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Abstract—Corrosion is a natural process that degrades metal-
made materials. Its detection is of primordial importance for
quality control and for ensuring longevity of metal-made objects
in various contexts, in particular in industrial environments. Dif-
ferent techniques for corrosion identification including ultrasonic
testing, radio-graphic testing, and magnetic flux leakage have
been proposed in the past. However, these require the use of costly
and heavy equipment onsite for successful data acquisition. An
under-explored alternative is to deploy conventional lightweight
and inexpensive camera systems and computer vision based
methods to tackle the former problem. In this work we present a
detailed benchmark of four state-of-the-art supervised semantic
segmentation techniques, for vision-based pixel-level corrosion
identification. We focus our study on four, recently proposed
deep learning architectures which have surpassed human-level
accuracy on various visual tasks. The results demonstrate that the
former approaches may be used for the problem of segmenting
highly irregular patterns in industrial settings, such as corrosion,
with high accuracy rates.

Keywords—Machine Vision; Semantic Segmentation; Corro-
sion Identification

I. INTRODUCTION

Corrosion is a natural process that degrades metal-made
materials. Its detection is of the utmost importance for ensur-
ing and control the longevity and quality of numerous metal-
made infrastructures existing in various contexts, namely in
industrial, urban and transportation, such as gas and oil
pipelines, buildings, and vehicles [BHH+22], [DSDPM23].
Many different sensing technologies [RPS+21] for corrosion
identification including ultrasonic testing [OKS21], radio-
graphic testing [VEEA06], magnetic flux leakage [PALT20],
and acoustic-based signals [JF21], have been successfully
applied in different quality control chains, e.g. in pipeline
inspection. However, this processes rely on costly and heavy
machinery equipment that has to be deployed and operated
by highly trained human operators. Recently, the use of less
expensive and lightweight conventional cameras has been
investigated to tackle the former problem [YJC+21], [20119],
[NZB22]. However the literature falls short on works that
attempt to employ artificial intelligence methodologies to
automate this task. In this work we assess the feasibility of
employing supervised deep learning approaches to solve the
former problem. Our experiments demonstrate that current
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Fig. 1: Corrosion semantic segmentation in RGB monocular
images.

state-of-the-art machine learning methods for semantic seg-
mentation can be used to recognize highly irregular corrosion
patterns.

The contributions of our work are the following: The rest
of this article is organized as follows: first we overview the
background in corrosion detection, and existing technologies
and methodologies that attempt to solve this problem. Second,
we review vision-based semantic segmentation techniques
that have been successfully applied across different domains,
namely in biomedical and robotics applications. Then we
benchmark the state-of-the-art machine learning techniques
for semantic segmentation in a corrosion labeled data-set,
comprising images gathered in challenging offshore industrial
environments. Finally, we present conclusions and promising
research directions for future work.

II. BACKGROUND

Vision based scene understanding plays a role of major
importance in many domains, namely in robotics [GCE21],
[dFMB13], manufacturing, medical imaging [SBKV+20],
inspection [TSSPdF22], [lFSPDFK21], [dFlFSH+21],
[DLHB22] and surveillance [GCE21], to name a few. Scene
understanding tasks may belong to one of the following
categories: image classification, object detection and semantic
segmentation. In this work we focus on the latter, which deals



