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ABSTRACT

During the last decades, a myriad of fuzzy time series models have been proposed in scientific
literature. Among the most accurate models found in fuzzy time series, the high-order ones are the
most accurate. The research described in this paper tackles three potential limitations associated with
the application of high-order fuzzy time series models. To begin with, the adequacy of forecast rules
lacks consistency. Secondly, as the model’s order increases, data utilization diminishes. Thirdly, the
uniformity of forecast rules proves to be highly contingent on the chosen interval partitions. To address
these likely drawbacks, we introduce a novel model based on fuzzy time series that amalgamates the
principles of particle swarm optimization (PSO) and weighted summation. Our results show that our
approach models accurately the time series in comparison with previous methods.

1 Introduction

Fuzzy time series modeling is a technique that models time series using fuzzy logic [20, 37]. During the last two
decades a large number of fuzzy time series models have been proposed to model a variety of forecast problems, such
as university enrollments [34, 29, 31, 1, 2, 33, 27, 28, 24, 4, 3, 22, 35, 15, 23, 7, 11, 8, 21, 32], stock market indexes
[6, 10, 16, 12, 14, 13, 36, 8], temperature prediction [25, 5, 11], car road accidents [17], IT-project costs [7] and annual
rice production [27, 28].

Originally, the concept of fuzzy time series was proposed by Song and Chissom [29, 31, 30] in a paper series to serve
as a framework for forecast modeling. They proposed the time-variant and the time-invariant model to deal with the
problem of forecasting student enrollments at the University of Alabama. Subsequently, Chen [1] introduced a simplified
procedure that reduced the high computational overhead of its predecessors. In a subsequent investigation, Chen [2]
expanded upon his prior research outlined in [1], wherein he introduced a high-order fuzzy time series model. This
extended model exhibited notably superior performance compared to its first-order counterpart. More recently, Chen and
Chung [3] further built upon Chen’s work detailed in [1] and [2]. In their latest work, they present a forecasting method
that leverages high-order fuzzy time series and employs a genetic algorithm paradigm to collectively adjust interval
lengths, aiming to enhance forecast accuracy. A somewhat analogous approach was proposed by Kuo et al [21], where
particle swarm optimization (PSO) is used in a similar manner. Up to this point, these two models have yielded the most
promising results when applied to the enrollment dataset at the University of Alabama. Nevertheless, there remain three
potential shortcomings associated with high-order models that require attention. Firstly, the forecast accuracy remains
unsatisfactory. Secondly, as the order increases, data utilization diminishes. Thirdly, forecast accuracy proves to be
highly sensitive to the chosen interval partitions. To address these issues, we introduce a novel fuzzy time series-based
model that combines particle swarm optimization (PSO) with weighted fuzzy rules. The fuzzification method was
originally proposed in [26], in this paper, we provide a more detailed description of the model with examples. It must
be noted that in this paper we do not consider the forecasting problem for time series but the creation of an accurate
fuzzy time series model capable of approximating the time series with precision.

∗Author acknowledges the contribution of Jens Runi Poulsen in this research
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The remaining part of the paper is organized as follows. Section 2 reviews the concept of PSO. Section 3 provides an
overall description of our proposed algorithm. Section 4 demonstrates how the proposed algorithm is used to model a
short time series. Section 5 presents experimental results. Finally, in section 6, we provide our conclusion.

2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [18, 19] is an optimization method that draws inspiration from the collective
behaviors observed in bird flocks and fish schools. In PSO, bird flocks are simulated as particle swarms navigating
through a virtual search space in search of the optimal solution. Each particle is assigned a fitness value, which is
assessed against a fitness function that needs to be optimized. The motion of each particle is influenced by a velocity
parameter. In each iteration, the particles move randomly within a confined area, but their individual movements are
guided toward the particle that is closest to the optimal solution. Each particle retains knowledge of its own best position
(the best solution it has discovered) as well as the global best position (the best solution found by any particle within
the group). The parameters are continually updated each time a new best position is identified, leading to an evolving
solution as each particle adjusts its position.

