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ABSTRACT

Virtual analog (VA) audio effects are increasingly based on neural
networks and deep learning frameworks. Due to the underlying
black-box methodology, a successful model will learn to approx-
imate the data it is presented, including potential errors such as
latency and audio dropouts as well as non-linear characteristics
and frequency-dependent phase shifts produced by the hardware.
The latter is of particular interest as the learned phase-response
might cause unwanted audible artifacts when the effect is used for
creative processing techniques such as dry-wet mixing or parallel
compression. To overcome these artifacts we propose differen-
tiable signal processing tools and deep optimization structures for
automatically tuning all-pass filters to predict the phase response
of different VA simulations, and align processed signals that are
out of phase. The approaches are assessed using objective met-
rics while listening tests evaluate their ability to enhance the qual-
ity of parallel path processing techniques. Ultimately, an over-
parameterized, BiasNet-based, all-pass model is proposed for the
optimization problem under consideration, resulting in models that
can estimate all-pass filter coefficients to align a dry signal with its
affected, wet, equivalent.

1. INTRODUCTION

Digital simulations of analog audio equipment like tape machines,
pre-amplifiers and distortion pedals remain in demand due to the
hardware’s rich history and unique sonic characteristics. With the
increase in computational power, the deep learning approach to
machine learning has proven useful for simulating virtual analog
(VA) black-box models and has in several publications been ap-
plied as the main technique for approximating the output response
of analog audio systems [1–5]. In [2] and [3] a WaveNet-based
model is as an example adapted to predict the current non-linear
output sample value, given a certain number of past input samples
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and the current input. In both works, the number of past input sam-
ples, also called the receptive field, is dynamically selected based
on the measured impulse response length of the circuits under con-
sideration. In [4] a recurrent neural network (RNN), such as the
gated recurrent unit (GRU), is proposed for simulating the non-
linear behaviour of distortion circuits due to their stateful nature.
Contrary to this, the authors of [5] present the state trajectory net-
work (STN), comprised of a standard multilayer perceptron (MLP)
with a skip-layer connection surpassing the densely connected lay-
ers of the network. The STN differs from related work as the in-
put data is concatenated with measured values from the states of
the circuit in order to model its behaviour. Since all aforemen-
tioned models are built upon the black-box paradigm, the results
are significantly exposed to errors in the data collection process
and any flaws in the hardware. Thus both the sonic characteris-
tics and the phase response of the system are learned, introducing
arbitrary and non-linear phase shifts to the incoming signal. This
becomes a problem where parallel-path processing is desired, for
instance when dry-wet mixing with the given simulations. All-pass
filters (APF) that have unitary magnitude response and frequency-
dependent phase responses would traditionally be the approach to
take account of the phase shifts, however, manual coefficient ad-
justments would be both time-consuming and for specific prob-
lems, impossible. An automatic solution to the problem, therefore,
is highly desired. With inspiration from the differentiable digital
signal processing (DDSP) methodology [6], we propose a model
that tunes the coefficients of a cascaded APF system. The phase
response of different black-box effects is thus automatically ap-
proximated, and the adjusted APFs are used to align a dry input
signal with the processed, phase-shifted output.

The remainder of this paper is structured as follows: the all-
pass optimization problem and related work are introduced in sec-
tion 2. The construction of the differentiable APFs and their for-
mulas are reviewed in section 3. Our approach and different deep
optimization architectures are discussed in section 4. Finally, net-
work evaluations, results, allusions and conclusions are presented
in sections 5 and 6.
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2. BACKGROUND

DDSP stems from the motivation of generating audio by using a
deep learning workflow to predict and extract synthesis parameters
for vocoders and subtractive synthesis [6]. However, directly inte-
grating classic signal processing elements into deep learning meth-
ods has shown promising results for the control and adjustment of
other DSP blocks, including convolution, filters and one-period
wave-tables [7]. Specifically, the authors of [8] have demonstrated
the use of DDSP in the context of IIR filters, training different
filter topologies in a recursive manner to match target frequency
responses. Several other projects have investigated deep learning
for IIR filter design, but similar to [8], the work has solely been fo-
cused on learning coefficients for magnitude rather than the phase
responses. In [9], a neural network is applied to carry out para-
metric equalizer matching using differentiable biquads, whereas
they in [10] approximate shelving filter coefficients directly in the
difference equation. All of these works carry out an optimization
problem in the frequency domain by minimizing the mean squared
error (MSE) between the ground truth and the derived magnitude
responses.