with the problem of assigning a label, representing an object
class, to each pixel. In the rest of this section we revise and
explain the main techniques that attempt to solve the later
problem. While image classification and object detection deal
with the problem of classifying images and localizing regions
of interest (i.e. bounding boxes), respectively, semantic
segmentation tackles the more complex problem of assigning
a class label to every image pixel. Methods existing in the
literature may belong to two different paradigms: model-
based or data-driven. Classical computer vision model-based
approaches are based on theoretically principled methods that
attempt to analytically solve geometric and physical image
formation aspects, data-driven ones attempt to learn statistical
properties of the image, directly from visual data, through
machine learning techniques. With the rise of deep learning
and the availability of large publicly annotated datasets (e.g.
[LMB+14b], [COR+16]), the latter have outperformed the
former in increasingly complex tasks. With the invention
of AlexNet [KSH17], the DCNN architecture that won the
2012 ImageNet challenge [DDS+09a], the use of DCNNs
became ubiquitous among the computer vision literature.
Since then, convolutional neural networks architectures
have become more accurate and applicable to increasingly
complex datasets and visual tasks. In the particular case of
semantic segmentation tasks, multiple approaches have been
proposed in the last decade. One of the first successful deep
learning semantic segmentation approaches was Mask R-
CNN [HGDG17]. Its architecture is conceptually simple, and
consists of a CNN backbone for feature extraction followed
by a region proposal network (RPN) optimized to output
candidate regions of interest. Then, three parallel branches
perform classification, bounding box regression, and pixel
level mask predictions. Mask R-CNN and latter proposed
similar architectures achieved state-of-the-art performance in
multiple semantic segmentation datasets, namely on Microsoft
COCO [LMB+14a]. U-net is a fully convolutional neural
network [RFB15] introduced in 2015, that is based on the
idea of replacing fully connected layers with upsampling
layers enabling pixel-level predictions. More specifically,
U-net consists of an encoder-decoder architecture without
fully connected layers. The CNN encoder (contracting path)
downsamples the input image to a low dimensional feature
space, while the decoder (expansive path) up-samples the
feature space through deconvolutional layers. U-net has
been very successful in biomedical imaging applications, in
particular on segmentation of tumour cells. In the remainder
of this article we overview and test U-net and three other
similar approaches for semantic segmentation of corrosion
patterns.

III. METHODOLOGIES

In this section we overview in detail the state-of-the-art
approaches used for employing image-based semantic seg-
mentation of corrosion in metallic surfaces. In particular, we
study the feasibility of employing the state-of-the-art semantic
segmentation networks for corrosion detection tasks. In the

remainder of this section we describe in detail the chosen
semantic segmentation network architectures. Figure 2 depicts
the various tested neural networks for semantic segmentation
purposes.

1) DeepLab: The first version (V1) of the DeepLab se-
mantic segmentation network [CPK+14] proposed the use of
dilated (or atrous) convolutions. The main idea is to control the
field-of-view of receptive fields by manipulating the sampling
rate in the convolution operation. To segment objects and
surrounding context at multiple scales, the authors propose
a pyramidal approach that employs dilated convolutions with
different sampling rates (i.e. the larger the rate, the larger
the field-of-view). Then the output from the network is bi-
linearly interpolated to ensure the feature maps are enlarged to
the original resolution (see Fig. 2(d)). DeepLabV3 [CPK+18]
proposed the use of up-sampled filters (i.e. atrous convolu-
tions), to control the resolution at which convolutional filters
operate, i.e., to balance the trade-off between localization
accuracy and context awareness. Furthermore, the authors
propose the use of fully connected conditional random fields
(CRFs) to refine segmentation and improve localization perfor-
mance. In [HJS+22] the authors propose a multi-scale aware-
relation network (MANet), optimized to deal with object scale
and scene variability in remote sensing applications. The
network learns multi-scale feature representations via multi-
scale collaborative learning (MCL) and inter-class and intra-
class region refinement (IIRR) to exploit correlations between
features among different scales.

2) MANet: The multi-scale aware-relation network
(MANet) [HJS+22] was originally proposed to deal with high
variability of scene and object scales. The authors introduce
an inter-class and intra-class region refinement scheme (IIRR)
to enhance the discriminability of multi-scale representations,
i.e., to reduce redundancy of fused features. The scheme
utilizes a refinement strategy that separately considers the
inter-class and intra-class scale variation and utilizes regional
high-level semantic representations to refine multi-scale
predictions. In addition, they design discrepancy classifiers to
augment dissimilarity of features at different scales (see Fig.
2(c)). Then, instead of learning separate classifiers over each
scale feature set and combining the predictions to decrease
the error at a global level, the authors enforce pixel-level
collaborative learning through co-training, by encouraging the
model to focus on areas misclassified with large uncertainty,
thus exploiting the correlation among different scales.

