
 

  

 

Aalborg Universitet

Masked Autoencoders with Multi-Window Local-Global Attention Are Better Audio
Learners

Yadav, Sarthak; Theodoridis, Sergios; Hansen, Lars Kai; Tan, Zheng-Hua

Publication date:
2023

Link to publication from Aalborg University

Citation for published version (APA):
Yadav, S., Theodoridis, S., Hansen, L. K., & Tan, Z-H. (2023). Masked Autoencoders with Multi-Window Local-
Global Attention Are Better Audio Learners. arXiv.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 29, 2023

https://vbn.aau.dk/en/publications/09242384-ff34-4616-bd5b-17ea41921f04


Masked Autoencoders with Multi-Window
Local-Global Attention Are Better Audio Learners

Sarthak Yadav1,2 Sergios Theodoridis1,4 Lars Kai Hansen2,3 Zheng-Hua Tan1,2

1 Department of Electronic Systems, Aalborg University, Denmark
2 Pioneer Centre for Artificial Intelligence, Denmark

3 Department of Applied Mathematics and Computer Science, DTU, Denmark
4 Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens, Greece
[sarthaky,sthe,zt]@es.aau.dk, lkai@dtu.dk

Abstract

In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fitted
with a novel Multi-Window Multi-Head Attention (MW-MHA) module that facili-
tates the modelling of local-global interactions in every decoder transformer block
through attention heads of several distinct local and global windows. Empirical re-
sults on ten downstream audio tasks show that MW-MAEs consistently outperform
standard MAEs in overall performance and learn better general-purpose audio rep-
resentations, along with demonstrating considerably better scaling characteristics.
Investigating attention distances and entropies reveals that MW-MAE encoders
learn heads with broader local and global attention. Analyzing attention head
feature representations through Projection Weighted Canonical Correlation Analy-
sis (PWCCA) shows that attention heads with the same window sizes across the
decoder layers of the MW-MAE learn correlated feature representations which en-
ables each block to independently capture local and global information, leading to
a decoupled decoder feature hierarchy. Code for feature extraction and downstream
experiments along with pre-trained models will be released publically.

1 Introduction

With rapid advances in hardware capabilities driving models of ever-increasing complexity and
appetite for data, leveraging unlabelled data for learning effective deep representations has garnered
significant interest. Self-supervised learning, which solves a pretext task that utilizes labels generated
from the data itself, has emerged as a notable approach for training deep neural representations
without labelled data. Several methods for learning self-supervised representations from audio data
have been proposed, including autoregressive methods that learn to predict the future based on the
past input [1, 2, 3, 4, 5], methods that learn contrastive representations from different views of the
input [6, 7, 8, 9, 10, 11, 12], and masked predictive modelling methods that learn to predict removed
portions of the input data [13, 14, 15].

Together with the transformer architecture [16] and its successors [17, 18], masked predictive mod-
elling has led to significant advances across natural language processing (NLP) [13, 19], computer
vision [15, 20] and audio and speech processing [14, 21, 22]. Masked Autoencoders (MAEs) by
[23] are a recent addition to the masked predictive modelling family. Initially proposed for learning
visual representations from randomly masked image patches, MAEs are experiencing widespread
adoption across several domains [24, 25, 26, 27, 28, 29] due to their inherent scalability and simple
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Figure 1: An overview of the proposed Multi-Window Multi-Head Attention (MW-MHA) mod-
ule, and the overall MW-MAE architecture. In MW-MHA, each attention head operates on non-
overlapping windows of different sizes (coded by different colours) of the input matrices. As evident
from b) MW-MAE uses the proposed MW-MHA block only in the decoder.

design. In the audio domain, several recent works have adapted MAEs to learn a general-purpose
audio representation from spectrogram inputs [30, 31]. These works address several challenges that
are unique to the audio domain and exhaustively study the effect of masking strategies and other
hyperparameters, providing vital information for training MAEs on audio data.

Recent works have shown that leveraging local information in the Multi-Head Attention (MHA)
module of a transformer layer through convolutions [32], attention with local windows [18, 33] or
pooling attention [34, 35, 36] can lead to improved performance. Within the framework of Masked
Autoencoders, [37] evaluated the impact of local windowed attention [18] for audio representation
learning, demonstrating better performance across 4 downstream audio recognition tasks. However, in
these methods: (i) all the attention heads within a MHA module operate at the same local context, thus
only capturing local information at the transformer layer level, and (ii) they require explicit approaches
to mitigate the lack of connections across windows and to capture local-global information.

In this work, we propose Multi-Window Masked Autoencoders (MW-MAE) with both local and global
attention for learning general-purpose audio representations from spectrogram inputs. Decoders in an
MW-MAE are fitted with a novel Multi-Window Multi-Head Attention module (MW-MHA) (Fig 1).
Each attention head in the proposed MW-MHA module computes self-attention over non-overlapping
windows of different sizes, which facilitates modelling of local-global interactions in every decoder
transformer block. The proposed MW-MAEs outperform standard MAEs on 10 downstream audio
recognition tasks. At the same time, MW-MAEs adapt better to varying patch sizes and increasing
number of patches, perform better in low-data scenarios, as well as demonstrate better performance
and scaling characteristics with respect to changing encoder and decoder complexities. Exhaustive
exploratory analysis of attention distances and entropies shows that attention heads in MW-MAE
encoders learn broader local-global attention as compared to standard MAEs, despite having an
identical architecture. Further, analysis of feature representations from the decoder attention heads
using Projection Weighted Canonical Correlation Analysis (PWCCA) [38] indicates that attention
heads with the same window sizes across the decoder layers of the MW-MAE learn correlated feature
representations leading to a decoupled feature hierarchy, confirming that MW-MHA modules learn
local-global features in each decoder block.