PSO starts with the initialization of a collection of randomly generated particles, each representing a candidate solution.
Subsequently, an iterative process is used to enhance the existing set of solutions. In the course of each iteration, every
particle generates new solutions, which are individually assessed against (1) the particle’s own best solution achieved in
prior iterations and (2) the best solution currently identified by any particle within the entire swarm. Each candidate
solution is represented as a position. When a particle discovers a position superior to its current best-known position, its
personal best position is then updated. Moreover, if the new personal best position surpasses the current global best
position, the global best position is also adjusted. Once the evaluation phase concludes, each particle updates both its
velocity and position using the following equations:

vi = ωvi + c1r1(x̂i − xj) + c1r2(ĝ − xj) (1)

and

xj = xj + vi (2)

where

• vi is the velocity of particle pi and is limited to [−Vmax, Vmax] where Vmax is a user-defined constant.
• ω is an inertial weight coefficient.
• x̂i is the current personal best position.
• xj is the current position.
• ĝ is the global best position.
• c1 and c2 are user-defined constants saying how much the particle is directed towards good positions. They

affect how much the particle’s local best and global best influence its movement. Generally c1 and c2 are set to
2.

• r1 and r2 are randomly generated numbers between 0 and 1.

Note that the velocity controls the motion of each particle. The speed of convergence can be adjusted by the inertial
weight coefficient and the constants c1, c2. Whenever computed velocity exceeds its user-defined boundaries, the
computed results will be replaced by either −Vmin or Vmax.

3 Algorithm Overview

In this study, we have developed a training algorithm, which will be discussed in detail in the subsequent sections. The
training phase will utilize the short enrollment dataset from the University of Alabama [29] as input. The output of this
phase consists of forecast enrollments, which will be employed for evaluating the performance in comparison to related
studies, as outlined in Section 5. The comprehensive structure of the algorithm is depicted in Figure 1.

The algorithm can divided into two main components, fuzzification and defuzzification. These are highlighted by the
dashed areas. Both of these components are decoupled which implies that they can function independently of each
other and thus can be used in combination with other alternatives. The fuzzification component is further decomposed
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Algorithm 1 The running procedure of the PSO Algorithm
for all particles do

initialize velocities and positions
end for
while stopping criteria is unsatisfied do

for each particle do
compute velocities by equation 1
increment positions by equation 2
if current fitness value is better than current local best value then

update local best positions
end if
if current fitness value is better than current global best value then

update global best positions
end if

end for
end while

Figure 1: Overall algorithm structure

into a six-step process where the first four steps are data preprocessing functions. The fuzzification task itself comprises
the last two steps. Ultimately the goal of this phase is to generate a series of fuzzy sets or interval partitions and to
establish associations between the fuzzy sets and the dataset values. After the fuzzification process is completed, data is
further processed by the defuzzification component. During this phase, the fuzzy sets generated in the previous phase,
are grouped into patterns and transformed into forecast rules. Finally, forecasts are computed by matching the if-then
rules with equivalent patterns in the enrollment dataset.

4 Forecasting enrollments with the proposed method

4.1 Fuzzifying the Data

The fuzzification algorithm described here is a further modification of the trapezoid fuzzification approach proposed by
Cheng et al in [7]. It differs in the way that it doesn’t require the number of sets to be submitted in advance. Instead, the
algorithm determines the number of sets based on the variations in data. The advantage of this approach is that the
fuzzification process can be carried out automatically. The proposed procedure can be described as a six-step process:

3
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1. Sort the values in ascending order.
2. Compute the average distance between any two consecutive values and the standard deviation.
3. Eliminate outliers.
4. Compute the revised average distance between any two remaining consecutive values.
5. Define the universe of discourse.
6. Fuzzify the dataset.

First, the values in the historical dataset are sorted in ascending order. Then the average distance between any two
consecutive values in the sorted dataset is computed and the corresponding standard deviation. The average distance is
given by the equation:

AD(xi, . . . , xn) =
1

n− 1

n−1∑
i=1

|xp(i) − xp(i+1)|, (3)

where p is a permutation that orders the values ascendantly: xp(i) ≤ xp(i+1). The standard deviation is computed as

σAD =

√√√√ 1

n

n∑
i=1

(xi −AD)2. (4)

Both the average distance and standard deviation are used in step 3 to define outliers in the sorted dataset. Outliers
are values that are either abnormally high or abnormally low. These are eliminated from the sorted dataset in order to
reduce the impact of distorting elements on the average distance value. An outlier, in this context, is defined as a value
less than or larger than one standard deviation from the average. After the elimination process is completed, a revised
average distance value is computed for the remaining values in the sorted dataset, as in step 2. The revised average
distance, obtained in step 4, is used in steps 5 and 6 to partition the universe of discourse into a series of trapezoidal
fuzzy sets. In step 5, the universe of discourse is determined. Its lower and upper bound is determined by locating the
largest and lowest values in the dataset and augmenting these by (1) subtracting the revised average distance from the
lowest value and (2) adding the revised average distance to the highest value. More formally, if Dmax and Dmin are
the highest and lowest values in the dataset, respectively, and ADR is the revised average distance, the universe of
discourse, U , can be defined as U = [Dmin −ADR, Dmax +ADR].