The approach to frequency response matching is different in
[11]. Here a BiasNet is applied to determine the IIR equalizer
parameters. The BiasNet is a simple feedforward neural network
that takes advantage of the learnable bias terms, denoted b0, in
the input layer. This architecture is called a "deep optimization"
algorithm, owing the name to the use of the neural network as a
non-convex optimization algorithm used to tune or derive exter-
nal parameters. An advantage of the BiasNet is its independence
of input features, which according to [11] is more likely to pro-
vide a solution to many optimization problems. Furthermore, the
network does not rely on the input size and content, hence only a
target frequency response is required to be given to the loss func-
tion. Similar to the IIR system in [11], adjusting cascaded APFs
might be a highly non-linear process. In this paper we, therefore,
utilise the over-parameterised nature of the BiasNet to overcome
the, potentially, non-convex phase response matching problem and
extend the work of [8] to be applicable in the domain of APFs and
phase response approximation.

2.1. Problem Formulation

We represent the monophonic signals we want to phase compen-
sate as input vectors xT ∈ R, where T is the signal length. The
task is to process these signals with an APF function f , such that
the signal is phase shifted to match a target signal introducing the
least amount of destructive interference. The function f takes as
arguments the input and the number of filter coefficients c match-
ing the filter order N of the given sub-system. This yields the out-
put yT = f(cn, xT ). For a system of cascaded APFs, we define
the function composition of size D, where each function receives
the output of the previous one as:

yT = f(cn, xT )1 ◦ f(cn)2 ◦ ... ◦ f(cn)D−1 ◦ f(cn)D, (1)

where the order N = nD, if each sub-system is a 2nd order filter.
The system can be more general than that depending on the value
of n. Depending on the deep learning techniques used, each func-
tion f can be arbitrarily complex and represented either directly as
filter coefficients, as done in [8], or as parameterised sub-networks
such as the BiasNet applied for the deep filter optimization proce-
dure in this paper.

3. DIFFERENTIABLE ALL-PASS FILTERS

Before outlining the model architecture of the proposed APF filter
tuning process, we present the differentiable APF structures used
to adjust the coefficients in the deep learning pipeline. Following
the transposed direct form-II (TDF-II) structure, a 2nd order IIR
APF is given by the traditional biquad transfer function [12]:

A2(z) =
c+ dz−1 + z−2

1 + dz−1 + cz−2
(2)

In practice, this transfer function can be implemented using
the following recurrent, and stateful, difference equation:

y[n] = cx[n] + v1[n]

v1[n] = dx[n] + v2[n]− dy[n]

v2[n] = x[n]− cy[n],

(3)

where coefficients c and d are controlling the steepness and the
break frequency of the APF’s phase response respectively. The
coefficients are products of the pole radius R and the cutoff fre-
quency fc. They have the ranges: −1 < c < 1 and −2 < d < 2.
We introduce a stability constraint to the tuning process and esti-
mate the filter parameters rather than the coefficients themselves.
The filter coefficients can for each forward call thereafter be cal-
culated by [13]:

c = R2 d = −2R cos(2πfc/fs), (4)

with fs being the sampling rate of the signal. As the filter co-
efficients, and thus the steepness of the phase response, are de-
pendent on the pole radius, the phase response might have a sig-
nificantly narrow resolution at low frequencies. When trying to
match frequencies below 100 Hz, the parameters for a system with
a high sampling rate (192 kHz) exist in very small ranges with
0.9 < R < 0.999 and the resulting coefficient d being between
−1.97 < d < −1.999, depending on the cutoff frequency. It
is hypothesised that the prediction of values in such small ranges
might introduce numerical overflow and coefficient quantization
errors while being difficult to generalise. We, therefore, propose
a differentiable warped all-pass structure to increase the frequency
resolution in low-frequency ranges, emphasising the importance of
low-frequency content in the learning process. A warped APF is
designed and realized on a warped frequency scale. It is achieved
by replacing the unit delays of a traditional APF with auxiliary 1st
order APFs, whose phase response is used to skew the frequency
axis [14]. A warped version of the APF in equation (3) is given by
the difference equation:

y[n] =
x[n](c+ a2 + ad) + v1[n]

