Aalborg Universitet

Analyzing lithium ion conductivity in thiophosphate glassy electrolytes via machine learning

Chen, Zhimin; Du, Tao; Christensen, Rasmus; Bauchy, Mathieu; Smedskjær, Morten Mattrup

Publication date: 2023

Link to publication from Aalborg University

Citation for published version (APA):

Chen, Z., Du, T., Christensen, R., Bauchy, M., & Smedskjær, M. M. (2023). Analyzing lithium ion conductivity in thiophosphate glassy electrolytes via machine learning. Poster presented at Electrochemical Science and Technology Conference 2023.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Analyzing lithium ion conductivity in thiophosphate glassy electrolytes via machine learning

Zhimin CHEN¹, Tao DU¹, Rasmus CHRISTENSEN¹, Mathieu BAUCHY², and Morten M. SMEDSKJAER^{1,*}

¹ Department of Chemistry and Bioscience, Aalborg University, Aalborg East 9220, Denmark, mos@bio.aau.dk
² Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA

Glasses such as lithium thiophosphates (Li₂S-P₂S₅) show promise as solid electrolytes in lithium-ion batteries, but a poor understanding of the mechanism by which the disordered structure affects lithium transport properties limits the development of glassy electrolytes. To address this, we here simulate glassy Li₂S-P₂S₅ electrolytes with varying fractions of polyatomic anion clusters using classical molecular dynamics. Based on the determined variation in ionic conductivity, we use a classification-based machine learning metric termed "softness" – a structural fingerprint that is correlated to the atomic rearrangement probability – to unveil the structural origin of lithium-ion mobility. To derive a real-space origin of the machine-learned softness metric, we analyze the energy barrier of softness-coded lithium ions migrating between two sites, showing that soft lithium-ion migration requires a smaller energy barrier to be overcome relative to that observed for hard lithium-ion migration.