When U has been determined, fuzzy subsets can be defined on U . Since subsets are represented by trapezoidal functions,
the membership degree, for a given function, µA, and a given value, x, is obtained by the equation:

µA =



x− a1
a2 − a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4 − x

a4 − a3
, a3 ≤ x ≤ a4

0, otherwise.

(5)

Prior to the fuzzification of data, we need to know the number of subsets to be defined on U . The number of sets, n, is
computed by

n =
R− S

2S
, (6)

where R denotes the range of the universe set and S denotes the segment length. Equation 6 originates from the fact
that we know the following about S:

S =
R

2n+ 1
. (7)

The range, R, is computed by

R = UB − LB, (8)

4
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where UB and LB respectively denote the upper bound and lower bound of U . The segment length, S, equals the
average revised distance, ADR, which in turn constitutes the length of left spread (ls), core (c), and right spread (rs)
of the membership function (see fig. 2). That is ls = ADR, c = ADR and rs = ADR .

Figure 2: The segments of a trapezoidal fuzzy number

In short, the task here is to decide how many fuzzy sets to generate when the length of each segment, S, and the range,
R, are known. When the number of sets has been computed, the sets can be defined on U and data can be fuzzified
which completes the final step of the algorithm.

4.1.1 An Example

In the following example, we will fuzzify the first four years (1971 - 1974) of student enrollment at the University
of Alabama. The values to be fuzzified are 13055, 13563, 13867, and 14696. Since the sequence of values already
appears in ascending order, the sorting part is omitted. The average distance and the standard deviation are respectively
computed as

AD =
|13055− 13563|+ |13563− 13867|+ |13867− 14696|

3
= 547

and

σAD =

√
(508− 547)2 + (304− 547)2 + (829− 547)2

3
= 216.1 ≈ 216.

Next, possible outliers are eliminated. Recall that outliers include the values less than or larger than one standard
deviation from AD. This means only the values satisfying the condition:

547− 216 ≤ x ≤ 547 + 216,

are taken into consideration when computing the revised average distance. In this case, only one of the three values
satisfies the above condition, namely 508. Thus the revised average distance, ADR, and the segment length, S, equals
508. At this point, steps 1 - 4 are completed. Prior to defining the universe set, U , we need to determine the lower
bound and the upper bound (UB) of U . Following equation 8, LB and UP are computed as

LB = 13055− 508 = 12547

UB = 14696 + 508 = 15204.

Hence U = [12547, 15204]. The range, R, is computed as the difference between UB and LB. Hence we get
15204− 12547 = 2657. Finally, the number of sets, n, is computed as

n =
2657− 508

2 · 508
= 2.12 ≈ 2.

5
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Fuzzy set Trapezoidal fuzzy number (a,b,c,d) Crisp interval
A1 (12547,13055,13602,14149) µ1 = [13055, 13602]
A2 (13602,14149,14696,15402) µ1 = [14149, 14696]

Table 1: Fuzzifying the first four years of enrollment.

Figure 3: Generated membership functions.

Knowing the universe of discourse and the parameters of n, R and S, the fuzzy sets are generated as shown in figure 3
and table 1.

Note the difference between the points a, b, c and d, in the fuzzy number A1 and A2, in table 1 and figure 3, is not
exactly 508. This is because the implemented algorithm adapts the segment length, such that the lowest value in the
dataset always appears as the left bound of the crisp interval, and the highest value in the dataset always appears as the
right bound of the crisp interval. From table 1 and figure 3 it can be seen that the lowest of the four values (i.e. 13055),
appears as the lower bound of the first crisp interval, µ1, and the highest value (i.e. 14696), appears as the upper bound
in the second crisp interval, u2. Normally these values cannot be matched precisely without adjusting the segment
length, due to rounding errors occurring as a result of equation 3 and 6.

We are now able to fuzzify the first four historical enrollments according to membership functions A1 and A2, defined
by:

A1 =



0, x < 12547
x− 12547

13055− 12547
, 12547 ≤ x ≤ 13055

1, 13055 ≤ x ≤ 13602
14149− x

14149− 13602
, 13602 ≤ x ≤ 14149

0, x > 14149.

and

A2 =



0, x < 13602
x− 13602

14149− 13602
, 13602 ≤ x ≤ 14149

1, 14149 ≤ x ≤ 14696
15204− x

15204− 14696
, 14696 ≤ x ≤ 15204

0, x > 15204.