1 + a2c+ ad

v1[n] = x[n](2a+ d+ ac) + y[n]
(
− 2ac− d− a

)
−a3(x[n]− cy[n])− v2[n](a

2 + 1)

v2[n] = x[n]− cy[n]−
(
a2(x[n]− cy[n]) + av2[n]

)
,

(5)

with a being the warping factor i.e. the coefficient of the inserted
auxiliary 1st-order APFs. For stability reasons the warping factor
for all inserted APFs is identical and thus gathered into a global,
but learnable, variable a.

DAFx.2
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(a) Sequential BiasNet Structure

(b) Fully Connected BiasNet Structure

Figure 1: High level overview of the deep-optimization models

4. PROPOSED METHOD

By utilizing over-parameterisation we propose two BiasNet-based
models and a phase alignment procedure to extend the differen-
tiable IIR filter design techniques towards the APFs. We call these
models sequential and connected, as illustrated in figure 1. Both
models contain cascaded differentiable warped APFs matching a
desired filter order N . The neural network is excited by a learn-
able bias input layer, whereas its output corresponds to the filter
parameters of the closed-form equations used to calculate the final
APF coefficients. Three values, R, fc and a are thus fed from the
output of the model to every single filter. The primary deep neural
network is an MLP with periodic sinusoidal activations for the hid-
den layers and tanh activations for the output layer. The sine acti-
vation function has been included as it avoids local minima during
network optimization, is robust towards vanishing gradients and
thus suitable for non-convex problems such as the cascaded APF
pipeline [15]. We additionally de-normalise the network outputs
taking account of the range in which fc exist. We use a constrained
de-normalization technique similar to the one proposed in [11] to
de-normalise the tanh output layers scaling it between 20 Hz and
20 kHz:

fc =
fcmax − fcmin

2
p+

fcmax + fcmin

2
, (6)

where p denotes the value to de-normalise. The DNN is updated
such that its output layer produces filter coefficients that create the

needed phase alignment.
We create two different BiasNet models to investigate the im-

portance of over-parameterisation and its impact on the non-convex
problem as well as the general learning process. More specifically,
the cascade in the sequential structure is achieved by chaining sev-
eral BiasNets together, each representing a respective filter, to cre-
ate the desired order. Individual DNNs are thus used to derive
the coefficients in parallel for each individual APF. The BiasNet is
initialized as a densely connected bottleneck with hidden layers of
1024, 512, 256, 128 units respectively. It contains approximately
692.5k learnable parameters, which accumulate to 2.7 million pa-
rameters for a cascaded filter of 7th order. Due to its large number
of learnable parameters, a benefit of this architecture is the pos-
sibility of a complex and detailed parameter estimation process,
however, it suffers from longer calculation times and a lack of
interaction between the DNNs of each individual block. For the
connected structure, all filter parameters are coming directly from
one large BiasNet. This introduces only 692k learnable parame-
ters in total, independent of the cascaded filter order. The size of
the output layer in the connected architecture thus equals 11 for a
warped APF of 7th order. The connected architecture allows for
interaction between the cascaded filters since the same network
derives all parameters, however, it might suffer from a smaller and
therefore less complex parameter space.
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4.1. Loss Function

Following the majority of related work, the loss function of the
network that is optimized during training happens in the frequency
domain. Since the frequency response of an APF by nature is
unity gain, a change in magnitude will not be detected and the
direct spectrogram comparison used in [6] and [9] is thus not suf-
ficient for the problem at hand. Rather, we calculate the difference
between the sum of the target frequency response y and the pre-
dicted signal’s frequency response ŷ individually, as well as the
frequency response of the summed signals before the transform.
The loss function is given by:

εSTFT (yi, ŷi) =
1

n

n∑
i=1

((S(yi) + S(ŷi))− S(yi + ŷi))
2, (7)

where the function S denotes the spectrogram or the squared mag-
nitude of the STFT, simply given as:

S(yi) = |STFT (yi)|2 (8)

