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Abstract

We explore whether self-supervised pretrained models can provide a useful repre-
sentation space for datasets they were not trained on, and whether these representa-
tions can be used to group novel unlabelled data into meaningful clusters. To this
end, we conduct experiments using image representation encoders pretrained on
ImageNet using a variety of self-supervised training techniques. These encoders are
deployed on image datasets that were not seen during training, without fine-tuning,
and we investigate whether their embeddings can be clustered with conventional
clustering algorithms. We find that it is possible to create well-defined clusters
using self-supervised feature encoders, especially when using the Agglomerative
Clustering method, and that it is possible to do so even for very fine-grained datasets
such as NABirds. We also find indications that the Silhouette score is a good proxy
of cluster quality when no ground-truth is available.

1 Introduction

Self-supervised learning (SSL) has seen a large amount of interest in recent years across almost
every machine learning sub-field, due to the promise of being able to harness the large quantities of
unlabelled data available and obtaining generic feature embeddings useful for a variety of downstream
tasks Balestriero et al. (2023). This has, for example, led to the development of impressive large
language models (Brown et al., 2020) and computer vision systems trained on 1 billion images Goyal
et al. (2021). While the embeddings from an SSL-trained encoder can perform well on downstream
tasks after fine-tuning, there has been little investigation into the utility of the embeddings without
any retraining. Prior work by Vaze et al. (2022) and Zhou & Zhang (2022) suggests SSL feature
encoders generate embeddings suitable for clustering, but nonetheless still fine-tune the encoders.
Yet, widespread interest in application of large pretrained models on custom datasets, combined with
prohibitive cost of compute, make this question important and increasingly urgent.

We find that there has so far been no investigation into whether SSL-trained feature encoders can
generate informative clusters of embeddings on datasets that were totally unseen to the encoder. In
this work, we perform a zero-shot transfer learning task, evaluating the performance of a suite of
SSL-trained feature encoders across a diverse set of datasets, using different classical clustering
methods. In summary, we make the following contributions:

• We conduct the first investigation into zero-shot clustering of SSL feature encoders, finding
that contrastive and multi-modal SSL approaches can produce meaningful clusters across a
variety of datasets without per-dataset parameter tuning.

• We find that the Agglomerative Clustering method is consistently strong across SSL encoders,
backbones, and datasets—especially on representations reduced with UMAP.
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• We find the Silhouette score in a UMAP-reduced space is highly correlated with the AMI,
and can be a strong proxy of clustering performance without access to ground-truth labels.

2 Experimental Design

We consider the task of zero-shot clustering of feature embeddings obtained from pretrained self-
supervised encoders. The aim of this task is to cluster the feature embeddings from various as-yet
unseen datasets, in a way such that the clusters are intrinsically well-defined and, ideally, match
the ground-truth label assignments. Our feature encoders and clustering methods are only tuned
on data from a single dataset, the commonly used ImageNet-1k (Russakovsky et al., 2015). This
methodology is then deployed on all other tested datasets without re-tuning any of the parameters.

Feature Encoders In order to capture the diverse methodologies within the self-supervised learning
field, we compare methods from the major self-supervised paradigms within computer vision; see
§A.1 for an overview. We choose one representative method per paradigm (below), and compare the
clusterability of their features against a model pretrained with cross-entropy supervision.

• Contrastive Learning: MoCo-v3 (Chen et al., 2021)
• Self-Distillation: DINO (Caron et al., 2021)
• Canonical Correlation Analysis: VICReg (Bardes et al., 2022)
• Masked Image Modelling: MAE (He et al., 2022)
• Multi-Modal Learning: CLIP (Radford et al., 2021)

For each method we consider two common backbone networks: ResNet-50 (He et al., 2016) and
ViT-B (Dosovitskiy et al., 2021) trained on ImageNet-1k, using publicly available checkpoints.
However, note that (1) MAE only supports transformer architectures and so does not have a ResNet-
50 checkpoint; (2) VICReg does not have a pretrained ViT-B checkpoint; and (3) the CLIP model
makes several modifications to the backbone architectures. Furthermore, CLIP was not trained on
ImageNet-1k, instead on a different, non-disclosed, large dataset of paired images and text captions.
We include CLIP nonetheless since it has previously been shown to perform well on zero-shot
classification tasks when supplied with text embeddings of the class names (Radford et al., 2021).

Clustering Methods In order to cluster the feature embeddings, we considered several classical
clustering methods: K-Means (Lloyd, 1982) with K-Means++ initialization Arthur & Vassilvitskii
(2007), Agglomerative Clustering (AC; Everitt et al., 2011), Affinity Propagation (Frey & Dueck,
2007), and HDBSCAN (McInnes & Healy, 2017). These were chosen because they have few
hyperparameters to tune, cover several clustering paradigms (partition, hierarchical, graph-theory,
and density), and include both parametric and non-parametric methods. Since K-Means requires the
number of clusters, we assume that this is known a priori. In contrast, HDBSCAN, AC, and Affinity
Prop. can automatically determine the number of clusters in the data.

Experimental Methodology For each test dataset (see Appendix B), we preprocessed the images
by resizing to 224px and taking a centered 224×224 crop. Images were standardized using the mean
and std. dev. used to train each encoder, then passed through the encoder to create embeddings.

To maximize the performance of the clusterers on each encoder, we conducted a sweep over the
relevant clustering hyperparameters. The sweep was optimized on subsets of the training splits of
ImageNet-1k, Imagenette, and Imagewoof (Howard, 2019). For more details, see §C.2. We then
clustered the generated embeddings with each clusterer, using these discovered hyperparameters.
When using UMAP or PCA, this was fit separately on each dataset. When computing the Silhouette
score, we perform this in the dimensionality-reduced space, not the original embedding space.

