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a b s t r a c t

Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) allow users to use brain signals
to control external instruments, and movement intention detecting BCIs can aid in the rehabilitation
of patients who have lost motor function. Existing studies in this area mostly rely on cue-based
data collection that facilitates sample labeling but introduces noise from cue stimuli; moreover, it
requires extensive user training, and cannot reflect real usage scenarios. In contrast, self-paced BCIs
can overcome the limitations of the cue-based approach by supporting users to perform movements
at their own initiative and pace, but they fall short in labeling. Therefore, in this study, we proposed
an automated labeling approach that can cross-reference electromyography (EMG) signals for EEG
labeling with zero human effort. Furthermore, considering that only a few studies have focused on
evaluating BCI systems for online use and most of them do not report details of the online systems,
we developed and present in detail a pseudo-online evaluation suite to facilitate online BCI research.
We collected self-paced movement EEG data from 10 participants performing opening and closing
hand movements for training and evaluation. The results show that the automated labeling method
can contend well with noisy data compared with the baseline labeling method. We also explored
popular machine learning models for online self-paced movement detection. The results demonstrate
the capability of our online pipeline, and that a well-performing offline model does not necessarily
translate to a well-performing online model owing to the specific settings of an online BCI system.
Our proposed automated labeling method, online evaluation suite, and dataset take a concrete step
towards real-world self-paced BCI systems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A brain–computer interface (BCI) aims to translate brain ac-
ivities into commands to communicate with or control external
evices. Brain activity can be reflected by voltage fluctuations
rom the scalp and obtained from electrodes placed on the scalp
s an electroencephalogram (EEG). Among the various types of
CIs, the EEG-based BCI is one of the most attractive because of
ts zero clinical risk, portability, and cheap instrumentation [1,2].
he use of EEG-based BCIs to detect a participant’s motor in-
ention has been intensively studied to help patients suffering
rom movement impairments because of neurological injuries or
iseases to restore their motor capacity [3–5].
Machine learning models are key components of many biom-

dical and health applications [6–8] including EEG-based BCIs
9–11]. To obtain a reliable machine learning model, it is manda-
ory to train the model with massive EEG data and corresponding

∗ Corresponding author.
E-mail address: kchen@cs.aau.dk (K. Chen).
ttps://doi.org/10.1016/j.knosys.2023.110383
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
labels. The most widely used paradigm for collecting EEG data
is cue-based because of its simple labeling procedure. Specifi-
cally, participants followed a timed auditory or visual cue from
an external device to execute movement intention [12,13]. This
makes it easy to detect the time points that signify the movement
intention, labeling the EEG data accordingly. However, it may
also lead to associations between afferent stimuli from timed
cues and motor cortical activities [14], which do not map well to
real-world BCIs where patients do not follow visual or auditory
cues to initiate movement intention. Furthermore, patients with
cognitive and perceptual deficits that impede their ability to react
to cues may have difficulty using cue-based methods [14], which
require extensive training of patients to respond to cues.

In contrast, the self-paced approach allows participants to
perform movements at their own initiative and pace to closely
approximate real-world scenarios. The movement-related cortical
potential (MRCP) is the most promising cortical paradigm used in
self-paced approaches [1], which naturally occurs in EEG signals
approximately 2 s before the point of movement intention or ex-
ecution [15]. The MRCPs are elicited in the same way for healthy
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nd non-healthy participants and for movement execution and
ntention. These characteristics simplify the EEG collection pro-
ess by using the EEG signals for movement execution from
ealthy participants. In this study, we focused on using MRCPs
or self-paced EEG movement execution detection.

Considering this, electromyography (EMG) signals are com-
only recorded along with EEG signals from participants to serve
s timing cues for marking movements in EEG signals. EMG
ignals were recorded from skeletal muscle activities using non-
nvasive electrodes placed on top of the activated muscle on
participant’s skin during movement execution. The resulting

ignals capture the muscle activity during the participant’s move-
ents. These signals can then be cross-referenced with the EEG
ignals to distinguish between rest and movement in EEG signals,
nd thus provide labels for training machine learning models.
he process is currently performed manually, making it prone to
uman errors and difficult to apply to large volumes of data [16].
his shortcoming severely limits the extensive research and de-
elopment of the self-paced approach.
Moreover, most existing EEG studies are based on offline eval-

ations, where the results are summarized based on discrete
EG segments. This is different from real-world/online scenarios,
here a BCI instantaneously receives continuous EEG signals
nd translates them into commands instantaneously. A common
cheme of a reliable online BCI [16] is to first slice the continued
EG signals into discrete segments, obtain the detection results
rom the discrete EEG segments, and make the final decision
ased on a series of consecutive detection results. For example,
f n consecutive detection results of discrete segments indicate
ovements, where n is an empirically determined parameter, the

inal decision would be recognized as movement; otherwise, it
ould be recognized as rest. This type of scheme is intended to
chieve a low false positive (FP) rate because in practical applica-
ions, false positive detection can lead to undesired movements,
hich in turn may cause unwanted and potentially dangerous
ituations. In addition, online BCIs typically have a higher toler-
nce for error detection. For instance, a slightly later movement
etection (c.f. onset) is also acceptable and should be considered
successful detection because the cortical potentials of brain

ctivity vary in duration. Therefore, an offline evaluation does
ot necessarily reflect the real performance or usability in real,
nline use cases. However, research on online BCIs is rare owing
o their complex settings and the lack of a common pipeline;
oreover, many current studies with online exploration do not
ffer concrete details [17].
Considering the above limitations of the current research, we