6
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As figure 4 indicates, the boundaries of A1 and A2 overlap such that more than one interval may be met. For example,
the enrollment for the year 1973 is 13867. This value meets both membership functions. The membership degree in A1

is 0.5155 ≈ 0.52, and in A2, it is 0.4845 ≈ 0.48. Hence the enrollment for 1973 is fuzzified as A1. A special case
occurs if the membership degree is 0.5, as this implies that a value has the same membership status in two different sets.
In such cases, the respective value is associated with both A1 and A2. The results of fuzzifying the first four years of
enrollment are shown in table 2.

Figure 4: Generated membership functions.

Year Enrollment Fuzzy set Membership
degree

1971 13055 A1 1
1972 13563 A1 1
1973 13867 A1 0.52
1974 14696 A2 1

Table 2: Fuzzified Enrollments 1971 - 1974.

7
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4.1.2 Fuzzifying the Enrollment Dataset

Following the same procedure as in the example from the previous section, the resultant trapezoidal sets, derived by
processing the entire enrollment data from 1971 to 1992, are as shown in table 3. The fuzzified annual enrollments are
listed in table 4.

Generally it is assumed that the fuzzy sets, A1, A2, . . . , An, individually represent some linguistic variable. However,
with 17 intervals, linguistic values may not make much sense. In the procedure proposed here, this issue is ignored,
since the utility of linguistic values has yet to be demonstrated in a fuzzy time series context. However it does not mean
that they are not useful in other application contexts.

Fuzzy Set Fuzzy Number

A1 (12861,13055,13245,13436)
A2 (13245,13436,13626,13816)
A3 (13626,13816,14007,14197)
A4 (14007,14197,14388,14578)
A5 (14388,14578,14768,14959)
A6 (14768,14959,15149,15339)
A7 (15149,15339,15530,15720)
A8 (15530,15720,15910,16101)
A9 (15910,16101,16291,16482)
A10 (16291,16482,16672,16862)
A11 (16672,16862,17053,17243)
A12 (17053,17243,17433,17624)
A13 (17433, 17624,17814,18004)
A14 (17814, 18004,18195,18385)
A15 (18195,18385,18576,18766)
A16 (18576,18766,18956,19147)
A17 (18956,19147,19337,19531)

Table 3: Generated fuzzy sets.

8
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Year Enrollment Fuzzy Set

1971 13055 A1

1972 13563 A2

1973 13867 A3

1974 14696 A5

1975 15460 A7

1976 15311 A7

1977 15603 A7

1978 15861 A8

1979 16807 A11

1980 16919 A11

1981 16388 A10

1982 15433 A7

1983 15497 A7

1984 15145 A6

1985 15163 A6

1986 15984 A8

1987 16859 A11

1988 18150 A14

1989 18970 A16

1990 19328 A17

1991 19337 A17

1992 18876 A16

Table 4: Fuzzified annual enrollments.

4.2 Defuzzifying Output

In the following section, we will present a novel approach to defuzzify forecast output. The training phase comprises
the following steps:

1. Establish fuzzy set groups (FSG’s).
2. Convert the FSG’s into corresponding if rules.
3. Complete training of the if rules.
4. Derive forecasts.

Before we go into detail with the individual steps, it is important to understand how defuzzified output is computed.
First, recall that the definition of an n-order fuzzy relationship [2] is denoted as

F (t− n), . . . , F (t− 2), F (t− 1) → F (t),

where F represents a fuzzified forecast value at time t. Normally it is assumed that the left-hand side of the fuzzy
relation is fuzzified in the same manner as the right-hand side. For example, if F , on the left-hand side represents a
trapezoidal set, then F , on the right-hand, side represents a trapezoidal set as well. In the modified version introduced
here, this notion has been revised such that F (t) is given by the following defuzzification operator, Y (t), defined by

Y (t) =

n∑
i=1

at−i · wi, (9)

where wi ∈ [0, 1] and at−i denotes the actual value at time t− i. Otherwise stated, the defuzzified output is the weighted
sum of the actual values from time t− n to t− 1, where n depends on the time series span. For example, if n = 2, we
have

Y (t) = (at−1 · w1) + (at−2 · w2). (10)

One question that needs to be addressed is how the defuzzification operator deployed here should be interpreted from a
fuzzy logical point of view. The thought here is simply to consider the weights as a fuzzy relationship between past

9
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values (inputs) and the future value (output). Each wi represents the strength of the causal relationship between a given
input and some unknown output. The closer wi is to 1, the stronger the relationship and vice versa.