By doing this, the magnitudes of the target and the predic-
tion are forced to be similar, leaving phase as the only change-
able factor. Since the magnitude spectrogram S does not include
phase information, it highlights frequency areas where the summa-
tion of the input and the target introduce destructive interference.
Optimization can thus exclusively be achieved by attaining coeffi-
cients whose phase response shifts the input such that the magni-
tude of the signal summation matches the magnitude summation
of each individual STFT. To avoid the frequency-dependent trade-
off of the STFT and to improve the robustness of the loss function,
we extend equation (7) by the multi-resolution STFT (M-STFT)
loss [16]:

εM−STFT (yi, ŷi) =
1

M

M∑
m=1

εSTFT (y, ŷ), (9)

with M being different analysis resolutions. Thus the final loss-
function is given by an average over the normal STFT loss in eq
(7) at different resolutions. By utilizing multiple FFT-lengths and
summing the information across the different resolutions, we cap-
ture a more realistic representation of the training signals [16]. The
different resolutions are selected according to the STFT parame-
ters presented in [17]:

Table 1: Details of the parameters for the different STFT
resolutions

FFT-Size Hop Length Window Size
512 50 240

1024 120 600
2048 240 1200

4.2. Proof of concept

By a simple proof of concept we show that the over-
parameterisation proposed above is crucial for the deep APF opti-
mization problems at hand. To inspect the possibilities of differen-
tiable APFs we first create an example following the work in [8].
We thus start with a naive DDSP approach and derive the coef-
ficient values for the filters directly from the difference equation

in order to provide a baseline. To do this we attempt to align the
input and output of a simulated 1st-order RC filter, which due to
its natural low-pass behaviour creates a phase shift in the higher
frequency register. A 1st order RC filter is given by the difference
equation [18]:

V n
out =

ρ(V n
in + V n−1

in ) + (1− ρ)V n−1
out

1 + ρ
, (10)

where V n
in and V n−1

in are the current and past input samples, V n
out

and V n−1
out are the current and past output samples and ρ is given

by fs/(2RC), with R and C being the resistance and capacitance
of the circuit components. In our case R = 120Ω and C = 68nF
respectively. As the RC filter at maximum will shift incoming fre-
quencies 90◦, we train a 1st-order APF the naive way, using the
same hyperparameters and loss functions presented in section 5.
The results of the trainings are depicted in figure 2.

As seen above, both the M-STFT and the MSE loss converge,
with the latter being faster but more noisy. Both cases additionally
manage to compensate the phase shifts introduced by the RC filter,
with the M-STFT training being more precise. However, when ap-
plying the above naive approach to more complex problems such
as the VA black box effects presented in section 5, it was quickly
realized that the training loss for a system of cascaded APFs di-
verged and in many cases exploded. When tuning cascaded APFs
we are simply handling a highly non-linear problem where the
individual minimum of each APF affects the remaining cascade,
while the minimum of the loss function most often is based on
the frequency areas where alignment gives less destructive inter-
ference. The function that can estimate the full phase response
thus might be non-convex as it has multiple local minima, which
was found to be too complex for the naive and traditional DDSP
approach. We argue that over-parameterisation networks and deep
optimization frameworks solve this problem.

5. EVALUATION

We examine the proposed models through objective metrics and
use the proposals with the best results for final listening tests. The
training data consists of a logarithmic sine sweep from 20 Hz to
20 kHz over 10 seconds at a sample rate of 192 kHz. The sweep
is fed through three different VA black box simulations shown to
introduce significant and complex deviations from linear phase be-
haviour: 1) Electronic Audio Experiments Surveyor Pre-amp, 2)
15IPS Tape Saturation, and 3) LEM 808R DLX Mixer. We train
and evaluate all models in an in-to-out fashion, meaning that our
models learn the coefficients needed to shift the non-affected in-
put in order to match the VA processed and phase-shifted output.
Once training is done, the coefficient values can be exported and
inserted into a traditional APF pipeline for the desired real-time ad-
justments. All models are initialized as a 7th-order APF structure
with a cascade of three 2nd-order filters and one 1st-order APF.
The output signals of the three systems are sampled and divided
into sequences of 2048 samples, which for 20 Hz approximates to
a 1/4 of a sinusoidal period at a sample rate of 192 kHz. We heuris-
tically found this sequence length to be a good compromise be-
tween phase information and training time. The sub-sequences are
additionally organized into batches. We train the models using the
earlier mentioned M-STFT loss as well as the traditional MSE loss
function, which is used to further validate the phase-compensated
simulations/reconstructions. All training sessions are carried out
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Figure 2: Loss curve, phase compensation and phase response of RC Filter trained with M-STFT Loss (upper row) and the MSE Loss
(lower row). The middle plot shows the alignment at 0, 2, 7 and 9 seconds into the training signal.