3) PSPnet: PSPnet [ZSQ+17a] or pyramid parsing network
is a semantic segmentation network suitable for tasks where
context may improve the performance of scene parsing. Its ar-
chitecture differs from the previous, by introducing a pyramid
pooling module preceding the CNN contracting path.

PSPnet exploits global scene context using a spatial pyramid
pooling layer, that allows CNNs to deal with variable size
inputs. Traditional CNNs attempt to avoid fixed input lengths
by cropping and warping the original image, introducing
context loss and distortion, and hence decreased performance.
Finally, ta spatial pooling layer on top of the network, converts



the feature map to a fixed size (see Fig. 2(a)). More specificaly,
the pyramid parser first extracts features representing different
sub-regions at different scales to capture both local and global
context. Then, these are up-sampled and concatenated to form
the final feature representation, which is fed into a convolution
layer to get the final segmentation masks. To deal with the
challenging task of detecting objects at multiple scales, the au-
thors of [SIBS18] proposed a Feature Pyramid Network (FPN),
which comprises a bottom-up and a top-down pathway. The
bottom-up pathway consists of a conventional CNN encoder
and the top-down one utilizes nearest neighbour up-sampling
succeeded by multi-channel concatenation, spatial dropout and
bi-linear interpolation to ensure the output matches the input
image size.

The Pyramid Scene Parsing Network (PSPNet) [ZSQ+17b]
architecture differs from the previous, by introducing a pyra-
mid pooling module preceding the CNN contracting path.

4) U-Net: U-net [RFB15] is based on the fully convolu-
tional network [LSD15], but altered to allow training with
small image samples, while being more accurate then the
former. U-net consists of a traditional convolutional network
followed by two paths: The contracting path starts by applying
two 3x3 unpadded convolutions, followed by rectified linear
units (ReLU) and down-sampling via 2x2 max pooling opera-
tions. The expansive path up-samples the feature map with 2x2
convolutions, succeeded by cropping to deal with border pixels
loss in convolutions, and concatenation with the corresponding
cropped feature map from the contracting path, and 3 × 3
convolutions followed by ReLU, rectifying linear units (see
Fig. 2(c)).

IV. RESULTS

In this section we perform a comparative study on the state-
of-the-art semantic segmentation networks described in the
previous section, namely on segmenting corrosion in metallic
structures. In all our experiments, the networks were trained
and tested on a 12th Gen Intel® Core™ i9-12900KF x 24,
with a GeForce RTX 3090ti graphics card.

The dataset used for training and testing comprises 14265
labeled images, which have been gathered with a high defini-
tion DSLR camera in a offshore environment, and manually
annotated using an online labeling tool [Seg22].

In our experiments we train the models with random crops
of size 1024 × 1024, of the original input images, and we
set the training batch size to 8. The dataset is partitioned
into 60% training, 20% validation and 20% testing sample
sizes. Finally, all models are pre-trained on the imageNet
[DDS+09b] dataset.

A. Evaluation Metrics

Evaluating the performance of semantic segmentation tasks
requires simultaneously evaluating pixel-level classification
and localization accuracy. Let us consider the number of
true positive TP , false positive FP , true negative TN , and
false negative FN predictions. In our experiments we use the
following metrics to evaluate our model:

a) Intersection over Union (IoU): Similarly to the F-
score, the intersection over union measures the amount of
overlap between ground truth and prediction masks. However,
the penalties are higher:

IoU =
TP

TP + FN + FP
(1)

b) Precision: Precision measures how accurate the
model is at finding true positives, i.e., from all pixels that the
model estimates as belonging to the segmentation mask, how
many are correctly estimated according to the ground truth.
Precision is computed according to the following expression:

Precision =
TP

TP + FP
(2)

c) Recall: Recall measures true positive rate i.e. from
the pixels belonging to ground truth masks, how many are
predicted. Recall is computed according to the following
expression:

Recall =
TP

TP + FN
(3)

Considering that the ground truth has missing annotations,
predictions may be incorrectly classified as being false pos-
itive. Therefore, recall is more relevant than precision when
ground truth masks are incomplete.

d) Dice Similarity Coefficient (F-score): A popular com-
puter vision metric used to measure similarity between two im-
ages, which penalizes under and over segmentation, according
to the following formula:

F1 =
2TP

2TP + FP + FN
(4)

B. Quantitative and qualitative analysis

In our experiments we use the dice loss metric for training
and validation, and precision, recall and accuracy for testing
our models.

