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Abstract

Creoles represent an under-explored and
marginalized group of languages, with few
available resources for NLP research. While
the genealogical ties between Creoles and
other highly-resourced languages imply a
significant potential for transfer learning,
this potential is hampered due to this lack
of annotated data. In this work we present
CREOLEVAL, a collection of benchmark
datasets spanning 8 different NLP tasks,
covering up to 28 Creole languages; it is
an aggregate of brand new development
datasets for machine comprehension, rela-
tion classification, and machine translation
for Creoles, in addition to a practical gate-
way to a handful of preexisting benchmarks.
For each benchmark, we conduct baseline
experiments in a zero-shot setting in or-
der to further ascertain the capabilities and
limitations of transfer learning for Creoles.
Ultimately, the goal of CREOLEVAL is to
empower research on Creoles in NLP and
computational linguistics. We hope this re-
source will contribute to technological in-
clusion for Creole language users around the
globe.

1 Introduction

Despite efforts to extend advances in Natural Lan-
guage Processing (NLP) to more languages, Cre-
oles are markedly absent from multilingual bench-
marks. As such, progress towards reliable NLP
for Creoles remains impeded, and consequently
there is a dearth of language technologies avail-
able for the hundreds of millions of people who
speak Creoles around the world. The omission of
Creoles from such benchmarks can be attributed to
two key factors: modality and stigmatization. The
first, modality, is a notable factor as some Creoles

Figure 1: CREOLEVAL expands the availability of la-
beled data for Creoles around the globe. This chart
shows the increased availability of datasets for concrete
tasks, across Creoles from different regions. Before
CREOLEVAL, only 11 Creoles had data for at least 1
pre-existing task, and now 28 Creoles have labeled data
for at least 1 task and at most 6 tasks.

are rarely used in writing, and thus text-based NLP
is largely moot, highlighting a need for efforts in
speech technology for Creoles. The latter, stigma-
tization, is perhaps the most salient of the two,
however. As the history of many Creole languages
is intricately interwoven with broader Western im-
perialism, colonialism, and slavery, Creole lan-
guages are often subjected to the stigmas and prej-
udices stemming from these historical atrocities
(Alleyne, 1971; DeGraff, 2003).

On the surface, social prejudices against Cre-
oles may seem extraneous in the context of NLP.
However, the consequences of this stigmatization
are palpable in preventing data collection for these
languages. For example, it can be greatly chal-
lenging to collect data for a language without offi-
cial status in a given country, even if it is the most
widely used language by the populace; common
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sources for language data like government docu-
mentation, educational materials, and local news
may not be available. Moreover, even if a Cre-
ole is someone’s primary language, sociolinguis-
tic barriers1 rooted in stigma may further prevent
people from using it in various contexts, mak-
ing opportunities for gathering data even more
sparse. Lastly, even when financial resources are
available to compensate crowd-workers, logistical
challenges can significantly impede data collec-
tion efforts for Creole languages (Hu et al., 2011).

Stigmatization of Creoles is also an ongoing is-
sue in the scientific domain, which further inhibits
work in NLP. Indeed, prejudice against Creoles
is deeply ingrained in linguistics, manifested in
the common misconception that Creoles are in-
complete or under-developed languages, in direct
opposition to concepts like linguistic relativism
and Universal Grammar (Kouwenberg and Sin-
gler, 2009; Aboh and DeGraff, 2016). The Oth-
ering of Creoles which has occurred in linguis-
tics has led to a research landscape where Creole
languages are typically categorized as exceptions
amongst languages, and thus separated from other
languages. Take for example the widely-used
WALS database, which lists Creoles as having the
language family "other"; works in NLP or com-
putational linguistics relying on WALS to sam-
ple languages from diverse range of families as a
part of their methodology typically exclude Cre-
oles from their work.2 And while other such re-
sources exist to specifically cater to Creoles (e.g.,
APICS (Michaelis et al., 2013)), the creation of
entirely separate resources to specifically accom-
modate Creoles is emblematic of their ghettoiza-
tion within scientific spaces. For readers interested
in the prominent debates about Creoles in linguis-
tics, we defer to DeGraff (2005).

Inclusion of Creoles In an effort to enable NLP
research on Creoles, we introduce CREOLEVAL,
a set of benchmarks covering a wide variety of
tasks for up to 28 Creole languages. Enabling
NLP research on Creoles offers significant pos-
sibilities. First, this will enable development of
language technologies for Creoles, potentially im-

1In some Creole-speaking communities, the local Creole
language is viewed as a "corrupted" version of the histori-
cally related European language, with names like "broken
English". Thus, speakers of such varieties would not even
identify their variety as a separate language.