3 Experimental Results

We measured the Adjusted Mutual Information (AMI; see §C.1.1) between the annotated classes and
the clusters, tabulated in Table 2a and Table 2b, for ResNet-50 and ViT-B backbones, respectively.
For full details, see §D.1. Across both ResNet-50 and ViT-B, the best performance on ImageNet-1k,
CIFAR-10, and CIFAR-100 (datasets most similar to the training set) is obtained using the encoders
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Figure 1: Average SSL Encoder rank (lower is better). The average rank of each tested SSL encoder
plotted with ± 1 std dev. For both ResNet-50 and ViT-B, an SSL encoder results in the best clustering
but the supervised method also in general produces good clusters.
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Figure 2: Average clustering method rank (lower is better) of each clustering method, ± 1 std dev.
AC performs very well, whether the number of cluster are known a priori (Red) or not (Green).

trained with conventional classification supervision. However, for MNIST and Fashion-MNIST, we
find the SSL encoders are much more competitive, with MoCo-v3 achieving the highest AMI in
all but one case. For the smaller fine-grained datasets (Aircraft, Flowers, NABirds) and SVHN, we
find the multi-modal CLIP encoder achieves the best performance, whilst the supervised network
performs particularly poorly on Flowers.

Comparison of SSL Encoders To directly compare the different pretrained encoders, we rank
each encoder across datasets and clustering methods (Fig. 1). We find MoCo-v3 performs best for
ResNet-50, and CLIP best for ViT-B. Surprisingly, with a ResNet-50 backbone the CLIP method
performs poorly, despite being trained on a much larger dataset. The supervised baseline is the
second-best for both backbones. The DINO self-distillation approach performs well using a ViT-B
backbone, but very poorly with ResNet-50 (the same trend as for CLIP), corroborating Vaze et al.
(2022). Lastly, MAE performed poorly across all datasets, congruent with the observation that
MAE models possess details about the pixel-level of stimuli, but need fine-tuning to perform well at
whole-image classification (He et al., 2022).

Comparison of Clustering Methods We compared the performance of the clustering methods
by ranking each method for each combination of encoder and dataset. As shown in Fig. 2, it is
immediately obvious the best performing clusterer across both backbones is AC with the number of
clusters known a priori. However, we find AC with an unknown number of clusters is competitive,
outperforming K-Means when using a ResNet-50 backbone. HDBSCAN and Affinity Prop. are
consistently the worst performing clusterers considered.

Effect of Dataset Granularity The clustering performance varies on the fine-grained datasets.
While seemingly arbitrary, we find the performance correlates with how fine-grained the datasets
are when considering the proposed granularity measure from Cui et al. (2019). Specifically, we
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Figure 3: AMI–Silhouette scatter plots. The AMI and Silhouette score, S, of each encoder and
clustering method combination are plotted against each other across all datasets, per backbone.

find Aircraft is the most challenging to cluster, while NABirds and Flowers are easier, matching
their coarseness rankings by Cui et al. (2019). These observations echo recent results from Cole
et al. (2022), where it was determined that current SSL methods are unsuitable for fine-grained
tasks. The AMI for SVHN is dramatically lower than all other datasets. We believe this is due to the
large intra-class diversity for each digit and small inter-class diversity, originating from the different
coloured house walls and several digits being visible in each image. In comparison, images in Flowers
have perceptually less variability within classes, and clustering has much higher agreement with the
annotations. Lastly, we find most combinations of encoders and clustering methods perform poorly
on iNat21, due to the large number of species, spanning the entire tree of life (Van Horn et al., 2021).
The exception is AC, where performance is dramatically higher, reaching an AMI of 28.6%.

Correlation between AMI and Silhouette Score In the preceding analysis we focused on AMI,
which measures performance by comparing the predicted clusters with ground-truth labels. However,
in the context of SSL this is problematic since there is no ground-truth available. Therefore, the
intrinsic Silhouette score metric (see § C.1.2), S, calculated from just the predicted clusters is
potentially valuable for evaluation of SSL encoders. We investigated the relationship between AMI
and S by computing the Pearson correlation coefficient between them across all encoder-clusterer
combinations (Fig. 3). We find AMI and S are strongly correlated: high AMI scores have high
Silhouette scores. For a per-dataset breakdown, see §D.4. We find S can be a good proxy when
ground-truth labels are not available, but its effectiveness diminishes when data becomes more
fine-grained and further from the training domain.

4 Conclusion

We empirically investigated how well the feature embeddings produced by pretrained networks
can be clustered in a zero-shot setting. We considered two architectures trained using one of six
methodologies (one supervised, five SSL), on 10 datasets, using five classic clustering methods. We
find it’s possible to create well-defined clusters across nearly all tested datasets, even notoriously
hard fine-grained datasets such as NABirds. In many cases, the performance on novel datasets was
comparable to that on the in-domain ImageNet-1k test set. AC is consistently the strongest clusterer
when the number of clusters is known a priori, and when the number of classes are not known
(using a distance threshold tuned on ImageNet-1k). In contrast, there is not a single overall best SSL
paradigm. Instead, we find the contrastive MoCo-v3 method is the best with ResNet-50, whereas the
multi-modal CLIP approach is the strongest when using a ViT-B backbone.

To cluster embeddings of a novel dataset, we recommend reducing the dimensionality with UMAP
(use 5–100 dims), then applying Agglomerative Clustering. We also show promising results that
Silhouette score can be used to evaluate SSL methods for clustering when no ground-truth is available.

