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RESUMO 

 

A crescente quantidade de dados depositados em bases de dados públicas sem 

anotação pode ocultar uma série de genes e proteínas cuja função ainda é 

desconhecida. Com base no conhecimento de algumas enzimas capazes de 

catalisar reações com interesse ambiental ou biotecnológico, será possível 

encontrar em bases de dados de proteínas ou em conjuntos de dados ómicos, 

outras com atividade semelhante, que eventualmente poderão ser mais 

eficientes. No entanto, não existem ferramentas bioinformáticas projetadas para 

encontrar proteínas de interesse em grandes conjuntos de dados.  

Neste trabalho, uma ferramenta de bioinformática foi desenvolvida e 

denominada Mining Protein dAtasets foR Targeted enzYmes (M-PARTY) para 

minerar enzimas alvo em grandes conjuntos de dados. M-PARTY recebe um 

ficheiro FASTA contendo as enzimas alvo e automaticamente produz bases de 

dados de Hidden Markov Model, valida e filtra os modelos não validados. M-

PARTY procura sequências homólogas em determinados conjuntos de dados e 

identifica as proteínas mais semelhantes, que apresentam potencialmente as 

mesmas atividades das enzimas alvo. A M-PARTY é uma Interface de Linha de 

Comando de uso gratuito, corre no sistema operacional Linux com apenas um 

comando, é de código aberto e foi desenvolvida em Python.  

Esta ferramenta foi testada para encontrar enzimas envolvidas na 

biodegradação do polietileno em metagenomas hidrotermais e marinhos. A 

partir de 5 sequências proteicas iniciais, 329 HMMs foram gerados pelo M-

PARTY e 103 foram descartados após a etapa de validação. Um total de 19 

proteínas apresentaram homologia significativa com as 5 enzimas alvo, sendo 

enzimas potencialmente degradadoras de polietileno. 

Esta ferramenta será muito útil para realizar uma primeira triagem de enzimas 

de interesse em diferentes ambientes, antecedendo uma posterior confirmação 

da atividade enzimática e eventual implementação. 

Palavras-chave: biodegradação de plásticos; ferramenta bioinformática; 

mineração de dados ómicos; construção de Hidden Markov Models.  
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ABSTRACT 

 

There is an increasing amount of data deposited in public databases that is 

poorly annotated and may hide a number of genes and proteins whose function 

is yet unknown. By knowing some enzymes that are capable to catalyze reactions 

with environmental or biotechnological interest, it would be possible to find other 

enzymes in databases or in omics datasets with similar activity, and which could 

be even more efficient. However, there are no bioinformatics tools designed to 

find proteins of interest in large datasets, such as those from metagenomics 

experiments.  

In this work, a bioinformatics tool was developed, named Mining Protein 

dAtasets foR Target enzYmes (M-PARTY), for mining target enzymes in big 

datasets. M-PARTY receives a FASTA file containing the target enzymes, and 

automatically produces Hidden Markov Model databases, validating, and 

filtering the non-validated models. M-PARTY searches for homolog sequences in 

given datasets and identifies the most similar proteins, which present potentially 

the same activities of the target enzymes. M-PARTY is a free-to-use Command-

Line Interface, runs on Linux operating system with only a command, is open-

source, and was developed in Python.  

This tool was tested to find enzymes involved in polyethylene biodegradation in 

hydrothermal and marine metagenomes. From 5 initial protein sequences, 329 

HMMs were generated by M-PARTY, and 103 were discarded after the validation 

step. A total of 19 proteins showed significant homology to the 5 target enzymes, 

being potentially polyethylene-degrading enzymes. 

This tool will be especially useful for performing a first screening of enzymes of 

interest in different environments, preceding further enzymatic activity 

confirmation and eventual implementation on biotechnological processes. 

 

Keywords: plastic biodegradation; bioinformatics tool; omics data mining; 

Hidden Markov Models construction.   
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1.1. Context/Motivation 

 

Pollution is a widespread human-based problem, which has been increasing 

exponentially in the last few years, following economic growth [1], local 

development [2] and national gross income [3]. This trend is expected to 

continue as long as distinct and drastic measures are not taken by the richest 

nations in a global effort to slow and revert an obvious outcome. Directly linked 

to pollution, we are also consuming dramatically more resources than what is 

actually needed [4] and therefore affecting, not only humans but all living beings. 

Plastic production increased significantly in the last decades, and its discovery 

represented a great breakthrough for the world economy and trade market 

around 1950 [3], with great advantages and improvements in general quality of 

life, gaining popularity in sectors like packing, food, and water conservation, 

health, transportation, textiles [3], and energy-saving, as plastic is lighter and 

easier to manufacture than other polymers used at the time [5], [6]. 

Nevertheless, economic growth rates demanded higher production of these 

compounds [1], and a culture shift from reusable to single-use packing, was 

noticeable [7], [8]. Despite the existence of biodegradable plastics, a bigger 

problem arises when most utilized types are not biodegradable [3], [8] and 

countries cannot find solutions to settle with ever-growing quantities of 

generated plastic [7]. The most efficient way to radically erase discarded plastic 

compounds pass through thermal incineration or recycling, but predictions show 

insufficient efforts to reduce the global quantities of plastic debris in nature [9], 

regardless of an also continuous increase of thermal and recycling treatments 

[3]. 

Bioinformatics development in the past years has helped the scientific 

community to fasten large time-consuming processes with tools especially 

capable of handling large datasets, from sequence alignments and structure 

prediction to motifs identification, among others.  

Taking this into account, a bioinformatics tool able to predict plastic degrading 

genes or enzymes within metagenomic samples could help to exponentially 

accelerate the discovery of novel enzymes, and consequently, help to develop 
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new methods to fight this problem through biodegradation. In this work, a novel 

bioinformatics tool for detecting potential plastics degrading enzymes in 

metagenomics’ derived protein datasets will be developed. This will contribute 

to discover naturally occurring enzymes similar to known plastic degrading 

enzymes and possibly more efficient, which can then be tested in the laboratory 

to confirm their activity against plastic waste. These potentially novel enzymes 

could then be applied in the treatment of industrial wastewaters, dumping sites 

groundwater, or even domestic wastes containing plastics [10]. 

The urgency to find new ways to fight plastic pollution and accumulation, bonded 

to the tremendous amount of non-reviewed metagenomic data, obtained from 

different parts of the globe, opens new possibilities to identify novel 

microorganisms and enzymes as biocatalysts for plastics biodegradation. 

This work intends to take a step forward in the combat against plastic pollution, 

by helping the scientific community targeting a large time consuming, and 

complex step as the discovery and research of novel and more efficient enzymes 

produced by microorganisms. It is observable a current lack in available tools 

for this specific subject, so the prediction of protein function through sequence 

similarity and homology in metagenomic data is an imperative task. Currently, 

there are no available tools, online or modules, capable predict plastic degrading 

enzymes in omics datasets. 

 

1.2. Objectives 

 

The main objective of this thesis is to deploy a fully operational bioinformatics 

tool for identifying, in protein datasets, homologies between the enzymes in the 

dataset and groups of target proteins . This will be done by using methods like 

structural and homology annotations based on Hidden Markov Models (HMMs). 

To test the tool, the target enzymes were those involved in polyethylene (PE)) 

degradation, a synthetic plastic highly abundant in plastic waste. 
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1.3. Thesis structure 

 

The context, motivation and aim of this thesis will be given in Chapter 1. In 

Chapter 2, the state of the art, will be reviewed by covering relevant knowledge 

regarding plastics biodegradation, plastic degrading enzymes, protein 

annotation methods, HMM and their validation and benchmarking procedures, 

and a review of available tools with similar goals. In Chapter 3 the methodologies 

utilized in this thesis will be described, and final tools, software, frameworks, 

pipelines, packages used, and testing methods will be provided and thoroughly 

explained step by step. In Chapter 4 the results will be presented, including the 

tool validation and testing. The discussion will be presented in Chapter 5. The 

main conclusions and future perspectives will be shown in Chapter 6. 
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Chapter 2.    

State-of-the-art  
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2.1. Plastics characteristics, pollution, and biodegradation 

considerations 

 

Plastic is the name given to a material that, in some stage of production, can 

flow, be applied as a coating, extruded, or moulded as liking [5], [11]. Also, 

distinguished proprieties of the finished material go through a high range of 

temperature, mechanical, chemical, and light-resistant [5], [6]. Plastics are 

synthetic hydrocarbon long polymer chains of the same molecule – or monomer 

– with very high molecular weight, hydrophobic [5]. Most of the everyday used 

plastics, from domestic to industrial, branch from fossil fuels, such as oil, coal, 

or natural gas, being so generally called non-biodegradable [12]. On the other 

hand, bio-based plastics, as the name suggests, are made from renewable 

sources (parts of plants, animals, algae, etc) [12], and are commonly degradable 

when in contact with both abiotic and biotic factors [13]. Additionally, not all 

bio-based plastics are biodegradable, because of the cases of bio-PET, bio-PE, 

synthetised by living beings from renewable sources, but keeping chemical 

characteristics from their fossil fuel analogues [13]. Biodegradable plastics are 

the only type of polymer that poses no risk with environmental disposure since 

can be fully digested and assimilated by microorganisms [14]. Poly(3-

hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Polycaprolactone (PCL) [15], 

Polylactic acid (PLA), and Poly(glycolic acid) (PGA) [9], are some examples of 

proven biodegradable synthetic polymers used in human applications. However, 

biodegradable plastics do not have the same mechanical and thermal resistance 

as conventional synthetic plastics, dismantling when interacting with e.g., water 

and enzymes [12], and so do not experience the same use as the latter, as non-

biodegradable plastics are much more durable, permeable, and mechanically 

resistant [5].  

Nowadays, pollution has expanded to all earth ecosystems [1], [16], ranging 

from soil, air, groundwater, oceans, and others, each one with its challenges, but 

all in connection with one another. A greater part of ocean pollution is originated 

from ground dumping [2]. Different objects, materials, and compounds from 

domestic trash to industrial residues, can be found anywhere across the earth’s 
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surface. However, one item can be highlighted: plastic. Plastic pollution is 

universal [7], and it is present in large concentrations in dumping sites [17], 

soils, oceans [5], lakes, groundwaters, and even in the atmosphere and animal 

organs [7]. Other studies have revealed trace elements of microplastics in 

households’ air [18], seafood [2], and has made its way to human placentas and 

breastmilk [19]. Prior facts arise concerns about public health, as plastic 

compounds are toxic and not metabolized by human enzymes [20]. Upstream 

of the disposal/recycling process, plastics also cause environmental distress 

when in production. Being a petroleum-based material, fossil fuel burn results 

in high outputs of GHG (greenhouse gas) mostly CO2 emissions into the 

atmosphere, increasing even more the existing problems related to the 

greenhouse effect, and contributing to an increase of the earth’s mean 

temperature and so a greater number of climate change phenomena [21]. 

Generating strategies for plastic pollution reduction is complex and depends on 

a global understanding of this problem and efforts from main pollutant nations 

[7]. This question can be addressed from distinct perspectives, starting from 

reducing overall plastic quantities, plastic substitution by biodegradable 

materials, reducing plastic demands, and focusing on the plastic post-

consumption, like upgrading the collecting sector, increase recycling capacities 

in towns, and alleviating or treating environmental wastes [7]. However, 

estimates say that even with the best scenarios, until 2040, plastic disposal will 

still represent a major issue, and environmental footprints noticeable due to 

plastics’ long extensive degradation periods [7]. 

This problem’s urgency demand high commitment from all counterparts 

involved, and so are new methods capable of countering this growth tendency 

[7], [22], since countries cannot store such huge amounts of plastic, nor dispose 

of them in a safe matter without their accumulation in undesired places [12]. 

Diverse strategies can be practised reverting plastic accumulation in the future, 

yet sustainable solutions are preferable, avoiding the creation of 

different/unrelated problems. Natural polymers like the ones referenced before, 

introduce mechanical and cost-related disadvantages, and so, research and 



Chapter 2 

8 

 

development of novel polymers able of controlled biological degradation for 

replacing traditional fossil fuel-based plastics posts an interesting topic [22], 

[23], [24]. Experiments have been conducted with the combination of plastics 

from different monomers, showing promising results in biodegradability levels 

[25], [26]. 