2Newer typological databases such as Grambank have for-
tunately addressed this issue.

proving technological inclusion of the speakers of
these languages. While increasing the number of
NLP datasets for Creoles is important, an crucial
note here is that as set of languages, Creoles are
not a monolith. In some contexts, a Creole can be
someone’s mother tongue, and the sole language
they speak; in other cases, Creoles can play an
important role as a lingua-franca within linguistic
diverse communities, and for this reason, deserve
special attention of the NLP community (Bird,
2021). Due to their status as marginalized3 lan-
guages, we highlight the importance of commu-
nity involvement when designing CREOLEVAL.
Inspired by recent recommendations on participa-
tory machine learning (Sloane et al., 2022), we
build on previous work by Lent et al. (2022b),
and attempt to strike a balance by creating re-
sources that can be beneficial for both Creole-
speaking communities and the NLP community.
Creating the technologies explicitly sought after
by various Creole-speaking communities remains
an open area for future work, and we believe the
that the benchmarks and baselines in CREOLEVAL

can be useful to this end. Second, from a scientific
perspective, we argue that Creoles offer an oppor-
tunity for careful development and evaluation of
transfer learning methods, e.g., leveraging simi-
larities to a Creole’s ancestor languages. For ex-
ample, consider Chavacano, a language spoken in
the Philippines with genealogical ties to Spanish,
Tagalog, and other languages. Below is a sample
sentence (Steinkrüger, 2013) in Chavacano, with
an accompanying Spanish and English translation,
annotated with Subject, Verb, and Object roles:

• Chavacano: “Ya-miráV el mga ómbreS un póno
de ságingO.”

• Spanish: “Los hombresS vieronV un árbol de
plátanoO.”

• English: “The menS sawV a banana treeO.”

While Chavacano shares some vocabulary with
Spanish, it grammatically maintains the VSO
word order of Tagalog. Hence, from a transfer
learning perspective, one could expect that trans-
fer from Spanish could be useful in terms of lexi-
cal overlap, but not syntax. As many Creoles are
genealogically related to other higher-resourced

3Notably, a handful of Creoles do have official language
status by law in their respective lands: Haitian Creole, Sey-
chelles Creole, Bislama, and Sango.



languages (e.g. English, French, Spanish, Por-
tuguese, Dutch), resource availability permits re-
search on Creoles that can help shed light on the
underlying mechanics of transfer learning. To this
effect, the baselines presented in this work pertain
to zero-shot transfer learning, in order to ascertain
the current viability of transfer learning for Cre-
oles. Ultimately, the goal of CREOLEVAL is to
facilitate research on transfer learning, computa-
tional linguistics, as well as general linguistic re-
search on Creole languages. By providing this re-
source, we hope that inclusion of Creoles in multi-
lingual evaluations will become a default practice
in NLP.

Contributions In this work, we introduce new
datasets for three different NLP tasks (machine
comprehension, relation classification, and ma-
chine translation) for understudied Creole lan-
guages. We expand the scope of CREOLEVAL by
packaging these new datasets together with pre-
existing tasks for Creoles (i.e., dependency pars-
ing, named entity recognition, sentiment analy-
sis, sentence matching, natural language infer-
ence, and machine translation), resulting in a pub-
licly available repository. This repository facili-
tates further work on Creoles for the NLP commu-
nity, as we provide a single gateway to this diverse
group of languages, allowing for straight-forward
data exploration, experimentation, and evaluation.
The 28 Creole languages covered in CREOLEVAL

are, unfortunately, unequally represented across
tasks due to the difficulties of gathering and cu-
rating data. However, the addition of our new de-
velopment data greatly expands upon the existing
number of NLP tasks for Creoles (see Figure 1).
For all the datasets comprising CREOLEVAL, we
present baseline experiments with additional anal-
ysis on the efficacy of transfer learning for Cre-
oles. Our code, data, documentation, and mod-
els are available at the public repository.4 Where
we cannot provide data for copyright reasons (i.e.,
Bible data), we provide detailed documentation
and code to allow for reproducibility.

2 Background

Previous Work Prior works in NLP primar-
ily focus on individual Creole languages, such
as Antillean Creole (Mompelat et al., 2022), Ja-
maican Creole (Armstrong et al., 2022), Mau-

4www.github.com/hclent/CreoleVal

ritian Creole (Dabre and Sukhoo, 2022), Nige-
rian Pidgin (Ogueji and Ahia, 2019; Caron et al.,
2019; Oyewusi et al., 2020; Adelani et al., 2021;
Muhammad et al., 2022, 2023), Singlish (Wang
et al., 2017; Liu et al., 2022), and Sranan Tongo
(Zwennicker and Stap, 2022).5 A few works
specifically investigate Creoles as a collection of
languages, with interest in LMs (Lent et al., 2021)
and transfer learning (Lent et al., 2022a). Lent
et al. (2022b) further discusses some of the so-
cial aspects to consider for responsible NLP for
Creoles, due to the languages’ stigmatization (Al-
leyne, 1971; Siegel, 1999; Kouwenberg and Sin-
gler, 2009).

Transfer Learning Transfer learning represents
the ability of a model to perform reasonably well
over data outside the scope of the original train-
ing data (Zhuang et al., 2019). In NLP, trans-
fer learning has thus been effective for extending
models from higher-resourced languages to lower-
resourced ones, especially when the languages in
question have similar genealogy, typology, and
script (Pires et al., 2019; Wu and Dredze, 2019;
Nooralahzadeh et al., 2020; Zhao et al., 2021;
de Vries et al., 2021, 2022). In the context of
Creoles however, some initial research suggests
that transfer-learning from genealogically related
languages may not be entirely straightforward.
de Vries et al. (2022) investigate the most effec-
tive language pairs for transfer learning of part-
of-speech (POS) tagging; while this work does
not outright focus on Creoles, a notable finding
is that Swedish – not English nor Portuguese – is
the most useful language for transferring POS tags
to Nigerian Pidgin. Moreover, in a direct investi-
gation of transfer learning for Creoles, Lent et al.
(2022a) found that LMs trained on multiple an-
cestor languages failed to transfer well to Creoles
on limited downstream tasks. Further investiga-
tion is required to understand why both the afore-
mentioned studies obtained seemingly counter-
intuitive results. However, other work investi-
gating the underlying mechanisms that empower
transfer learning have indicated that the success
of transfer learning may be less dependent on ge-
nealogical language relatedness, and more depen-
dent on other factors like sub-word overlap (Pel-
loni et al., 2022).