ropose an automated labeling method for self-paced EEG move-
ent detection and design a generic pipeline for pseudo-online
valuation. The automated labeling approach is a threshold-based
lustering algorithm that first recognizes EMG signals of move-
ent via dynamic thresholds, and then clusters these signals
ccording to their temporal proximity. Finally, close clusters are
erged and outliers are removed to refine the clustering results.
he process is repeated to achieve satisfactory results. The result-
ng movement clusters are used to cross-reference the movement
nsets of the recorded EEG signals, thus enabling automated EEG
ample labeling. We collect EEG data of self-paced movement
rom 10 healthy participants and label samples with the proposed
utomated labeling method. The quantitative and visualization
esults demonstrate the effectiveness of the proposed automated
abeling approach. Then, we present a detailed pseudo-online
valuation pipeline that simulates a real online BCI system with
he techniques of preprocessing buffer, dwell heuristic, and freez-
ng procedure for system robustness. We explore popular ma-
hine learning models for self-paced movement detection using

ur pseudo-online evaluation pipeline. The experimental results

2

demonstrate the capabilities of our pipeline and indicate that
offline evaluation conclusions do not necessarily reflect online
results, especially considering the detection latency of online BCI.

The main contributions of this paper are summarized as fol-
lows:

• We have made our self-paced movement detection dataset
publicly available1 for future research in this community. It
contains simultaneously recorded EEG, EMG, and electroocu-
lography (EOG) data from 10 healthy participants as they per-
form self-paced hand opening and closing movements by mim-
icking the control of a robotic soft glove. Rather than follow-
ing a specified cue in most existing cue-based datasets, the
participants move at their own pace and will.
• We have proposed an automated labeling method for self-

paced movement EEG signals. Instead of using a manual thresh-
old, we have designed a threshold-based clustering algorithm
to detect and cluster movement within EMG signals. The de-
tected movement clusters have been cross-referenced to EEG
signals for movement onset labeling. This can address the bot-
tleneck of expanding the self-paced movement detection re-
search.
• We have attempted to fill the gap in online BCI research by

developing a pseudo-online evaluation pipeline, which will
simulate real BCI systems and facilitate online BCI research.
We have further investigated different machine learning mod-
els for online movement detection to validate the proposed
pipeline and present the difference between the online and
offline results.

Section 2 describes the details of the equipment setup and
data collection process; Section 3 presents the automated EEG
labeling approach; Section 4 introduces the online evaluation
suite; Section 5 reports the experiment results; Section 6 cov-
ers discussion of the findings of this paper; finally, Section 7
concludes the whole paper.

2. Data collection

This section describes the setup and procedure of our self-
paced EEG data collection. Fig. 1 gives an overview of the key
components of the procedure.

2.1. Instrumentation setup

We used the g.GAMMAsys system (g.tec GmbH, Austria) to
collect EEG data. It has a g.GAMMAcap placed on the partici-
pant’s head (see Fig. 1(A) rest position), which is connected to
a g.USBamp amplifier via a g.GAMMAbox. The g.GAMMAcap has
nine EEG electrodes – T7, C5, C3, C1, Cz, C2, C4, C6, and T8 –
following the international standard 10–20 system (see Fig. 1(B)).
The ground electrode was placed at AFz, and the reference elec-
trode was placed on the left earlobe at A1. We used Fp1 to record
EOG signals to detect eye-movement artifacts. EMG signals were
recorded alongside the EEG signals using an EMG electrode placed
on the forearm with a reference electrode (cyan) on the wrist and
a ground electrode (red) on the lateral epicondyle of the elbow of
the participant’s dominant arm, as shown in Fig. 1(B). The EMG
electrodes were also connected to the g.USBamp amplifier. We
selected the EMG electrode placements as they can well capture
the movement of the activated muscles when performing the
movement tasks [16]. All EEG and EMG electrodes were filled
with conductive gel to ensure good contact between the skin and
the electrodes. We recorded all signals with a sampling rate of
1200 Hz without using the embedded filtering of the amplifier.

1 https://github.com/P9-MI-BCI/mind-reading-and-control

https://github.com/P9-MI-BCI/mind-reading-and-control
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Fig. 1. Overview of the experimental setup for data collection. (A) Movement (open and close) and reset setup. (B) EEG and EMG electrode placement. EEG electrode
placement follows the international standard 10–20 system. The nine used EEG electrodes are marked with blue, the reference electrode with cyan, the EOG electrode
with yellow, and the ground electrode with red. EMG electrode layout is shown with the ground electrode on the elbow, the main electrode on the forearm, and
the reference electrode on the wrist, following the same color scheme. (C) Timeline for the execution of a single movement during data collection. (D) Illustration
of training and test traces. We record 20 traces of training data and 2 traces of online test data for each subject resulting in 400 movements and 40 movements,
respectively. We additionally record one trace of rest.
e
c
e

We recorded signals from the opposite hemisphere of the
ominant part of the motor cortex by placing electrodes on
ither side of the longitudinal fissure. The symmetrical electrode
lacement along the mid-scalp allowed us to record from both
eft- and right-handed participants without changing the layout.

.2. Participants

We recorded data from 10 participants, consisting of eight
ales and two females, with an average age of 24 ± 1.25. Nine
articipants were right-handed and one participant was left-
anded. All participants were healthy and without any known
eurological disorders. None of the participants were acquainted
ith BCI systems or had any prior experience with the data
ollection procedure. All participants agreed to the collection of
ata.

.3. Data recording

Before data recording, the participants were instructed to
omfortably sit in a chair in front of a table with the dominant
rm resting on the table (see Fig. 1(A)). Then, we instructed the
3

subjects to execute movement tasks. During data recording, the
participants executed movements in a self-paced manner without
excess external communication, and all instructions were given
prior to the recording.