It has to be stressed that the defuzzification operator introduced here is not an aggregation operator [9] from a traditional
point of view, since it does not satisfy the boundary condition which is one of the basic conditions of fuzzy aggregation
operators. The proposed operator has been specifically adapted to solve the problem at hand because no other operators
have been found useful in this context. Averaging operators [9], for example, never produce outputs less than the
minimum value of arguments or larger than the maximum value of arguments. In the current situation, this requirement
is undesirable due to the fact that future demand patterns often fluctuate beyond the boundaries of previous min and
max values. To illustrate this, we need to take a closer look at the enrollment data in table 4. For t = 1973 and n = 2,
we get, a1972 = 13563 and a1971 = 13055. Assuming Y (t) is an averaging operator, the output is restricted to the
interval [13055,13563]. However actual output for t = 1973 is 13867 which is out of reach by any averaging operator.
Consider another case for t = 1981 and n = 2. We then get a1980 = 16919 and a1979 = 16807. If Y (t) is the min
operator, we get min(a1980, a1979) = 16807, and, if Y (t) is the max operator, we get max(a1980, a1979) = 16919. But
the actual output for t = 1981 is 16388 which also is unreachable by any averaging operator. As a consequence, a basic
requirement for the defuzzification operator proposed here is that it covers a broader interval than min and max. A
reasonable assumption with regards to the bounds of arguments, at−i, is that they are within the limits of the universe
set.

4.3 Establishment of Fuzzy Set Groups

In conventional fuzzy time series, fuzzy relationships are identified immediately after data have been fuzzified. However,
in the model presented here, the right-hand side of the fuzzy relation is not known until the weights have been determined.
Instead of identifying relationships and establishing fuzzy logical relationship groups, we establish fuzzy set groups
(FSG’s). The purpose of the FSG establishment is to partition historical data into unique sets of sub-patterns which
subsequently are converted into IF rules. In the first pass of the algorithm, consecutive sets are grouped pairwise. Table
5 shows the fuzzified data in table 4 grouped in this manner. Every FSG appears in chronological order.

Label FSG Label FSG

1 {A1, A2} 12 {A7, A7}
2 {A2, A3} 13 {A7, A6}
3 {A3, A5} 14 {A6, A6}
4 {A5, A7} 15 {A6, A8}
5 {A7, A7} 16 {A8, A11}
6 {A7, A7} 17 {A11, A14}
7 {A7, A8} 18 {A14, A16}
8 {A8, A11} 19 {A16, A17}
9 {A11, A11} 20 {A17, A17}
10 {A11, A10} 21 {A17, A16}
11 {A10, A7} Ø Ø

Table 5: Establishment of FSG’s.

To exemplify the principles of grouping, consider the years 1971, 1972, and 1973 which are fuzzified as A1, A2 and A3,
respectively. The pairwise grouping of sets is carried out in the following order:

{F (t− 2), F (t− 1)} = {Ai,t−2, Ai,t−1} .

Following this principle, the following two FSG’s are derived:

{F (1971), F (1972)} = {A1, A2}

and

{F (1972), F (1973)} = {A2, A3} .

In table 5, these groups are labeled as 1 and 2, respectively. Ultimately the goal of grouping sets in this manner is to obtain
a series of FSG’s free of ambiguities. An ambiguity occurs if two or more FSG’s contain the same combination of fuzzy
sets. From table 5, it can be seen that not all FSG’s are unique. Note that the FSG’s labeled as 5, 6 and 12 are identical,
as is the case with 8 and 16. In order to obtain a series of disambiguated FSG’s, we extend the ambiguous FSG’s by

10
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including the previous set in the respective time series. Formally this means that the combination ,{F (t− 2), F (t− 1)},
is extended to include F (t− 3), so the respective FSG now equals {F (t− 3), F (t− 2), F (t− 1)}. Table 6 shows the
extensions of the ambiguous FSG’s identified in table 5.

Label F(t-2), F(t-1) F(t-3) F(t-3), F(t-2), F(t-3)

5 {A7, A7} A5 {A5, A7, A7}
6 {A7, A7} A7 {A7, A7, A7}
8 {A8, A11} A7 {A7, A8, A11}

12 {A7, A7} A10 {A10, A7, A7}
16 {A8, A11} A6 {A6, A8, A11}

Table 6: Extending ambiguous FSG’s.