We believe these results shed an important light on the capabilities of SSL trained encoders, high-
lighting they in many cases produce meaningful clusters on new datasets without additional tuning.
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A Related Work

Our work builds upon two broad fields of research: self-supervised learning for computer vision
applications, and unsupervised clustering. We give a general overview of each field.

A.1 Self-supervised learning

Self-Supervised Learning (SSL) has recently received an increasing amount of interest within the
computer vision domain, in part due to its promising results in natural language processing (Brown
et al., 2020). Whilst SSL has a long history of research, the currently dominant methods can be
divided into five general categories as follows (Balestriero et al., 2023). (1) Contrastive Learning
approaches, which build on metric learning, in which embeddings of multiple views of the same
instance are brought together and embeddings from different instances are pushed apart Chopra et al.
(2005); Oh Song et al. (2016); Sohn (2016); Chen et al. (2020); He et al. (2020); Chen et al. (2021).
(2) Self-Distillation approaches, where a student and teacher encoder process an input image with
distinct transforms applied, and the student is tasked with predicting the embeddings of the teacher
(Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Zhou et al., 2022; Oquab et al., 2023). (3)
Canonical Correlation Analysis approaches, where the feature embeddings are analyzed in terms
of the cross-covariance matrix, through mechanisms such as minimizing covariance across feature
dimensions and minimizing correlation across feature embeddings for different inputs (Zbontar et al.,
2021; Bardes et al., 2022; Caron et al., 2020; Ermolov et al., 2021). (4) Masked Image Modelling
approaches, where large parts of the input image are masked out and have to be reconstructed in
image-space (Pathak et al., 2016; He et al., 2022; Bao et al., 2022). (5) Multi-Modal Learning
approaches, where the utilized data consists of different modalities, such as image-text pairs, which
are separately embedded and must be aligned (Radford et al., 2021; Jia et al., 2021).
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A.2 Clustering

Clustering is one of the most common tasks in a large variety of applications and can be defined
as the task of finding local structures that are homogeneous and separated without explicit label
supervision (Everitt et al., 2011). This problem has been studied for centuries resulting in methods
using clustering criteria based on partitioning (Lloyd, 1982; Arthur & Vassilvitskii, 2007), fuzzy
theory (Bezdek et al., 1984), graph theory (Frey & Dueck, 2007; Yu & Shi, 2003), density (Ankerst
et al., 1999; Ester et al., 1996; McInnes & Healy, 2017), hierarchies (Ward, 1963; Sokal & Michener,
1958), and many more (Xu & Tian, 2015). These methods have traditionally necessitated a disjointed
processing pipeline, as the clustering algorithms have been optimized independently of the feature
generators. However, in recent years several methods have been proposed to jointly learn feature
extractors and clustering processes (Pakman et al., 2020; Caron et al., 2018; Tapaswi et al., 2019;
Ronen et al., 2022; Yang et al., 2017; Van Gansbeke et al., 2020).

B Datasets

We evaluate the different permutations of feature encoders and clustering methods on a diverse set
of datasets, detailed in Table 1. These datasets span tasks with differing levels of label granularity,
number of classes and samples, domain shifts, and degree of class imbalance. Out of all these datasets
only the ImageNet training split has previously been observed during training of the feature encoders∗
as well as setting the hyperparameters of the clustering method. All other datasets have not previously
been observed by the model and the considered methods are not tuned in any way on these.

Table 1: Dataset overview. For our zero-shot clustering protocol we consider a diverse set of
experiments of differing levels of task granularity, number of classes and samples, domain shift, and
class imbalance. The reported numbers are on the publicly available test splits. If the test labels are
not publicly available the public validation split is used instead. The class imbalance, ρ, is measured
with the ratio between the number of samples in the largest and smallest classes in the dataset.
Dataset Reference № Samples № Classes ρ Description

ImageNet-1k (Russakovsky et al., 2015) 50,000 1,000 1.00 Diverse general objects
CIFAR10 (Krizhevsky, 2009) 10,000 10 1.00 Diverse general objects
CIFAR100 (Krizhevsky, 2009) 10,000 100 1.00 Diverse general objects
MNIST (Lecun et al., 1998) 10,000 10 1.27 Handwritten digits
Fashion MNIST (Xiao et al., 2017) 10,000 10 1.00 Clothing articles
SVHN (Netzer et al., 2011) 26,032 10 3.20 House numbers
Oxford Flowers (Nilsback & Zisserman, 2008) 6,149 102 11.90 Flower variants
FGVC Aircraft (Maji et al., 2013) 3,333 100 1.03 Aircraft variants
NABirds (Van Horn et al., 2015) 24,633 555 6.67 Bird species
iNaturalist-2021 (Van Horn et al., 2021) 100,000 10,000 1.00 Plant & animal species

C Additional Methodology Details

C.1 Evaluation Metrics

We evaluate the performance of a clustering using two metrics: Adjusted Mutual Information (AMI)
(Vinh et al., 2009) and the Silhouette score (Rousseeuw, 1987). AMI measures the agreement between
the constructed clusters and the ground-truth clustering, while the Silhouette score measures how
well-defined the clusters are irrespective of whether the cluster elements are correctly assigned.