For the recording of training data, a participant executes the
movement (either opening or closing a hand) for approximately
2 s and rests for at least 5 s each movement (see Fig. 1(C)).
Participants do not consciously count seconds or focus on main-
taining a constant pace. Conversely, we monitor the speed and
number of movements of a participant, and subsequently indicate
to the participant when the halfway mark is reached and when a
trace is complete. We also instructed the participants not to blink,
swallow, or exercise other facial muscles to minimize artifacts
within the EEG signals while executing the movements. We asked
the participants to perform such motions while being in the rest
position between movement task executions. They were allowed
to hold a small break of 1–5 min after each trace. An extended
break was provided after 12 traces before continuing with the
rest of the traces. From each participant, we recorded 20 traces,
ach of which consisted of 20 movements of a single type, either
losing or opening of a hand (see Fig. 1(D), Training data). Thus,
ach participant executed 200 opening and closing movements,
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Fig. 2. Movement detection from EMG: preprocessing and clustering of the EMG signals of movement. (1) First, the raw EMG signal is bandpass filtered at 30–300 Hz
using a sixth-order Butterworth filter. Then, the signal is rectified with TKEO and lowpass filtered at 50 Hz before being passed on to the clustering algorithm. (2)
The clustering algorithm calculates a threshold to recognize movement signal points from EMG, which are clustered based on proximity. We then remove outlier
clusters and perform normalization. This process, denoted by the gray dashed arrows, iterates until the expected number of clusters is identified.
respectively, for training data recording. Moreover, we recorded
1 min of rest, during which subjects did not execute any move-
ments. For the recording of test data, participants alternately
executed the opening and closing movements of hand in a trace.
The other instructions were the same as those for the training
data recording. Each subject recorded two test traces consisting
of 40 movements in total (see Fig. 1(D), Online test data).

In summary, the dataset includes three classes: opening a
and, closing a hand, and rest. In this study, we considered the
pening and closing of hand as a single movement class and
erformed binary classification of the brain-switch case [15,16]
hat reflects the opposing states of an external device.

. Automated labeling

In the cue-based approach, data are labeled at the cue’s po-
ition regardless of whether the participant has executed the
ovement at the specified timed cue, leading to the misalign-
ent of the movement in the training samples. Our self-paced
ethod records EMG signals from the skeletal muscle activity
long with EEG signals, which allows us to detect when the move-
ents are actually executed and align them with the EEG signals.
herefore, in this section, we propose an automated EEG labeling
ethod consisting of a first phase to detect the movement from
MG and a second phase to label EEG signals with an identified
ovement onset.

.1. Movement detection from EMG

Fig. 2 shows an overview of the movement detection process
sing the EMG. The movements were characterized as localized
ursts in the EMG signals (see Fig. 2, raw EMG). In this figure, the
aw EMG signal drifts as the signal recording proceeds and con-
ains considerable noise. Therefore, we first conditioned the raw
MG signals to improve the signal-to-noise ratio (SNR) and then
etected movements using our proposed clustering algorithm.

.1.1. EMG preprocessing
Following the existing work [18], we proposed three steps

or EMG preprocessing. Specifically, we first applied a sixth-
rder Butterworth bandpass filter at 30–300 Hz to eliminate the
4

baseline drift and movement artifacts in the raw EMG signals.
Then, we applied the Teager–Kaiser energy operator (TKEO) rec-
tification to enhance the SNR. TKEO [19,20] is the key to the
preprocessing step. It considers both the amplitude and frequency
of motor unit action potentials as follows [18]:

x̂t = x2t − xt+1 · xt−1, (1)

where xt is the EMG amplitude at time t . Finally, we applied
a second-order Butterworth low-pass filter at 50 Hz to reduce
high-frequency noise.

3.1.2. Movement detection via clustering
We proposed a clustering approach for movement detection

from preprocessed EMG (see Fig. 2, right). It uses a dynamic
threshold to recognize the EMG signals of movement and then
clusters nearby EMG movement signals to indicate complete
movement instances. A movement instance is a period of con-
secutive signals of the movement during which a participant is
executing a movement task, either opening or closing.

Recognize EMG signals of movement On the preprocessed
EMG signals, we generated a dynamic threshold as follows:

thld = 1.2µ+ 2σ , (2)

where µ is the mean and σ is the standard deviation of a trace
of the EMG signals. We used this threshold to recognize the EMG
signals that should be considered as movements. If a signal point
was larger than the threshold, it was regarded as a signal of
movement.

Cluster EMG signals of movement. After obtaining the move-
ment signals, we clustered nearby signals to recognize complete
movement instances. Specifically, we checked the time interval
between two consecutive movement signal points. If the time
interval is less than a distance parameter d, we added the sig-
nal point to the cluster currently being formed; otherwise, we
considered the signal point as the first signal point of a new
cluster. We estimated d based on the data collection process,
which is approximately 5 s. Then, we gradually adjusted d until
we detected approximately 20 clusters.

However, the detected clusters are not necessarily correct;
therefore, we further apply a proximity heuristic to refine the
detected clusters. We merged two close clusters into a single
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luster. The distance between the end of a cluster and the start
f the next cluster was calculated for every cluster in the trace.
his process merges any two clusters that are less than 50% of the
edian distance.
Outlier removal and normalization. Although we performed

reprocessing to remove noise and artifacts, some outliers still re-
ained. Therefore, we proposed removing outlier clusters based
n their relative sizes (i.e., the number of movement signal points
n the cluster). Specifically, we removed the clusters that were
maller than 10% of the median cluster size. The 10% value was
mpirically determined through testing.
Then, we normalized the clusters by reducing any cluster

hose peak, which is the highest rectified signal point in terms of
mplitude, was larger than the median value of the first quantile
Q1) of all the clusters’ peaks. This was repeated until all the
lusters’ signal points are less than Q1. We performed normal-
zation to reduce the amplitude discrepancy in the signal. This
s particularly beneficial in the test traces, where opening and
losing movements are present in the same trace. These move-
ents present different amplitudes on the muscle from which we

ecorded the EMG signals.
Rerecognize and recluster signals of movement. As shown

n Fig. 2, we used the normalized EMG signals to recognize the
ew threshold for movement detection and performed clustering
gain. However, we skipped the outlier removal and normaliza-
ion in subsequent iterations. This process allows the clusters to
ncapsulate more of a movement, usually more of the start and
nd of the movement. Finally, different movement instances are
dentified from the EMG as shown in Fig. 2, where different colors
ndicate different movement instances in the top right schematic.
lgorithm 1 shows the entire process of EMG signal clustering
rocess for movement detection.