5See https://creole-nlp.github.io/ for a
comprehensive list of datasets for Creoles.

www.github.com/hclent/CreoleVal
https://creole-nlp.github.io/


Data #Lang #Creole #Anc

mBERT Wikipedia 104 0 6
XLM-R CC100 100 0 6
mT5 CC4 101 1 6

mBART-50 custom 50 0 5

Table 1: Coverage of total Languages, Creoles, and
their Ancestor languages in training data for popular
multilingual LMs. For mt5, 0.33% of the training data
comes from Haitian Creole. mBART-50 is trained on
the same 25 languages from XLM-R and an additional
25 languages from regular mBART (Liu et al., 2020).
While we do not experiment with BLOOM (Scao et al.,
2023), it can be noted that 0.0002% of the Big Science
Corpus contains Lingala, a Creole related to Bantu.

Multilingual Language Models Selecting a
pertinent language model (LM) is typically the
first step for any attempt at transfer learning. Cre-
oles, however, are largely absent from the most
commonly used multilingual LMs (see Table 1).
For this work, we choose to work with mBERT
(Devlin et al., 2019), XLM-Roberta (Conneau
et al., 2020), mT5 (Xue et al., 2021) for natu-
ral language understanding tasks, and mBART-50
(Tang et al., 2020) for generation tasks. Despite
an ostensible lack of coverage for Creoles, these
models do include relevant pre-training data for
some genealogically related languages.

3 Natural Language Understanding of
Creoles

Tasks across natural language understanding
(NLU) test a model’s capacity for grasping syn-
tax and semantics. Typical tasks, such as senti-
ment analysis and named entity recognition, re-
quire sizeable amounts of training data is for mod-
els to exhibit decent performance. In order to ex-
pand on the availability of NLU data for Creoles
we introduce two brand new benchmark datasets
for machine comprehension and relation classifi-
cation, before experimenting with a set of pre-
existing NLU tasks for Creoles. Our baselines
are in a zero-shot transfer learning for Creoles, as
this is the most typical setup for working with lan-
guages with little to no data.

3.1 Machine Comprehension

Most pre-existing NLU tasks for Creoles largely
examine syntax (see Section 3.3), and there is a
dearth of NLU tasks for Creoles that evaluate se-
mantic understanding. As curating naturally oc-

mBERT XLM-R

Haitian-direct 51.60% 39.16%
Haitian-localized 50.83% 43.33%
Mauritian 49.10% 43.33%

English 63.33% 45.00%

Table 2: Accuracy results for MCTest160 development
data, when trained on the English MC160 training data.

curring language data for a new task is often pro-
hibitively expensive, dataset translation is a typi-
cal alternative, though translation can be compli-
cated by cultural differences between the source
and target audience (Hershcovich et al., 2022). In
this work, we translate MCTest, a machine com-
prehension dataset introduced by Richardson et al.
(2013), as it pertains to a semantically oriented
task, and as the general domain and smaller data
size make translation feasible. Machine compre-
hension is an NLU task where a model ischal-
lenged to correctly answer questions contingent
to a specified piece of text. The MCTest dataset
is composed of short stories intended for school-
aged children, each accompanied with four multi-
ple choice questions, that require different levels
of reasoning to answer (i.e., context from one or
multiple sentences is needed for a human to suc-
cessfully answer the question).

Translation We chose to translate the MC160
development set because of the relatively general
domain, and smaller size, which makes it feasi-
ble for translation (30 stories, 120 questions). We
hired professional translators, to translate the En-
glish MC160 development set, into both Haitian
Creole and Mauritian Creole. Although we had
budget for even more translations, these were
the only two Creole languages that we could
find translators for. Notably, there are two dif-
ferent translations for Haitian Creole: a direct
translation, and a localized translation. As op-
posed to the direct translation, the localized ver-
sion is a culturally-sensitive translation, with mi-
nor changes to include names, places, and activ-
ities that are directly pertinent to a Haitian audi-
ence (Roemmele et al., 2011; Hershcovich et al.,
2022). For example, the original English dataset
may discuss an ice cream truck (directly translated
to "kamyon krèm"), though ice cream is not a typ-
ical desert in Haiti; thus in the localized dataset,
"ice cream truck" has been changed to "machann



Dataset Sent. Enc. bert-base-multilingual-cased xlm-roberta-base

Rel. Enc. Bb-nli Bl-nli Xr-100 Xr-b Bb-nli Bl-nli Xr-100 Xr-b

Dev (en) 66.70±1.89 74.01±3.11 71.34±1.27 71.47±2.90 56.34±1.14 62.86±1.70 52.42±0.43 51.78±0.