C.1.1 Adjusted Mutual Information

Since we are evaluating the clustering on annotated datasets, we evaluated a candidate clustering
assignment against the “ground-truth” cluster labels, from an information theoretic perspective. The

∗Except potentially the CLIP models, for which we don’t know whether or not it was trained on these
datasets.
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Normalized Mutual Information (NMI) between two label assignments V an U is defined as

NMI(U, V ) =
MI(U, V )

mean(H(U) + H(V ))
, (1)

where MI(U, V ) is the mutual information between label assignments V an U , and H()̇ is the
Shannon entropy of the considered label assignment. NMI is a relative measure of the amount of
information between two label sets, and hence is bounded between 0 and 1 with 1 occurring for a
perfect match, and 0 occurring when there is absolutely no mutual information between the label
assignments.

However, NMI is not corrected for chance so its value can increase merely by increasing the number of
clusters used (Vinh et al., 2009). In order to account for this, we use the Adjusted Mutual Information
metric proposed by Vinh et al. (2009), defined as

AMI(U, V ) =
MI(U, V )− E[MI(U, V )]

mean(H(U) + H(V ))− E[MI(U, V )]
, (2)

where E[MI(U, V )] is the expected value of the mutual information between the considered label
assignments. Similar to NMI, an AMI of 1 represents a perfect agreement between label assignments,
but a score of 0 indicates the typical score for a completely random label assignment (negative AMI
scores are possible).

Among the clusterers we considered, HDBSCAN can identify samples which belong to no cluster
(noise samples). Unless stated otherwise, we consider the noise class to be its own class when
computing the AMI. This unfortunately sets HDBSCAN at a disadvantage, since the samples it
identifies as noise are typically distributed across all ground-truth classes, but is fairer than ignoring
samples it identifies as noise since that would evaluate it only on easier samples.

C.1.2 Silhouette Score

The Silhouette score, S, is a clustering measure based on the intrinsic structure of the created clusters
(Rousseeuw, 1987), defined as

S =
1

N

N∑
i

ai − bi
max(ai, bi)

, (3)

where N is the total number of data points, ai is the average distance between data point i and all
other points assigned in the same cluster, and bi is the average distance from i to all points in the
next nearest cluster. S is bounded between −1 and 1. A score near 0 indicates that clusters are
overlapping, as the data points are equally close to several clusters. A score of 1 indicates that the
clusters are dense with little within-cluster distance, and thereby well-clustered. Negative values may
indicate an inaccurate clustering. Since S is defined based on the relative distances of data points, it
can be computed without reference to a set of ground-truth cluster assignments.

C.2 Hyperparameter Search

In order to maximize the performance of each permutation of the feature encoder and clustering
methods, we conducted a staggered sweep over the relevant clustering hyperparameters. The sweep
was conducted using subsets of the training splits of ImageNet-1k, Imagenette, and Imagewoof
(Howard, 2019). Imagenette and Imagewoof are coarse- and fine-grained subsets of ImageNet-1k,
respectively, with 10 classes each. These datasets were selected to find hyperparameters which were
robust against changing the number of classes and their granularity, whilst only optimizing clustering
performance on data within the encoder’s original training set.

For each of the three datasets, we created a validation set by taking a class-stratified random subset
of the training set, using the same number of samples as appeared in the datasets’ test set (50000,
3925, and 3929 respectively). The same split was used across all encoders, clusterers, and stages
of the hyperparameter search. For Affinity Propagation, it was not feasible to conduct this search
on ImageNet due to compute and memory scaling w.r.t. number of samples; hence we optimized
Affinity Propagation hyperparameters using Imagenette and Imagewoof only.

First, as the curse of dimensionality can negatively affect the performance of the considered clustering
methods (Bellman, 1966), we searched for an appropriate dimensionality reduction process. We
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compared the performance of using the original un-reduced feature embedding space (up to 2048-d)
against applying PCA (Pearson, 1901) or UMAP (McInnes et al., 2018) to reduce the number of dimen-
sions. Specifically, we considered reducing the feature embeddings to [2, 5, 10, 20, 50, 100, 200, 500]
with either PCA or UMAP, and considered reducing the number of dimensions to capture a target
fraction of total variance of the data [0.75, 0.8, 0.85, 0.9, 0.95, 0.98, 0.99]. To perform PCA, we first
took the z-score of each dimension and then used the default hyperparameters of SCIKIT-LEARN
(Pedregosa et al., 2011), without whitening the data. To perform UMAP, we increased the number of
neighbours considered to 30 and decreased the minimum distance to 0, following the recommenda-
tions of (McInnes, 2018); we otherwise used the default hyperparameters of UMAP (McInnes et al.,
2018). In this first stage, we used the default hyperparameters of the clustering methods as defined
in SCIKIT-LEARN. For K-Means and AC, we provided the number of annotated classes within the
dataset (1000 or 10) as number of clusters to produce. For each encoder and clusterer, we took the
average AMI over the three datasets and selected the method which yielded the highest average AMI
(a particular PCA dim, PCA variance, UMAP dim, or no reduction).

We observed that for K-Means, AC, and HDBSCAN, the majority of encoders all performed best with
UMAP-reduced embeddings and were insensitive to the choice of dimension, with minimal change
in mean AMI across the range 5 to 500. Thus for consistency, we selected a 50-dim UMAP reduction
for all encoders/clusterers where UMAP performed best. The MAE-trained ViT-B encoder bucked
this trend and performed poorly with UMAP reduction across all clusterers (and all three datasets).
For Affinity Propagation, PCA outperformed UMAP (as it failed to converge on UMAP-reduced
embeddings); most encoders worked best with a 10-dim PCA reduction.