First-ever records of plastics synthesis go back to the early 1900s, but only 

halfway through the century gained severe popularity due to their unique 

functionalities [2], [21]. Records show an early scientific advance in the 

synthesis of new monomers in the first half of the latter century [6]. Over the 

years, the production of plastic exponentially raised to become indispensable 

and essential to human everyday lifestyle [3]. Despite the existence of countless 

sustainable and environment-friendly biodegradable plastics, their use 

deprecated over the years, giving place to petroleum-derived plastics [27], owing 

to facilitate processes, higher volumes, and cheaper production costs [6]. Table 

1 shows the characteristics and applications of the most commonly used 

plastics. 

Table 1: List of most used non-biodegradable plastics, showing the chemical formula, monomer chemical 

2D structure (drawn with ACD/ChemSketch [28]), their main applications, and potential hazards of their 

uncontrolled disposure on the environment and consequent human exposure [29]. 

Plastics Formula Structure Field of use Hazards 

Polyethylene 
(PE) 

(C2H4)n 

 

Packing, fuel 

tanks 
Toxic 

Polyethylene 
terephthalate 

(PET) 

(C10H8O4)n 

 

Food and 

liquids 

packing 

Irritant 

Polyurethane 
(PUR) 

(C17H16N2O4)n 

 

Furniture, 

Electronics, 

Irritant, 

Toxic 

Polystyrene 
(PS) 

(C8H8)n 

 

Food 

packing, 

auto parts, 

toys 

Toxic, 

Carcinogenic 

Polypropylene 
(PP) 

(C3H6)n 

 

First-aid, 

machinery 
Irritant 
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Polyvinyl 
chloride 
(PVC) 

(C2H3Cl)n 

 

Building, 

health care, 

packing 

Highly toxic, 

Irritant, 

Teratogenic 

 

Analysis of chemical structures from Table 1 tells us a dominant prevalence of 

carbon atoms as their backbone composition, with carbon-carbon, and carbon-

hydrogen bonds in PE, Polystyrene (PS), and Polypropylene (PP), unlike the 

remaining polymers (Polyethylene Terephthalate (PET)), Polyurethane (PUR), 

Polyvinyl chloride (PVC)) with heteroatoms O, N-C-O connections, and Cl 

respectively [24]. Naturally, the structure has a proven impact on both polymer 

properties and biodegradation [13], as higher ratios of aromatic constituents 

result in fewer options for enzymatic catalysis [30] whereas plastics with esters 

or amide bonds are much more likely to suffer from hydrolytic attacks [24], [31]. 

Adding to this, biotic factors also do not pose a major threat to non-

biodegradable plastics’ integrity [23], once again because of the above 

characteristics. 

 

2.2. Known plastics-degrading microorganisms and enzymes 

 

As a consequence of the accumulation of plastic materials in soils, oceans, and 

landfill sites [14], a natural microbial adaptation of microorganisms living in 

these environments occurs, which is reflected in their ability to partially 

biodegrade and catalyze synthetically non-biodegradable  and biodegradable  

plastics as their carbon and energy sources in a bioremediation or 

biodegradation process [12], [32], [33]. Biodegradation can be defined as the 

event associated with the mechanisms of degradation and assimilation [12] or 

their secretion products through the action of enzymes coming from living 

organisms [9], [23].  

Ever-growing plastic quantities build up in soils [34] and waters [5], [35]–[37], 

changing microorganisms’ genotype, to a form passive of digesting these 

compounds, and so nourishing upon hydrocarbon chains [32]. Different studies 

performed in distinct parts of the globe, in places highly affected by mismanaged 
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wastes, are already showcasing levels of mass reduction of multiple kinds of 

plastics by part of naturally altered organisms [38], trying to isolate and 

characterize the resident microorganisms, as well as documenting the digesting 

process [39]. 

Metagenomics refers to the process of sampling all genome sequences available 

from a community of organisms in an ecosystem, instead of genomics, which 

looks through hard sequencing of a single isolated organism sequence [40]. 

Metagenomic research and surveillance reveals a much higher effectiveness 

when compared to traditional isolation methods, both in concerns of time, 

associated costs, and scalability, as most bacteria are not reproducible in a 

laboratory context, due to high cultivation conditions requirements [41]. 

Research studies mainly focus on traditional laboratory methods, posing a 

barrier to the still-unknown microbial world and its yet not known potential 

against plastic pollution. This way, metagenomic analysis enables a fast DNA 

assembly from a wide range of microorganisms in an environmental sample like 

soil, water, wastewater, etc [17], [42]. As microorganisms are ubiquitous in all 

ecosystems [42] metagenome analysis is feasible wherever a sample is 

collectable and makes possible the reconstruction of a community’s whole 

genome, from prokaryotes, eukaryotes, and even viruses [40]. Finally, 

metagenomics contributes to a deep understanding of microbial communities’ 

structure (strains predominance) and metabolic abilities [40], by providing next-

generation sequencing tools able to identify enzymes and catalytic pathways, 

without the need for microbial cultivation and isolation [42]. 

Several studies show similar methodologies for microorganisms/enzymes 

research and isolation, and parallel notice in plastic degradation [43]. Examples 

of such include the collection of plastic samples appreciably deteriorated under 

aerobic conditions and posterior strain isolation from respective cultures [44], 

plastic contaminated soil and wastewaters samples for Polyethylene 

Terephthalate film degradation screening [30], local dumpsite soil and compost 

samples metagenomic analysis and sequence assembly [17], polymer weight 

loss by specific microbial strains biodegradation [45], among others [43]. 
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Knowledge on the enzymes acting on plastics was very scarce before 2000. For 

example, regarding PET degrading enzymes and pathways, information became 

only available during the last years [24], (since the discovery of Fusarium 

oxysporum and F. solani  [30] activity in 2007-2008), and for the remaining 

polymers, information is not yet noticeably clear and complete [23]. 

Because plastics are enormous molecules chaining monomers together, basic 

cleavage reactions are expected to occur extracellularly by enzymatic attack 

[44]. Figure 1 shows the polymeric chemical structure of PET and PUR, 

containing hydrocarbon chains and heteroatoms hydrocarbon monomers, 

respectively.  

 

Figure 1: Chemical structure representation of (A) PET and (B) PUR, emphasizing ester and amide bonds, 

respectively (adapted from [23]) 

Monomers with atoms like O and N (e.g., PET/PUR in Figure 1) usually account 

for ester or amide bonds, that are susceptible to hydrolytic attacks, either with 

or without enzymatic mediation [24] in specific conditions, as shown in Figure 

2. It is also worth noting that, depolymerization of non-biodegradable plastics is 

a slow process in environmental conditions, due to their inert nature [23], and 

the availability of groups passive of hydrolysis [12], which can be tricky due to 

plastics’ crystalline structure, where different chains of linked monomers are 

held together by Van der Waals and H bridges, making these compounds 

extremely hydrophobic [31]. 

A 

B 
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Figure 2: Hydrolysis of an ester bond in acidic and alkaline conditions (adapted from [23]). 

It is biochemically impossible for long polymer chains to get assimilated 

intracellularly by microorganisms, and so, while in this inert state, microbes rely 

on the production of extracellular enzymes, that are secreted to the environment 

and function as depolymerizers [12], [13]. As this process occurs, smaller and 

lighter molecules emerge and are absorbed through microbes’ cellular 

wall/membrane into the cytoplasm, to be further degraded [46]. 

Degradation mediated by microbes can be divided into two categories: aerobic 

or anaerobic biodegradation, for the presence and absence of oxygen, 

respectively (Figure 3) [12]. 

 

Figure 3: Illustration of both types of biodegradation, aerobic and anaerobic. Adapted from [33]. 
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While in aerobic conditions, microorganisms make use of polymer chains as 

carbon sources and uptake oxygen as electron acceptors to later form CO2, H2O, 

heat, and biomass [12], [13]. Similarly, without oxygen, anaerobic degradation 

uses CO2 as an electron acceptor and produces methane, H2O, CO2, heat, and 

biomass [12], [13]. Other alternative electron acceptors can also be used as for 

example, sulphate, iron, and nitrate. 

Being PET highly popular and consequently, experiencing high indexes of 

utilization and environmental accumulation [3], knowledge on possible 

biodegrading pathways in PET-degrading bacterial have been acquired, and PET 

degradation bacterial metabolism is not a secret anymore. According to S. 

Yoshida et al. (2016)  [30], the bacteria Ideonella sakaiensis 201-F6 strain can 

use and survive using PET carbon backbone as its main carbon source for energy 

conversion. This process is accomplished by the bacterial synthesis of two 

related and dependent enzymes – PETase and MHETase – both essential for 

reactions to proceed. In the first step, PETase breaks down PET polymers by 

hydrolytic cleavage to form Mono(2-hydroxyethyl) terephthalate (MHET) and 

terephthalic acid (TPA) in different quantities. MHET way outweighs TPA as a 

result of PETase catalysis. Then, MHETase helps with new hydrolysis from MHET 

to final TPA (Figure 4). 
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After this, TPA degradation takes place, facing a series of catabolic reactions of 

oxygenase and decarboxylation, resulting in the final and low-weight acyclic 

compound protocatechuic acid (PCA). 

Other authors propose a different pathway for the prior steps, this time with an 

IsPETase enzyme, also depolymerizing PET into MHET, but also referring to an 

intermediate reaction, first producing Bis(2-hydroxyethyl) terephthalate (BHET) 

and only after converting to MHET [31]. In this study, additional information is 

provided concerning the catalysis location, starting in an extracellular 

environment, followed by absorption and further reactions [31]. 

Figure 4: Schematical representation of hydrolytic cleavage of PET polymer, through PETase and MHETase, 

resulting in MHET and TPA, and TPA, respectively. TPA is transported with TPA transporter (TPATP) and  

oxygenated by TPA 1,2-dioxygenase (TPADO), which product is decarboxylated by 1,2-dihydroxy-3,5-

cyclohexadiene-1,4-dicarboxylate dehydrogenase (DCDDH). Another oxygenation is followed by means of 

PCA 3,4-dioxygenasedegradation pathway. Adapted from [30]. 

PET 

MHET 

TPA 

PCA 
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Degradation pathways of other synthetic plastics have also been studied, from 

PUR to other more recalcitrant like PS and PE, with rigid carbon-carbon 

backbone structures. In the case of PUR, some microorganisms show the ability 

to degrade this polymer (as shown in Table 2). This biodegradation process can 

be explained by the wide variety of polyurethanes structures, and depending on 

the monomer linkage type, PUR can be depolymerized through an 

esterase/protease mechanism but is very dependent on the enzyme-ligand 

proximity [31], but also by hydrolases [46]. 

For the case of linear full carbon body PE, biodegradation is a challenge for 

microorganisms, but it is known to occur by photodegradation with UV light or 

heat, resulting in smaller molecules, proceeded by biodegradation with a series 

of oxidation reactions [47]. 

Reviews on microorganisms that are able to degrade plastic components are 

abundant, however, this does not expand to the enzymes involved and respective 

pathways [39], [48], [49]. As a consequence, characterization of enzymes 

synthesized by these species is a slow process, and information on involved 

enzymes are often not curated and few information is associated with those 

enzymes. Table 2 shows a set of curated enzymes and others which are assumed 

to digest plastic.  Relevant available information about each enzyme, including 

the information of the microorganisms associated and the identifiers in distinct 

protein databases is given. Due to big amount of unreliable data, only entries 

with more information and better annotation were included.  

Table 2: List of enzymes with presumable present plastic-degrading activity towards PE, PET, PUR and PS.  