bi 22.40±2.47 21.67±6.77 24.53±11.28 27.53±12.26 13.75±1.94 17.78±3.46 10.63±5.08 11.64±4.62
cbk-zam 30.00±1.32 31.66±5.63 28.78±3.65 29.42±2.08 14.77±2.16 11.78±4.22 13.37±1.17 15.93±3.90
jam 14.57±0.81 11.28±1.63 16.33±0.63 16.40±0.94 5.42±0.55 9.92±4.03 10.52±1.60 9.47±3.01
phi 14.78±1.30 9.09±2.71 12.55±1.76 12.09±2.22 11.60±4.16 12.00±0.99 10.15±4.88 7.91±2.42
tpi 16.64±6.25 22.63±1.67 22.09±5.50 20.67±5.41 15.84±4.20 17.11±1.83 13.49±2.30 12.55±0.56

AVG 19.68 19.27 20.86 21.22 12.28 13.72 11.63 11.50

Table 3: Relation Classification performance measured by macro F1 score on English validation (dev) set and
Creole test sets. AVG shows the overall performance per setup across all Creole languages. Bold indicates the best
performance for each sentence encoder setting. Sent. Enc.: sentence encoder. Rel. Enc.: relation encoder.

fresko", a cart which sells a shaved-ice desert en-
joyed in Haiti. We hope that these two different
Haitian Creole datasets for machine comprehen-
sion, can also be useful in evaluating progress in
cross-cultural NLP.

Results and Analysis For our benchmark ex-
periments on the Creole MCTest160 development
set, we use a simple transformer-based baseline
approach, leveraging mBERT and XLMR as the
basis of these models. We finetune them for 10
epochs over the English MCTest160 training set.
A summary of our results are in Table 2, with full
results and hyperparameter settings documented in
the accompanying Github repository. mBERT out-
performs XLMR, although XLMR performs bet-
ter over the localized data than the direct trans-
lation for Haitian. The performance on Haitian
and Mauritian is surprising, as both mBERT and
XLMR have seen no Creole data. It’s particularly
noteworthy that mBERT results on Creoles out-
performs XLM-R’s English performance by far.
In comparison, a random baseline on MCTest160
yields an accuracy of 25%, and Attentive Reader
(Hermann et al., 2015) has an accuracy of 42% on
English data.

3.2 Relation Classification
Relation classification (RC) aims to identify se-
mantic associations between entities within a text,
essential for applications like knowledge base
completion (Lin et al., 2015) and question answer-
ing (Xu et al., 2016). In this work, we intro-
duce the first manually-verified RC datasets for
five Creole languages: Bislama, Chavacano, Ja-
maican Patois, Pitkern, and Tok Pisin.

Our dataset is sourced from Wikipedia, where
we found 16 Creoles with a presence, though only
9 had readily-available Wikidumps.6 Many Creole

6bi, cbk-zam, gcr, hat, jam, pap, pih, sg, tpi

Wikipedia entries are short and templatic, likely
due to machine generation. This templatic nature,
however, facilitates the creation of a relation clas-
sification dataset, as it allows for easy identifica-
tion of entities and relations.

To construct the dataset, we preprocess7

Wikipedia dumps and perform automatic en-
tity linking using OpenTapioca (Delpeuch, 2019).
Sentences are then clustered based on latent tem-
plates to facilitate manual annotation. Despite not
being native speakers of the Creole languages, our
familiarity with their ancestor languages (English,
French, Spanish) assisted annotation. While Cre-
oles are in no way mutually intelligible with these
related languages, when examining a group of sen-
tences with the same latent template, familiarity
with the ancestor languages helped in identifying
entities. The process resulted in high-quality eval-
uation data for 5 of the 9 initially identified Creole
Wikipedias. Each dataset contains 97 evaluation
samples8.

We establish a benchmark for Creole RC using a
zero-shot cross-lingual transfer approach: we em-
ploy pre-trained language models (LMs) that have
not been exposed to Creole data and train exclu-
sively on English data.

Model and Training We adopt the method in-
troduced by Chen and Li (2021), which excels in
zero-shot transfer learning for RC on Wikipedia
and Wikidata (Han et al., 2018). This approach
projects both sentences and their associated rela-
tion descriptions into a shared embedding space,
minimizing distances between them while per-
forming classification. For training, we use
the UKP dataset (Sorokin and Gurevych, 2017),

7https://github.com/attardi/
wikiextractor

8For complete dataset statistics, and further discussion on
the templates, see the repository.