The extension process is continued until a unique combination of sets is obtained for each FSG. From table 6, we
see that only a single extension is required to obtain a unique combination of sets in this particular case. An updated
overview of the FSG’s is shown in table 7.

Label FSG Label FSG

1 {A1, A2} 12 {A10, A7, A7}
2 {A2, A3} 13 {A7, A6}
3 {A3, A5} 14 {A6, A6}
4 {A5, A7} 15 {A6, A8}
5 {A5, A7, A7} 16 {A6, A8, A11}
6 {A7, A7, A7} 17 {A11, A14}
7 {A7, A8} 18 {A14, A16}
8 {A7, A8, A11} 19 {A16, A17}
9 {A11, A11} 20 {A17, A17}
10 {A11, A10} 21 {A17, A16}
11 {A10, A7} Ø Ø

Table 7: Disambiguated FSG’s.

4.4 Converting FSG’s into Forecast Rules

Defuzzified output, Y (t), is obtained by matching historical patterns with a corresponding if-then rule which is
generated on the basis of the content of the FSG’s. The task is fairly simple as the sequence of elements in each FSG is
the same as they appear in time. This means that for any FSG of size n, the elements appear in the same sequence as in
the corresponding time series: F (t− n), F (t− n+ 1), . . . , F (t− 1). Each FSG can be therefore easily transformed
into if rules of the form:

if(F (t− 1) = Ai,t−1 ∧ F (t− 2) = Ai,t−2 ∧ . . . ∧ F (t− n) = Ai,t−n);
then w1,t−1 =?, w2,t−2 =?,. . . ,wn,t−n =?

For convenience, the sequence of conditions in the if rules appear in reversed order compared to their equivalent FSG’s.
For example, an FSG of the form:

{Ai,t−2, Ai,t−1},

is converted into an equivalent if rule of the form:

if(F (t− 1) = Ai,t−1 ∧ F (t− 2) = Ai,t−2).

Whenever a rule is matched, the resultant weights are returned and the forecast value, Y (t), is computed according to
equation 9. To illustrate this, suppose we need to find a matching if-then rule when forecasting the enrollment for the
year 1973. From table 4, we get F (1971) = A1 and F (1972) = A2 for t = 1973. Now, assume the following if-then
rule exists in the current rule base:

11
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if(F (t− 1) = Ai,t−1 ∧ F (t− 2) = Ai,t−2) → w1,t−1 = 0.6488, w2,t−2 = 0.3882.

The respective if rule is then matched as

if(F (1973− 1) = A1 ∧ F (1973− 2) = A1) → w1,1972 = 0.6488, w2,1971 = 0.3882.

Using equation 9, forecast enrollment for the year 1973 is computed as

Y (1973) = (13563 · 0.6488) + (13055 · 0.3882) = 13867.62 ≈ 13868.

By processing all of the FSG’s in table 7, a series of incomplete if statements are generated as shown in table 8.

Rule Matching Part

1 if(F (t− 1) = A2) ∧ F (t− 2) = A1)
2 if(F (t− 1) = A3 ∧ F (t− 2) = A2)
3 if(F (t− 1) = A5 ∧ F (t− 2) = A3)
4 if(F (t− 1) = A7 ∧ F (t− 2) = A5)
5 if(F (t− 1) = A7 ∧ F (t− 2) = A7 ∧ F (t− 3) = A5)
6 if(F (t− 1) = A7 ∧ F (t− 2) = A7 ∧ F (t− 3) = A7)
7 if(F (t− 1) = A8 ∧ F (t− 2) = A7)
8 if(F (t− 1) = A11 ∧ F (t− 2) = A8 ∧ F (t− 3) = A7)
9 if(F (t− 1) = A11 ∧ F (t− 2) = A11)

10 if(F (t− 1) = A10 ∧ F (t− 2) = A11)
11 if(F (t− 1) = A7 ∧ F (t− 2) = A10)
12 if(F (t− 1) = A7 ∧ F (t− 2) = A7 ∧ F (t− 3) = A10)
13 if(F (t− 1) = A6 ∧ F (t− 2) = A7)
14 if(F (t− 1) = A6 ∧ F (t− 2) = A6)
15 if(F (t− 1) = A8 ∧ F (t− 2) = A6)
16 if(F (t− 1) = A11 ∧ F (t− 2) = A8 ∧ F (t− 3) = A6)
17 if(F (t− 1) = A14 ∧ F (t− 2) = A11)
18 if(F (t− 1) = A16 ∧ F (t− 2) = A14)
19 if(F (t− 1) = A17 ∧ F (t− 2) = A16)
20 if(F (t− 1) = A17 ∧ F (t− 2) = A17)
21 if(F (t− 1) = A16 ∧ F (t− 2) = A17)