Enzyme 
name 

Plastic Microorganism 
NCBI 

Protein ID 
PM ID 

PDB 
ID 

UniProt 
ID 

Reference 

Alkane 

hydroxylases 
PE 

Pseudomonas 

sp. E4 
—  

233607

78 
— — [50] 

Hydrolase PE 
Pseudomonas 

sp. AKS2 
— 

232426

25 
— — [45] 

Leaf-branch 

compost 

cutinase 

PE 
Unknown 

prokaryote 
— 

221942

94 
6THT G9BY57 [51] 
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Leaf-branch 

compost 

cutinase 

PE 
Unknown 

prokaryote 
— 

221942

95 
6THS G9BY57 [51] 

Leaf-branch 

compost 

cutinase 

PE 
Unknown 

prokaryote 
— 

221942

96 
4EB0 G9BY57 [48] 

PE-H (DLH 

domain-

containing 

protein) 

PE 

Pseudomonas 
aestusnigri 

VGXO14 

— — 6SBN 
A0A1H6A

D45 
[31], [52] 

C208 laccase PE 
Rhodococcus 

ruber 
— — — — [38], [53] 

MnP1 

(Manganase 

Peroxidase 1) 

PE 
Phanerochaete 
chrysosporium 

AAA33743 
158503

80 
1YZP Q02567 [38], [54] 

Soybean 

Peroxidase 
PE 

Glycine max 

Soybean 
— 

112665

99 
1FHF O22443 [38], [55] 

Rubredoxin-

naD(+) 

reductase 

PE 
Pseudomonas 

aeruginosa 
NP_25403

6  

145741

14 
2V3A Q9HTK9 [38], [56] 

Alkane 1-

monooxygena

se 1 

PE, 

PET 

Pseudomonas 
aeruginosa 

NP_25126

4 

145741

14 
— Q9I0R2 [56] 

Alkane 1-

monooxygena

se 1 

PE, 

PET 

Alcanivorax 
borkumensis 

CAL18155   
148712

10 
— Q0VKZ3 [38], [57] 

Alkane 1-

monooxygena

se 2 

PE, 

PET 

Pseudomonas 
aeruginosa 

NP_25021

6 

145741

14 
— Q6H941 [56] 

Alkane 1-

monooxygena

se 2 

PE, 

PET 

Alcanivorax 
borkumensis 

CAL15570 
199533

01 
— Q0VTH3 [58] 

Poly(ethylene 

terephthalate

) 

hydrolase/PE

Tase 

PET 
Ideonella 
sakaiensis 

GAP3837

3 

269656

27 
5XFY 

A0A0K8P

6T7 

[30], [38], 

[59] 

BTA-

hydrolase 1 
PET 

Thermobifida 
fusca 

— — 5ZOA Q6A0I4 [26] 

Cut190 PET 

Saccharomono
spora viridis 

AHK190 

— 
328820

44 
7CEH W0TJ64 [60] 

Cutinase PET 
Thermobifida 

fusca 
— — 4CG1 E5BBQ3 [61] 

Cutinase PET 
Thermobifida 

fusca 
— — 4CG2 E5BBQ4 [61] 

Cutinase PET 
Thermobifida 

fusca 
— — 4CG3 E5BBQ5 [61] 

Extracelular 

esterases 
PET 

Rhodococcus 
rubber 

— 
165346

12 
— — [62] 
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Cutinase PET 
Fusarium 

oxysporum 
— 

262915

58 
5AJH X0BTD8 [63] 

Triacylglycero

l lipase 
PET 

Thermomonos
pora curvata 

ACY96861 
29427

431 
— D1A9G5 [64] 

LipIAF5-2 PET 
uncultured 

bacterium 
— — 7ECB C3RYL0 [65] 

Lipase PET 
Oleispira 

antarctica RB-8 
— — — — — 

Triacylglycero

l lipase 
PET 

[Polyangium] 

brachysporum 
AKJ29164 

29427

431 
— 

A0A0G3BI

90 
[64] 

IsPETase PET 

Ideonella 
sakaiensis 201-

F6 

GAP3837

3 

26965

627  
5XH3 

A0A0K8P

6T7 
[52], [66] 

nsHiCutinase PET 
Humicola 

insole 
— 

248324

84 
4OYY 

A0A075B

5G4 
[52], [67] 

MHETase PET 
Ideonella 
sakaiensis 

GAP3891

1 

32989

159 
6QZ4 

A0A0K8P

8E7 
[31], [33] 

PE-H (DLH 

domain-

containing 

protein) 

PET 

Pseudomonas 
aestusnigri 

VGXO14 

— — 6SBN 
A0A1H6A

D45 
[31], [52] 

Serine 

hydrolase/Th

h_Est 

PET 
Thermobifida 
halotolerans 

AFA45122 — — H6WX58 [52] 

PulA PUR 
P. protegens 

pv. Fluorescens 

Pf-5 

— — — — [38] 

Polyurethana

se esterase A 
PUR 

Pseudomonas 
chlororaphis 

WP_0110

61486.1 

107542

42 
— Q9X3C0 [68], [69] 

Polyurethana

se B 
PUR 

Pseudomonas 
chlororaphis 

WP_0110

61489.1 
— — Q9R9H2 [69], [70] 

pudA PUR 

Comamonas 
acidovorans 

TB-35 

— — — — [71] 

hydroquinone 

peroxidase PS 

Azotobacter 
beijerinckii HM

121 

— — — — [72] 

 

In this table, information is filled accordingly with what is found in the literature, 

and only then complemented with the respective data available in different 

recognized databases like UniProt [73] and Protein Data Bank (PDB) [74], 

justifying the missing values, since only over 1 % of all UniProt entries are 

manually curated [75].  



Chapter 2 

18 

 

Also, in Table 2, are referenced distinct families of enzymes, going from 

hydrolases, laccases, cutinases, and lipases. While some can catalyse the 

depolymerization (e.g., IsPETase, PETase, LC Cutinase), other are involved in 

subsequent steps (MHETase). Generally, even belonging to different families, 

plastic degrading enzymes all evolved and converged to similar 3D structures 

taking to account their physiological function. They present low molecular weight 

and volume, to allow dissipation through microbial membranes and to facilitate 

access on crystalline polymer chains, and beyond that, they have vast and 

flexible catalytic pockets, to bind to the long chain substrates [31].  

Several families of enzymes have been associated with plastic degradation (). 

For example, hydrolases are involved in depolymerizing the big plastic chains, 

so features an open catalytic pocket (Figure 5). Cutinases are known for their 

cutin degradation, but these enzymes also showed activity in PET and PE 

digestion (Table 2), due to their ester hydrolysis action. However, the catalytic 

site (Figure 6) is narrower and shallower when compared with the remaining 

known enzymes, featuring a catalytic triad in its centre [31]. Another family of 

enzymes, laccases, act as oxidases and feature a binding site with cooper, and 

are known for their degradation of lignin, a natural polymer very similar to 

synthetic polymers (e.g., PS, PET), with an aromatic structure [31]. 



Chapter 2 

19 

 

 

Figure 5: 3D structure of PETase 5XFY retrieved from PDB “3D view”, with Gaussian surface representation 

and colouring set to element symbol. Blue atoms represent nitrogen, grey atoms carbons, red atoms oxygen 

and yellow atoms sulphur. 

 

Figure 6: 3D structure of cutinase Cut190 7CEH retrieved from PDB “3D view”, with Gaussian surface 

representation and colouring set to element symbol. Blue atoms represent nitrogen, grey atoms carbons, 

red atoms oxygen and yellow atoms sulphur. 

 

Table 2 helps with the following perceptions: on one hand, that PET is the plastic 

with more known and well characterized enzymes, mostly with laboratory proven 
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activity; on the other, non-biodegradable plastics like PUR and PS have little to 

no information regarding this matter. PET revealed interest owing to its major 

percentage of utilization when compared with all other plastics [29]. 

 

2.3. Methods for protein annotation 

 

Protein annotation has the potential to extend the knowledge of already well-

characterized proteins, through the prediction of functions and metabolic 

pathways of other unclassified proteins [76]. As more data arrives with 

metagenomics emergence, new methods are required to analyse such an 

overwhelming amount of unknown protein sequences [77].  

Typical methods for protein annotation are based on the sequence/structure 

homology (ProtSComp [78]) of protein sequences or domains [75],[79], domain 

conservation (with the Conserved Domain Database (CDD) from NCBI [80]), and 

protein-ligand interactions (Ssnet [81], Pupil [82]). Also, metabolic pathways are 

most of the time associated with gene clusters, and a protein function can 

sometimes be deduced according to their relative positioning in the genome 

[76]. More recent annotation methodologies have been developed to consider 

biological information such as Multilayer Protein Networks (MPN) [83] and 

Genome Neighbourhood Networks (GNN) [77]. Different studies have been 

introducing the concept of genomic enzymology to study and predict enzyme 

function and reactions, based on genome context in enzyme superfamilies [84], 

[85]. Sequence Similarity Networks (SSNs) are an alternative method to 

phylogenetic trees produced from multiple sequence alignments of entire 

protein families [84], which can be too demanding for computers to process for 

large superfamilies [76]. SNNs were created to handle this problem, performing 

single sequence alignment between all sequences within the given protein 

families, utilising Basic Local Alignment Search Tool (BLAST). Given a similarity 

score threshold, SNNs outputs can be compared to a computational graph, 

where nodes are the sequences and edges makes the connections between 

sequences with scores higher than the given initially. As this score rises, nodes 
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tend to aggregate into groups, representing distinct functions within the same 

protein superfamily [85]. This results in a faster process with fewer computer 

resources required, a user-friendly representation of sequence-function 

relations, and annotation of enzymes with unknown physiological functions [76].  

So far, these methodologies have not been used for annotation of plastic-

degrading enzymes. On the contrary, Hidden Markov Models have been applied 

with that objective, showing satisfactory results. 

 

2.4. Hidden Markov Models and respective validation methods 

 

Hidden Markov Models are statistical/probabilistic models first used in speech 

recognition problems [86], but with an ever-growing interest for molecular 

biology sequence analysis, specifically protein structure prediction, gene finding, 

and homology annotation [87]. The main reason behind the increasing interest 

for computation biology is the ability of HMM to detect homologies between 

sequences with low similarity. An HMM is composed by a number of states, 

corresponding to the number of, for example, characters in a multiple sequence 

alignment file. Depending on the letters on each position, each state is assigned 

with an emission probability, and contiguous states are connected by state-

transition probabilities [86]. On the other hand, profile HMMs look forward to 

solving inherent problems of simple HMM, by computing emission and transition 

probabilities by training HMMs with homologous sequences [87]. This also 

makes the validation of this models challenging, and some works perform 

manual curation of the built model [88], or of the results of cross validation with 

a negative control [89], but also exists dedicated studies to the HMM validation. 

These are studies from benchmarking distinct methods of validation [90], a 

method to optimize discrimination thresholds and emissions probabilities by 

cross validation [91], parameter estimation procedures in place of scoring 

matrix [92] and the use of logic programming language and machine learning 

systems [93].  

Some articles have already presented methods for the discovery of plastic 

degrading enzymes in metagenomes collected from distinct ecosystems and in 



Chapter 2 

22 

 

metagenomic databases, in particular for PET enzymes [43], [64], [94]. D. 

Danso et al. (2018) [64] constructed a single HMM based on nine well-

characterized PET hydrolase enzymes, which were later used to scan for similar 

sequences in known databases. Then, after HMM search against UniProtKB, 

approximately 11,000 enzymes were retrieved, but only the sequences 

corresponding to matches with a bit score higher than 180 were further aligned 

using BLAST and the non-redundant protein sequences (NR) database [95]. 13 

sequences were very similar to the ones used to train the models and were 

further used for HMM refinement. It is also worth noting that HMM training 

opened the possibility to identify motifs and catalytic site composition and 

enzyme-ligand linkage information. These new PETase sequences were also 

classified as matters of superfamily lineage and taxonomic phylogeny. Once a 

protein is identified as a potential plastic degrading enzyme, by using this 

bioinformatics approach, it can be synthesized and tested for PET enzymatic 

activity. In case the activity on PET is positive, the sequence can be added to 

improve the HMM [64]. Other paper from J. Zrimec et al. (2021) [96] also 

applied HMMs to a wider range of plastics, such as PET, Polyhydroxybutyrate 

(PHB), PLA, Polybutylene adipate terephthalate (PBAT), PUR, PS, PVA, and 

other, in order to search proteins in assembled metagenomes. 

