend where the risk decreased
but the travel cost increased, and vice versa. However, it was not true
for all cases as proved by our computational studies. A contradictory
incident was observed in each table for all three data sets. For example,
Table 5 showed that the minimum cost for two clusters increased
14
with a cumulative risk of 7.79 and traveling cost of 147. Here, 7.79
was not the minimum risk, but 147 was one of the best objective
values. From Tables 10 and 11, we can conclude that our proposed
algorithm can deal with real-life problems where each node physically
exists with corresponding longitude and latitude values. Fig. 5 shows
a sample optimized complete tour, where 38 nodes are distributed
between multiple clusters and presented with the help of Google Maps.
Fig. 4 shows the map of West Bengal, a province of India, as well as
the map of India.

8. Practical implementation

8.1. Data analysis on the province of West Bengal in India

In this case, we selected West Bengal(WB), an Indian province, to
gather the necessary data. The longitude and latitude of each well-
known tourist destination in this province were taken from Google
Maps (data available in the supplementary section). We used our clus-
tering techniques to group related tourist destinations together based
on their longitude and latitude. According to their geographic locations,
we divided the entire travel region into three sectors, namely- hill,
plateau, and plain. These three sectors were in the WB state. Latitudes
greater than 26◦N of WB defined the hill region, whereas the Bay of
Bengal Sea defined the plain region. Greater than 88◦E longitude were
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Table 10
Performance for 38 nodes with real data (2D CTSP).

Node Clusters Cluster wise risk Total cost Total risk Path

38

2 5.28 7.93 3054.669 13.404

13 21 10 25 30 35 0 15 33 4
14 12 2 24 31 18 17 22 27 19
34 32 29 16 28 5 3 20 6 1
8 9 37 23 7 26 11 36

3 2.93 5.06 5.60 3347.069 13.30

25 21 18 17 22 27 36 13 26 7
20 34 19 32 29 16 5 28 6 1
8 9 3 37 23 11 15 33 4 14
12 2 24 31 35 0 30 10

4 2.32 2.93 3.56 4.77 3732.17 13.70

34 32 29 20 23 7 26 13 36 27
22 17 18 21 25 30 33 24 15 4
14 12 2 31 35 0 10 11 37 3
9 8 1 6 5 28 16 19

5 1.90 2.04 2.73 2.77 3.82 4042.369 13.88

27 17 36 26 13 21 25 7 23 20
29 32 34 19 6 1 8 9 37 3
5 28 16 11 22 18 30 35 0 33
24 15 4 14 12 2 31 10

6 1.68 1.60 2.03 2.69 2.71 3.67 4513.10 15.06

10 4 15 14 12 2 24 31 35 30
0 33 27 22 17 18 21 25 36 13
26 7 20 34 19 32 29 28 37 23
6 1 8 9 3 5 16 11

7 1.31 1.35 1.79 2.13 2.41 2.33 3.67 5014.40 15.37

15 4 14 12 2 10 35 0 33 31
24 30 21 18 22 25 13 17 36 27
7 26 20 29 34 19 32 28 37 23
6 1 8 9 3 5 16 11

8 1.12 1.11 1.06 1.37 1.71 1.99 1.62 3.82 4855.87 14.192

6 1 8 9 37 3 5 28 16 11
31 14 0 10 21 18 17 22 15 4
12 2 24 33 35 30 25 13 36 27
7 26 20 34 23 29 32 19
h
d

Fig. 4. West Bengal, A province of INDIA.

plateaus. Tables 10 and 11 show the outcomes of 2D and 3D CTSPs
based on real-world data for 38 tourist destinations. We considered the
number of clusters from 2 to 8 and presented the cumulative risk with
the lowest possible travel cost. In Table 10, the minimum cost covered
two clusters, while the minimum risk covered three clusters. However,
the acceptable risk was in the range of 2–5 for the various clusters
discovered in the four clusters (Fig. 5). This is the most physically and
financially feasible option for the traveler. If the traveler has to identify
the various risks associated with their travel plans. It can be found
in Table 10. Table 11 shows that 3D CTSP outperformed 2D CTSP in
clusters 2–8. The risk in the 3D CTSP was much lower than that in the
 t

15
Fig. 5. A sample optimized route presentation in Map of West Bengal.

2D CTSP. The plain region had a low risk, whereas the plateau and hill
regions had a higher risk due to sharp bends, heavy rain, snowfall, and
other factors.

To calculate the travel risk for the mentioned three parts (𝑅𝑝, 𝑝 ∈
1, 2, 3) of a tour dynamically, we propose a realistic formulation as
follows: 𝑅𝑝 = log(𝑑𝑖𝑗 )

𝛼𝑝𝐾
, 𝑝 ∈ (1, 2, 3) as the risk of the plain, plateau, and

ill sectors, respectively. Here, 𝐾 and 𝛼𝑝 are parameters, and 𝑑𝑖𝑗 is the
istance between 𝑖th city and 𝑗th city. The value of 𝐾 depends upon
he maximum and minimum lengths of (𝑑 ), and the calculated risk
𝑖𝑗
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Table 11
Performance for 38 nodes with real data (3D CTSP).
Node Clusters Cluster wise risk Result Total risk Path Vehicle