Table 8: Generated if rules in chronological order.
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4.5 Training the If-Then Rules With PSO

In the following, we are going to provide an example of how PSO is utilized to tune the weights in the defuzzification
operator in equation 9. The user-defined parameters are set as follows:

• The inertial coefficient, ω, equals 1.4.
• The self confidence and social confidence coefficient, c1 and c2 both equals 2, respectively.
• The minimum and maximum velocity is limited to [-0.01,0.01].
• The minimum and maximum position is limited to [0,1].
• The number of particles equals 5.

The fitness function employed here is the squared error (SE), defined by

SE = (forecast_valuet − actual_valuet)2 (11)

Basically, the idea is to evaluate the aggregated result, Y (t), against the actual outcome at time t, and adjust the weights
in the defuzzification operator such that SE is minimized. By minimizing SE for each t, MSE is minimized as well.
In the following example, the stopping criteria is defined by setting the minimum SE to 3 and the maximum number of
iterations to 500.

During the first step of the algorithm, the weights (positions) are initialized. We assume the existence of a stronger
relationship between actual output and the more recent observations in the time series data. So, if F (t− 1) is fuzzified
as Ai and F (t − 2) as Aj , a stronger relationship is assumed to exist between Ai and Y (t) than between Aj and
Y (t). Therefore, relatively higher weights are assigned to the most recent observations when positions are initialized.
Applying this approach, wt−i will usually remain larger than wt−i+1 at the point of termination. Table 9 and 10
respectively show the initial positions and velocities of all particles for a given rule.

Particle Position 1
(w1)

Position 2
(w2)

SE

1 0.75 0.5 8,024,473
2 0.75 0.5 8,024,473
3 0.75 0.5 8,024,473
4 0.75 0.5 8,024,473
5 0.75 0.5 8,024,473

Table 9: Initial positions of all particles.

In the current example, rule 1 in table 8 is trained. As can be seen from table 9, the personal best positions are the
same for all particles at the initialization phase. Hence the personal best position equals the global best position for all
particles.

Particle v1 v2

1 0.0049 0.0011
2 0.0032 0.0065
3 0.0034 0.0081
4 0.0023 0.0009
5 0.0007 0.0048

Table 10: Randomized initial velocities of all particles.

When all particles and velocities have been initialized, the velocities are updated before positions are incremented.
Velocities are updated according to equation 1. The computations yield:
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v1,1 = (1.4 · 0.0049) + 2 · r1(0.75− 0.75) + 2 · r2(0.75− 0.75) = 0.0069
v1,2 = (1.4 · 0.0011) + 2 · r1(0.5− 0.5) + 2 · r2(0.5− 0.5) = 0.0015
v2,1 = (1.4 · 0.0032) + 2 · r1(0.75− 0.75) + 2 · r1(0.75− 0.75) = 0.0045
v2,2 = (1.4 · 0.0065) + 2 · r1(0.5− 0.5) + 2 · r2(0.5− 0.5) = 0.0091
v3,1 = (1.4 · 0.0034) + 2 · r1(0.75− 0.75) + 2 · r2(0.75− 0.75) = 0.0048
v3,2 = (1.4 · 0.0081) + 2 · r1(0.5− 0.5) + 2 · r2(0.5− 0.5) = 0.0113
v4,1 = (1.4 · 0.0023) + 2 · r1(0.75− 0.75) + 2 · r2(0.75− 0.75) = 0.0032
v4,2 = (1.4 · 0.0009) + 2 · r1(0.5− 0.5) + 2 · r2(0.5− 0.5) = 0.0013
v5,1 = (1.4 · 0.0007) + 2 · r1(0.75− 0.75) + 2 · r2(0.75− 0.75) = 0.0001
v5,2 = (1.4 · 0.0048) + 2 · r1(0.5− 0.5) + 2 · r2(0.5− 0.5) = 0.0067.

Positions are incremented according to equation 2. Incremented positions after the first iteration are shown in table 11.

Particle w1 w2 SE

1 0.7549 0.5011 8,488,885
2 0.7532 0.5065 8,767,574
3 0.7534 0.5081 8,907,895
4 0.7523 0.5009 8,269,618
5 0.7507 0.5048 8,438,491
Table 11: The positions of all particles after the first iteration.