 

2.5. Available bioinformatic tools to predict enzymes with targeted 

enzymatic activity  

 

The are no available tools developed with the specific goal of predicting potential 

plastic-degrading enzymes in biological sequences, derived for example from 

metagenomics studies. However, there are tools predicting other types of 

enzymes in this kind of datasets. For example, FeGenie was developed to predict 

genes with iron oxidation and reduction properties from microbial isolates or 

metagenomic samples. FeGenie compares queried sequences with pre-

characterized and known genes or user-inputted databases for cross-referencing 

[88]. Furthermore, FeGenie also references default parameters for protein 

sequence similarity decisions [97] which can serve as a reference. Another 
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identified approach for metagenomic functional profile analysis of communities 

– SUPER-FOCUS – tries to fight the increased demand for tools able of handling 

large-scale data samples. This tool makes use of homology methods against 

reference databases to identify protein families with similar functions as the 

inputted data, combining BLASTx and DIAMOND, resulting in faster execution 

speed but lower sensitivity when compared with other methodologies [98].
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A bioinformatics tool was developed to predict enzymes with certain activities in 

protein datasets. This tool was named “M-PARTY – Mining Protein dAtasets for 

Targeted enzYmes”. M-PARTY is a local tool, free-to-use, open-source, with a 

friendly Command-Line Interface (CLI) implemented workflow and database, 

which detects homologue enzymes in protein sequences through homology-

based annotation using Hidden Markov Models. These sequences can be 

originated from genomics/metagenomics samples and have to be inputted as 

protein FASTA sequence files.  

M-PARTY was fully developed with python3 [99], using default python libraries, 

packages like pandas [100], argparse (python3), NumPy [101], as well as 

Anaconda packaged tools [102], [103]. M-PARTY has a CI (continuous 

integration) workflow to help testing the tool while coding and adding new 

features.  

By default, M-PARTY will identify similarities in protein sequence datasets to 

enzymes existing in M-PARTY databases developed for PE enzymes, in the form 

of HMMs. 

The development of the tool included five general steps (Figure 7). In step 1, the 

enzymes with PE-degrading activity were collected from the literature. In step 2, 

the enzymes poorly characterized (e.g., enzymes with function predicted or 

uncertain from UniProtKB) were excluded, and not considered for the database 

construction. In step 3 coding and development was performed as well as 

continuous integration and validation. In step 4, the HMM database was built 

and posteriorly validated in step 5. In step 6 the tool was tested against real 

datasets, and in step 7 the tool was made available for public utilization.  
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Figure 7: Schematic representation of the work performed in this thesis. 

 

For the accomplishment of step 1, deep research work was performed to confirm 

the state-of-the-art of enzymes involved in PE biodegradation ([31], [38], [48], 

[52], [54], [56]). Additional functional and structural information on the selected 

enzymes was retrieved from UniProt, but also from PDB (Protein Data Bank) for 

the 3D structures and Kyoto Encyclopedia of Genes and Genomes (KEGG) for 

reports of metabolic pathways where the enzymes participate.  
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In step 2, the enzymes with more complete information in the databases were 

the ones selected for further database construction. The number of sequences, 

curation of the available information, presence or absence of structure and 

taxonomy were some of the criteria considered. To increase the number of 

enzymes to be used in the tool training and model construction, the selected 

enzyme sequences were aligned  to  other sequences in the UniProtDB by using 

UniProt Id Mapping through API (UPIMAPI) [79]. The enzymes with similarity 

percentages between 60 % and 90 % were selected, added to the database, and 

used to develop the models. This range was defined based on the work of D. 

Danso et al. (2018) [64]. The detailed procedure will be described in section 

3.2.1.  

In step 3 the HMM models were constructed. For that purpose, the protein 

sequences (from the protein database, step 2) were clustered with CD-HIT 

(Cluster Database at High Identity with Tolerance) [102] and aligned with T-

COFFEE (Tree-based Consistency Objective Function for alignment Evaluation) 

[103]. This methodology was based on the work of J. Zrimec et al. (2021) [96]. 

The resulted alignments were the input for the HMMs construction. This 

procedure is detailed in section 3.2.1. 

In step 4 the HMMs “leave-one-out” cross-validation procedure was performed 

as described in section 3.2.2. This validation was done to prevent the 

appearance of false positive models. The dataset used for the validation, as 

negative control was retrieved from UniProt with human gut metagenome 

keyword (60759 sequences, in July 2022), considering that it does not include 

PE degrading enzymes. This dataset was used as a default by M-PARTY. This 

strategy was previously used in similar approaches [89]. However, because 

eventually proteins with PE-degrading activity might still exist in this dataset, 

another dataset was used for validation, which consisted of polymerase protein 

sequences downloaded from UniProt (by the search of the keyword 

“polymerase”, which resulted in 27730 entries from Swiss-Prot database). M-

PARTY tool can receive a custom negative dataset to perform the validation. The 

models that returned matches against the negative control datasets were 

excluded. 
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The tool was tested by running the HMMs developed in the previous step against 

4 different datasets (step 5). The datasets selected were those from marine 

metagenomes (1,495,503 proteins), hydrothermal metagenomes (218,451 

proteins), which were obtained from the UniProt database in September 2022 

by searching with the keywords “marine metagenome” and hydrothermal 

metagenome”, respectively. Beyond this, also a negative control dataset, to 

further check for poorly built models was withdrawn and inputted to M-PARTY. 

The negative control dataset contained gut metagenome proteins (which were 

retrieved from the NCBI database by searching in the Taxonomy Browser the 

term “human gut metagenome”, 61074 sequences were obtained). In addition, 

a positive control dataset containing the enzymes for tool construction (Table 

4). The tool prediction procedure if fully explained in section 3.2.3. 

The final task (step 6) consisted of turning M-PARTY available for the general 

public over a package manager like anaconda [104]. There is a fully functional 

tool version available at bioconda https://anaconda.org/bioconda/m-party, and 

tool coding, modules, and respective scripts can be conferred in a public 

repository in GitHub with https://github.com/ozefreitas/M-PARTY. All steps 

needed for local installation are present in Anaconda, GitHub page and in section 

3.2.4. 

 

3.1. General architecture 

 

M-PARTY includes both a tool for homology detection and an HMM database. It 

takes advantage and uses external tools, with extended applications and utilized 

by many in the most distinct studies. It is the case of CD-HIT [102], a clustering 

tool that nests sequences by their sequence similarity, that will be of major 

importance later in the database construction for sequence slicing and selection 

for each model. Prokaryotic taxonomy [105] and phylogenetic markers [106]  

tools have been built around CD-HIT, as well as methodologies to work with [107] 

and condensate large protein databases [108] are using CD-HIT. To align 

multiple sequences, T-COFFEE tool was picked. T-COFFEE is a versatile multiple 

sequence alignment tool, with the possibility to align all sequences from DNA to 

https://anaconda.org/bioconda/m-party
https://github.com/ozefreitas/PlastEDMA
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RNA and proteins [103]. It also offers a variety of alignment methods and output 

formats, revealing its convenience for posterior steps. Finally, HMMER [109] was 

used to build the final models and to perform the search of the eventual user 

inputted against those. 

M-PARTY structure follows the standard methodology adopted by several tools 

implemented with Snakemake [110] workflow manager. Snakemake 

recommends groping every file involved in workflow execution inside a 

“workflow” (where a Snakefile is located) directory and “scripts” subdirectory. 

As a matter of easier readability, M-PARTY is organized by modules instead of 

all scripts clustered together. Furthermore, all files needed for tool operation 

(FASTA and HMM files) are within the “resources” folder. Output files from the 

tool execution are written in a “results” directory. 

M-PARTY operability is ensured by its main script “m-party.py”. Here, it is visible 

the command line interface from which the user will interact with the tool, all 

auxiliary functions needed and the main script, where M-PARTY processes the 

given information and proceeds to take the necessary actions. M-PARTY also 

offers reduced verbose options for each work section to help and guide the user 

and states the time of execution for each run.  

Erro! A origem da referência não foi encontrada. is displayed as a tree-like r

epresentation of the general structure of M-PARTY. Dockerfile and ci folder are 

related to continuous integration testing; meta.yaml and build.sh are the files 

needed for the bioconda recipe; in the resources folder, there are two main 

directories – Data and Alignments – with FASTA, HMM, tables and both UPIMAPI 

and MSA runs, respectively. Inside all these subfolders, the database name given 

by the user is incorporated, and all data generated for each run is assigned to 

those folders. The results directory has a sample for all M-PARTY outputs, and 

the workflow includes the Snakefile, with the task of constructing the databases, 

and all auxiliary scripts.  
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Figure 8: Schematical representation of M-PARTY file structure, with all in-build folders and most important 

files, from CI, main and auxiliary scripts, resources, and results. 
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The M-PARTY command line interface can read and save multiple 

parameters/arguments, making its actions depend on what the user gives or 

flags. To maintain M-PARTY workflows independent, it does not require any 

positional arguments, and so only compiles a series of optional arguments. But 

on the other hand, specific workflows require sets of optional arguments that, if 

not given, will stop execution. M-PARTY can accept the following arguments: 

• -i, --input, file, or path to a file of FASTA format containing a list of protein 

sequences to be analysed; 

• --input_seqs_db_const, file, or path to FASTA format file from which the 

user would like to build the model database from scratch. Must be a 

FASTA file of protein sequences, an exception is raised, otherwise. 

• -db, --database, file, or path to a FASTA file with a large sequence number 

to serve as a database for BLAST runs against the prior user inputted 

sequences from the --input_seqs_db_const argument. DIAMOND is the 

chosen tool to query this task. Defaults to “UniProt” and will download 

this database. 

• --hmm_db_name, name to be assigned to the database built from the 

database_construction workflow. It is recommended to give a name that 

describes the family or other characteristic of the sequences in–-

input_seqs_db_const. Mandatory when a new database construction 

workflow is started. 

• -it, --input_type, defines the nature of the sequences in the –input file 

between “protein”, “nucleic” or “metagenome”. Defaults to “protein”. 

• -o, --output, name, or path to the desired output directory. Can be an 

existent or a non-existent directory, in which case, all the directories and 

sub-directories will be created as needed. If only a name is given, a folder 

is made in the current pwd. Defaults to “M-PARTY_results”. 

• --output_type, chooses the output report table format from “TSV”, “CSV” 

or “excel”. Defaults to “TSV” 

• -rt, --report_text, decides whether to produce or not a friendly report in 

.TXT format with easy-to-read information about the events from M-PARTY 

execution. Defaults to False. Call flag to set to True. 
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• --hmms_output_type, chose the output type of hmmsearch run from “out”, 

“TSV” or “pfam” format. Defaults to “TSV”. 

• --validation, decides whether to perform models’ validation and filtration 

with the ”leave-one-out” cross-validation methods. Defaults to False. Call 

flag to set to True. 

• -p, --produce_inter_tables, if user wants to save intermediate tables as 

parseable .csv files (tables from hmmsearch results processing). Defaults 

to False. Call flag to set to True. 

• --negative_database, file or path to a file containing a defined negative 

control database. The default use of human gut microbiome (already in-

built). 

• -t, --threads, integer number of threads for Snakemake to use. Defaults to 

1. 

• -hm, --hmm_models, a path to a directory containing HMM models 

previously created by the user. Can be articulated with validation if 

desired. 

• --concat_hmm_models, concatenates HMM models into a single file. 

Defaults to True. Call flag to set to False. 

• --unlock, could be required after forced workflow termination. 

• -w, --workflow, defines the workflow to follow between “annotation”, 

“database_construction” and “both”. The latter keyword makes the 

database construction first and posterior annotation. Defaults to 

"annotation”. 

• -c, --config_file, user-defined config file. Only recommended for advanced 

users. If given, overrides config file construction from the input. 