2 Background and Related Works

Recently, several works have been proposed for learning audio representations in a self-supervised
manner. Most of these works can be loosely categorized into one or more of the following groups
based on their underlying pretext task: (i) predictive; (ii) contrastive; and (iii) masked predictive
modelling. Several methods adopt a predictive coding approach, which aligns well with the sequential
nature of audio input. Autoregressive predictive coding (APC) [2, 4, 3] is one such method which
utilizes Recurrent Neural Networks (RNNs) to predict future elements of a sequential input given the
past, whereas non-autoregressive approaches using Convolutional Neural Networks (CNNs) have
also been proposed [5]. Contrastive predictive coding [1] optimizes a predictive coding objective
in the latent space while simultaneously optimizing a contrastive objective function. This brings us
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to contrastive representation learning, which operates on the premise of learning a representation
space that maximizes agreement between views from the same input sample while minimizing inter
sample agreement. Several contrastive learning-based methods, originally proposed for computer
vision [39, 40, 41], have been adapted for learning audio representations [7, 42, 43]. A widely
used contrastive approach for learning speech representations is the Wav2Vec family of algorithms
[9, 44, 10, 11], which learn contextualized speech representations by optimizing a contrastive
objective between quantized latent representations and representations generated from masked time
steps. Finally, self-supervised learning methods based on masked predictive modelling have a simple
premise: remove a portion of the input data, and learn to predict the removed content. After being
(re-)popularized by the likes of BERT [13] in NLP and fueled by the recognition of the Transformer
[16] as a viable cross-domain neural architecture, masked modelling has seen wide adoption in
several domains, such as computer vision [20, 15], audio and speech [45] as well as a multi-domain
self-supervised learning frameworks [46]. In the audio domain, several recent methods use masked
predictive modelling to learn self-supervised representations [44]. These include HuBERT [14],
which trains a BERT-like model to predict pre-determined cluster assignments from masked speech
features, WavLM [21], which learns a joint denoising and masked prediction task, and SSaST [22],
which jointly reconstructs and contrasts masked patches. More recently, [47] proposed an iterative
masked modelling approach using an iterative self-distilled tokenizer that generates refined discrete
labels from audio input data for the next stage of pretraining.

Masked Autoencoders (MAEs): Recently, [23] proposed Masked Autoencoders for learning self-
supervised image representations. In an MAE, the input is split into non-overlapping patches, which
are then linearly projected to a fixed dimension by the patch embedding layer. A large subset of these
patches is masked out (e.g., over 75% of the patches), and the unmasked patches are then encoded
by a Vision Transformer (ViT) [17]. With learnable mask tokens filled in the correct positions to
restore the original patch order, these encoded patches are fed to a transformer based decoder, whose
objective is to learn to reconstruct the masked patches. The high masking ratio allows large encoders
to be paired with significantly smaller decoders due to the reduced encoding complexity, while
simultaneously forcing the encoder to learn better contextualized representations by minimizing
extrapolation from redundant neighbouring patches. Several recent works based on MAEs have been
proposed for training general-purpose audio representations. [30] explored a joint discriminative and
generative objective for training audio MAEs and evaluated fine-tuning performance on 5 downstream
tasks. By training shallow downstream classifiers on 15 downstream tasks in accordance with the
HEAR-2021 [48] protocol, [31] investigated various hyper-parameters such as patch size and the
effect of input audio clip duration on model performance. [37] investigated shifting windows based
local self-attention [18] of a fixed context (4 × 4 windows) in all but the last few layers of audio
MAEs. In contrast, in this work we propose a Masked Autoencoder fitted with a novel Multi-Window
Multi-Head Attention module that can model attention at several context levels and can capture
local-global interactions in every transformer layer.

3 Proposed Approach

3.1 Multi-Window Multi-Head Attention

To better capture local-global attention, we propose a Multi-Window Multi-Head Attention (MW-
MHA) module, where each attention head computes self-attention across spectrogram patches in
different local windows and then combines the contribution of each attention head, as illustrated in
Figure 1a. We define MW-MHA with h parallel heads as follows:

MWMHA(Q,K, V ) = Concat(winHead1, ...,winHeadh)W
O (1)

winHeadi = WinAttention(QWQ
i ,KWK

i , V WV
i , wini) (2)

As opposed to MHA, each head winHeadi computes local self-attention over non-overlapping
windows of size wini by partitioning input matrices QWQ

i ,KWK
i , V WV

i ∈ Rn×dk into
Qwini

,Kwini
, Vwini

∈ Rm×wini×dk , given that n = m × wini. This is followed by computing
standard self-attention Xwini

= Attention(Qwini
,Kwini

, Vwini
) [16] on these partitioned inputs.

Finally, Xwini
∈ Rm×wini×dk is reshaped to X ∈ Rn×dk to get the output.

3



In the proposed MW-MHA module, individual attention heads capture information at multiple local
contexts, and the final projection matrix WO

i ∈ Rhdk×dm learns the contribution of each of these
heads, allowing inter-window interaction and connection. This design facilitates learning both
local and global time-frequency information at several granularities in every transformer block (as
supported by exploratory analysis in Section 5). This is in contrast to shifting [18, 49], striped
[33] windowed self-attention, or pooling attention [34, 35, 36], where all attention heads within the
same block have the same window size and thus only perform local self-attention at the block level.
Pseudo-code for the proposed MW-MHA is provided in Appendix A.

3.2 Masked Autoencoder with Multi-Window Multi-Head Attention

Patch embeddings, masking strategy and masking ratio: We use mel-spectrograms as inputs,
partitioning them into non-overlapping patches, which are then flattened and embedded into linear
projections. For encoding positional information, we use fixed sinusuidal positional embeddings,
similar to [30, 31, 37]. We use a high masking ratio (80%) and random unstructured masking, which
have been shown to work well for audio [31, 37].

Encoder: In line with previous work [23, 31, 37], we use a Vision Transformer (ViT) [17] based
encoder, which only processes non-masked patches (20% in this work). Due to the random masking
strategy, majority of the patches are not processed by the encoder at training time. This minimizes the
benefit of using the proposed MW-MHA modules in the encoder transformer blocks (as evidenced
by experiments in Section 4.4). Thus, transformer blocks in our encoder use standard Multi-Head
Attention.