In the second stage, using the dimensionality reductions per encoder from the first stage, we iterated
over the per-method specific hyperparameters for AC. Continuing to use the “ground-truth” number
of classes as the number of clusters, we evaluated all combinations of distance metric (ℓ1, ℓ2, ℓ∞,
cosine) and linkage method (ward [ℓ2 only], complete, average, single), for 13 options in total. For
each encoder, we selected the metric and linkage which yielded the best average AMI over the three
datasets. The selected options were ℓ2 + ward (5 encoders), ℓ2 + avg (3 encoders), or ℓ∞ + avg (2
encoders).

Thirdly, we tuned the distance threshold to use for each encoder. The distance threshold provides
an alternative stopping criteria for AC so it does not need to know the number of clusters a priori.
For each encoder, we fit the clusterer on each of the 3 datasets for 21 distance thresholds sampled
logarithmically from 0.001 to 5000.0, and then selected the distance threshold which yielded the
highest average AMI.

For Affinity Propagation, we explored the impact of the convergence threshold and damping pa-
rameters, and confirmed the performance on Imagenette and Imagewoof were insensitive to these
parameters.

For HDBSCAN, we noticed that for some encoders it would select very few clusters for Imagenette
and Imagewoof, reducing its performance. We verified, by clustering the full embeddings, that
decreasing the maximum cluster size mitigated this problem. We thus set the maximum cluster size
to be a generous 20% of the number of samples throughout the remainder of the experiments, so as
to ensure HDBSCAN produced more than a couple of clusters but without forcing it to produce a
certain number of clusters.

D Supplementary Results

D.1 Adjusted Mutual Information

We measured the Adjusted Mutual Information (AMI; see §C.1.1) between the annotated classes and
the clusters, shown in Table 2a and Table 2b, for ResNet-50 and ViT-B backbones, respectively∗.

Across both the ResNet-50 and ViT-B backbones, the best performance on ImageNet-1k (the dataset
used for training) and CIFAR-10 and CIFAR-100 (the datasets most similar in their domain to
ImageNet) is obtained using the encoders trained with conventional classification supervision. For
ImageNet, the gap between the supervised and self-supervised methods is especially noticeable, with
a difference of nearly 14 percentage points with the ResNet-50 between the supervised method and

∗Some Affinity Prop. results couldn’t be obtained due poor memory and compute scaling with N samples.
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Table 2: AMI scores of SSL encoders and clustering methods. We report AMI score, as a
percentage, on each dataset (see Appendix B) for each encoder and clusterer. The performance
of Agglomerative Clustering is shown twice: once using the ground-truth num. of classes as the
num. of clusters (AC w/ C), once predicting num. of clusters (AC w/o C). The best combination of
encoder/clusterer per dataset and backbone is bolded; the best encoder per clusterer is underlined.

(a) AMI score (%) with a ResNet-50 backbone.

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

K
-M

ea
ns

Supervised 73 68 51 81 69 5 64 15 39 9
MoCo-v3 48 64 51 86 71 11 80 21 28 4
VICReg 46 53 45 80 70 3 81 16 18 4
DINO 44 49 42 74 64 1 82 18 18 4
CLIP 50 49 40 54 53 1 83 30 42 8

A
C

w
/C

Supervised 73 67 52 82 69 4 64 15 39 9
MoCo-v3 49 64 51 87 70 10 81 20 28 5
VICReg 46 53 45 79 69 1 82 16 19 4
DINO 48 48 42 74 67 1 82 19 21 7
CLIP 50 52 39 81 61 1 86 31 44 10

A
C

w
/o

C

Supervised 64 67 49 74 66 6 57 17 48 22
MoCo-v3 48 64 46 82 68 13 70 17 32 15
VICReg 47 53 43 76 67 5 72 10 26 14
DINO 47 47 40 70 63 3 79 17 25 16
CLIP 50 49 39 76 56 2 83 33 44 23

A
ffi

ni
ty

Pr
op Supervised 69 40 39 44 42 10 53 12 37 –

MoCo-v3 18 38 30 46 45 12 46 15 20 –
VICReg 12 32 25 39 43 6 49 13 18 –
DINO – 31 30 43 41 8 60 17 18 –
CLIP – 36 22 44 41 6 61 25 28 –

H
D

B
SC

A
N Supervised 64 37 43 70 49 6 56 10 28 8

MoCo-v3 34 37 38 77 45 11 76 14 26 5
VICReg 33 30 33 73 49 5 78 12 14 5
DINO 29 28 28 68 44 3 77 13 18 4
CLIP 31 25 22 78 41 3 78 28 29 10

(b) AMI score (%) with a ViT-B backbone.

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

K
-M

ea
ns

Supervised 79 83 65 80 70 1 68 18 38 8
MoCo-v3 60 79 62 83 71 1 81 15 27 6
MAE 19 29 29 48 58 1 46 10 10 1
DINO 67 77 62 81 69 1 89 21 44 9
CLIP 62 79 61 56 61 10 90 40 58 13

A
C

w
/C

Supervised 79 83 66 84 71 2 68 18 39 9
MoCo-v3 61 80 62 84 73 1 81 15 31 10
MAE 24 29 29 59 62 0 53 10 12 2
DINO 68 75 62 83 69 1 90 22 47 15
CLIP 61 80 61 88 69 12 93 43 62 17

A
C

w
/o

C

Supervised 70 79 61 80 67 3 58 18 45 21
MoCo-v3 47 77 55 82 72 1 62 10 30 20
MAE 28 30 26 59 56 2 44 8 18 6
DINO 53 73 49 81 69 1 78 11 36 22
CLIP 57 75 60 75 57 15 89 45 59 29