.2. EEG labeling

After the EMG signals of movement were obtained, we labeled
he EEG signals to create training samples with movement onset.
e used the movement onset, which is the first data point in
movement instance (see Fig. 3), to denote a movement. The
RCP naturally appears along with movement initiation, making

he movement onset the desirable annotation point. As shown
n Fig. 3, we introduced a sliding window with a size of 2 s
nd a sliding step of 100 ms. This window size ensures that
e can cover the expected parts of the MRCP at the movement
nset. Whenever the sliding window intersects with a movement
nset, we labeled the entire sliding window as a movement and
onsidered it a movement sample. Thus, we created a total of 20
i.e., sliding window size/step) movement samples per recognized
ovement instance.

. Online evaluation

Most current EEG-based BCI studies rely on offline evaluations,
hich mainly test the accuracy of machine learning models or

eature extraction approaches. However, this does not necessarily
eflect the actual performance of a BCI system. On the other hand,
raditional online evaluation depends on participants undergoing
dditional tests and requires more effort by the technicians. Ad-
itionally, studies based on public datasets may not have access
o the same equipment used to collect the data; hence, they
annot evaluate their BCI in an online setting. Therefore, we pro-
osed a pseudo-online evaluation suite that mimics the real-time
rocedure in which movement detection was performed using
ontinuous data. Fig. 4 shows the schematic of our pseudo-online
valuation pipeline.
5

Algorithm 1 Movement Detection via Clustering

Input: a trace of preprocessed EMG signals X = {x̂} and
associated time stamps T = {t}

utput: time stamps of EMG movement instances TL
# Recognize EMG points of movement

1: thld = 1.2µ(X)+ 2σ (X) ▷ calculate the threshold
2: Xm ← [] ▷ initialize an empty list of signal points of movement
3: Tm ← [] ▷ initialize an empty list of associated time stamps
4: for x, tinX, T do
5: if x > thld then ▷ find signal points of movement
6: Xm.insert(x), Tm.insert(t)
7: end if
8: end for ▷ return Xm and Tm

# Cluster EMG signals of movement
9: L, TL ← [], [] ▷ initialize empty lists of movement instances

10: C, TC ← [Xm[0]], [Tm[0]] ▷ initialize a candidate movement instance
11: i = 0
12: while i < len(Xm) do
13: if Tm[i+ 1] − Tm[i] < d then ▷ form an instance by proximity
14: C .insert(Xm[i+ 1]), TC .insert(Tm[i+ 1])
5: else ▷ end the current movement instance
6: L.insert(C), TL.insert(TC )
7: C, TC ← [Xm[i+ 1]], [Tm[i+ 1]] ▷ start a new movement

instance
8: end if
9: i = i+ 1
0: end while ▷ return L and TL

# Merge close movement instances
1: median← 0.5 · median({TL[i+ 1]start − TL[i]end})
2: i = 0
3: while i < len(L) do
4: if TL[i+ 1]start − TL[i]end < median then
5: L[i].append(L[i+ 1]), TL[i].append(TL[i+ 1])
6: end if
7: i = i+ 1
8: end while ▷ return L and TL

# Outlier removal and normalization
9: size← 0.1 · median({len(L[i])})
0: i = 0
1: while i < len(L) do
2: if len(L[i]) < size then ▷ outlier detection by size
3: L.delete(L[i]), TL.delete(TL[i])
4: end if
5: i = i+ 1
6: end while ▷ return L and TL
7: while ∀L[i], L[i]peak > Q1 do

▷ Q1 = median value of first quartile of {L[i]peak|C ∈ L}
8: L[i] ← 0.5 · L[i] ▷ normalization by first quartile
9: end while ▷ return L and TL
0: repeat line 1 to line 28 with updated X from L

4.1. Evaluation pipeline

As shown in Fig. 4, the proposed pseudo-online evaluation
pipeline has two components: data preparation and movement
detection. In the data preparation component, compared to of-
fline evaluations in which the entire EEG trace is acquired at once,
the EEG data was incrementally generated for the online evalu-
ation. Considering this, we implemented a data buffer to store a
segment of the input EEG data and to process the buffered data.
Specifically, we incrementally accumulated data in the buffer and
updated it with increments at the tail every 100 ms as the buffer
moved forward (see Fig. 4). For the preprocessing, we performed
a second-order Butterworth band-pass filter at 0.5–4 Hz on the
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Fig. 3. EEG labeling with a sliding window. When the sliding window intersects
ith the movement onset, it is labeled as movement otherwise rest.