Decoder with Multi-Window Multi-Head Attention: We add fixed sinusoidal positional embed-
dings to the encoded visible patches concatenated with trainable masked tokens after restoring original
patch order. The resulting tensor is then fed to the decoder, which is also a stack of transformer
layers, followed by a linear head that reconstructs the original input spectrogram. This is consistent
with previous works [23, 31, 37]. Given that the decoder processes all the patches, we replace
the Multi-Head Attention module with the proposed Multi-Window Multi-Head Attention, thus
modelling local-global attention in every decoder block.

Selecting window sizes: We follow a simple rule for determining the window sizes of each constituent
winHeadi: given the total number of patches np, we simply take all non-unary factors of np and
add two additional global self-attention heads. As an example, our default configuration yields
np = 250, and thus the window sizes for each MW-MHA module in all decoder blocks will be
[2, 5, 10, 25, 50, 125, 250, 250] for a total of 8 attention heads, which is a reasonable number of
attention heads inline with previous research [23, 37]. Not only is this method simple to follow, but it
also scales well with number of patches, effectively covering several possible local context levels.

Pre-training objective: During pre-training, we optimize a loss function that computes mean squared
error (MSE) between the predicted masked patches and their corresponding input spectrogram patches.
In early experiments, we observed reduced performance when using per-patch normalization, and
thus we do not normalize target spectrogram patches.

4 Experiments

4.1 Datasets and Tasks

Pre-training: We use the full AudioSet dataset [50] (AS-5k) for pre-training MAEs and MW-MAEs.
With over 5000 hours of audio data distributed in 2 million 10-second weakly annotated YouTube
clips spanning 527 classes, AudioSet is one of the largest publicly available audio corpora.

Downstream tasks: Recently, several standardized benchmarks have been proposed to evaluate
audio representations thoroughly across a wide variety of domains, such as SUPERB [51] and HEAR
[48]. While both benchmarks offer avenues for fast, reproducible and accessible comparison of
audio representations, the SUPERB benchmark focuses primarily on speech-processing applications.
In contrast, the HEAR benchmark consists of 19 tasks spanning diverse audio domains of speech,
music and environmental sounds and redistributes standardized and preprocessed datasets. However,
some of these tasks are simply smaller subsets of one another, whereas performance on some HEAR
tasks has been demonstrated to be correlated [48]. For evaluating audio representations, we utilize a

4



subset of the HEAR benchmark which consists of ten diverse tasks spanning multiple domains, which
can be found in Appendix B along with the underlying selection criterion. We believe the selected
tasks constitute a balanced evaluation protocol that facilitates assessment of audio representations
without doing excessive evaluations. For downstream evaluation, we follow the HEAR protocol,
where for each task, a shallow downstream classifier is trained on top of fixed features extracted
using a pretrained model. This practice has become quite prevalent and allows the evaluation of
how representations generalize to a broad range of tasks without the drawbacks of fine-tuning large,
heterogeneous neural networks.

Measuring overall performance: Given the wide variety of downstream tasks and feature repre-
sentations evaluated, a single metric to quantify the performance would significantly aid analysis.
However, given the differing difficulty levels of the tasks as well as outliers arising from the nature
of the representations evaluated, simply averaging the scores is not sufficient. To counteract this,
we utilize a normalized overall score to track overall performance of a given audio representation.
Mathematically, overall score s(m) ∈ [0., 100.] of a model m is given as:

s(m) =
1

|T |
∑
t∈T

xt(m)−mint

maxt −mint
∗ 100 (3)

where xt(m) denotes performance of the model m on task t, and mint and maxt represent the worst
and the best performance across all models on the task. By taking the relative performance of the
best and the worst approach on a task into consideration, this overall score takes how hard the task is
to improve on in consideration. It is worth noting that the normalized score is computed across all
the evaluated methods in all upcoming sections, including ablations. This is similar to the overall
score used by the public leaderboard of the SUPERB [51] benchmark, except that we do not set the
normalized value of the worst performing method to 0, and the proposed overall score has an upper
range of 100.0.

4.2 Implementation Details

Features: We use log-scaled mel spectrograms with a window size of 25 ms, a hop size of 10 ms
and F = 80 mel-spaced frequency bins in the 50− 8000 Hz range, extracted using the torchaudio
[52] toolkit. All datasets have a sampling frequency of 16000 Hz. Instead of normalizing by dataset
statistics, we adopt a per-instance standardization scheme.

Pre-training: We use the AudioSet dataset for pre-training our Masked Autoencoders. We extract log-
scaled mel spectrograms for the entire AudioSet dataset and randomly crop a segment 200 timesteps
in length from each data sample. Our default configuration consists of a ViT-B encoder. All our MAE
variants accept a 200×80-dimensional (T × F, respectively) input corresponding to an audio duration
of 2 seconds, which achieves performance on-par with longer input durations as demonstrated by
[31]. For our default configuration, our patch embedding computes non-overlapping patches with
a patch size of (4× 16), given it’s desirable performance v/s complexity tradeoff as found by [31].
A key characteristic of the Masked Autoencoder paradigm is its asymmetric design, which allows
pairing small decoders with large encoders while scaling favourably for linear probe performance
[23]. Thus, in contrast to [37], we adopt a smaller 4-layer deep transformer-based decoder of width
384 and 8 attention heads for our default configuration. We train Masked Autoencoders with the
proposed MW-MHA module, which are referred to as MW-MAEs, as well as their standard MAE
counterparts. All MAEs are pre-trained for 100 epochs with a batch size of 1024 and a weight decay
of 0.05 on a single TPU-v3 VM with 8 TPU cores, with the default configuration taking around
36 hours to train. We warm up for ten epochs to a base learning rate of 1e-5, followed by a cosine
decay schedule. A masking ratio of 0.8 with unstructured random masking is used, and no other data
augmentations are used during pre-training.