A
ffi

ni
ty

Pr
op Supervised 22 53 37 45 44 4 43 12 32 –

MoCo-v3 17 49 33 41 46 6 49 12 18 –
MAE 18 26 23 47 43 5 45 10 9 –
DINO 28 45 32 41 45 4 59 16 27 –
CLIP 28 51 32 49 44 16 76 37 42 –

H
D

B
SC

A
N Supervised 72 66 55 71 48 3 62 14 28 10

MoCo-v3 49 62 50 76 48 3 75 11 22 7
MAE 2 4 5 40 31 0 24 3 5 3
DINO 56 58 51 74 45 2 84 15 33 9
CLIP 49 61 48 84 43 13 88 32 46 12
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the best self-supervised method (CLIP). However, for MNIST and Fashion-MNIST, we find the SSL
encoders are much more competitive, with the contrastive MoCo-v3 encoder achieving the highest
AMI in all but one case (MNIST with ViT-B, where CLIP is the best encoder), and the supervised
network outperformed by multiple SSL encoders.

For the smaller fine-grained datasets (FGVC Aircraft, Oxford Flowers, and NABirds) as well as
SVHN we find that the multi-modal CLIP encoder achieves the best performance for both ResNet-50
and ViT-B. The supervised network performs particularly poorly on Oxford Flowers (around 10
percentage points worse than the SSL networks). It is worth noting also that the performance on
the SVHN dataset is dramatically lower than all other datasets. We believe this is due to the very
large intra-class diversity for each digit and small inter-class diversity among digits, originating from
the different colored house walls and several digits being visible in each image. In comparison, the
images in Oxford Flowers have perceptually less variability within classes, and the clustering has
much higher agreement with the annotations for this dataset. Lastly, we find that most combinations
of encoders and clustering methods perform poorly on iNaturalist-21, due to the large number of
considered species (10,000) spanning the entire tree of life (Van Horn et al., 2021). The exception is
AC with unknown amount of clusters where performance is dramatically higher, reaching an AMI of
28.6%.

D.2 Predicted number of clusters

We report the predicted number of clusters for the three clusterers which do not require a number of
clusters to be provided to the clusterer.

As shown in Table 3, the number of clusters predicted is typically a consistent order of magnitude
for a given clusterer and dataset, irrespective of the encoder used. However there is great variability
between clusterers. Affinity propagation predicted a couple of hundred clusters, irrespective of the
dataset. Agglomerative clustering predicted the fewest clusters, even predicting only in the order of
100 clusters for ImageNet-1k, the dataset the encoders were trained on. HDBSCAN varied more in
the number of clusters it predicted, with around the right number of classes being predicted for the
datasets which were comprised of at least 100 classes.

D.3 Silhouette Scores

We report the Silhouette scores for each clustering of the test datasets, shown for ResNet-50 architec-
tures in Table 4 and ViT-B architectures in Table 5.

Our results on the Silhouette score are broadly in line with our main finding on the AMI between
clusterings and annotation targets, reported in §3. For both the ResNet-50 and ViT-B encoders, the
supervised model has the highest Silhouette score by a large margin of 0.25–0.3, but otherwise the
clustering quality across the encoders is very similar, achieving similar Silhouette scores to each
other. There are some exceptions to this, such as the Silhouette scores for MAE which are near 0,
illustrating the intrinsically-poor quality of the clusters it exhibited and hence it is not well-suited to
this task.

Despite the very low AMI scores, we observe the Silhouette scores for SVHN are generally compara-
ble to the Silhouette scores of the other datasets. We believe this is due to the heterogeneity within
the classes in SVHN, where house-numbers can be written in different formats, colours, etc., and
thus the encoded images can be appropriately grouped together, even if the semantic meaning of the
clusters does not correspond to the identity of the digit in the center of the image.

Between the clusterers, K-Means and AC typically achieve the highest Silhouette scores. For
HDBSCAN, the Silhouette scores were often significantly negative. This is because HDBSCAN
builds clusters based on transitions in density, and the non-convex clusters that result from this can
score poor Silhouette scores (a known caveat to this evaluation metric). For Affinity Propagation, we
observe Silhouette scores near 0, indicating the clusters it discovered have high overlap with each
other and are of low quality, corresponding to its poor AMI performance.

D.4 Per-dataset and Per-clusterer Correlation between AMI and Silhouette score

When looking at per-dataset r values, shown in Table 6a, we find that strongest correlations are
obtained for ImageNet, CIFAR-10, CIFAR-100, MNIST and Fashion MNIST. However, for all

14



Table 3: Predicted number of clusters. For each clusterer, we report the number of clusters
generated. We report the ground-truth number of classes in the dataset (Num targets), information
which the clusterer was blinded to.

(a) ResNet-50 backbone.

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21
Num targets 1000 10 100 10 10 10 102 100 555 10 000

A
C

w
/o

C

Supervised 147 12 22 16 15 33 21 9 38 76
MoCo-v3 63 14 19 14 15 32 25 8 28 72
VICReg 70 16 22 16 15 30 29 7 29 69
DINO 84 27 38 26 20 54 54 21 41 64
CLIP 70 28 41 32 27 61 57 31 47 44

A
ffi

ni
ty

Pr
op Supervised 4398 392 459 401 338 1041 340 385 974 –

MoCo-v3 1324 295 348 296 194 839 254 132 536 –
VICReg 1394 320 346 318 231 807 234 130 529 –
DINO – 741 872 754 623 3051 636 371 1507 –
CLIP – 286 366 288 207 696 224 132 632 –

H
D

B
SC

A
N Supervised 1181 228 196 81 178 617 180 98 526 1617

MoCo-v3 1302 222 236 81 214 544 138 114 414 1685
VICReg 1212 225 245 83 180 594 156 115 563 1687
DINO 1163 265 244 87 188 678 148 109 376 1683
CLIP 1072 276 260 57 225 631 148 83 462 1328

(b) ViT-B backbone.