• --display_config, declare to output the written config file together with 

results. Useful in case of debugging. Defaults to False. Call to set to True. 

To summarize, M-PARTY accepts a protein FASTA file or a FASTA with protein 

sequences from metagenomic samples processing, to search similarities against 

a pre-built HMM models database, and produces a set of results files. Almost 

every feature of the tool can be changed or swapped, starting from the own 

database to the intermediate files that it can generate. Different users may have 
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different objectives and so utilize M-PARTY for different purposes. Additionally, 

allows running different workflows on their own, if the user has a portion of the 

work previously done, allowing to skip redundant jobs. 

M-PARTY started with a single workflow, annotation, which runs the pre-built 

models against a user inputted FASTA file with a set of sequences using the 

hmmsearch algorithm. This algorithm performs function prediction in all 

inputted sequences against each given model, and only the best-suited result is 

showcased in the output. This output format is composed of several metrics 

divided into “full sequence” and “best 1 domain”. The most important is the bit 

score and e-value score. But first, direct output from hmmsearch is not iterable 

by any mainstream data processing package for python, despite being a “space-

delimited” file. Because of this, a script was developed to make the “.OUT” file 

readable. This script also offers a quick filtering procedure where the bit and E-

value scores are overlooked and must obey to predefined thresholds. These 

values were withdrawn from D. Danso et al. (2018) [64]  where the authors follow 

an experimental plan for discovering PET degrading enzymes, by first defining a 

single Hidden Markov Model. If both metrics are inside these values, both the 

model number, respective query sequence, metrics and description are shown 

in the final M-PARTY resulting excel. 

 

3.2. Modules and scripts 

 

M-PARTY is divided into 4 modules, each including scripts to help tool execution. 

Database construction, annotation and validation modules represent the 

individual workflows performed by M-PARTY, while MPARTY_util has as the 

scripts and functions to help the latter modules. This distribution is shown in 

Table 3. Inside database construction, the Snakefile performs all the work. A 

Snakefile is a python-based file with distinct “rules” that manage the 

dependencies between a given input and output and what is needed to make that 

conversion. It calls other python files, that have the functions to execute each 

rule, and a final script to transform input into the outputs demanded by 

snakemake. It reveals its value in wide-scale immutable pipelines with the need 
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for automation. UPIMAPI_parser.py receives the output from UPIMAPI execution 

and returns a “.TSV” comprising the query sequences sliced in the different 

thresholds. seq_download.py will download these same sequences from UniProt, 

through the UniProt API (https://www.uniprot.org/help/api_retrieve_entries). 

This step makes new folders with the desired sequences, which are then 

clustered by CD-HIT. The CD-HIT default output is made of 2 files, a FASTA with 

the representative sequences from each cluster and a “.TXT” file with the number 

of clusters found all sequences within each cluster and the percentages of 

similarity in comparison with the main sequence. To process the latter file, 

CDHIT_parser.py comes to play, creating a “.TSV” with row names as the 

number of each cluster and a single column with the query ID. In the same way, 

as done with UPIMAPI, CDHIT_seq_download.py proceeds to download the 

whole same sequences from UniProt once again. Finally, M-PARTY calls T-

COFFEE to align all sequences in a format accepted by HMMER.  

After the database workflow is complete, the user can decide whether to validate 

the newly created models. If the validation flag is raised, execution of 

hmm_vali.py is started. This script contains functions to perform all steps for 

the “leave-one-out” cross-validation method. The result is the filtration of the 

models not obeying the defined parameters, those being each model possessing 

a value of strict recall of at least 80 % (explained in section 3.2.2) 

Additionally, annotation needs to run the hmmsearch algorithm, helped by 

hmmsearch_run.py, which plays with some of the algorithm’s options depending 

on the options inputted by the user. Beyond this, hmm_process.py processes 

the output from hmmsearch (not readable by any data processing package) and 

produces all the final files so that M-PARTY can display its outputs.  

MPARTY_util is a small module with a few useful functions for the snakemake 

workflow execution and hmmsearch commands run. Some modules are 

connected, like validation and annotation, that must process the results from 

the hmmsearch run, and so utilize the same scripts.  

https://www.uniprot.org/help/api_retrieve_entries
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Finally, all modules are managed by m-party.py and its executions will depend 

on the arguments given by the user, which are read by the argparse python 

module.  

 

3.2.1. HMM database construction workflow 

 

M-PARTY can build a complete HMM database from scratch if the -w/--workflow 

option is set to “db_construction” and the --input_seqs_db_const option is filled 

with a protein FASTA file. If only the latter is triggered, M-PARTY will produce 

the database and cease operation. Options like --validation together with --input 

can be added to execute other workflows after the database is concluded. As 

mentioned in section 3.2, Snakemake performs automatically all steps leading 

to a desired output. Snakemake individualizes each task into smaller jobs, 

defined by rules, automatically deducing dependencies between them, simply 

Table 3: M-PARTY modules distribution. As headers, the name is given to each module, and subsequently, 

below each model the enumeration of the scripts inside each module. 

Database Construction

Snakefile

seq_download

CDHIT_seq_download

CDHIT_parser

UPIMAPI_parser

t_coffee_run

Validation

hmm_vali

hmm_process

Annotation

hmm_process

hmmsearch_run

MPARTY_util

docker_run

hmmsearch_run

snakemake_util
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by comparing input and output filenames. These rules are present in a Snakefile 

found in the main root or a workflow folder (Erro! A origem da referência não 

foi encontrada.), in this case, of the tool, from where Snakemake can get access. 

Each M-PARTY run is unique, and produced files vary in both number and name, 

Snakemake offer of wildcards reveals to be of major importance in some tasks. 

Wildcards allow Snakemake to generalize a rule and apply it to variable 

quantities of items, regardless of what is given in each rule iteration. 

In M-PARTY’s case, a Snakefile is already present with all imperative rules to 

transform a set of proteins in a vast collection of HMM models. The config file is 

always written at the beginning of every M-PARTY run, but an external one can 

be added for Snakemake to use  (-c/--config_file). This can cause tool 

interference, making it impossible to run, so is not recommended as the config 

file is utilized throughout the distinct workflows from M-PARTY. 

The input to the database construction workflow is a FASTA protein file (FAA 

format), and disrespecting this will print an error message. 

The methodology used for the creation of an HMM database was based on the 

work from J. Zrimec et al. (2021) [96] and D. Danso et al. (2018) [64]. For M-

PARTY, the specific steps are described. 

Selected proteins are inputted to UPIMAPI, to expand the number of sequences 

and build a protein database of close related proteins. UPIMAPI runs DIAMOND 

against the UniProt database with all default parameters and returns a “.TSV” 

file with similarity percentages, query and target sequence IDs, E-values, bit 

scores, and more information from annotation. Following the methodology, 

UPIMAPI_parser.py will then divide and group the results by thresholds of 

similarity. All sequences outside the range of 60 % to 90 % similarity to those 

inputted are discarded. The sequences left are grouped by increments of 5 %. 

For this, a file is written with thresholds intervals as row names and the UniProt 

IDs in front. Every result outside this line is discarded, considering that matches 

below 60 % identity are too distinct and will introduce error to models, making 

it more susceptible to identify homologies for proteins with similar domains but 

distinct functions, but also the decision not to include results above 90 % 
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similarity, because of redundancy issues, avoiding model “overfitting” and solely 

detection of training sequences. 

The file product from UPIMAPI_parser.py is read by seq_download.py, which 

makes the connection with UniProt via API, downloading the sequences through 

their IDs. Every sequence is downloaded by its threshold, and it is written in a 

file with the interval as name, like “60-65.fasta”. 

Inside each threshold file just mentioned, sequences are then clustered together. 

CD-HIT default program is executed for these files, with a sequence identity 

threshold set to 0.9 and word length to 5. CD-HIT produces two files, a FASTA 

with the representative sequences for each computed cluster and a text file with 

the number of clusters, the number of sequences inside each cluster and the 

respective sequence’s entries, accompanied by sequence similarities 

percentages. 

As already mentioned in section 3.2, CD-HIT “.CLSTR” file, despite being space-

delimited, is not readable as an ordinary “.TSV” or “.TXT” file. CDHIT_parser.py 

makes a similar job as the UPIMAPI_parser.py script, processing this file by its 

characteristic format and generating a “.TSV”, with the cluster number as row 

names, and the corresponding UniProt IDs in the successive columns. 

Latter files sequences are downloaded by CDHIT_seq_download.py. The 

difference now is that CDHIT_seq_download.py script will create – for each 

threshold interval – a FASTA file for every cluster returned by CD-HIT. The 

number of files exponential raises in this step. Simultaneously, it is also counted 

the number of sequences on each cluster. This was done to decide whether to 

include or not, single sequence clusters, like what was done in Peter Skewes-Cox 

(2014) [89] work. In this article, the authors cluster together a great number of 

sequences, but only consider clusters with a minimum number of 2 sequences. 

CDHIT_seq_download.py was so instructed to discard all single sequence 

clusters, if present. 

Unfortunately, CD-HIT does not offer a tool to display the alignment performed 

to do the clustering in any supported format by HMMER. In the article this 

methodology is being based on, no mentions of the used program are 
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observable, not even mentions that a multiple sequence alignment was 

performed. This blank in the procedure opens the possibility to use any MSA tool 

thought appropriate, in this case, T-COFFEE was chosen. T-COFFEE run was 

performed with all default parameters except the -output option set to 

“clustalw_aln” and -type to “protein”, to generate a clustalw format file. For every 

FASTA file from the latter step, a new “.CLUSTALW_ALN” is created.  

M-PARTY last step is to build the models with HMMER. hmmbuild algorithm only 

accepts alignment format files like .STOCKHOLM, .PHYLIP, .CLUSTAL, etc 

[109].This conditioning was known and influenced the choice of the MSA tool, 

being one of the few able to output such format. 

Summarizing, all steps explained during this section are shown in the following 

graphic present in Figure 9. 



Chapter 3 

39 

 

 

Figure 9: Schematical representation of the steps performed by the database construction workflow. 

 

Not shown in this illustration is a task that helps with file condensation and 

practicality, to latter fasten and facilitate the next workflows: model 

concatenation. For each threshold interval, tens or even hundreds of models are 
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generated and saved. This makes further jobs time-consuming, as a new file 

must be given and opened by the used algorithm, for every existing model. To 

avoid this, HMMER algorithms allow HMM models to be stacked together, and 

the subsequent programs that may be used can distinguish among different 

profiles and instantly give the best results for all present models. 

 

3.2.2. HMM validation workflow 

 

Between the methods to validate HMMs and those described in section 2.4, the 

“leave-one-out” revealed the most interesting for this case of study. This method 

was performed with a similar objective and back methodology, as published by 

Peter Skewes-Cox et al. (2014) [89]. The authors tried to scan metagenomic 

data for virus sequences using Hidden Markov models, by first expanding the 

number of sequences using BLAST, clustering the resulting database into similar 

clusters and consequent multiple sequence alignment and models building. 

Performing this method helped the authors confirm the successfulness of these 

models training in terms of ambiguity, which means, verifying if the models 

could distinguish between viral and non-viral sequences and searching for other 

sequences homologous to the ones inside each model [89]. To accomplish this, 

the article describes a very detailed procedure: First, having all models built 

from the HMMER3 hmmbuild function, from each model constituted by N 

number of sequences, one sequence is removed, and a new model is constructed 

with N-1 sequences, giving place to a rebuilt model (R). This is repeated for all 

the sequences making up each model, for all the initial models (M). Worth 

mentioning that to rebuild these models, each set of N-1 sequences must be 

aligned again. For every iteration, each deleted sequence is saved and the 

hmmsearch algorithm is used to try and recall it. Beyond this, the same R 

models are set against a dataset serving as negative control and against all other 

sequences not belonging to the model that gave rise to it. A summary of M-

PARTY’s model validation is represented in the following diagram (Figure 10). 
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Figure 10: Schematical representation of the validation workflow performed by M-PARTY. 

 

M-PARTY utilizes the human gut metagenome protein sequences from NCBI as 

a default negative control dataset to be run against each reconstructed model. 