Training downstream models: We first extract fixed feature embeddings for all downstream tasks
to train downstream models. In the MAE framework, the decoder is discarded after pretraining and
feature embeddings are extracted using just the encoder. To generate scene embeddings consistent
with the HEAR protocol, we use the exact patch aggregation process as [31]: we break audio clips into
non-overlapping 2 second chunks, concatenating the features in time and finally taking a mean over
the time axis to generate a fixed vector representation independent of the input audio duration. The
hear-eval-kit, released alongside the HEAR benchmark, was used to extract fixed feature embeddings
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Table 1: Comparison with various audio representations from the literature. 95% confidence intervals
are reported over 10 runs on downstream classifiers. We pre-trained all highlighted audio representa-
tions, with different gray levels indicating directly comparable MAE and MW-MAE configurations.
For other pre-trained audio representations, publicly available official implementations were used.
All downstream models were trained by us using the hear-eval-kit. s(m) denotes the proposed
normalized overall score (Sec 4) *: same configuration as MSM-200 16x4 [31], with 8 attention
heads in the decoder instead of 6. For model parameter counts, refer to Appendix E

Model PT-Data BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

Naive Baselines
HEAR-Naive [48] - 52.6±2.4 30.9±0.8 5.8±0.2 33.5±1.1 38.0±1.3 36.4±1.9 18.6±4.4 8.5±0.4 7.1±0.2 11.2±0.5 5.0±0.7

Supervised
PaSST-base [53] AS-5k 94.9±0.5 61.0±0.3 94.8±0.3 60.1±0.2 96.5±0.1 87.6±0.6 23.3±0.9 66.6±1.4 64.2±0.1 25.5±0.8 73.5±0.4

SSL
W2V2-base [10] LS-960 74.0±1.0 46.4±0.3 31.1±0.4 51.2±0.2 77.3±0.2 55.1±0.3 7.4±0.8 90.8±0.3 18.1±0.1 35.5±0.8 43.1±0.2
W2V2-large [10] VP-100k 93.1±0.7 66.9±0.4 60.1±0.5 62.4±0.3 93.9±0.1 77.4±0.2 42.0±1.0 87.6±0.5 34.2±0.1 53.6±1.0 74.0±0.4
WavLM-base [21] LS-960 89.4±0.7 56.3±0.2 46.6±0.4 63.2±0.3 95.1±0.1 83.4±0.2 37.3±0.8 57.2±0.8 29.9±0.1 22.6±0.6 60.5±0.2
WavLM-large [21] Mix-94k 96.4±0.5 57.2±0.2 47.9±0.4 61.1±0.3 96.8±0.1 89.5±0.1 53.7±0.5 46.2±0.8 29.0±0.1 23.7±0.9 64.0±0.2
HuBERT-base [14] LS-960 92.1±0.6 70.8±0.2 57.8±0.6 56.5±0.3 94.4±0.1 84.9±0.3 19.4±0.7 93.2±0.1 32.3±0.1 61.8±0.6 72.5±0.2
HuBERT-large [14] LL-60k 94.1±0.7 70.7±0.1 60.3±0.4 59.9±0.2 95.3±0.1 83.5±0.3 19.3±0.8 83.2±0.7 31.5±0.1 66.1±0.9 73.4±0.3
SSaST-base [22] AS+LS 93.4±0.9 56.5±0.2 68.4±0.4 60.7±0.3 96.7±0.1 96.3±0.1 66.8±0.7 53.5±1.3 38.2±0.1 28.5±0.9 71.7±0.2
BEATs-iter3 [47] AS-5k 94.0±0.8 67.3±0.2 83.7±0.3 68.0±0.2 94.7±0.1 95.8±0.1 69.4±0.8 85.2±0.3 53.6±0.2 38.5±1.0 85.7±0.3

MAE based
AudioMAE [37] AS-5k 93.7±0.6 68.2±0.2 60.6±0.4 42.2±0.2 89.2±0.2 86.6±0.2 64.5±0.8 28.6±1.5 37.9±0.1 29.7±1.0 62.9±0.3

MAE-B-4x16-4l* AS-5k 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2

MAE-B-5x5-4l AS-5k 96.0±0.4 70.9±0.2 80.9±0.4 67.6±0.4 97.6±0.1 98.4±0.0 69.3±0.4 88.4±0.3 49.3±0.2 37.7±0.6 86.8±0.2

MAE-L-4x16-8l AS-5k 96.1±0.4 73.8±0.1 81.6±0.3 68.5±0.2 97.6±0.1 98.3±0.0 69.0±0.5 91.2±0.2 51.8±0.1 46.9±0.8 90.0±0.2

Proposed
MW-MAE-B-4x16-4l AS-5k 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

MW-MAE-B-5x5-4l AS-5k 96.6±0.4 73.8±0.4 82.0±0.3 70.1±0.4 97.5±0.1 98.3±0.1 72.9±0.5 91.7±0.2 51.3±0.1 44.2±0.6 90.6±0.1

MW-MAE-L-4x16-8l AS-5k 95.9±0.3 76.1±0.2 83.6±0.3 69.7±0.3 97.4±0.0 98.2±0.1 71.2±0.7 93.0±0.1 53.5±0.1 51.9±0.7 92.6±0.2

and to train a shallow MLP classifier with a single hidden layer with 1024 neurons for each task in a
reproducible manner. Experiments are repeated with at least ten random seeds for each task, resulting
in 100 experiments for every evaluated representation.

4.3 Comparison with Existing Works

Table 1 shows how MW-MAE fares against recent audio representations. The highlighted model
configurations that we pre-trained from scratch on AudioSet have the following naming convention:
the first substring shows the type of MAE (vanilla or proposed MW-MAE), followed by a single
alphabet denoting ViT Encoder configuration. This is followed by the patch size used, and finally, the
depth of the decoder. It’s worth noting that while embedding sizes of MAE and corresponding MW-
MAE configurations are the same, the embedding sizes of other methods can be different. This is inline
with the current consensus of evaluating self-supervised representations in the audio domain [51, 48].
MW-MAE configurations outperform all other comparable MAEs, with the largest "MW-MAE-L-
16x4-8l" configuration outperforming all the methods in overall performance (92.6±0.2). MW-MAEs
also outperform AudioMAE with standard shifting window based attention, as well as BEATs-iter3,
which is the pretrained representation obtained after 3 stages of self-distilled learning as proposed
by [47]. MW-MAEs perform exceptionally well on pitch perception (NS-5h), while achieving
performance on-par with speech specific representations such as WavLM, HuBERT and Wav2Vec2
(denoted W2V2) for Keyword spotting (SC-5h). Perhaps more surprisingly, they outperform speech
representations trained on much larger training sets on the emotion recognition (CREMA-D) as well
as speaker count classification (LibriCount) tasks. While PaSST, which is a recent state-of-the-art
approach for training supervised transformers on AudioSet, outperforms every model on ESC-50
and FSD50K tasks, the overall performance of the proposed approach is significantly better. Overall,
the proposed MW-MAEs learn a better general-purpose audio representation than standard MAEs,
generalizing well to several audio domains and demonstrating excellent overall performance in
comparison to recent audio representations.
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4.4 Key Model Characteristics

We conduct several experiments to examine key differences between MAE and the proposed MW-
MAE. While we have only reported overall score s(m), detailed results for all these experiments can
be found in Section F.