uffered data. This filter corresponds to the delta band, where the
ominant frequency range of the MRCP lies. We also performed
ormalization on the filtered data as the last preprocessing step.
hen a buffer of preprocessed data is ready, we applied a sliding
indow of 2 s at the frontier of the data buffer for the subsequent
ovement detection.
If the preprocessing of the buffered data takes longer than

he buffer update speed (i.e., 100 ms), the system cannot operate
n real time. Thus, the data buffer length is a tradeoff between
iltering the signal uniformly and processing the signal within
he time constraint of buffer update speed. A data buffer that is
onsiderably short may not capture enough data to represent the
ntire trace. In contrast, a data buffer that is considerably long
ould increase the computational complexity, resulting in a pre-
rocessing time longer than the buffer update speed. Therefore,
hrough empirical evaluation, we set the buffer size to be 20 s,
hich can sufficiently handle both sides of the tradeoff.
For the movement detection component, we set two prereq-

isites before performing detection. First, we detected whether
xists a blink exists within the sliding window using the EOG
ignal [21]. Blinks are known artifacts that distort the EEG signals,
aking it challenging for the classifier to detect MRCPs [22].
hen a blink is detected in the sliding window, the movement
etection is stopped until the blink is no longer in the current
liding window. Second, we checked whether the system is in the
reezing time, which is a period during which the system executes
redefined commands after a movement is detected. We consid-
red a BCI-based soft glove control system as an example. When a
ovement is detected, the soft glove is closed and remains closed

or a period of time (i.e., the freezing time), during which the
ata buffer continues to be updated but the movement detection
s suspended. After the freezing time, the system would resume
etecting the next movement to open the glove.
After checking the two prerequisites, the data are fed into the

ovement detection algorithm. We proposed a dwell heuristic to
etermine this movement. In particular, we counted the number
f detected movements in a sequence of detection attempts; if
t exceeds a threshold, a movement is determined, as shown in
ig. 4. The design of the dwell heuristic has two considerations:
1) if every movement detection triggers a movement execution,
he system would be too sensitive; (2) the dwell heuristic would
educe the false execution rate because the machine learning
etector accuracy cannot be 100%. Our dwell heuristic considers
detection queue (DQ) of the 10 most recent detection attempts.
he threshold is called a dwell parameter, which is a means of

djusting the tradeoff between sensitivity and specificity. A small

6

dwell parameter triggers movement execution more frequently,
increasing the true detection rate and making the system sus-
ceptible to a higher false detection rate. However, a large dwell
parameter may reduce the false detection rate but result in more
missed movements.

4.1.1. Dwell parameter calibration
Setting a proper dwell parameter is nontrivial. We performed

an automatic dwell parameter calibration prior to the actual
online evaluation on two unseen recorded training traces from
a specific participant. We used the median dwell parameter of
the DQ for all detections within which there is expected to be a
movement. Algorithm 2 presents the dwell-parameter calibration
procedure. For each DQ, we have a corresponding label queue
(LQ) that holds the ground truth for each detection. The inputs
Ŷ and Y correspond to the chronological instances of the DQ and
Q, respectively. If a detection interacts with a movement onset,
t is denoted as 1; otherwise, it is 0. If all detections in an LQ are 1,
e counted and summed the detections in the corresponding DQ
lines 3–4 in Algorithm 2). The detected movement median of the
ligible DQ is used as the dwell parameter (line 8 in Algorithm 2).

Algorithm 2 Dwell Parameter Calibration

Input: Ŷ , Y
Output: dwell
1: Dwell ← []

2: for DQ , LQ inŶ , Y do
3: if sum(DQ ) = 10 then ▷ find movement onset
4: Dwell.insert(sum(DQ ))
5: end if
6: end for
7: Sort(Dwell)
8: dwell ← median(Dwell) ▷ use the median as the dwell parameter

4.2. Online evaluation metrics

Most current online BCI studies aim to evaluate machine
learning models and use the accuracy as the evaluation metric.
However, in an online system, a timely response is critical for
smooth operations. Therefore, it is desirable to include additional
indicators for evaluating the timeliness of online BCI systems.
Considering that detection is often either slightly before or after
movement onset, we proposed to measure the mean detection
latency (MDL) from movement detection to its nearest movement
onset. It is suitable for online evaluation because movement
detection is valid in real-world applications if it occurs within
an acceptable, user-defined time frame of actual occurrence. The
MDL is defined as:

MDL =
1
n

n∑
i=1

min
y∈Y

⏐⏐ty − tŷi
⏐⏐ , (3)

here for each movement detection ŷi from the model, we found
he minimum distance in time to its nearest movement onset
abel y, and Y denotes the set of labels in the trace.

. Experiments and results

In this section, we present experiments to evaluate our pro-
osed automated labeling method on our collected dataset. Then,
e explore popular machine/deep learning methods for self-
aced movement detection under both offline and online settings.
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Fig. 4. The proposed pseudo-online evaluation pipeline. It has two components: data preparation and movement detection. (1) Data preparation: We build a data
buffer to accumulate continuously incoming EEG data for uniform preprocessing. The front two seconds of the data buffer are considered as the sliding window for
subsequent movement detection. (2) Movement detection: For each sliding window, we perform blink detection. If a blink occurs, we halt the detection until the
sliding window has moved past the blink. We consider the ten most recent detection. If their sum exceeds the dwell parameter, the system executes a movement,
and we halt the process for a period of freezing time.
x

5.1. Automated labeling evaluation

We built a baseline labeling method to demonstrate the supe-
iority of our proposed automated labeling method. To perform
he labeling, the baseline method only uses the first two intuitive
teps–recognizing EMG signals of movement and clustering EMG
ignals of movement. Table 1 summarizes the results. The evalu-
tion set had 440 movement instances per participant, including
00 (20 traces) for training and 40 (2 traces) for testing.
It is observed that our proposed labeling method can recog-

ize all movement instances for all participants. In contrast, the
aseline method could only recognize all movement instances
or four out of ten participants (Sub 0, 2, 7, and 9). We used
nderlining to highlight the results that the baseline method
ails to recognize all movement instances. It is also shown that
he baseline method missed a maximum of 14 movements. In
ddition, not all recognized movement instances can reflect the
ctual movement. Fig. 5 shows the labeling results of both our
roposed and baseline labeling methods for Sub 5 as an ex-
mple. Colored bursts indicate recognized movement instances.
t shows that our proposed labeling method successfully rec-
gnizes 20 movement instances, which is the desired result,
hereas the baseline method can only recognize 19 movement

nstances where some clusters encompass multiple EMG bursts
see the bursts around 80–100 s in Fig. 5(b)). Furthermore, the last
ovement recognized by the baseline method is an erroneous

ecognition. Our proposed automated labeling method contends
etter with the noise in EMG signals owing to the extra steps
nd repeated clustering required to condition the signals, yielding
etter movement recognition and thus EEG labeling.