The goal is to check whether any models match with any sequence from this 

dataset, concluding for models that would result in false positive matches. In 

this step, the user can swap this database to one that matches the model 
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database to be validated. Besides this, a well-trained HMM also should not recall 

sequences used to train other models, and so sequences previously grouped in 

different clusters [89].  

The next step is the filtration of HMMs that did not go through validation. To do 

this, two metrics are calculated: recall and strict recall. Recall, as the name 

suggests, estimates the ability of a model to re-collect all the left-out sequences, 

while strict recall makes a comparison between this measurement and the 

results given by both negative control procedures, with a literal negative dataset 

and with sequences from distinct models. To calculate the recall, for all models, 

Equation 1 was used: 

𝑖𝑓 𝐸𝑣𝑎𝑙 ≤ 10−6, 𝑡ℎ𝑒𝑛 𝑅 += 1, 𝑎𝑛𝑑 
𝑅

𝑁
∗ 100 

Equation 1: Representation of the steps taken to get to the recall values for each HMM. 

where the e-value was obtained with hmmsearch runs of every reconstructed 

model with the respective left-out sequence, R is the number of sequences 

recalled and N is the total number of sequences inside each model. On the other 

hand, strict recall demands obtaining the evalues for all 3 tasks, direct recall, 

negative control, and search against the sequences from the other models. When 

established, these values are compared considering Equation 2: 

𝑖𝑓 𝐸𝑣𝑎𝑙𝑅  ≤  min (𝐸𝑣𝑎𝑙𝑛𝑒𝑔) ∩  min (𝐸𝑣𝑎𝑙𝑑𝑖𝑠𝑡.𝑠𝑒𝑞𝑠), 𝑡ℎ𝑒𝑛 𝑆𝑅 +=  1, 𝑎𝑛𝑑 
𝑆𝑅

𝑁
∗ 100 

Equation 2: Representation of the steps taken to get to the strict recall values for each HMM. 

were 𝐸𝑣𝑎𝑙𝑅 , 𝐸𝑣𝑎𝑙𝑛𝑒𝑔 and  𝐸𝑣𝑎𝑙𝑑𝑖𝑠𝑡.𝑠𝑒𝑞𝑠 are the evalues of the hmmsearch run of each 

reconstructed model against the out sequence, negative control database, and 

all other sequences not belonging to the current model, respectively.  

Resulting percentages decide the HMMs’ outcome, whether to make part of the 

final validated HMM database or to be eliminated. Strict Recall is one of M-

PARTY parameters and was set to 80 %, just like Peter Skewes-Cox et al. (2014) 

[89] publication. This value means that at least 80 % of the sequences inside a 

model must respect the condition given in Equation 2 to proceed.  
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Finally, the validation workflow hmm_vali.py script also allows to re-concatenate 

the models in single “.HMM” files with interval thresholds as filenames, since it 

was needed to separate and dissect each individually. Optionally, following M-

PARTY philosophy, the user can also input a series of already valid HMM or 

replace the existing one, and so continue to annotation. 

 

3.2.3. Annotation workflow 

 

The annotation workflow is the simplest and more straightforward pipeline M-

PARTY has to offer. Running this pipeline alone without prior jobs aims at users 

trying to predict PE metabolic activity in a chosen protein sample. The 

annotation workflow was set up as follows.  

An illustrating diagram explaining the steps inside this workflow is displayed in 

Figure 11. 
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Figure 11: Schematical representation of the annotation workflow performed by M-PARTY. 

 

The only action the user needs to perform is to input the FASTA file with the 

sequences to be searched against the HMM database and M-PARTY runs the 

predictions by default against the pre-build PE models. If the database 

construction workflow is executed beforehand, the annotation will then use the 

recently built database, if the user so indicates. Beyond this, validation can be 
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performed either for pre-built databases as well as for newly created models 

Either way, validation execution means that the prior databases get deprecated 

and M-PARTY instead considers the new validated models, but without deleting 

the original models from their structure. hmmsearch run is set with the “tblout” 

option, as the hmms_output_type option from M-PARTY is defaulted to “tsv”, 

and the space-delimited file is generated. “tblout” is the most similar format that 

hmmsearch program can produce to the standard “.TSV” file. These results are 

processed and further filtered taking to account their bit scores and e-values. 

Parameters used for this step were taken from D. Danso et al. (2016) [63] and 

J. Zrimec et al. (2021) [96], with bit scores set to greater than 180 and e-values 

lower than 1e–10, respectively. This filtration step is always fulfilled, whether 

models have been validated or not. Finally, results range from two mandatory 

files – a FASTA and a table file – and an optional text file. Both first files contain 

information about the sequences left after filtration, with the model number 

accompanied by the plastic prefix and correspondent metrics. FASTA is 

generated by parsing the input and writing on a new file the pretended 

sequences. The report file is optional by flagging the -rt or --report_text option 

and writes a plain language text file with general information from the jobs 

performed through the last workflow. Ultimately, the user can call for the --

display_config flag to get, together with the results, the written config file by the 

beginning of M-PARTY execution, which can turn out to be useful to trace back 

possible input errors. 

 

3.2.4. Installation 

 

M-PARTY is available for Linux platforms though GitHub repository cloning, 

using the following line in a git bash terminal inside the desired (empty) folder: 

cd path/to/desired/dir 

git clone https://github.com/ozefreitas/M-PARTY.git  

It is highly recommended for users to create an appropriate conda environment 

with the required dependencies, so M-PARTY executes smoothly, with: 
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cd workflow/envs/  

conda env create -n <name of env> -f mparty.yaml  

conda activate <name of env>  

cd ../.. 

Cloning though GitHub is only recommended in last case scenario, as this as 

deprecated in detriment of bioconda distribution application. 

M-PARTY is available as a conda package from bioconda. Simply open an 

Anaconda prompt or a command line interface with Anaconda or Miniconda 

distributions installed and: 

conda install -c conda-forge -c bioconda m-party 

If something goes wrong, it is suggested to first create a conda environment 

with: 

conda create -n <name of env> -c conda-forge -c bioconda m-party 

due to possible compatibility issues that may occur. 
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The main result obtained was a bioinformatics tool which predicts certain 

enzymatic functions in protein datasets. The target enzymes are defined by the 

user. This tool was named M-PARTY – Mining Protein dAtasets foR Target 

enzYmes and was tested to predict potential PE-degrading enzymes. 

M-PARTY is a python-based tool, runs locally only in LINUX platforms, is free-to-

use, its coding open-sourced, and was written with a simple command line 

interface for easy user interaction. 

 

4.1. Enzyme selection for HMM construction 

 

The enzymes found to be involved in PE degradation were hydrolases, cutinases 

and peroxidases. The ones selected to construct the database are listed in Table 

4, where the proteins ID, organisms from which they were assigned, E.C. number 

and KEGG ID are given if available. 

Between the selected enzymes are the cutinase LC cutinase with PDB entry 

6THT, Rubredoxin-NAD(+) reductase with peroxidase activity and PDB entry 

2V3A, Manganese peroxidase 1 (MnP1) with PDB entry 1YZP, DLH containing 

protein with the PDB entry 6SBN, and a peroxidase from Glycine max with PDB 

entry  1FHF. From UniProt, all useful information can be collected, and it is also 

shown in Table 4.
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Table 4: List of the enzymes used for the construction of the tool. 

UniProt 
ID 

Name Organism 
E.C. 

Number 
KEGG ID UniProt link 

Cellular 
location 

Catalytic 
activity 

Domains 
Reference

s 

G9BY57 LC Cutinase 

Unknown 

thermophilic 

bacterium 

EC:3.1.1.74 
K08095 

(orthology) 

https://www.uniprot

.org/uniprot/G9BY5

7 

Secreted/ 

Extracellular 

Hydrolysis of 

cutin  
Signal [48], [51] 

Q9HTK9 
Rubredoxin-

NAD(+) 

reductase 

Pseudomonas 
aeruginosa 

EC:1.18.1.1 PA5349 

https://www.uniprot

.org/uniprot/Q9HTK

9 

Cytoplasm 

Hydrocarbon 

hydroxylating 

system 

FAD/NAD 

binding 
[38], [56] 

Q02567 
Manganese 

peroxidase 1 

Phanerochaete 
chrysosporium 

EC 1.11.1.1

3 

K20205 

(orthology) 

https://www.uniprot

.org/uniprot/Q0256

7 

Secreted/ 

Extracellular 

Oxidation of 

Mn2+ to Mn3+, 

lignin 

compounds 

Signal, 

Heme 

binding site 

[38], [54] 

A0A1H6A

D45 

DLH-domain-

containing 

protein 

Halopseudomo
nas aestusnigri 

— — 

https://www.uniprot

.org/uniprotkb/A0A

1H6AD45 

— — 

Signal, 

hydrolytic 

catalytic 

domain 

[31], [52] 

O22443 

Rubredoxin-

NAD(+) 

reductase 

Glycine max 

(Soybean) 

(Glycine 
hispida) 

EC:1.11.1.7 — 

https://www.uniprot

.org/uniprotkb/O22

443 

Secreted/ 

Extracellular 

Removal of 

H2O2, lignin 

degradation 

Signal, 

Heme 

binding site, 

peroxidase 

domain 

[38], [55] 
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The enzymes selected were isolated from a thermophilic bacterium [48], [51], a 

Pseudomonas aeruginosa [38], [56], Phanerochaete chrysosporium [38], [54], 

Halopseudomonas aestusnigri [31], [52], and from a soybean plant [38], [55]. 

Despite the existence of a great number of PE degrading enzymes, the selected 

proteins are the best characterized and with evidence of its involvement in this 

pathway. 

All enzymes have 3D crystal structure representations in PDB [74], which are 

shown in Figure 12. Beyond this, information like intracellular enzyme location, 

binding site and catalytic residues, domains and motifs were retrieved from 

UniProt. 
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Figure 12: Three-dimensional structure of (A) Manganese peroxidase 1 (PDB ID 1YZP), (B) LC cutinase 

(PDB ID 6THT), (C) Rubredoxin-NAD(+) reductase (PDB ID 2V3A), (D) peroxidase from Glycine max (PDB 

ID 1FHF) and (E) DLH containing protein (PDB ID 6SBN), adapted from PDB. 

Analyzing these images, is notorious their distinction between the select 

enzymes’ structure, expected from the different family’s selection. Differences 

B 

D E 

A 

C 



Chapter 4 

52 

 

are observed in the number of α-helixes and β-sheets and the tertiary structure 

formed by interactions between these structures.  

 

4.2. HMM database construction for PE-degrading enzymes 

 

Table 5 shows a summary of steps taken to build the PE based HMMs, utilized 

tools and output locations. 

Table 5: Summary table of steps leading to database construction, and corresponding used tools, the type 

of output produced and a link referring to the location of the resulting files in M-PARTY GitHub repository. 

Step 
number 

Step 
description 

Tool Output file type Results link 

1 

Sequence 

database 

expansion 

UPIMAPI .TSV 

https://github.com/ozefreitas/M-

PARTY/tree/main/resources/Dat

a/FASTA/PE/UPIMAPI 

2 Clustering CD-HIT .CLSTR 

https://github.com/ozefreitas/M-

PARTY/tree/main/resources/Dat

a/FASTA/PE/CDHIT 

3 

Multiple 

Sequence 

Alignment 

T-COFFEE .CLUSTALW_ALN 

https://github.com/ozefreitas/M-

PARTY/tree/main/resources/Alig

nments/PE/MultipleSequencesAli

gn/T_Coffee_UPI 

4 
HMM 

building 
HMMER .HMM 

https://github.com/ozefreitas/M-

PARTY/tree/main/resources/Dat

a/HMMs/PE/After_tcoffee_UPI 

 

The analysis of the 5 sequences with UPIMAPI against the TrEMBL database 

(approximately 230 million sequences) resulted in almost 50000 sequences, 

from which only 1304 were selected (showing homology percentages from 60 % 

to 90 % to the initial 5 sequences) and processed into a single table with the 

grouped IDs by threshold intervals of 5 %, as introduced in 3.2.1, and can be 

seen in Table 6. Step 1 of database expansion is shown in Table 5Erro! A origem 

da referência não foi encontrada., and full results in the respective link. 
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Table 6: Example of the processed result table from UPIMAPI_parser.py. 