38

2 4.11 6.54 3770.99 10.94 11 36 26 7 23 6 20 3 16 29 34 19 32 28 37 8 1 9 5 10 25 30 33 15 4 14 12 35 24 2 31 22 18 27 17 13 21 0 1 2 4 3 2 4 3 4 1 4 1 1 4 2 2 4 1 4 3 2 4 3 1 2 1 3 3 3 1 2 2 2 4 2 4 4 3 4
3 2.54 3.13 4.90 3471.40 10.46 36 27 22 17 18 21 25 13 26 7 20 34 19 32 29 16 28 5 37 6 1 8 9 3 23 11 10 30 35 0 14 33 15 4 12 24 2 31 1 1 2 1 1 2 1 4 2 2 2 3 1 1 3 4 4 2 3 4 2 1 2 2 4 1 3 2 4 2 1 3 4 2 1 1 3 2
4 2.00 2.23 2.39 4.15 3702.10 10.92 19 16 28 5 6 1 8 9 37 3 11 10 35 0 15 4 14 12 2 31 24 33 30 25 21 18 17 22 27 36 13 26 7 23 20 29 32 34 2 2 1 1 1 4 4 2 1 3 2 2 1 1 4 1 4 2 2 2 1 1 2 1 1 2 1 4 2 2 4 2 1 1 1 2 3 3
5 1.64 1.63 1.78 1.77 3.55 4674.90 10.70 6 1 8 9 37 3 28 5 16 11 22 18 30 35 0 33 24 15 4 14 12 2 31 10 25 21 13 26 36 17 27 19 34 32 29 20 23 7 2 1 1 1 1 4 2 2 2 1 2 1 1 1 1 1 4 2 1 1 1 1 1 4 1 1 2 1 1 2 1 2 1 1 1 1 1 4
6 1.44 1.37 1.39 1.73 1.99 2.92 4310.70 10.88 36 13 26 7 20 34 19 32 29 28 37 23 6 1 8 9 3 5 16 11 27 22 17 18 21 25 10 4 15 14 12 2 24 31 35 30 0 33 1 2 1 1 1 4 1 1 2 1 1 2 1 1 2 1 1 2 1 4 1 1 2 1 1 2 4 1 4 4 2 1 1 1 2 1 1 2
7 1.13 1.16 1.27 1.25 1.49 1.78 2.92 4704.40 11.17 10 35 0 33 31 15 4 14 12 2 24 30 21 18 22 25 13 17 36 27 7 26 20 29 34 19 32 28 37 23 6 1 8 9 3 5 16 11 1 2 1 1 1 2 1 4 1 1 2 1 1 1 3 1 1 1 1 1 2 1 1 1 4 1 1 1 1 1 1 1 2 1 1 2 1 4
8 0.96 0.95 0.91 0.92 1.07 1.25 1.11 3.55 4667.30 10.79 6 1 8 9 37 3 28 5 16 11 31 14 0 10 25 13 36 27 22 17 18 21 15 4 12 2 24 33 35 30 7 26 20 34 23 29 32 19 1 1 2 1 1 2 1 4 2 2 1 1 1 1 1 2 1 1 1 1 1 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3

16
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(𝑅𝑝, 𝑝 ∈ (1, 2, 3)) should be between 0 and 1. For the empirical test,
𝛼𝑝 ∈ [2, 4], where 𝑝 ∈ {1, 2, 3}.

9. Managerial insights

This section presents the managerial decision. When a predefined
tour plan suddenly decreased the size of the complete tour, what
will be the optimal decision to save the management from loss? Here,
automated system is needed to build a new optimized tour plan. Finally,
the system produced tour divided into a different number of clusters,
where clusters were non-homogeneous. The complete tour may be
shorter based on the requisition of any valuable customer due to
any unavoidable situation such as extreme heat, heavy snowfall, and
continuous heavy rain. In this case, management can redesign the tour
depending on the different risk factors to satisfy the customer. The
manager’s dynamic tour allocation was based on various risk factors for
the destinations. Hence, both the company and the tourist benefited.
Managerial implementations corresponding to the research questions
are addressed in Table 2.

10. Conclusion

The findings of this study provide three major advancements. First,
a constraint multi-path multi-vehicle CTSP (4D CTSP) under impreci-
sion was first mathematically formulated. Second, a novel clustering
and re-linking approach using multiparent GA for the best route design
within each cluster was included in the methodological development.
Finally, it illustrated how the suggested model and methods can be
applied to the tourism industry in any region of the world. This study
is an excellent addition to the body of knowledge in the CTSP. Based
on the latitude and longitude of the locations, the risk of the entire tour
was calculated. TSPLIB instances were tested with a different number of
clusters to determine the effectiveness of the suggested algorithm. We
planned to consider a variety of risks as well as the visitor’s realistic
and pessimistic senses of the world. The limitation of this study is that
it did not consider stochastic behavior-related uncertainty. A better
generalization that takes into account geographic and meteorological
parameters necessitates a more elegant design. The risk also depends on
the state of the roads and the vehicles; comfort and time are possible
additional restrictions. In the future, researchers can overcome these
restrictions by using real-time weather parameters to calculate risk.
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