.2. Self-paced movement detection

After data labeling, we explored self-paced movement detec-
ion with popular machine/deep learning methods under both
ffline and online settings.
 s

7

Table 1
The number of movement instances labeled for each participant using our
automated labeling method and the baseline method. The ground truth is 440
movements per participant.

Our proposed Baseline Ground truth

Sub 0 440 440 440
Sub 1 440 426 440
Sub 2 440 440 440
Sub 3 440 434 440
Sub 4a 440 436 440
Sub 5 440 428 440
Sub 6 440 439 440
Sub 7 440 440 440
Sub 8 440 438 440
Sub 9 440 440 440

aDenotes a left-handed participant.

5.2.1. Experimental settings
We investigated well-documented and established EEG-BCI

classifiers and popular machine/deep learning methods, namely
(1) CSP-SVM [23,24], (2) DeepConvNet [25], (3) ShallowCon-
vNet [25], (4) EEGNet [26], (5) ViTransformer (ViT) [27], and (6)
XGBoost [28].

All deep learning models were implemented using their orig-
inal code with mandatory modifications for our EEG data. They
were trained for 300 epochs by default, but with possible early
stopping. The CSP-SVM model was implemented using widely
used tools.2 Among all baselines, only XGBoost is a pure clas-
sifier that might be limited in feature extraction and, thus, the
final detection. Therefore, we designed handcrafted features in-
stead of raw signals as input into XGBoost to ensure competitive
performance. We defined three statistical features as follows:

ˆ =
1
n

n∑
i=i

x̂i, (4)

2 CSP: https://mne.tools/stable/generated/mne.decoding.CSP SVM: https://
cikit-learn.org/stable/modules/generated/sklearn.svm.SVC

https://mne.tools/stable/generated/mne.decoding.CSP
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC
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Table 2
Offline evaluation accuracy of 5-fold cross-validation. For a right-handed participant, the Primary Movement Hemisphere is the left hemisphere (C5, C3, C1), and for
a left-handed participant, it is the right hemisphere (C2, C4, C6). We highlight the best results in bold.
5-fold CV All channels

Participants Sub 0 Sub 1 Sub 2 Sub 3 Sub 4a Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Avg

CSP-SVM 59.2± 0.8 53.6± 1.5 55.7± 0.7 55.7± 0.7 59.4± 0.4 56.6± 0.1 55.7± 0.4 59.5± 0.1 57.1± 0.3 54.3± 0.7 56.7± 0.6
DeepConv 61.1± 0.1 71.3± 0.3 74.2± 0.3 63.3± 0.3 66.7± 0.2 66.8± 0.2 56.3± 0.2 71.3± 0.1 74.4± 0.1 72.2± 0.1 67.8± 0.2
ShallowConv 58.8± 0.3 56.0± 0.1 59.1± 0.1 52.0± 0.1 60.3± 0.1 56.3± 0.2 55.1± 0.2 63.3± 0.1 61.2± 0.2 56.0± 0.3 57.8± 0.2
EEGNet 62.1± 0.9 62.1± 0.7 66.2± 0.9 63.3± 3.1 65.1± 0.7 64.1± 1.0 55.1± 2.9 68.8± 0.4 70.1± 0.5 69.4± 0.3 64.6± 1.2
ViT 64.5± 0.1 58.4± 0.7 66.1± 1.0 58.5± 0.2 67.9± 0.9 63.6± 0.6 65.4± 0.7 69.8± 0.7 74.8± 1.1 63.4± 0.7 65.2± 0.6
XGBoost 86.9± 0.1 85.9± 0.1 88.1± 0.8 86.3± 0.4 88.8± 0.5 84.1± 0.6 86.5± 0.1 87.1± 0.1 88.9± 0.6 86.4± 0.9 86.9± 0.4
5-fold CV Primary movement hemisphere

CSP-SVM 58.8± 0.8 51.9± 0.1 55.1± 0.4 52.3± 0.6 58.1± 0.3 57.1± 0.2 55.6± 1.0 59.2± 0.8 57.1± 0.5 53.2± 0.9 55.8± 0.6
DeepConv 59.7± 1.0 56.1± 0.8 64.1± 0.1 54.8± 2.0 61.8± 2.0 59.0± 6.4 55.0± 1.0 62.7± 1.0 64.9± 0.1 63.4± 0.7 60.2± 1.2
ShallowConv 53.3± 1.2 50.9± 0.8 55.9± 2.0 49.0± 1.1 55.1± 1.0 54.2± 4.1 52.1± 2.0 56.3± 2.1 61.6± 2.5 51.9± 1.2 54.0± 1.8
EEGNet 58.9± 0.1 61.3± 0.9 64.2± 0.7 58.4± 0.9 61.6± 0.5 64.1± 0.7 54.1± 1.8 62.2± 1.7 70.6± 1.4 63.6± 1.4 61.9± 1.0
ViT 62.9± 1.1 53.1± 1.5 58.9± 0.6 52.1± 0.7 62.2± 0.8 57.7± 0.3 58.1± 0.6 67.7± 0.4 66.1± 1.3 59.4± 1.3 59.8± 0.9
XGBoost 82.2± 0.4 78.3± 2.1 83.3± 0.3 80.7± 0.5 84.3± 0.6 76.7± 1.5 80.3± 1.3 83.8± 0.9 84.6± 0.7 80.1± 1.3 81.4± 1.0

aDenotes a left-handed participant.
Fig. 5. Comparison between (a) our proposed automated labeling method, and
(b) the baseline labeling method. Both methods were applied to the same trace
from Sub 5.