File 
number 

Homology 
thresholds 

UniProt ID UniProt ID UniProt ID UniProt ID  

1 60-65 A0A399NAG9 A0A399NX42 M5B8Q1 A0A8F5W1Z5 +563 

2 65-70 A0A1H2H9F1 A0A1I6HGD3 A0A4R5UK84 X7F4G7 +216 

3 70-75 A0A1I0CBD2 A0A1H2H9H3 A0A1H1PFY8 A0A0S4I921 +99 

4 75-80 A0A1H1RJ19 A0A031MKR8 E9KJL1 A0A031MKR8 +190 

5 80-85 Q1I2R6 A0A120G870 A0A0F7Y5W5 A0A109KJY2 +194 

6 85-90 A0A024HPL2 A0A127N1R3 A0A1G8JRQ0 A0A4Z0INC7 +18 

 

Six FASTA files were obtained after analysis with UPIMAPI corresponding to the 

sequences inside each homology threshold interval. These FASTA files were then 

submitted to CD-HIT (Table 5Erro! A origem da referência não foi encontrada. 

step 2) with sequence identity and worth length parameters set to 0.9 and 5 

respectively. The cluster file obtained from CD-HIT (“.CLSTR”) was converted to 

a “.TSV” file. TSV files containing only one sequence were discarded (Table 7). 

This table shows the first 5 clusters of a total of 88 obtained for the threshold 

60-65. For the thresholds 65-70, 70-75, 75-80, 80-85 and 85-90 a total of 41, 

20, 19, 6 clusters were obtained, respectively. 

Table 7: Example of the processed result table from CDHIT_parser.py for the 60-65 threshold, showing the 

first 5 cluster from a total of 88 clusters. 

Cluster 
number 

UniProt ID UniProt ID UniProt ID UniProt ID … 

1 A0A067FI92 A0A2H5PCA3 A0A2H5PC82 A0A2H5PC95 +13 

9 A0A2H5PC80 A0A067FHH9 — — — 

12 A0A087G5A7 A0A565CIG9 — — — 

13 A0A3S3PQZ1 A0A3S3N4S4 — — — 

19 A0A199W3C6 A0A6V7PPX0 A0A6P5FHE8 — — 

+83 … … … … … 

 

The FASTA sequences of the protein IDs in the TSV files were inputted to T-

COFFEE (output parameter set to “clustalw_aln”). This is step 3 from Erro! A o

rigem da referência não foi encontrada.. 

CUSTALW files resulting from T-COFFEE were inputted to HMMER hmmbuild 

algorithm with all default parameters. 
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These resulted in a total of 329 HMM composed the PE database organized by 

threshold, according to Table 6. The HMMs can be found on Table 5Erro! A 

origem da referência não foi encontrada. step 4. 

 

4.3. HMM validation 

 

From the 329 HMM obtained (Erro! A origem da referência não foi encontrada. 

step 4), 103 were excluded, resulting in 226 validated models. 

An example of the validation results, with the detail for each step of the 

validation, is given for one of the 329 HMM models, that is the HMM number 1, 

corresponding to the 60-65 interval (Table 7). Figure 13 shows the output of the 

hmmsearch results. In this case, a low E-value was obtained (1.5e–223) meaning 

that the model was able to successfully recall the excluded sequence. 

 

Figure 13: Extract of a table result from hmmsearch run of a reconstructed model without one of its initial 

sequences against that same sequence. 

 

The “.HMM” file without the sequence was queried against the negative control 

dataset (human gut metagenome proteins), as shown in Figure 14. The E-value 

was very high, which means that the model could not match any of the sequences 

present in negative control dataset. 

 

Figure 14: Extract of a table result from hmmsearch run of a reconstructed model without one of its initial 

sequences against a negative dataset. 

 

The sequences of the model HMM 1 with one less sequence was aligned to those 

of the remaining models, as input against all these other sequences. For this, 

prior job is needed to group together in a single file all those sequences. Results 

are observable in Figure 15. 
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Figure 15: Extract of the expect table result from hmmsearch run of a reconstructed model without one of 

its initial sequences against all other sequences not belonging to the current HMM. 

 

The results obtained showed low E-values, meaning that the model was able to 

recall sequences from the other models. This represents an example of a 

reconstructed HMM that did not pass the validation step, since the E-value from 

direct recall is lower than the E-value from negative control, but higher than the 

minimum E-value from the search of the sequences of other models. In order to 

drop a model, this condition must be applicable to the results of at least 20 % 

of the reconstructed models from the initial HMM. In this example, the condition 

above was confirmed in 100 % of the resulting reconstructed models from HMM 

1, discarding this model. All the other HMMs followed the same methodology to 

validate or exclude the model. 

With polymerases as negative control, the same 226 models were maintained 

after validation and filtering (data not shown).  

The results suggest that the validation step with the negative control datasets 

do not influence the final filtered models, what is probably because the filtering 

occurred during the step of alignment with the sequences from the other models. 

 

4.4. Tool validation  

 

The positive control dataset containing the 5 sequences that were the base to 

build the HMM models, should be completely identified by M-PARTY and 

outputted in the results.  

The LC Cutinase was identified by 2 HMMs, Rubredoxin-NAD(+) reductase from 

Pseudomonas aeruginosa by 25, and from Glycine max (Soybean) by 111, 
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Manganese peroxidase 1 by 51 and finally DLH-domain-containing protein by 2 

HMMs. These results show that M-PARTY could successfully identify all the 5 

proteins. 

The example of the header of the output excel table report for the protein 

Rubredoxin-NAD(+) reductase (UniProt ID O22443) is shown in Figure 16. The 

figure shows that this protein was identified at least by 7 different models. It is 

also shown that the E-values are low meaning that the homology between the 

queries and the sequence in the model is remarkably high, which was expected 

since they correspond to the enzymes used for the model’s construction. 

 

Figure 16: Example of the output report table in ".XLSX" format for the 5 initial sequences. Lines represent 

the hmmsearch results for each model, with the best matched query sequence. Respective bit scores and 

E-values are also shown. 

 

M-PARTY also outputs in the excel file the sequences that compose each HMM. 

Part of this excel sheet is shown in Figure 17. 

 

Figure 17: Example of the output report table second sheet with the UniProt IDs of all sequences inside 

each model, by threshold. 
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Erro! A origem da referência não foi encontrada. shows the sequences from the 4

 datasets tested that could be identified by M-PARTY as potential PE-degrading 

enzymes. 

 

Table 8: Summary table of the UniProt IDs of the predicted enzyme sequences from each sample dataset. 

Positive control (5 
initial sequences) 

Negative control 
(Gut microbiome 

proteins) 

Hydrothermal 
metagenome 

Marine 
metagenome 

G9BY57 — A0A160T8A6 A0A0F9UIZ8 

Q9HTK9 — A0A3B0ZER7 A0A0F9X315 

Q02567 — A0A3B1AKZ9 A0A0F9UNI5 

A0A1H6AD45 — A0A3B0ZJ29 A0A381Z9M3 

O22443 — — A0A381N483 

— — — A0A0F9Q4B9 

— — — A0A1Z9EHN2 

— — — A0A0F9YHM5 

— — — A0A1Z8ZD93 

— — — A0A3R7VCY8 

— — — A0A424RI56 

— — — A0A0F9VWF8 

— — — A0A0F9RRP0 

— — — A0A0F9YW96 

— — — A0A1Z9VMZ9 

 

In the case of negative control dataset, the HMMs did not recall any sequence 

from the gut microbiome proteins. No results were outputted neither in excel 

nor in FASTA files, indicating that potential PE-degrading enzymes are not 

present in this dataset, or at least do not present significant homology with the 

5 protein used as reference for the database construction. 

M-PARTY returned a total of 4 distinct sequences (Erro! A origem da referência 

não foi encontrada.) from the hydrothermal metagenome dataset. A total of 193 

HMMs matched the 4 sequences. All 4 sequences were assigned to the 
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Rubredoxin-NAD(+) reductase family, the same family of one of the initial 

sequences used for database building. 

The highest number of distinct proteins identified by M-PARTY were obtained 

when searching against the marine metagenome dataset (Erro! A origem da 

referência não foi encontrada.). A total of 547 HMMs matched 15 different 

sequences. Similarly, to the results obtained with the hydrothermal dataset, 

most sequences were assigned to DLH domain-containing and rubredoxin like 

proteins (10 proteins), only 1 was classified as a hydrolase, and the remaining 

4 to FAD-dependent oxidoreductases. The first 10 enzymes identified were most 

likely homologues to the initial proteins Q9HTK9, O22443 and A0A1H6AD45, 

and the hydrolase to G9BY57 (Table 4). In the tested datasets, no enzyme was 

matched against the enzyme “Manganese Peroxidase 1”. Information about the 

19 proteins identified was collected by sequence alignment, by running the NCBI 

BLASTp against the NR database. Erro! A origem da referência não foi 

encontrada. presents the results from the alignments showing the 

microorganisms to which the proteins were assigned, and the identity between 

the identified protein and the closest relative in NCBI database. 

 

Table 9: Summary table with the matched sequences from each dataset with the closest relatives searched 

by BLAST from NCBI and respective percentage of identity. 

Results (from M-PARTY) Closest relative (in the NCBI database) 

T
e
s
t 

d
a
ta

s
e
t 

UniProt 
ID 

Enzyme name 
(UniProt) 

Enzyme name 
(NCBI) 

NCBI ID Microorganism 
Identity 

Percentage 

H
y
d
ro

th
e
rm

a
l 
m

e
ta

g
e
n
o
m

e
 

A0A160T8

A6 

Rubredoxin-

NAD(+) reductase 

FAD-dependent 

oxidoreductase 

APR6569

4.1 

Thalassolituus 
oleivorans 

99.74 % 

A0A3B0Z

ER7 

Rubredoxin-

NAD(+) reductase 

FAD-dependent 

oxidoreductase 

MBI14238

30.1 

Gammaproteob
acteria 

bacterium 
58.73 % 

A0A3B1A

KZ9 

Rubredoxin-

NAD(+) reductase 

FAD-dependent 

pyridine 

nucleotide-

disulphide 

oxidoreductase 

ACL71773

.1 

Thioalkalivibrio 
sulfidiphilus 

HL-EbGr7 

53.93 % 
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A0A3B0ZJ

29 

Rubredoxin-

NAD(+) reductase 

rubredoxin-

NAD+ 

reductase 

TCV80223

.1 

Sulfurirhabdus 
autotrophica 

49.48 % 
M

a
ri

n
e
 m

e
ta

g
e
n
o
m

e
 

A0A0F9UI

Z8 

- DLH domain-

containing protein 

alpha/beta 

hydrolase 

PKM0544

9.1 

Gammaproteob
acteria 

bacterium 

HGW-

Gammaproteob

acteria-6 

82.69 % 

A0A0F9X3

15 

- DLH domain-

containing protein 

alpha/beta 

hydrolase 

MAQ4996

9.1 

Pseudomonas 
sp. 

81.99 % 

A0A0F9U

NI5 

- DLH domain-

containing protein 

alpha/beta 

hydrolase 

MBF7813

6.1 

Pseudomonada
les bacterium 

82.76 % 

A0A381Z9

M3 

- DLH domain-

containing protein 

dienelactone 

hydrolase 

family protein 

MCH2463

354.1 

Gemmatimona
detes 

bacterium 
98.90 % 

A0A381N

483 

Abhydrolase_5 

domain-containing 

protein 

alpha/beta 

hydrolase 

HIF56551

.1 

Gemmatimona
detes 

bacterium 
98.94 % 

A0A0F9Q

4B9 

FAD-dependent 

oxidoreductase 

FAD-dependent 

oxidoreductase 

HDZ3954

3.1 

Marinobacter 
sp. 