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21
Num targets 1000 10 100 10 10 10 102 100 555 10 000

A
C

w
/o

C

Supervised 226 14 25 13 16 31 20 8 36 78
MoCo-v3 93 16 20 14 11 13 23 6 18 28
MAE 131 26 30 35 27 68 22 10 60 218
DINO 90 8 14 9 9 6 33 5 18 17
CLIP 111 30 71 35 55 125 58 40 78 79

A
ffi

ni
ty

Pr
op Supervised 1456 164 274 261 198 712 223 168 426 –

MoCo-v3 1274 205 293 292 185 756 234 101 440 –
MAE 2009 422 461 400 304 840 355 170 948 –
DINO 1090 246 330 284 201 698 222 98 420 –
CLIP 738 196 314 250 192 617 174 108 566 –

H
D

B
SC

A
N Supervised 1123 118 209 100 209 594 174 92 502 1325

MoCo-v3 1145 105 235 85 171 548 162 97 456 1592
MAE 133 19 21 17 14 51 52 10 50 40
DINO 1142 144 226 77 215 634 152 110 477 1555
CLIP 968 138 237 40 231 630 128 142 449 1390

fine-grained datasets (except Flowers) the strength of the correlation drops dramatically. For SVHN
the metrics are not correlated at all, since AMI was very low across all models, irrespective of S.
Looking at the per-clustering method results, see Table 6b, we find that the AMI and S metrics
are strongly correlated for the Agglomerative Clustering and HDBSCAN methods, while Affinity
Propagation is very weakly correlated when using a ResNet-50 backbone.
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Table 4: Silhouette scores, with ResNet-50 backbone. We report the Silhouette score, on each tested
dataset (see Table 1) for each combination of SSL encoder and clustering method. The performance
of Agglomerative Clustering is shown twice, either using the ground-truth number of classes as
the number of clusters to generate (AC w/ C), or predicting the number of clusters (AC w/o C).
The hyperparameters of the clustering methods are only tuned on ImageNet-1k (IN1k). The best
combination of SSL encoder and clustering method per dataset and backbone is highlighted in bold,
while the best SSL encoder per clustering method is underlined. We also present the Silhouette scores
attained for the embeddings using the “ground-truth” classes as per the dataset annotation (G.T.).

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

G
.T

.

Supervised 0.59 0.46 0.38 0.58 0.57 0.20 0.45 0.30 0.32 0.24
MoCo-v3 0.36 0.44 0.37 0.78 0.60 0.24 0.55 0.31 0.29 0.22
VICReg 0.34 0.35 0.34 0.66 0.61 0.25 0.60 0.31 0.26 0.22
DINO 0.33 0.32 0.29 0.48 0.55 0.21 0.57 0.29 0.26 0.21
CLIP 0.34 0.37 0.28 0.68 0.49 0.23 0.63 0.34 0.29 0.19

K
-M

ea
ns

Supervised 0.65 0.49 0.39 0.69 0.61 0.32 0.47 0.30 0.32 0.24
MoCo-v3 0.38 0.47 0.37 0.80 0.62 0.33 0.55 0.31 0.29 0.22
VICReg 0.38 0.38 0.34 0.69 0.62 0.31 0.60 0.31 0.27 0.22
DINO 0.35 0.39 0.31 0.54 0.57 0.30 0.57 0.31 0.27 0.22
CLIP 0.03 0.05 0.01 0.10 0.12 0.05 0.09 0.02 0.03 0.00

A
C

w
/C

Supervised 0.65 0.47 0.37 0.68 0.59 0.27 0.45 0.29 0.30 0.23
MoCo-v3 0.36 0.44 0.33 0.78 0.60 0.26 0.57 0.29 0.26 0.21
VICReg 0.36 0.35 0.32 0.66 0.61 0.26 0.61 0.30 0.24 0.22
DINO 0.33 0.36 0.28 0.55 0.55 0.21 0.60 0.28 0.25 0.20
CLIP 0.34 0.37 0.28 0.68 0.49 0.25 0.64 0.34 0.28 0.19

A
C

w
/o

C

Supervised 0.48 0.46 0.45 0.48 0.55 0.20 0.44 0.39 0.43 0.31
MoCo-v3 0.32 0.40 0.39 0.67 0.56 0.22 0.49 0.36 0.32 0.26
VICReg 0.32 0.33 0.38 0.58 0.55 0.20 0.50 0.39 0.32 0.27
DINO 0.32 0.27 0.31 0.41 0.50 0.19 0.59 0.29 0.30 0.28
CLIP 0.41 0.30 0.33 0.43 0.40 0.20 0.65 0.34 0.39 0.33

A
ffi

ni
ty

Pr
op Supervised 0.11 0.00 0.01 0.03 0.01 0.01 0.03 −0.01 0.01 –

MoCo-v3 0.07 0.08 0.08 0.09 0.10 0.07 0.10 0.09 0.08 –
VICReg 0.07 0.07 0.08 0.09 0.10 0.07 0.11 0.10 0.08 –
DINO – −0.01 −0.01 0.00 0.01 −0.01 0.03 0.01 0.00 –
CLIP – 0.08 0.07 0.09 0.10 0.07 0.12 0.10 0.07 –

H
D

B
SC

A
N Supervised 0.42 −0.27 0.01 0.31 0.03 −0.48 0.14 −0.19 −0.25 −0.41

MoCo-v3 −0.11 −0.28 −0.13 0.52 0.00 −0.52 0.40 −0.18 −0.02 −0.43
VICReg −0.12 −0.35 −0.15 0.47 0.04 −0.50 0.46 −0.15 −0.28 −0.43
DINO −0.19 −0.34 −0.22 0.32 −0.05 −0.46 0.43 −0.24 −0.11 −0.49
CLIP −0.19 −0.35 −0.21 0.37 −0.08 −0.45 0.47 0.04 −0.24 −0.36
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Table 5: Silhouette scores, with ViT-B backbone. As for Table 4, except for encoders with ViT-B
backbones instead of ResNet-50.