x̂kurtosis =
1
n

∑n
i=1(x̂i − x̂)4

σ 4 , (5)

x̂skewness =
1
n

∑n
i=1(x̂i − x̂)3

σ 3 , (6)

where n is the number of data points in the sliding window. We
defined two temporal features as:

tslope = tmax − tmin, (7)

where tmax and tmin are the time points within the sliding window
with the highest and lowest amplitude values, respectively. The
other temporal feature is defined as a slope given by:

x̂slope =
x̂max − x̂min

. (8)

tslope

8

Table 3
The t-test results of comparing using all channels and PMH
channels for offline evaluation. We highlight significant p-values
(p < 0.05) in bold. D-Conv and S-Conv represent DeepConv and
ShallowConv, respectively.

CSP-SVM D-Conv S-Conv
p-value 0.222 0.001 0.011

EEGNet ViT XGBoost
p-value 0.127 0.012 <0.001

5.2.2. Offline evaluation
In the offline evaluation, we explored two channel settings:

(1) using all available channels and (2) using only the channels
placed over the primary movement hemisphere (PMH). For a
right-handed participant, the PMH was in the left hemisphere
(C5, C3, C1), and for a left-handed participant, it was in the right
hemisphere (C2, C4, C6) [29,30]. We illustrated the results using
five-fold cross-validation on the training data for each participant
presented in Table 2. Cross-validation is based on signal traces. In
each validation, 16 traces were used for training and four traces
were used for validation.

The accuracy of XGBoost using handcrafted features consis-
tently outperforms all other methods on all participants. More-
over, it is also observed that the performance in terms of both
accuracy and standard deviation on PMH is consistently worse
than when using all channels. We conducted a statistical t-test
to validate the significance of the comparison between using all
channels and PMH. The p-value results are presented in Table 3,
with significant results (p < 0.05) shown in bold. Four out of
the six approaches indicate that using all channels is significantly
better than using the PMH only. We hypothesized that the models
benefit from the increased information across the movement cor-
tex from all channels to obtain a slight advantage over using PMH
only. We further investigated this finding in an online evaluation.

5.2.3. Online evaluation
We performed an online evaluation of movement detection

using our proposed pseudo-online evaluation pipeline. Table 4
shows the online evaluation results on the two test traces de-
scribed in Section 2. Movement(%) estimates the completeness of
a BCI system, which is the percentage of correct detection out of
the total actual movements. Precision(%) measures the percentage
of correct detection out of the total number of detections being
made. It is shown that XGBoost outperforms other machine learn-
ing models in terms of Movement(%) and Precision(%), which is
the same as offline evaluation. However, the superiority margin



D. Zhang, C. Hansen, F. De Frène et al. Knowledge-Based Systems 265 (2023) 110383

u
c
q
o
f
o
m
a
d
d
f

a
a
s
f
p
p

5

b
g
F
s
t
b

t
d
s
a
m
t
p
t
t

Table 4
Online evaluation results that are averaged over participants.
Channels All PMH All PMH All PMH All PMH
Metric Movement (%) Movement (%) Precision (%) Precision (%) MDL (s) MDL (s) Dwell Dwell

CSP-SVM 58.2± 16.5 56.1± 9.12 34.6± 11.5 36.1± 12.1 1.04± 0.25 0.95± 0.21 4.6± 3.5 6.7± 2.9
DeepConv 53.0± 10.4 51.5± 12.1 40.5± 11.0 39.6± 10.7 0.77± 0.25 0.82± 0.25 5.8± 2.6 7.1± 2.0
ShallowConv 53.1± 11.1 52.7± 17.8 38.7± 11.3 35.7± 11.3 0.91± 0.28 0.89± 0.27 5.8± 3.1 4.4± 2.9
EEGNet 48.6± 10.7 51.7± 17.6 40.2± 8.66 38.4± 10.3 0.78± 0.21 0.88± 0.19 8.2± 1.9 6.7± 3.2
ViT 51.5± 8.74 50.0± 7.15 36.6± 10.2 37.3± 13.5 0.95± 0.22 0.83± 0.24 6.3± 1.3 6.8± 1.6
XGBoost 60.6± 8.52 59.6± 9.23 38.0± 12.1 41.0± 14.1 0.91± 0.15 0.94± 0.20 6.3± 0.9 6.3± 1.2
Table 5
The t-test results (p-value) of comparing using all channels and PMH
channels for online evaluation. The significance level is p < 0.05.

Movement Precision MDL

CSP-SVM 0.367 0.398 0.296
DeepConv 0.386 0.428 0.326
ShallowConv 0.475 0.287 0.433
EEGNet 0.329 0.348 0.091
ViT 0.343 0.450 0.131
XGBoost 0.119 0.316 0.367

is much smaller than that of the offline evaluation, and XGBoost
is inferior to DeepConv for Precision(%) of All channels. Regarding
detection timeliness, DeepConv has the least detection latency
(MDL) and is much faster than XGBoost for both All channels and
PMH channels. In addition, using PMH channels is worse than
sing All channels regarding Movement(%) and similar to using All
hannels regarding Precision(%), while the performance gaps are
uite limited. We further presented the t-test comparison results
f comparing using All channels versus only using PMH channels
or the online evaluation results in Table 5; compared to the
ffline evaluation, no statistical significance was observed for any
odels in the online evaluation. Based on the above observations
nd considering that precision is much more important than the
etection completeness of a BCI system, our online evaluation in-
icates that the DeepConv-based BCI system is the most suitable
or online usage.