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor


Task Language Dataset Metric mBERT XLM-R mT5

UDPoS pcm UD_Naija-NSC (Caron et al., 2019) Acc 0.98 0.98 0.98
singlish Singlish Treebank (Wang et al., 2017) Acc 0.91 0.93 0.91

NER

pcm MasakhaNER (Adelani et al., 2021) Span-F1 0.89 0.89 0.90
bi

WikiAnn (Pan et al., 2017) Span-F1

0.94 0.90 0.72
cbk 0.96 0.96 0.94
ht 0.78 0.84 0.48
pih 0.90 0.88 0.61
sg 0.89 0.93 0.79
tpi 0.91 0.89 0.75
pap 0.90 0.89 0.85

Sentiment Analysis pcm AfriSenti (Muhammad et al., 2023) Acc 0.66 0.68 0.67
pcm Naija VADER (Oyewusi et al., 2020) Acc 0.71 0.72 0.72

NLI jam JamPatoisNLI (Armstrong et al., 2022) Acc 0.74 0.76 0.66

Sentence Matching

cbk-eng

Tatoeba (Artetxe and Schwenk, 2019) Acc

15.9 3.9 6.5
gcf-eng 12.8 4.9 6.9
hat-eng 23.9 18.5 37.9
jam-eng 19.9 9.6 10.3
pap-eng 22.4 6.1 15.9
sag-eng 5.7 2.1 7.3
tpi-eng 7.2 3.3 7.6

Table 4: Baseline scores for pre-existing NLU tasks for Creoles. Additional experiments, results, and analysis are
included in the CreoleVal repository’s documentation.

which contains 108 Properties (i.e., relations in
Wikidata). In contrast, our Creole datasets feature
just 13 Properties, four of which are not present
in the UKP dataset. Five relations are separated
for validation. We fine-tune multilingual models
mBERT and XLM-R (Conneau et al., 2020) using
multilingual sentence transformers (Reimers and
Gurevych, 2019). The sentence encoder employs
mBERT and XLM-R,9 while the relation encoder
uses one of four alternative models, denoted Bb-
nli, Bl-nli, Xr-b, Xr-10010 here, as sentence em-
beddings of the relation descriptions from Wiki-
data.

Results and Analysis Table 3 illustrates the per-
formance of RC in each setting. We observe
notably worse performance in Creole languages
compared to English. This highlights the partic-
ular challenge of leveraging pretrained LM’s for
zero-shot cross-lingual transfer for RC for Cre-
oles, due to the lack of representation of Creoles in
the LM training data. In addition, the choice of the
sentence encoder is a primary determinant of per-
formance of Creole RC. When using mBERT as
the sentence encoder, the performance of Creole
RC tends to be slightly better than XLM-R. Un-
der the same sentence encoder, different relation

9Respectively, bert-base-multilingual-cased,
xlm-roberta-base.

10Respectively,bert-base-nli-mean-tokens,
bert-large-nli-mean-tokens,
xlm-r-bert-base-nli-mean-tokens,
xlm-r-100langs-bert-base-nli-mean-tokens.

encoders exhibit slight variations in performance.

3.3 Prior NLU Benchmarks

In addition to the datasets that we introduce, there
are a handful of pre-existing, labeled datasets for
Creole languages in the space of NLU. In order
to facilitate concentrated efforts on Creole NLP,
we have gathered these tasks and packaged the
baseline experiments for them with the CreoleVal
repository. For each of these prior benchmarks,
we provide code to run baseline experiments with
three multilingual LMs (mBERT, XLM-R and
mT5). We compare performance on the test set
for each task and LM in Table 4.

4 Natural Language Generation of
Creoles

Unlike NLU, where the model aims to predict an
accurate label, natural language generation (NLG)
is arguably a more challenging task as models
should generate output that is adequate as well as
fluent. A lack of data – both in terms of size and
domain – further complicates NLG for Creole lan-
guages. In this paper, we introduce 2 new machine
translation (MT) datasets for Creoles. The first
covers 26 Creoles with text drawn from the reli-
gious domain, and the second is a small, but very
high quality, Hatian Creole dataset in the educa-
tional domain. We also conduct experiments and
evaluate performance on a pre-existing MT dataset
for Mauritian Creole.



4.1 CreoleM2M MT

As the world’s most translated text, the Bible is a
typical starting point for gathering language data
in a low-resource scenario. While Bible data has a
number of limitations (e.g., fixed domain, archaic
language, and translationese (Mielke et al., 2019)),
notable benefits include its size and parallelism
with other languages, which lends itself aptly to
MT. We gathered parallel corpora for 26 Creole
Bibles from Mayer and Cysouw (2014),11 along
with additional texts from the JW300 corpus (Agić
and Vulić, 2019). In total, our parallel MT corpus
contains 3.4M sentences and 71.3M and 56.3M
Creole and English words, respectively, making it
the largest Creole parallel corpus to date. Further-
more, we split from the Bible part of the corpus,
1,000 and 2,000 sentences for each Creole and En-
glish and use them for development and testing,
respectively. Note that the development and test
sets are N-way parallel (N=27: 26 Creoles and
English). We ensured that there is no overlap be-
tween the training, development, and test data.

4.1.1 Experiments
We fine-tune mBART-50-MT (Tang et al., 2020)
and also train models mBART from scratch, over
the parallel Bible text.

Vocabulary For models trained from scratch,
we use the training data and create a shared tok-
enizer of 64,000 subwords for all 26 Creoles and
English using sentencepiece (Kudo and Richard-
son, 2018). Due to the large number of languages,
we only train bilingual models and leave multilin-
gual models for future work. While we could have
created separate vocabularies for bilingual mod-
els, a shared tokenizer will be helpful in ensur-
ing consistency with future planned multilingual
model experiments. For the fine-tuned models, we
use the mBART-50 tokenizer containing 250,000
subwords. Although this tokenizer’s vocabulary
was not explicitly trained on Creoles, we expect
the subwords from related parent languages to be
sufficient.