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

G
.T

.

Supervised 0.74 0.70 0.50 0.71 0.58 0.23 0.49 0.28 0.33 0.24
MoCo-v3 0.49 0.60 0.41 0.70 0.59 0.27 0.60 0.31 0.28 0.20
MAE −0.22 0.02 0.02 0.04 0.03 0.03 0.04 0.03 0.02 −0.07
DINO 0.58 0.58 0.44 0.67 0.62 0.36 0.69 0.30 0.35 0.23
CLIP 0.43 0.63 0.41 0.75 0.58 0.24 0.72 0.39 0.39 0.19

K
-M

ea
ns

Supervised 0.81 0.71 0.51 0.71 0.58 0.30 0.51 0.29 0.33 0.24
MoCo-v3 0.53 0.65 0.46 0.70 0.59 0.32 0.60 0.31 0.29 0.23
MAE 0.03 0.07 0.05 0.12 0.16 0.10 0.06 0.05 0.04 0.02
DINO 0.59 0.59 0.45 0.67 0.59 0.36 0.69 0.30 0.34 0.23
CLIP 0.06 0.10 0.06 0.12 0.12 0.05 0.13 0.05 0.04 0.01

A
C

w
/C

Supervised 0.81 0.70 0.50 0.74 0.65 0.24 0.49 0.26 0.31 0.24
MoCo-v3 0.49 0.60 0.41 0.72 0.61 0.26 0.60 0.27 0.25 0.20
MAE 0.01 0.03 0.01 0.07 0.10 0.04 0.03 0.03 0.01 0.02
DINO 0.58 0.57 0.44 0.68 0.66 0.31 0.71 0.30 0.36 0.23
CLIP 0.43 0.63 0.41 0.75 0.58 0.26 0.74 0.39 0.37 0.19

A
C

w
/o

C

Supervised 0.60 0.69 0.53 0.64 0.56 0.23 0.42 0.37 0.46 0.35
MoCo-v3 0.37 0.53 0.47 0.62 0.63 0.27 0.46 0.45 0.41 0.42
MAE −0.00 0.01 0.01 0.04 0.05 0.01 0.01 0.06 0.01 −0.01
DINO 0.47 0.58 0.41 0.67 0.65 0.36 0.59 0.43 0.50 0.44
CLIP 0.42 0.44 0.40 0.43 0.42 0.21 0.77 0.39 0.44 0.34

A
ffi

ni
ty

Pr
op Supervised 0.06 0.11 0.09 0.10 0.10 0.07 0.10 0.09 0.11 –

MoCo-v3 0.07 0.09 0.09 0.09 0.10 0.07 0.11 0.10 0.09 –
MAE 0.02 0.02 0.02 0.04 0.03 0.03 0.04 0.03 0.02 –
DINO 0.08 0.09 0.08 0.09 0.10 0.07 0.12 0.09 0.08 –
CLIP 0.07 0.11 0.09 0.11 0.11 0.08 0.15 0.12 0.09 –

H
D

B
SC

A
N Supervised 0.67 0.35 0.17 0.37 −0.02 −0.47 0.25 −0.21 −0.16 −0.32

MoCo-v3 0.17 0.12 0.03 0.42 0.07 −0.51 0.42 −0.17 −0.17 −0.42
MAE −0.24 −0.24 −0.17 −0.14 −0.14 −0.30 −0.18 −0.14 −0.22 −0.16
DINO 0.28 0.14 0.06 0.50 0.01 −0.47 0.55 −0.18 −0.04 −0.38
CLIP 0.16 0.21 0.02 0.56 −0.01 −0.40 0.66 0.09 −0.02 −0.41

Table 6: AMI and Silhouette score correlations. We compute the Pearson correlation between the
AMI and S metrics for each dataset and each clustering method.
(a) Per-dataset correlation coefficients. A clear correlation is determined for the ImageNet, CIFAR, and
MNIST style datasets. In contrast, the majority of the fine-grained datasets have a weaker correlation, except for
Oxford Flowers, while SVHN is completely uncorrelated.

Backbone IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21
ResNet-50 0.82 0.89 0.76 0.95 0.97 −0.10 0.75 0.28 0.40 0.40
ViT-B 0.91 0.87 0.82 0.95 0.91 −0.09 0.84 0.33 0.57 0.51

(b) Per-clusterer correlation coefficients. A strong correlation is determined for Agglomerative Clustering and
HDBSCAN. Affinity Propagation exhibits the weakest correlation with a ResNet-50 backbone, but achieves a
much stronger correlation with a ViT-B backbone.

Backbone K-Means Affinity Prop AC w/ C AC w/o C HDBSCAN

ResNet-50 0.61 0.15 0.91 0.86 0.94
ViT-B 0.60 0.55 0.82 0.66 0.94
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