In addition to the observations above, we noticed that on an
verage the difference in the dwell parameter between these
pproaches was minor but not uniform across the same clas-
ifier, indicating the need to tune a dwell-specific parameter
or each participant and the machine learning model. The pro-
osed dwell parameter calibration approach can facilitate this
arameter specification process.

.3. Visualization

We visualized the online results of a test trace in Fig. 6 to
etter illustrate the online evaluation process and results. The
reen rectangles indicate correct detection, red rectangles denote
P detection, and dashed lines denote the movement onset. We
howed the detected blinks as small squares above the predic-
ions. As shown in Section 4, we suspended the detection when
links were detected.
It is shown that generally the FP detection is relatively late to

heir nearest movement onset or inserted between two correct
etections. Late detection is acceptable as long as its in a rea-
onable range, while inserted false detection should be avoided
s it may incur severe consequences. In addition, there is some
issing detection (see movements around 58 s). Missing detec-

ion would reduce the efficiency of the system, but not lead to
otentially dangerous, erroneous executions. It is also noticed
hat there are many blinks that degrade the signal quality and

hus require detection suspension.

9

6. Discussion

In this section, we discuss our main research findings and
design considerations.

6.1. Self-paced data collection

In this study, we focused on self-paced BCI systems, which
have the following advantages in contrast to conventional cue-
based BCI systems: (1) self-paced BCI relies on naturally occur-
ring cortical response (i.e., MRCP) and does not require training
the users; (2) MRCP similarly occurs for both healthy and dis-
abled people and for both movement imagination and execution;
thus, the data can be collected from healthy people performing
movement execution; (3) no external cues (e.g., visual cues) are
required for labeling because the data can be collected from
movement execution, and thus the obtained EEG signals are free
from the noise incurred by the cues.

Participants perform a movement in a self-paced way, there-
fore the time interval between adjacent movements is inconsis-
tent but around 5 s according to our instruction, as shown in
Fig. 6. We did not strictly require subjects to rest for 5 s. This
suggested that the rest time keeps the whole experiment time
within a reasonable range, so as not to make the participants con-
siderably tired. Although such a data collection process minimizes
external interference and mimics real application scenarios, it
poses the challenge of labeling the movement onset.

6.2. Automated labeling

To resolve the labeling challenge, we proposed an automated
labeling approach to relieve the human burden and obtain better
labeling quality. As shown in Fig. 5, although it is possible for hu-
man experts to roughly recognize movement range, it is difficult
to precisely identify movement onset. Thus, a movement-onset
detection algorithm is preferred. Moreover, there is considerable
noise in EMG signals owing to line interference, unintended mus-
cle movement, and environmental impedance. The naive baseline
method was easily affected by noise. For example, the second
orange cluster in Fig. 5(b) actually has two movement bursts,
which is recognized as a single movement because of the noise
between the two bursts. The same pattern was observed for the
second green cluster in Fig. 5(b). In Fig. 5(a), it is clear that the
rest periods (black areas) between approximately 72 s to 104 s
have larger magnitudes than the other rest periods, which are the
wrongly recognized periods by the baseline method, as shown in
Fig. 5(b). This indicates the failure reason of the baseline method,
while our method can overcome it by enhancing the SNR.

6.3. Online evaluation pipeline

Previous studies only use offline evaluation because of consid-
erable extra efforts for online evaluation and the lack of equip-
ment. Our online evaluation pipeline allows the estimation of

a BCI’s online performance without extra overhead. This is a
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Fig. 6. Visualization of online evaluation on a test trace from Sub 7. Movement instances of EMG are shown in different colors and dashed lines denote the movement
onset. The opaque red field shows the data buffer, which we build initially. The red and green rectangles denote the FP and correct detection. Their sizes correspond
to their respective sliding windows. Detected blinks are shown as small squares above the detection.
step forward with respect to addressing the challenges of online
evaluations in BCI studies.

In addition, we show that the offline results do not necessarily
ap to online results. According to Tables 2 and 4, the following
as demonstrated that (1) the performance gap between the best
odel and the others of online evaluation is smaller than that of
ffline evaluation, and (2) the best model in offline evaluation is
ot the most suitable for online use, especially considering online
etection latency. The offline and online results discrepancy is
ainly owing to the dwell heuristic procedure. However, using

he dwell heuristic is necessary because working in an online or
eal-life environment requires the reduction of FP detection, as
hey may cause detrimental misoperations. Our automatic heuris-
ic parameter calibration differs from that proposed by Savić
t al. [16], where the dwell parameter is empirically determined.
nstead, our algorithmic implementation leverages historical data
nd statistical observations, which is more consistent and robust
nd free of expertise.

. Conclusion

This study targets two challenges of self-paced BCI systems:
EG labeling during data collection and online evaluation. We
roposed an automated labeling approach to detect EMG bursts
nd onsets to accurately cross-label EEG signals. Then, we de-
igned a pseudo-online evaluation pipeline to mimic real-world
CI systems and proposed a dwell heuristic to reduce false pos-
tive detection with an automatically determined dwell param-
ter. We collected data from 10 healthy subjects for the ex-
eriments. Our automated labeling results can outperform the
aive labeling method and successfully detect all EMG bursts.
oreover, the offline results do not necessarily map to online

esults because of latency consideration and the dwell heuristic
f reducing false positive detection. This study contributes to
he community of self-paced BCI research by alleviating labor
equirements in both data collection and online evaluation.
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