Training We trained our models using the YAN-
MTT toolkit12 (Dabre and Sumita, 2021), which
supports training models from scratch as well as
by fine-tuning mBART models. In this paper,

11To access the raw Bible corpora, one must request the
authors due to copyright issues.

12https://github.com/prajdabre/yanmtt

we train models from scratch as well as by fine-
tuning the mBART-50-MT model13 as done ear-
lier by Dabre and Sukhoo (2022). The training
utilizes Adam optimizer (Kingma and Ba, 2014),
and trains till convergence. We evaluate the train-
ing performance on the development set using
BLEU score as a metric after every 1,000 train-
ing steps. The training process determines conver-
gence when BLEU scores do not improve for 20
consecutive evaluations.14

Decoding We perform decoding using beam
search with a beam of size 4 and a length penalty
of 0.8. Due to the large number of language pairs,
we do not tune these parameters for each language
pair.

Results and Analysis Figure 2 shows the per-
formance in terms of chrF and BLEU scores for
Creole to English and English to Creole transla-
tion for the test set of the CreoleM2M benchmark.
For models trained from scratch, it is clear that the
performance is correlated with the size of the par-
allel corpus. Therefore, fine-tuning the mBART-
50-MT model leads to significant improvements in
translation quality by up to 19.2 BLEU and 17.3
chrF for Creole to English translation and up to
16.9 BLEU and 13.5 chrF for English to Creole
translation. We noted that both BLEU and chrF
scores are correlated15 with each other. It is impor-
tant to note that fine-tuning is not always a good
idea for the Creoles with more training data avail-
able. In most larger-resourced settings, we ob-
served a reasonable drop in translation quality, in-
dicating that the fine-tuned model converges too
quickly; and is unable to learn well from the train-
ing data.

4.2 MIT-Haiti MT

While Bible translations can provide initial data
for training MT systems, this domain is markedly
limited, highlighting a need for MT datasets for
Creoles originating from other, more generalizable
domains. To this end, we introduce the BANK

13https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

14Note that we anneal the learning rate by half when the
BLEU scores don’t improve for 10 consecutive evaluations
and then again by half if the scores don’t improve for 15 con-
secutive evaluations. Therefore, after cutting the learning rate
by half (each time) for the final convergence decision, we
wait for 20 consecutive evaluations to declare model conver-
gence.

15We calculated a Pearson correlation score of 0.98.

https://github.com/prajdabre/yanmtt
https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
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Figure 2: chrF (blue color) BLEU (red color) scores obtained using baseline models (scratch; square points) and
fine-tuned models (mBART-50-MT-FT; circle points) on the Bible corpus for XX-En (left) and En-XX (right)
language pairs, where XX represents Creole languages. The language pairs are ordered from left to right in
increasing sizes of parallel corpora from 4,366 pairs to 583,746 pairs

DONE MIT-AYITI, or in English, the MIT-Haiti
Corpus: a manually-verified, high-quality collec-
tion of parallel Haitian Creole sentences with En-
glish, French, and Spanish translations. This data
comes from Platform MIT-Haiti16, a learning plat-
form with educational material for students in
Haitian Creole. We scrape the entire website, in-
cluding the web text and PDFs. The parallel sen-
tences for this MT corpus come from 60 multilin-
gual stories (the PDFs and their converted plain
text transcriptions); these stories were each manu-
ally cleaned and corrected (i.e., in cases where the
PDF-reader made mistakes in transcribing, these
were manually corrected), aligned, and verified
by a subset of the authors, who have qualifica-
tions in both linguistics and NLP. For the remain-
ing monolingual Haitian text without direct par-
allel translations, we manually clean and verify
these sentences with the same process, and release
a small set of monolingual examples (∼8200 utter-
ances), which could potentially be useful for few-
shot continued pre-training of a language model.
Although this dataset is relatively small, we would
like to stress that it is high quality, as it comes di-
rectly from a community that actively fosters edu-
cation and writing in Haitian Creole.

OPUS for MIT-Haiti To establish the baseline
performance on the MIT-Haiti Corpus, we lever-
age pre-trained OPUS-MIT models (Tiedemann
and Thottingal, 2020). In Table 5, we show the
performance of pre-trained OPUS-MT models on
the MIT-Haiti benchmarks. These models were
previously benchmarked on the Tatoeba and/or
JW300 corpus, which are limited in complexity

16https://mit-ayiti.net/

and domain, respectively. By extending this to the
MIT-Haiti Corpus, we can gain an insight into the
performance of these models on more diverse us-
age of Haitian Creole. We translate from Span-
ish, French and English into Haitian Creole, be-
cause this translation direction has the potential to
be useful for (monolingual) speakers of Haitian
Creole, as it provides increased information ac-
cess. Notably, the scores on the MIT-Haiti bench-
marks are considerably lower than those on pre-
vious benchmarks. For instance, the English to
Haitian Creole model scores 45.2 BLEU and 59.2
chrF on the Tatoeba test set17, while it retrieves
only 14.7 BLEU and 35.8 chrF on the MIT-Haiti
Corpus. This suggests that previous benchmarks
are likely to be overly optimistic.