Model Downstream Linear Probe Fine-tuning
s(m) (mAP) (mAP)

MAE Base 88.1±0.2 18.9±0.0 23.8±0.1
MW-MAE Base (decoder only) 89.2±0.2 20.2±0.0 23.9±0.1
MW-MAE Base (enc+dec) 89.1±0.3 20.2±0.0 24.2±0.1

Table 2: Performance impact of MW-MHA
module placement

MW-MHA in the encoder: As previously mentioned,
adding MW-MHA to the encoder block does not im-
prove downstream performance. Further, we also inves-
tigate the impact of linear probing as well as fine-tuning
the entire encoder stack for in-domain classification on
AudioSet-20k balanced subset. No data augmentations
were used. As evident from Table 2, when compared
with including MW-MHA blocks in the decoder only,
there is no performance benefit to adding MW-MHA blocks to the encoder for neither downstream
performance, nor for in-domain linear probe on AudioSet-20k. However, when fine-tuning the entire
encoder stack, adding MW-MHA blocks to the encoder provides a slight improvement and is worth
considering.

Performance impact of various patch sizes: In an MAE, the patch embedding layer generates
non-overlapping patches from the input. Thus, the size of the patch governs the number of patches
as well as the time-frequency resolution that the transformer layers work at, making it an important
hyperparameter to investigate.
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Figure 2: Ablation experiments comparing standard MAE v/s proposed MW-MAE at different patch
sizes (a), encoder complexity (b), decoder depth (c) as well as amount of pre-training data used (d).
s(m) is the proposed overall score (Sec 4). Detailed results can be found in Appendix F.

Figure 2a shows how different patch sizes affect downstream performance. The proposed MW-MAE
model, with an overall score of 90.6±0.1, outperforms standard MAE for every patch size for identical
decoder configurations. It’s also worth noting that MAE performance degrades as we decrease the
patch size beyond 4× 16, whereas MW-MAE performance continues to improve. These observations
show that the proposed MW-MAE adapts better to varying patch sizes and time-frequency resolutions,
while scaling well with increasing number of patches.

Encoder size: As shown in Figure 2b, we investigate how encoders of five different complexities
affect overall performance. All the trained models have the same decoder configuration (384 neurons,
depth=4, h=8). With an overall score of 89.2±0.2, MW-MAE with the ViT-Base encoder performs
better than MAEs with encoders of any size in this experiment. The most prominent performance gap
is observed for the ViT-Large setting, where MAE and MW-MAE attain overall scores of 88.2±0.2

and 92.3±0.2, respectively. The drop in performance for the ViT-Huge encoder for both MAEs and
MW-MAEs suggests possible overfitting.

Decoder depth: In Figure 2c, we show how increasing decoder complexity by increasing decoder
depth affects overall performance. As expected, increasing decoder depth improves performance
for both methods. For decoder depth=8, MW-MAE (89.9±0.2) outperforms MAE (88.2±0.1) by a
considerable margin in overall performance. We also observed that with an overall score of 88.3±0.2,
MW-MAE with depth=2 performs on par with MAEs with up to 4 decoder blocks. This observation
complements the inherent asymmetric nature of Masked Autoencoders, and thus the proposed
MW-MAE performs favourably in terms of complexity and scalability.

Pre-training data: Finally, Figure 2d depicts how performance varies as we reduce the amount of
data used for pre-training. Overall, performance for both the MAE and the proposed MW-MAE
methods continues to decrease monotonically as we remove more and more data. However, the
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Figure 3: Investigating MAE and MW-MAE encoder attention heads. (a) depicts average entropies
of encoder attention heads over the course of pretraining in a every encoder transformer block. (b)
Depicts mean attention distance distributions of the first two and the last two transformer blocks at
different amounts of pretraining data used.

performance loss trend for MW-MAE is much more favourable. A 90% reduction in the amount of
pre-training data results in a 28.17% reduction in performance for standard MAEs (from 88.1±0.2 to
63.3±0.2), whereas MW-MAE only suffers a 13.5% drop in performance (from 89.2±0.2 to 77.2±0.3).
Thus, we conclude that the proposed MW-MAEs are more adept at handling low-data scenarios in
comparison to standard MAEs.

5 Exploratory Analysis

5.1 Inspecting encoder attention heads

Analyzing attention entropies: We first analyze individual attention heads in a ViT-Medium encoder
(depth=12, h=8). Figure 3a shows scatter plots of average entropies of individual encoder attention
heads computed over the entire NSynth Pitch 5h validation set on a block-by-block basis at different
stages during pre-training. It’s worth noting that the higher the entropy, the more global the attention,
with lower attention mass spent on closer tokens [54], and thus, a higher variance in entropies
of individual attention heads highlights more spread out local and global attention. In the early
epochs, MAE encoders actually have higher variance in entropy distribution, especially in the latter
transformer layers. As pretraining goes on, interestingly, this effect is reversed, and the attention
heads in the MW-MAE encoder now start converging towards high entropy variance configurations
in the early layers.

Analyzing attention distances: We analyze mean attention distances for attention heads in the
first two and the last two encoder blocks. Similar to [55], we compute attention-weighted patch
distances between the query patch position and the locations it attends to for each attention head,
averaging it for all patches positions. This is repeated for all inputs in the FSD50K validation set.
Figure 3b depicts the distribution of mean attention distance for MAE and MW-MAE encoders (base
configuration) pretrained with different amounts of training data. We can observe that MW-MAE
attention heads demonstrate a broader distribution of attention distances, modelling local-global
attention better than the MAE encoder especially in the first two transformer blocks.