Table II presents the obtained results for the architectures
described in the methodologies section, on the test set. While
PSPnet architecture is the fastest with the lowest average
inference time (i.e. 0.0306s), DeepLab is the slowest one with
0.0637s inference time. The most precise one is DeepLab,
with a precision score of 0.7485%, and the one with the
highest recall is U-net (0.5508).

Figure 3 shows the performance of U-net on different
scenes. U-net exhibits high recall, being capable of identifying
most ground truth spots. Again, U-net correctly identifies
corrosion spots missed by the labeler. Considering that cor-
rosion is hard to label, since small spots are easily missed by
human labelers, precision is not the best metric to assess the
performance of the former methods.

V. CONCLUSIONS AND FUTURE WORK

In this article we assessed the performance of current
state-of-the-art neural networks for semantic segmentation, on
corrosion segmentation tasks. The results demonstrate that the
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Fig. 2: Architectures of the bench-marked deep neural networks.
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Fig. 3: Semantic segmentation masks obtained for various example scenes using the U-net architecture with ResNet34 backbone.

current state-of-the-art supervised approaches are able to seg-
ment corrosion with good performance as long as enough data
is provided. One major limitation of supervised deep learning
based approaches is that they require the availability of large
datasets, manually annotated in a laborious, time-consuming
and in a human error prone manner. Furthermore, visual scene
analysis tasks are challenging due to high variability in pose,

occlusions, clutter and irregular illumination.

In the future we intend to improve our current models using
different data augmentation techniques existing in the literature
to increase the variability of the data, including extending the
dataset via cropping, flipping, rotation, scaling, translation,
brightness, and contrast variations. Also, we intend to use sim-
to-real transfer [DBF+19] approaches by training the models



TABLE I: Dataset used for training and validating the semantic segmentation networks.

total images in dataset
train 2853 (20%)
val 2853 (20%)
test 8559 (60%)

TABLE II: Performance results for different network architectures and training parameters.

IoU score Precision Recall F-score Avg inference time
model
DEEPLABV3-resnet34 0.3736 0.7485 0.4368 0.4688 0.0637
MANET-resnet34 0.4395 0.7151 0.5385 0.5442 0.0471
PSPNET-resnet34 0.3024 0.7049 0.3759 0.3933 0.0306
UNET-resnet34 0.4519 0.7112 0.5508 0.5574 0.0445

with synthetically generated datasets using realistic simulators
and rendering engines such as Nvidia Isaac [MWG+21], Air-
Sim [SDLK18] and Gazebo [KH04]. In particular, we intend
to evaluate the viability of using physically plausible models
of corrosion from the computer graphics literature [MDG01]
to synthetically generate large annotated image datasets, to be
used for training corrosion segmentation algorithms.
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Alexandre Bernardino, and Josá Santos-Victor. The impact of
domain randomization on object detection: A case study on
parametric shapes and synthetic textures. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 2593–2600. IEEE, 2019.

[DDS+09a] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[DDS+09b] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

[dFlFSH+21] Rui Pimentel de Figueiredo, Jonas le Fevre Sejersen,
Jakob Grimm Hansen, Martim Brandão, and Erdal Kayacan.
Real-time volumetric-semantic exploration and mapping: An
uncertainty-aware approach. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
9064–9070, 2021.

[dFMB13] Rui Pimentel de Figueiredo, Plinio Moreno, and Alexandre
Bernardino. Fast 3d object recognition of rotationally sym-
metric objects. In João M. Sanches, Luisa Micó, and Jaime S.
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