CreoleM2M for MIT-Haiti Table 5 contains
the results for the fine-tuned CreoleM2M mod-
els on the MIT-Haiti Corpus. We can see that
the BLEU and chrF scores are 18.6/38.1 and
22.0/43.9 for Haitian Creole to English and En-
glish to Haitian Creole, respectively. Despite the
domain differences between CreoleM2M’s train-
ing data (religion) and the MIT-Haiti benchmarks
(education), a brief manual inspection revealed
that the translation quality is not particularly bad,
however the generated translations tend to contain
spurious religious content. Extensive human eval-
uation of these translations will help in better un-
derstanding of the limitations of our CreoleM2M
models in a cross-domain setting.

17https://huggingface.co/Helsinki-NLP/
opus-mt-en-ht

https://mit-ayiti.net/
https://huggingface.co/Helsinki-NLP/opus-mt-en-ht
https://huggingface.co/Helsinki-NLP/opus-mt-en-ht


model source target # lines BLEU chrF

OPUS
es ht 102 12.1 32.9
fr ht 1,503 11.8 33.5
en ht 1,559 14.7 35.8

CreoleM2M en ht 1,559 22.0 43.9
ht en 18.6 38.1

Table 5: Performance of OPUS models (opus-mt-en-ht,
opus-mt-es-ht, opus-mt-fr-ht) on our MIT-Haiti Cor-
pus benchmarks, as well as the results of decoding
the MIT-Haiti benchmarks using the fine-tuned Cre-
oleM2M Haitian Creole models.

4.3 Prior NLG Benchmarks

KreolMorisienMT (Dabre and Sukhoo, 2022)
is a dataset for machine translation of Mauritian
Creole (i.e., Kreol Morisien) to and from English
and French. The dataset spans multiple domains
spanning the Bible, children’s stories, commonly
used expressions and some books. We refer the
reader to Dabre and Sukhoo (2022) for further
details. In this paper, we focus only on trans-
lation to/from English. We combine the train-
ing data from the Kreol Morisien part of the Cre-
oleM2M dataset with KreolMorisienMT’s training
data and then train MT models to show the impact
of our newly mined data. We filter out those sen-
tences from CreoleM2M, which are present in the
development and test sets of KreolMorisienMT,
for clean evaluation. This gives us 188,820 sen-
tence pairs, which is almost an order of magni-
tude larger than the 21,810 sentence pairs in Kre-
olMorisienMT. As a baseline, we only train mod-
els with the CreoleM2M data containing 167,010
sentence pairs after removing the development and
test set sentences of KreolMorisienMT.

For the KreolMorisienMT test set, since it is
standalone, we focus on standalone bilingual mod-
els and hence create a filtered version of the Kreol
Morisien part18 of CreoleM2M’s training data. We
use this to train separate tokenizers of 16,000 sub-
words for Kreol Morisien and English. One tok-
enizer is with this filtered version alone, and one
is with a combination of the filtered version and
the training data of KreolMorisienMT.

Table 6 contains results for the test set of Kre-
olMorisienMT. We compare our models trained
from scratch and fine-tuning against those of
Dabre and Sukhoo (2022). The most important
thing to note is that our scratch models are over-

18As mentioned in Section 4.3, we filter to remove the Kre-
olMorisienMT test set sentences from CreoleM2M’s training
data.

whelmingly better than corresponding models by
Dabre and Sukhoo (2022). In fact, we see gains
of up to 9.4 BLEU19. On the other hand, the fil-
tered CreoleM2M data when used for fine-tuning,
despite its size, does not lead to a model that sur-
passes Dabre and Sukhoo (2022)’s corresponding
model that is fine-tuned on a much smaller Kreol-
MorisienMT training dataset. However, by com-
bining both the filtered CreoleM2M and Kreol-
MorisienMT training datasets, we finally surpass
Dabre and Sukhoo (2022)’s best results.

Other We exclude PidginUNMT (Ogueji and
Ahia, 2019), as this unlabeled dataset pertains un-
supervised machine translation. We also exclude
WMT11 (Callison-Burch et al., 2011), as this
dataset was created to help victims of the 2010
earthquake in Haiti, and thus contains sensitive
data.

5 Discussion and Recommendations

Implications for Transfer Learning The intro-
duction of CREOLEVAL marks a significant step
forward in bridging the technological divide for
Creole languages, in the context of NLP. Prior
to this work, the scarcity of resources for Cre-
oles made progression of NLP tailored for Cre-
ole speakers close to impossible. Now, as shown
in Figure 1, 28 Creole languages, which previ-
ously had limited or no NLP datasets, are now part
of a unified platform. This platform enables re-
searchers and developers to easily include Creoles
in pre-existing pipelines, introducing a novel and
unique low-resource scenario to NLP. Given the
genealogical ties of many Creoles to (typically)
higher-resourced languages20, we expect this to al-
low for nuanced experimentation in transfer learn-
ing. In particular, the complex picture of Cre-
oles, including both horizontal and vertical trans-
fer between diverse languages, may offer the key
to developing transfer learning techniques which
are tuned to encapsulate specific pieces of cross-
linguistic knowledge. While vocabulary might be
transferred from a parent language, syntactic and
semantic structures may diverge, challenging con-

19Dabre and Sukhoo (2022) do not give chrF scores in their
paper and do not release their translations, making it impos-
sible for us to compare chrF scores

20Some Creoles have strong genealogical ties to lower-
resourced languages, such as the Niger-Congo Creoles Lin-
gala, Kikongo-Kituba, Fanakalo, which are related to Bantu
languages, and Sango, which is related to Ngbandi.