From these observations, we can conclude that in an MW-MAE, the decoder fitted with an MW-MHA
can force the encoder to better capture local-global interactions even without explicit windowed
attention modules, leading to improved performance.

5.2 Comparing attention feature representations through PWCCA

Several recent works have used Canonical Correlation Analysis (CCA) to compare feature representa-
tions and learning dynamics of deep neural networks [56, 57]. We use Projection Weighted CCA
(PWCCA) [38], which computes a weighted mean of the CCA vectors to compare the representations
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Figure 4: Comparing features learned by different attention heads in the encoder and the decoder of a
standard MAE and the proposed MW-MAE using PWCCA. Each tick separates the attention heads
of a transformer block from the next.

learned by individual attention heads of the encoder and the decoder in identically configured MAE
and MW-MAE (ViT-M encoder: depth=12, h=8; Default decoder: 384 neurons, depth=4, h=8).
MW-MAE decoder uses default attention head window sizes as specified in Sec 3.2. Figure 4 depicts
correlation matrices of measured PWCCA score between attention heads. We can observe a remark-
able difference in correlation between the decoders: feature representations from the MW-MAE
decoder attention heads with the same window sizes are strongly correlated across decoder layers,
whereas attention heads with global self-attention (7, 8, 15, 16, 23, 24, 31, 32) are the least correlated,
consistent with observations made for the MAE decoder. These observations suggest a decoupling
of different aspects of the feature hierarchy in the MW-MAE decoder, as attention heads of specific
window sizes in each decoder block capture local information at a specific granularity, which is in
line with our original hypothesis. These observations are also corroborated by decoder depth ablation
experiments from Sec 4.4, where we observed that a MW-MAE with a single transformer block
performs on par with MAEs fitted with up to 4 decoder blocks. Finally, the difference in correlation
matrices between the encoders is much less stark, which is expected since both use standard MHA
blocks.

6 Conclusion

This work presents Multi-Window Masked Autoencoder (MW-MAE) for learning general-purpose au-
dio representations. Decoders in MW-MAEs are fitted with a novel Multi-Window Multi-Head Atten-
tion (MW-MHA) module, which learns information captured at multiple granularities of local-global
context by its constituent attention heads computing self-attention over different non-overlapping
windows. Empirical experiments on ten downstream tasks show that the proposed MW-MAEs
consistently outperform standard MAEs in overall performance when pre-trained on the AudioSet
dataset, demonstrating better scaling characteristics. Exploratory analyses highlight key differences
between the attention representations learned by standard MAEs and the proposed MW-MAEs. Based
on attention entropy and mean attention distance analysis, we discover that encoder attention heads
in an MW-MAE better capture local-global interactions, even without explicit local-global attention
modules. We also learn that attention heads of the same window size across the transformer blocks of
the MW-MAE decoder are correlated, learning a decoupled feature hierarchy allowing transformers
to capture relevant information at the block level, supporting our original motivation.
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Appendix

A Multi-Window Multi-Head Attention

def WinAttention(Q, K, V, win_i):
n, d_k = Q.shape[-2:]
# partition inputs along patch dimension
# into non-overlapping windows
Q = Q.reshape(-1, win_i, d_k)
K = K.reshape(-1, win_i, d_k)
V = V.reshape(-1, win_i, d_k)
# compute self-attention
X = softmax(Q.(K.transpose()) / sqrt(d_k)).V
# reshape results
X = X.reshape(-1, n, d_k)
return X

Figure 5: Pseudocode for WinAttention

B More about downstream tasks

Table 3: Overview of tasks for downstream evaluation. All these tasks are a part of the HEAR [48]
benchmark.

Short Hand Name Description Size (in Hours) Metric

BO Beijing Opera [58, 48] Classifying percussion instruments 0.3 Accuracy
CD Crema-D [59] Emotion Recognition ∼ 10 Accuracy
ESC-50 ESC-50 [60] Environmental Sound Classification 2.77 Accuracy
LC LibriCount [61, 62] Speaker Count Identification, Simulated Cocktail Party ∼ 8 Accuracy
Mri-S Mridangam Stroke [63] Stroke classification in pitched percussion instruments 1.57 Accuracy
Mri-T Mridangam Tonic [63] Tonic classification in pitched percussion instruments 1.57 Accuracy
NS-5h NSynth Pitch 5h [48, 64] 88-way Pitch Classification, reduced training subset ∼ 5.5 Accuracy
SC-5h Speech Commands 5h [48, 65] Keyword Spotting, reduced training subset ∼ 6.5 Accuracy
F50K FSD50K [66] Multilabel, large scale Audio Tagging ∼ 100 mAP
VL VoxLingua107 Top10 [48, 67] Spoken language identification 5 Accuracy

The following is our reasoning behind excluding the other tasks from the HEAR benchmark suite:

1. Nsynth-Pitch 50hr and Speech Commands Full because we already use the smaller
subsets.

2. Gunshot Triangulation: Gunshot is an event in both AudioSet and FSD50k ontology, and
is thus redundant.

3. GTZAN Music Speech: FSD50k already has music and speech labels, and the model
performance correlation study in the HEAR paper [48] shows high correlation with FSD50k.

4. GTZAN Genre: highly correlated results with FSD50K and ESC-50 (surprisingly) as per
[48]

5. Vocal Imitations: high correlation with LibriCount [48].
6. Bee Hive state Classification: large runtime costs, niche task.
7. MAESTRO 5hr and DCASE 2016 Task 2: significant complexity (storage, runtime,

timestep based evaluation).

C Experimental Details and Hyperparameters

In this section, we provide additional experimental details. Apart from AudioSet, all other datasets
are obtained directly from the HEAR 3, where they are pre-processed to 16000 Hz and distributed in
a standard format.