After the first iteration, none of the computed SE values in table 11 are less than 8,024,473. Thus no personal best
positions nor global best positions are reached at this point. At some point, the stopping criteria are met and the
algorithm terminates. The personal best positions of all particles after termination are listed in table 12.

Particle w1 w2 SE

1 0.6738 0.3699 10,159
2 0.6854 0.3502 1
3 0.6686 0.3662 325
4 0.6724 0.3482 40,597
5 0.6879 0.3383 14,522

Table 12: Particle positions after termination.
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According to table 12, particle 2 has the global best position. Hence the weights associated with the rule in question
equals 0.6854 and 0.3502. The results of training the rules in table 8 are shown in table 13.

Algorithm 2 PSO algorithm for training of the if-then rules.
for all rules do

find the matching pattern in the fuzzified dataset
retrieves actual values within the range of pattern and initializes variables
while stopping criteria is unsatisfied do

for each particle pi, from i = 1 to n do
vij = ω · vij + c1 · r1(local_bij − wij) + c2 · r2(global_bj − wij), from j = 1 to n
if Vmin > vij then

vij = Vmin

end if
if Vmax < vij then

vij = Vmax

end if
update position as wij = wij + vij , from i = 1 to n
compute defuzzified output as Y (t)i =

∑n
i=1 at−j · wij

compute squared error SEi = (Y (t)i − actual_valuet)2
if SEi < SElocal_best then

SElocal_best = SEi

local_bij = wij , from i = 1 to n
end if
if SEi < SEglobal_best then

SEglobal_best = SEi

global_bestij = wij , from i = 1 to n
end if

end for
end while
update weights as {wt−1 = global_best1 ∧ . . . ∧ wt−n = global_bestn}

end for
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5 Experimental Results

To make this work comparable with those of others, the procedure for evaluating model performance is carried out in
the same manner as in other publications. That is by forecasting historical enrollments and then evaluating performance
on the basis of performance indicators. The mean squared error (MSE) and the mean average percentage error (MAPE)
are used as the basis for evaluating model performance:

MSE =
1

n

n∑
i=1

(Fi −Ai)
2 (12)

MAPE =
1

n

n∑
i=1

|Fi −Ai|
Ai

× 100, (13)

where Ai and Fi denote the actual output and forecasted ouput at time i, respectively.

A comparison of the proposed model versus other related models is presented in table 14. The model’s parameters used
in this experiment are the same as in the example in section 4.5. We have selected the best result out of 10 runs. The
models referenced in table 14 are all among those with the highest accuracy rates published. As can be seen from table
14, the MSE and the MAPE of the proposed model is 1 and 0.006, respectively. This is significantly lower than for any
of the referenced models. Judging by these results, it can therefore be concluded that the proposed model outperforms
any fuzzy time series model currently published.

In the introductory section, it was argued that one of the potential drawbacks of the high-order models is that data
becomes underutilized as the model’s order increases. To explain this in further detail, we need to take a closer look at
the outcome produced by the models in [3] and [21]. Note that the first 7 and 8 years of enrollment data are not forecast.
This is because the number of fuzzy sets to be matched for each forecast period increases with the order. For example in
[21], the number of sets to be matched is 8. By increasing the number of set combinations to be matched, fewer forecast
rules are obtained for future use, and thus data becomes underutilized. Moreover, as the number of sets to be matched
increases, the statistical likelihood of encountering equivalent pattern combinations in future datasets decreases.

6 Conclusions

In this paper, we have introduced a novel fuzzy time series model that integrates the principles of weighted summation
and particle swarm optimization (PSO) to individually fine-tune fuzzy rules. This combination of techniques enables
more precise calibration of fuzzy rules to align with the underlying data patterns, reducing their sensitivity to chosen
interval partitions. Furthermore, the individualized adjustment of fuzzy rules diminishes the necessity for increasing
the model’s order, in contrast to high-order fuzzy time series models. As a result, we achieve more effective data
utilization in two ways: (1) by increasing the number of fuzzy rules and (2) by reducing the number of pattern
combinations required to match future time series data. Additionally, we have introduced a fuzzification method capable
of determining the appropriate number of interval partitions based on observed variations in the time series data.

Empirical experiments demonstrate that our proposed model outperforms comparable approaches. The practical utility
of this method heavily relies on its capacity to derive fitting fuzzy rules. The weighted fuzzy rules exhibit a remarkable
ability to closely emulate the original time series. The application of this approach for forecasting future values within
the time series is a potential avenue for future research.
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