Data Model BLEU chrF
mfe-eng eng-mfe mfe-eng eng-mfe

Dabre and Sukhoo (2022) Scratch 11.1 11.5 - -
Dabre and Sukhoo (2022) mBART-50-MT-FT 24.9 22.8 - -
CreoleM2M Scratch 16.1 11.5 38.0 37.1
CreoleM2M+KreolMorisienMT Scratch 20.5 16.9 42.8 41.1
CreoleM2M mBART-50-MT-FT 22.1 18.9 44.6 44.4
CreoleM2M+KreolMorisienMT mBART-50-MT-FT 25.7 24.7 47.8 48.2

Table 6: Results on the KreolMorisienMT test sets by using CreoleM2M training data, in addition with the training
data in KreolMorisienMT.

ventional transfer learning methods. Indeed, pre-
vious work has shown the difficulties of straight-
forward transfer learning techniques from ances-
tor languages (Lent et al., 2022a). We suggest
that the success of transfer learning in this new do-
main relies on in-depth understanding of the struc-
tural and contextual intricacies of each individual
Creole language, rather than a simplistic reliance
on their parent languages. Moreover, we believe
that work to this end has the potential to improve
transfer learning methodology, as it will help re-
searchers gain a broader understanding of the ca-
pabilities and limitations of transfer learning. Fi-
nally, beyond strict transfer learning, we also ex-
pect cultural adaptation to be a significant chal-
lenge for the future, for which CREOLEVAL pro-
vides a benchmark.

Further Resource Development While CRE-
OLEVAL opens for straightforward inclusion of a
set of Creole languages in NLP pipelines, we are
still limited to textual data. While this is an impor-
tant contribution which may lead to a more even
playing field in terms of language technologies, it
is not enough to focus on this modality. Consid-
ering the fact that many Creoles are exclusively
spoken languages indicates that a focus on speech
resource development is an important next step.

Recommendations For future work on Creole
languages, be it in the context of experimentation
on CREOLEVAL, or on further resource develop-
ment, we recommend the following:

1. Engage with language communities. When
languages are limited in resources, it is criti-
cal that any new additional resources are allo-
cated to efforts that will benefit the commu-
nities using the language in question (Bird,
2021). For Creoles, a concrete starting point
is to reach out to experts, as discussed by
Lent et al. (2022b).

2. Keep in mind contextual factors such as do-
main and culture. Direct translations in nar-
row domains are likely to introduce cultural
biases, which may render language technol-
ogy less relevant to potential end-users (Her-
shcovich et al., 2022). When it is not possible
to gather naturally occurring language data,
we echo similar recommendations by others
for culturally sensitive translations (Roem-
mele et al., 2011).

6 Conclusion

In this work, we have addressed the absence of
Creole languages from contemporary NLP re-
search by introducing benchmarks and baselines
for a total of 28 Creole languages. We argue that
this omission in previous work has hindered the
progress of NLP technologies tailored to Creole-
speaking populations, in addition to preventing
research communities from exploring the unique
linguistic situations of this diverse group of lan-
guages. With the introduction of CREOLEVAL,
we have made a significant step towards bridg-
ing the gap between Creole languages and other
low-resource languages in NLP. We hope that the
public release of our datasets and trained models
will serve as an invitation to further research in
this relatively unexplored domain, and expect that
NLP and computational linguistics research stand
to gain significantly from embracing the linguis-
tic and cultural diversity embodied in this group
of languages.

Limitations

Although we are the first to create NLU and NLG
benchmarks for up to 28 Creoles, we note the fol-
lowing limitations.

Limited domain diversity Although, we were
able to collect reasonably large parallel corpora



for Creole MT, the data itself belongs to the re-
ligious domain and thus might not be extremely
useful in a general purpose MT setting. Contro-
versially, the Bible and other religious texts may
be considered colonialist by some communities,
as these texts may be used to "provoke a culture
change in these communities" (Mager et al., 2023).
However, works in domain adaptation (Chu et al.,
2017) have shown that even a small amount of in-
domain corpus may be sufficient for adapting our
models to other domains.

Lack of reliable monolingual corpora sources
Unlike resource-rich languages like English,
French, and Hindi, finding monolingual corpora
for Creoles is extremely difficult. One reason for
this is the relatively recent interest in research on
Creoles in NLP. The lack of monolingual corpora
also inhibits the development of LLMs for Cre-
oles, however even a tiny amount may be helpful
for expanding existing LLMs, as shown by Yong
et al. (2023).

No language identification tools A possible
reason for the difficulty in obtaining Creole cor-
pora from the web is that there are extremely lim-
ited language identification (LID) (Baldwin and
Lui, 2010) tools for Creoles, and thus identify-
ing Creole content in CommonCrawl21 is also very
difficult. Developing LID tools for Creoles will be
an important future work.

Modality Many Creoles are spoken and not
written, therefore text-based NLP might not be
suited for them. This motivates branching out
into speech-to-text (automatic speech recognition,
speech translation) and speech-to-speech (transla-
tion) research.
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