Similar to [37], our effective learning rate (lreff) depends on the base learning rate (lrbase) and
the batch size as follows: lreff = lrbase ∗ batch size

256 . In early experiments, we did not find strong
augmentations at pre-training time to improve downstream performance, hence no augmentations

3https://hearbenchmark.com/hear-tasks.html
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are used. For more details, refer to Table 4. As previously mentioned, hear-eval-kit4 was used
for downstream experiments, and along with the details provided here should allow for consistent,
reproducible downstream experimentation.

Table 4: Pre-training (PT) and Downstream (FT) hyperparameters. *: For ViT-L and ViT-H
based models, smallest batch size that didn’t give OOM was used.

Configuration AS-5k Pre-training Downstream

Optimizer AdamW Adam
Optimizer momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.95
Weight decay 0.05 N/A
Base learning rate 0.000015 0.0001
Learning rate schedule linear-warmup + cosine decay fixed
Minimum learning rate 0.0 0.0001
Dropout 0. 0.25
Warm-up epochs 10 N/A
Epochs 100 500
Early Stopping N/A 20
Batch size 1024* 1024
Accelerators 8x TPU-v3 cores 1 Nvidia-A40

D Additional modality tested: ImageNet

Given the in-depth ablations and exploratory analysis, as well as resource constraints, we couldn’t
dive deeper into full scale testing of an additional modality given. However, as a proof of concept, we
pre-trained MAE and MW-MAEs with ViT-Medium encoder on ImageNet for 100 epochs, followed
by evaluating linear probe performance (training for 50 epochs).

Table 5: Proof of concept ImageNet experiments. Pre-training was done only for 100 epochs.
Validation accuracy denotes linear probe performance on the ImageNet validation set.

Model Params Validation Accuracy

MAE Medium Encoder 38 M 29.0±0.0
MW-MAE Medium Encoder 38 M 29.8±0.0

4https://github.com/hearbenchmark/hear-eval-kit
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E Parameter count, averages and overall scores

Table 6: Models, number of parameters, plain average scores and overall scores of models omitted
from Table 1 due to space constraints.

Model # Params Average s(m)

HEAR-Naive - 24.3±0.5 5.0±0.7
PaSST-base 86 M 67.5±0.3 73.5±0.4

SSL
Wav2Vec2-base 94.4 M 48.7±0.1 43.1±0.2
Wav2Vec2-large 315.4 M 67.1±0.2 74.0±0.4
WavLM-base 94.4 M 58.1±0.1 60.5±0.2
WavLM-large 315.4 M 60.1±0.1 64.0±0.2
HuBERT-base 94.4 M 66.3±0.1 72.5±0.2
HuBERT-large 315.4 M 66.4±0.2 73.4±0.3
SSaST-base 89 M 65.9±0.1 71.7±0.2
BEATs-Iter3 90 M 75.0±0.2 85.7±0.3

MAE based
AudioMAE 86.0 M 60.1±0.2 62.9±0.3
MAE-B-4x16-4l 86.0 M 76.4±0.1 88.1±0.2
MAE-B-5x5-4l 86.0 M 75.6±0.1 86.8±0.2
MAE-L-4x16-8l 302.4 M 77.5±0.1 90.0±0.2

Proposed
MW-MAE-B-4x16-4l 86.0 M 77.0±0.1 89.2±0.2
MW-MAE-B-5x5-4l 86.0 M 77.8±0.1 90.6±0.1
MW-MAE-L-4x16-8l 302.4 M 79.1±0.1 92.6±0.2

F Detailed Ablation Results

Table 7: Results from Patch size ablation experiments. ViT-B encoder was used for all experiments.
n denotes total number of patches, and h denotes the number of attention heads in each decoder
transformer block.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

Patch Size=(8×16), n=125, h=4
MAE 94.9±0.8 70.2±0.3 80.4±0.5 66.0±0.3 97.4±0.1 97.7±0.1 65.9±0.7 88.9±0.5 49.4±0.1 40.6±0.5 85.9±0.3
MW-MAE 95.9±0.5 72.3±0.2 81.2±0.3 68.4±0.3 97.3±0.1 97.8±0.1 67.4±0.8 90.0±0.3 50.8±0.1 41.9±0.5 88.0±0.2

Patch Size=(4×16), n=250, h=8
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

Patch Size=(8×8), n=250, h=8
MAE 96.1±0.6 72.5±0.2 81.3±0.2 66.0±0.3 97.5±0.1 98.1±0.0 68.5±0.7 89.5±0.4 50.2±0.1 42.3±0.5 87.7±0.2
MW-MAE 96.3±0.4 73.0±0.1 82.6±0.3 69.3±0.3 97.5±0.1 98.1±0.1 70.3±0.8 90.5±0.1 51.4±0.1 42.3±0.5 89.4±0.1

Patch Size=(4×8), n=500, h=12
MAE 96.7±0.2 71.3±0.3 79.0±0.4 67.8±0.3 97.7±0.0 98.5±0.0 68.7±0.4 89.0±0.4 49.8±0.2 39.2±0.7 87.2±0.1
MW-MAE 95.6±0.7 74.1±0.2 81.9±0.3 70.1±0.3 97.6±0.1 98.2±0.1 72.0±0.7 91.2±0.3 51.6±0.1 44.0±0.8 90.3±0.2

Patch Size=(5×5), n=640, h=16
MAE 96.0±0.4 70.9±0.2 80.9±0.4 67.6±0.4 97.6±0.1 98.4±0.0 69.3±0.4 88.4±0.3 49.3±0.2 37.7±0.6 86.8±0.2
MW-MAE 96.6±0.4 73.8±0.4 82.0±0.3 70.1±0.4 97.5±0.1 98.3±0.1 72.9±0.5 91.7±0.2 51.3±0.1 44.2±0.6 90.6±0.1

Table 8: Effect of encoder size on performance. Patch size of 4×16 was used for all experiments.
Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

Encoder=ViT-T
MAE 95.6±0.5 63.2±0.2 70.1±0.5 64.6±0.3 97.1±0.1 97.4±0.1 66.4±0.7 74.3±0.8 41.6±0.1 26.4±0.6 77.6±0.3
MW-MAE 93.3±1.0 64.4±0.2 71.9±0.5 65.5±0.3 97.1±0.1 97.6±0.1 68.1±0.4 77.0±0.6 43.4±0.1 28.6±1.1 79.0±0.3