using 1 NVIDIA Tesla T4 GPU for 400 epochs or until training
loss plateaus (approx. 5 hours). We train the models with a learn-
ing rate of 1e-5, a batch size of 512 and the ADAM optimizer. The
final M-STFT and MSE values for the trained models are seen in
table 2 below:

Table 2: Model and training specifications

Model Loss Type Params Effect Final Loss

Sequential MSE 2.7M
Surveyor 1.375e-1
15 IPS 4.235e-3
LEM 4.708e-2

Sequential M-STFT 2.7M
Surveyor 1.857e-2
15 IPS 8.078e-3
LEM 9.998e-3

Connected MSE 692.5K
Surveyor 1.437e-1
15 IPS 4.271e-3
LEM 4.707e-2

Connected M-STFT 692.5K
Surveyor 2.991e-1
15 IPS 4.871e-1
LEM 9.887e-3

5.1. Performance Assessment

The performance of the trained models is quantitatively evaluated
on unseen test audio. The test audio is chosen such that it exposes
the model to signals of various frequencies and timbres. It con-
sists of a concatenation of different loops counting: an acoustic
breakbeat drum loop, an electric bass-guitar loop, a guitar loop
and a synthesized acid bassline (duration of approx 2 minutes). As
signal displacement is given in the time domain, the objective met-
rics chosen for this study compare the similarity between the au-
tomatically shifted input (prediction) and the VA processed output

(ground truth) in the sample/phase space. We evaluate the perfor-
mance by measuring the similarity using the traditional MSE as
well as the mean absolute error (MAE) defined as:

ϵMAE(ŷ, y) =
1

n− 1

n−1∑
i=0

|ŷi − yi| (11)

Additionally, we include the error-to-signal ratio (ESR), which
can be regarded as an extension of the MSE with the inclusion
of target energy normalization to penalise the errors more equally
when the input signal is lower in absolute amplitude. The ESR is
given by:

ϵESR(ŷ, y) =

∑N−1
i=0 |ŷi − yi|2∑N−1

i=0 |yi|2
(12)

The final values for each objective metric are summarized in table
3, with the values for the non-shifted signals included as a static
reference. We see that the sequential architecture performs best
for all objective metrics on both the surveyor and the 15IPS ef-
fects (given in bold). The sequential model is slightly surpassed
by the connected architecture in the case of the LEM effect, how-
ever, only with a combined distance of 0.003 for the MSE trained
version and 0.001 for the M-STFT trained version. It can thus be
concluded that the sequential and over-parameterised BiasNet ap-
proach quantitatively provides a closer match to the ground truth
phase response of the trained systems. Figure 3 presents a few
phase-matching results on different frequency content of the test
audio. Examples of all trained VA simulations are shown. It is here
clearly seen that the phase-response estimation done by the models
compensates for the input to match the saturated and phase-shifted
output.
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Figure 3: Examples of the normalized phase alignment results for each individual black-box effect training (blue = input, orange = output,
green = prediction

Table 3: Overview of the performance results for the individual
models across effects and loss functions

Model Loss Effect MAE MSE ESR

Reference None
Surveyor 0.161 0.066 3.942
15 IPS 0.164 0.069 4.105
LEM 0.020 0.001 0.068

Sequential MSE
Surveyor 0.033 0.003 0.177
15 IPS 0.007 0.0005 0.007
LEM 0.017 0.0007 0.045

Sequential MSTFT
Surveyor 0.037 0.004 0.235
15 IPS 0.015 0.001 0.058
LEM 0.017 0.0007 0.045

Connected MSE
Surveyor 0.079 0.017 1.022
15 IPS 0.010 0.0002 0.017
LEM 0.016 0.0007 0.042

Connected MSTFT
Surveyor 0.074 0.015 0.888
15 IPS 0.089 0.021 1.236
LEM 0.017 0.0007 0.044