100 % 

A0A1Z9E

HN2 

Rubredoxin 

reductase 

MAG: 

rubredoxin 

reductase 

OUV6896

4.1 

Cellvibrionales 
bacterium 

TMED122 

100 % 

A0A0F9Y

HM5 

FAD-dependent 

oxidoreductase 

rubredoxin-

NAD+ 

reductase 

SDS7052

0.1 

Halopseudomo
nas sabulinigri 

86.20 % 

A0A1Z8Z

D93 

Rubredoxin 

reductase 

rubredoxin 

reductase 

MAJ5249

5.1 

Halieaceae 
bacterium 

100 % 

A0A3R7V

CY8 

Rubredoxin 

reductase 

rubredoxin 

reductase 

RPH1244

3.1 

Alteromonadac
eae bacterium 

TMED101 

100 % 

A0A424RI

56 

Rubredoxin--

NAD(+) reductase 

MAG: 

rubredoxin--

NAD(+) 

reductase 

RPG9117

3.1 

Cellvibrionales 
bacterium 

TMED148 

100 % 

A0A0F9V

WF8 

FAD-dependent 

oxidoreductase 

FAD-dependent 

oxidoreductase 

HDZ4635

8.1 
Halomonas sp. 100 % 

A0A0F9R

RP0 

Rubredoxin-like 

domain-containing 

protein 

rubredoxin-

NAD(+) 

reductase 

HDY9284

1.1 

Pseudoalterom
onas sp . 

100 % 

A0A0F9Y

W96 

Rubredoxin-like 

domain-containing 

protein 

FAD-dependent 

oxidoreductase 

MCH4811

147.1 

Halomonas 
neptunia 

91.61 % 

A0A1Z9V

MZ9 

FAD-dependent 

oxidoreductase 

hypothetical 

protein 

MAH6171

2.1 

Legionellales 
bacterium 

100.00 % 

 

BLASTp results show that some predicted sequences are actually existing 

proteins with assigned functions, and most have been matched to an enzyme 

with the same function. Hydrothermal results show the worst percentages, not 
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of identity, suggesting that these might correspond to Rubredoxin-NAD(+) 

reductase enzymes assigned to not yet described microorganisms which inhabit 

hydrothermal environments. The results are interesting as these proteins might 

tolerate higher temperatures, which can be beneficial for application in PE-

biodegradation strategies. 

Due to the low number of enzymes detected in the marine and hydrothermal 

datasets, the names of the enzyme families were searched directly on the 

dataset’s annotation. It was found that number of enzymes belonging to the 

families of interest were much higher than the ones detected by M-PARTY (Table 

10). 

Table 10: Percentage of enzymes detected by M-PARTY relatively to the total number of enzymes, with the 

same name, found in the marine and hydrothermal datasets. 

Metagenome 

dataset Enzyme family 
Enzymes 

detected by 
M-PARTY 

Total enzymes in 
datasets matching the 
enzyme family name 

Percentage of 
enzymes detected 

by M-PARTY 

M
a

ri
n

e
 

Rubredoxin 

reductase 6 60 10 % 

DLH-domain 

containing 4 283 1,4 % 

FAD-dependent 

oxidoreductase 4 514 0,8 % 

Hydrolase 1 8168 ≈ 0,01 % 

H
yd

ro
th

e
rm

a
l 

Rubredoxin 

reductase 4 54 7,4 % 

 

For instance, 60 proteins annotated as rubredoxin reductase could be found with 

this search, but only 6 could be identified by M-PARTY, meaning that M-PARTY 

retrieved only 10 % of the expected enzymes. For the remaining enzymes the 

percentages were even lower (Table 10). This means that M-PARTY tool is very 

restrictive and should be reviewed in the future to allow a higher number of 

identifications. 
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Regarding the results obtained with M-PARTY, it was found that the 

microorganisms to which  the enzymes were assigned were diverse (Table 9), 

but most of them were not previously related to plastics biodegradation. 

However, 3 of those were close related to microorganisms described as PE, PET, 

PHB, PS, PP and PLA biodegradation (Table 11). While Alteromonadaceae 

bacterium TMED101 and Marinobacter sp. enzymes Rubredoxin reductase and 

FAD-dependent oxidoreductase, respectively, which were 100 % identical to the 

enzymes found in the marine metagenomics dataset, were reported to degrade 

PHB, the DLH domain-containing protein could degrade much more plastics 

including recalcitrant plastics and showed relatively low percentage of identity 

to the enzyme of a bacterium belonging to Gammaproteobacteria. These results 

suggest that the marine sediment metagenome contains microorganisms and 

enzymes capable of degrading a high diversity of plastics. 

Table 11: Enzymes previously associated to plastic biodegradation that could be identified by M-PARTY in 

the metagenomics datasets. 

Enzyme name and UniProt ID 
of the enzymes identified with 

M-PARTY 

Taxonomic 
assignment in 

UniProt database 

Closest related 
microorganism obtained by 

BLAST (percentage of 
identity) 

Degrading 
Plastic 

DLH domain-containing protein 
(A0A0F9UIZ8) 

Marine sediment 
metagenome 

Gammaproteobacteria 
bacterium HGW-

Gammaproteobacteria-6 
(82.69%) 

PE [111], PET 
[112], PHB 

[113], PS [114], 
PP [115], PLA 

[116]  

Rubredoxin reductase 
(A0A3R7VCY8) 

Alteromonadaceae 
bacterium 

Alteromonadaceae bacterium 
TMED101 (100%) 

PHB [117] 

FAD-dependent oxidoreductase 
(A0A0F9Q4B9) 

Marine sediment 
metagenome 

Marinobacter sp. 
(100%) 

PHB [113] 
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M-PARTY is a functional, easy-to-use, straightforward tool where independent 

workflows can be executed, depending on the preference of the user. It offers a 

methodology to build a complete HMM database, starting from protein 

sequences, and an efficient method to validate the models generated, i.e., 

avoiding the appearance of false positive results. Then M-PARTY perform 

function predictions in given protein datasets. M-PARTY main feature is the 

ability to perform all described steps to any kind of  enzyme, and predict its 

targeted function, just by changing the sequences inputted. Nevertheless, the 

default version of M-PARTY is applied to PE-degrading enzymes. 

The relevance of plastic pollution problem has motivated the development of M-

PARTY tool to find enzymes degrading plastics in metagenomes, aiming at 

discovering novel and highly efficient proteins. There are already several 

enzymes known to act on PET polymers, but not so many degrading other 

synthetic plastics, such as, PUR, PE, PS (Table 2). PET and PE are the most 

abundant in plastic waste [118], [119], therefore this tool was first developed to 

target PE degrading enzymes in order to expand the number of proteins that can 

potentially degrade this polymer. 

By searching against hydrothermal and marine metagenomes 19 proteins 

matched the criteria and were outputted by M-PARTY (Erro! A origem da 

referência não foi encontrada.). Marine metagenomes were chosen because of 

the plastic pollution in marine environments, and hydrothermal metagenomes 

because they contain extremophiles with proteins tolerating high temperatures 

and other extremophile conditions. The number of proteins obtained could be 

higher if the HMM were constructed considering a lower similarity cutoff, i.e., 

lower than 60 %. Indeed, when the same reference proteins were submitted to 

sequence alignment with BLAST against the UniProt database, maximum 

sequence similarities obtained were 34 % (for reference enzyme: Q02567), 38 

% (O22443), 50 % (Q9HTK9), 62 % (G9BY57) and 63 % (A0A1H6AD45) (data 

not shown). These results are in agreement with the results obtained with M-

PARTY, since few proteins showed similarities higher than 60 %. It is important 

to note that these percentages cannot be compared directly, as different 

alignment algorithms were used, for instance BLAST makes whole sequence 
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multiple alignment with position independent substitution matrices based on 

individual sequences while HMMER considers profiles from the given sequences 

to check for evolutionary patterns [109], [120]. 

The backbone of M-PARTY was based on the work from J. Zrimec et al. [96]. In 

that work the authors do no mention which tool was used to perform the multiple 

sequence alignment. Therefore, several tools were tested including USEARCH, 

VSEARCH, MUSCLE AND T-COFFEE. HMMER demands a multiple sequence 

alignment file like stockholm, phylip or clustalw_aln. From those, only MUSCLE 

and T-COFFEE outputted any of these files. Because TCOFFE is more versatile 

with the available alignment methods, and was used in D. Danso et al. (2018) 

[64] work, it was chosen to incorporate in M-PARTY. 

The validation step is supposed to provide a list of proteins that do not include 

the proteins of interest. In the case of this work, the chosen datasets with that 

characteristic were the human gut metagenome. However, because 

microplastics were already detected in the human body, it would be possible 

that enzymes with the ability to degrade plastics could also exist in this dataset. 

So, a second dataset with a set of enzymes to be sure not to have plastic activity, 

like polymerases, was used to confirm the viability of the human gut 

metagenome proteins to serve as negative control for this work. 

The same HMMs were discarded after validation with both negative datasets 

(data not shown). Assuming that polymerase sequences does not share any 

similarities with the model sequences, assumptions can be made that this 

human gut metagenome proteins sample does not include any enzyme with 

potential to degrade PE, at least enzymes with some degree of similarity with 

the M-PARTY database. 

However, the last step of validation is very harsh when running against all 

sequences not belonging to each given model. After a thorough analysis, 

intermediate results from this step shows extremely low E-values, most even 

reaching zero. This makes the model immediately discarded, independently of 

the results from the negative control search. This issue should be improved in 

the next version of M-PARTY. 
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Only few enzymes were identified by M-PARTY with potential to biodegrade PE 

and this may be due to the fact that the tool was quite restrictive. This is 

concluded because there are much more proteins in the datasets assigned to 

proteins containing exactly the same name of the initial set of enzymes (the ones 

associated to PE-biodegradation (Table 4)). This issue must be overcome in the 

future to obtain a tool that correctly identifies enzymes with the same function 

but that is not too restrictive, excluding positive matches. 

Contrarily to what was obtained with the marine metagenome, the enzymes 

identified by M-PARTY in the hydrothermal metagenome showed relatively low 

identity percentages to those annotated in the databases. This suggest that 

these enzymes are distant from those deposited to the NCBI database. 

Overall, both metagenomes show a high potential for PE-biodegradation given 

the resulted obtained in this thesis. 
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Chapter 6. 

Conclusions and          

Future Work   
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In this work a tool was developed in python, with a free CLI, open-source code, 

for Linux platforms – M-PARTY. This tool makes predictions based on sequence 

homology with HMMs, accepting protein sequences as input and outputting the 

prediction results in a simple form. M-PARTY offer the full workflow to build and 

validate the HMMs to be used for prediction. 

M-PARTY is operational and could successfully predict and retrieve enzymes 

with the potential to degrade polyethylene. M-PARTY’s models matched a total 

of 19 protein sequences in metagenomes samples, 4 in hydrothermal and 15 in 

marine metagenome as possible PE-degrading enzymes. 

However, there is some room for improvement in different aspects. For example, 

the implementation of more advanced and precise methods to further confirm 

the results, such as multilayer protein networks (MPN) [83] and genome 

neighbourhood networks (GNN) [77]. Also, to complement the outputs, instead 

of only returning the IDs for the matched sequences, attention can be given to 

additionally provide deeper information through automatic sequence mapping, 

e.g., taxonomy, number of domains, a family of enzymes, EC number. Another 

feature waiting to be implemented would be the model’s refinement after each 

M-PARTY run. Every highly positive result could be inserted in the corresponding 

HMM, further maturing each model, which was a strategy already employed by 

other authors [64]. Adding the step to process metagenomic samples (gene 

FASTA sequences) to this tool and integrating it into the present workflows would 

extensively help reduce the user spent time to fully complete a job starting from 

metagenomes, as M-PARTY currently only receives protein FASTA files. 

More work on coding, structure and runtime optimization can always be done, 

and new ways of displaying the outputs, providing stats about hmmsearch 

results filtration, as well as ways to communicate with the user regarding the 

steps performed during M-PARTY execution can be explored to make it a more 

pleasing experience.
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