Encoder=ViT-M
MAE 95.2±0.7 69.5±0.2 77.8±0.3 67.4±0.3 97.4±0.0 98.0±0.1 66.6±0.7 88.0±0.4 48.1±0.1 38.3±0.8 85.3±0.2
MW-MAE 95.9±0.3 71.8±0.3 80.3±0.4 69.7±0.1 97.2±0.1 97.8±0.1 68.1±0.5 88.8±0.6 49.6±0.1 39.8±0.8 87.5±0.2

Encoder=ViT-B
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

Encoder=ViT-L
MAE 95.8±0.6 72.4±0.1 79.7±0.3 66.8±0.4 97.5±0.1 98.2±0.1 69.5±0.6 90.9±0.2 50.7±0.1 43.6±0.4 88.3±0.2
MW-MAE 95.7±0.5 75.5±0.2 82.5±0.5 70.1±0.3 97.4±0.0 98.1±0.1 70.7±0.6 93.2±0.1 53.3±0.1 51.9±0.8 92.3±0.2

Encoder=ViT-H
MAE 96.8±0.2 71.1±0.2 78.3±0.4 67.1±0.2 97.5±0.0 98.5±0.0 67.6±0.6 89.6±0.1 49.5±0.2 40.0±0.7 86.9±0.1
MW-MAE 96.8±0.2 74.8±0.1 81.6±0.4 69.5±0.4 97.4±0.0 98.2±0.1 70.8±0.5 92.4±0.2 52.1±0.1 47.5±0.6 91.1±0.2
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Table 9: Effect of decoder depth on downstream performance. ViT-B encoder, patch size of 4×16
were used for each experiment.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

depth=1
MAE 96.4±0.2 69.8±0.3 78.9±0.3 67.4±0.3 97.4±0.1 97.9±0.1 66.4±0.8 88.5±0.2 49.4±0.2 39.0±1.1 86.1±0.2
MW-MAE 96.6±0.5 72.4±0.2 79.0±0.4 68.7±0.3 97.5±0.1 98.0±0.1 68.8±0.5 90.2±0.3 50.6±0.1 39.1±0.8 87.8±0.2

depth=2
MAE 96.8±0.3 71.3±0.3 78.8±0.2 68.8±0.2 97.4±0.1 98.2±0.0 67.2±0.6 90.0±0.2 49.6±0.2 39.4±0.7 87.3±0.1
MW-MAE 96.0±0.7 73.1±0.2 79.4±0.3 69.2±0.3 97.4±0.1 98.2±0.1 69.0±0.6 90.6±0.2 50.7±0.2 40.1±0.6 88.3±0.3

depth=4
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

depth=8
MAE 96.3±0.3 71.7±0.3 81.6±0.4 67.4±0.3 97.4±0.0 98.1±0.1 67.8±0.7 89.9±0.3 50.8±0.2 43.4±0.6 88.2±0.1
MW-MAE 96.2±0.5 73.2±0.2 82.2±0.4 69.7±0.3 97.3±0.0 98.1±0.1 69.4±0.5 91.3±0.2 52.0±0.2 44.7±0.8 89.9±0.2

Table 10: Amount of pre-training dataset used v/s downstream performance.
Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

10% of AS-5k
MAE 93.6±0.7 51.3±0.2 49.5±0.3 48.4±0.4 97.1±0.1 96.4±0.1 61.1±0.7 70.4±0.9 29.7±0.2 17.3±0.5 63.3±0.2
MW-MAE 94.1±0.3 63.9±0.3 67.1±0.3 60.5±0.2 97.3±0.1 97.6±0.0 64.4±0.5 82.0±0.4 40.9±0.2 30.1±1.1 77.2±0.3

25% of AS-5k
MAE 96.2±0.6 57.5±0.3 64.9±0.4 56.9±0.3 97.4±0.1 97.5±0.1 65.0±0.6 79.3±0.4 39.2±0.1 24.2±0.7 73.6±0.2
MW-MAE 96.1±0.5 68.0±0.2 75.5±0.4 67.2±0.3 97.3±0.1 98.0±0.1 65.9±0.4 86.5±0.2 46.4±0.1 35.7±0.6 83.8±0.2

50% of AS-5k
MAE 97.2±0.3 65.5±0.3 74.1±0.3 64.3±0.3 97.5±0.1 98.1±0.1 67.0±0.6 85.3±0.6 45.1±0.1 32.4±0.8 81.9±0.2
MW-MAE 95.9±0.5 70.9±0.2 79.1±0.3 69.1±0.4 97.4±0.1 98.1±0.1 68.4±0.7 88.5±0.2 49.1±0.1 39.5±0.5 87.0±0.2

75% of AS-5k
MAE 95.3±0.5 70.2±0.2 79.0±0.3 67.4±0.2 97.4±0.1 98.1±0.1 67.4±0.6 88.8±0.3 49.2±0.1 39.5±0.7 86.2±0.2
MW-MAE 96.0±0.5 72.6±0.3 80.5±0.4 69.5±0.3 97.4±0.1 97.9±0.1 68.3±0.4 89.9±0.2 50.5±0.1 41.7±0.8 88.4±0.2

100% of AS-5k
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

G Limitations

The direct limitations of our work are:

1. Pre-training data scale: As opposed to text corpus used in NLP [13] as well as speech
representations [10, 14], AudioSet is several order of magnitudes smaller. While MW-
MAEs demonstrate good performance characteristics in low-data scenarios, analysis on
larger scales of data is definitely warranted.

2. Computational demands: transformer based models are computationally expensive to train,
and despite their favourable generalization characteristics, MW-MAEs are no different.
MW-MAEs and as well as previous works [31, 37] have showed the efficacy of MAEs
when pretrained with AudioSet, however, training on longer duration audio data is still a
challenge.

3. Runtime Overhead: While theoretically MW-MHA should be faster at runtime, the overhead
of calling multiple attention heads individually results in slight slowdown as compared to
optimized CUDA kernel implementations for MHA. A custom kernel for the operation
should be able to improve this.
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