5.2. Listening Test

Due to the inadequacy of the objective metrics in evaluating the
perceived quality of the phase alignment in real life use-cases, such
as parallel path processing scenarios, a subjective listening test is
carried out. By the use of an ’audio perceptual evaluation’ (APE)
listening test, we examine the difference between the clean sum-
mation and the compensated dry-wet mixing of musical content,
using the proposed sequential architecture. The APE style test ex-
tends the well-known MUSHRA test by rating different versions
of the same reference on a single scale using sliders [19]. Com-
pared to the MUSHRA test, the APE is useful for evaluating the
perceived quality of dry-wet mixing as there exists no known refer-
ence. Since the audibility of dry-wet mixing highly differs relative
to the use case, the participants are presented with three different
musical scenarios for each compensated audio effect: a low rela-

tive mix with 75% dry signal and 25% wet signal, a middle relative
mix with 50% dry signal and 50% wet signal, and a high relative
mix with 25% dry signal and 75% wet signal. Each relative mix is
normalized, however, no loudness compensation has been applied
as volume differences in different frequency areas are natural ar-
tifacts of phase misalignment and thus represents the baseline of
the listening test. We present the participants with two different
audio mixes matching a real-world music mixing and mastering
scenario, where the black-box effect would be applied to give the
final mix a saturating "warmth". The participants are informed that
they are listening to different versions of effect models and there-
after instructed to ’blindly’ compare the clean and compensated
versions based on their perceived level of audio quality. Sound
examples can be heard on the accompanying webpage 1. We addi-
tionally provide source code for the trained models 2.

15 convenience sampled participants without any reported
hearing impairments and 3 or more years of musical experience
took part in an online listening test. Individual boxplots for the
evaluation of the clean and compensated audio mixes are shown
in figure 4. The answers for each audio mix are summed and av-
eraged for each participant, giving a final comparable score for
the individual black-box effects across the different mix configu-
rations.

As seen in 4, the difference between the clean and compen-
sated versions for the ’middle’ scenario with 50% dry-wet mix-
ing is highly audible. This is evident both for the Surveyor and
the 15IPS effects. The ’low’ mix scenario additionally performs
better for the compensated version for both the surveyor and the
15IPS. In the case of the LEM effect, all dry/wet mix cases were
rated to sound equally good. As seen in figure 3 this is most likely
caused by the lack of phase shifts happening in the audible fre-
quency ranges. Lastly, the scores for all the ’high’ cases barely
differed, which possibly is due to the fact that the dynamics of the
saturated output masks the actual interference.

It is thus clear that the trained models manage to align the input

1https://abargum.github.io/
2https://github.com/abargum/diff-apf
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Figure 4: Ratings across each individual mix-case

to its respective target signal in the presented examples. This is
quantitatively evident in the objective metrics in table 3 where the
’sequential’ MSE model perform better on all metrics, compared to
its static counterpart. The time-domain representation in figure 3,
furthermore, supports the alignment of the musical signals where
it clearly can be seen that the temporal envelope of the prediction
matches the target. Lastly, a perceptual listening test show that
especially the audio quality of the surveyor and the 15IPS models
are improved in the dry-wet mixes provided.

6. CONCLUSIONS

To address the challenges of the learned phase responses in VA
black box effects, this paper has presented, discussed and eval-
uated deep-learning techniques for automatic signal alignment.
By utilizing the ’deep optimization’ methodology, we propose a
BiasNet-inspired architecture that approximates filter parameters
used for coefficient calculations in a system of cascaded differen-
tiable warped APFs. We thus extend the naive approach to approx-
imating DDSP IIR filters with over-parameterized neural networks
and use them to exhibit successful models for aligning the dry and
wet paths of virtual analog effects. Ultimately, three black-box ef-
fects are chosen for the final training procedure. By evaluating the
models on different objective metrics, we demonstrate that what
we call a ’sequential’ architecture efficiently tunes all-pass filter
coefficients for approximating a system’s phase response. It is thus
demonstrated that over-parameterisation is suitable when estimat-
ing filter coefficients in more complex and non-convex scenarios.
The results are supported by subjective listening tests, where 15
expert listeners rated the dry-wet mixing of VA effects to be sig-
nificantly improved by the deep all-pass models, proving that the
approach additionally is useful in real life use-cases.
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