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A B S T R A C T

Biomining offers an ecological alternative to the standard mining practices by using ex-
tremophiles that can endure elevated temperatures and low pH values. Several studies have
been performed using Acidithiobacillus caldus SM-1 and Acidimicrobium ferrooxidans DSM 10331,
suggesting that these bacteria in a community offer several advantages in bioleaching environ-
ments.

Genome-Scale Metabolic (GSM) models simulate the organisms’ metabolism through constraint-
based approaches. Therefore, the reconstruction of GSM models for A. caldus and A. ferroox-
idans and their integration into a community will offer, besides valuable insights into their
metabolism, a unique perspective on the potential interaction mechanisms between the two
organisms within the community.

In this work, we developed manually curated GSM models for A. caldus with 416 genes,
846 reactions and 646 metabolites, and A. ferrooxidans with 408 genes, 817 reactions and 640

metabolites. Both models were reconstructed using the user-friendly software merlin.
We performed the functional annotation of both organisms’ genomes to identify their

metabolic characteristics, which allowed generating a draft of the metabolic network. Manual
curation efforts through literature, genomic information, phylogenetically close organisms
and biological databases allowed refining the metabolic network. Furthermore, the models
were validated using Cobrapy and Mewpy which allowed analysing flux distribution and
interactions in different environmental conditions, and the results were compared with the
literature and experimental data. Lastly, the community model was built using the organisms’
validated GSM models.

In silico phenotypic simulations of the community model revealed that A. caldus exchanged
lipid-production related compounds whilst A. ferrooxidans donated hydrogen sulfide assisting
the former with its more complex sulfur metabolism. Moreover, the results suggest a more
significant influence of A. ferrooxidans in the community’s growth rate whilst A. caldus assists A.
ferrooxidans in biomass production.

These models can serve as a starting point to study and model the community’s behaviour
in several bioleaching conditions.

Keywords: Acidithiobacillus caldus SM-1, Acidimicrobium ferrooxidans DSM 10331, Extremophiles,
Genome-scale metabolic model, Microbial community, Biomining
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R E S U M O

A biomineração oferece uma alternativa ecológica às práticas de mineração comuns através
do uso de extremófilos que são capazes suportar elevadas temperaturas e baixos valores de
pH. Vários estudos foram realizados usando os microrganismos Acidithiobacillus caldus SM-1
e Acidimicrobium ferrooxidans DSM 10331 em comunidade, sugerindo várias vantagens em
ambientes de biolixiviação.

Os modelos metabólicos à escala genómica permitem a modelação do metabolismo através de
abordagens baseadas em restrições. Portanto, a construção de uma comunidade com contendo
o modelo da A. caldus e outro da A. ferrooxidans poderá oferecer novas perspetivas sobre os
seus respetivos metabolismos, assim como sobre os mecanismos de interação entre os dois
organismos dentro da comunidade.

Neste trabalho, foram reconstruídos dois modelos metabólicos à escala genómica com um
elevado nível de curação manual utilizando a ferramenta merlin. O modelo da A. caldus conta
com 416 genes e 846 reações enquanto que o da A. ferrooxidans possuí 408 genes e 817 reações.

Os modelos foram funcionalmente anotados a fim de identificar as características metabóli-
cas dos organismos, gerando um esboço da rede metabólica. Esta rede metabólica foi depois
curada manualmente a fim de a refinar. Para isto foi usado informação presente na literatura,
dados genómicos, organismos filogeneticamente próximos e bases de dados biológicas. Poste-
riormente, os modelos foram validados através de uma análise da distribuição de fluxo com
diferentes condições ambientais e os resultados foram comparados com a literatura e dados
experimentais. Por fim, o modelo da comunidade foi construído usando os modelos validados
dos dois organismos.

Simulações fenotípicas in silico do modelo da comunidade revelaram uma troca de compostos
relacionados com produção de lípidios por parte da A. caldus, enquanto A. ferrooxidans doou
sulfato de hidrogénio, auxiliando o primeiro no seu metabolismo de enxofre mais complexo.
Por fim, os resultados sugerem uma maior influência de A. ferrooxidans na taxa de crescimento
da comunidade enquanto que A. caldus auxilia o primeiro na produção de biomassa.
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I N T R O D U C T I O N

3.1 context and motivation

The huge amount of data that Next-Generation Sequencing (NGS) technologies can provide,
opened a whole new set of opportunities in the fields of systems biology as well as in
metabolic engineering. The data retrieved from NGS provides the reconstruction of GSM
models [3], delivering new insights into the metabolism of the organism of interest, as well as
its functioning. A model can be seen as a guide to the wet lab experiments due to its faster and
cheaper phenotype predictions [4].

GSM models are bioinformatic tools frequently used for the identification of potential drug
targets [5] as well as over/under production of compounds of interest [6, 7]. The complete
procedure for the development of GSM models was firstly described by Thiele and Palsson,
in 2010, and involves four major steps: Draft reconstruction, Refinement of reconstruction,
Conversion of reconstruction into a computable format and Network evaluation [8]. Although
several tools have been developed to automate several steps of the reconstruction, such as
merlin [3], revision of literature is a constant necessity throughout the reconstruction.

The study of extremophiles, microorganisms that live in extreme environments, can provide
several benefits benefits through their extremozymes [9] as well as their bioactive compounds
[10]. In 2015, Giddings and Newman described the importance of extremophile’s bioactive
compounds in the discovery of new potential drugs. Moreover, the extremozymes found in
extremophiles, present the same function as their non-extreme counterparts, with the advantage
of bestowing the capability to perform their function under extreme environments without
denaturing [11]. This provides several benefits for the industrial area since biocatalysts are
widely used and most procedure conditions are severe [12]. In 2018, Oyama et al., suggested
the use of the microorganisms Acidithiobacillus caldus SM-1 and Acidimicrobium ferrooxidans DSM
10331 in order to optimize the process of biomining. Biomining offers an alternative process
through the use of extremophiles that are able to oxidize and reduce sulfur-based compounds
and/or iron as energy source [13]. The use of these microorganisms instead of the traditional
process offers several advantages since it has a lower energy requirement and does not generate
harmful gaseous emissions [14].
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A. caldus SM-1 is a moderately thermoacidophilic, obligately chemolithotrophic, gram-
negative bacteria with an optimal growth temperature around 40-45 degrees Celsius and pH
around 2-2.5. It is the most frequently used bacteria in the biomining process due to its ability
to oxidize elemental sulfur and reduced inorganic sulfur compounds producing the acidity
that is essential for biomining. It is also used for the removal of accumulated sulfur that
would otherwise retard the oxidation of ores [15]. A. ferrooxidans DSM 10331 is a moderately
thermophilic, ferrous-iron-oxidizing acidophile gram-positive bacteria with an optimal growth
temperature around 48 degrees Celsius. This organism has the ability to oxidize ferrous iron to
ferric iron in order to produce ATP [16].

Since that in a natural environment, bacteria are generally found to live in communities,
it is imperative to comprehend the interactions between them to understand how a single
bacterium works in the presence of others and how to manipulate one inducing changes in the
other. Thus, the reconstruction of a GSM model for each organism in the community would
provide, as it does to single organisms, precious insights into the mechanism of each one and
the interactions between them.

3.2 objectives

The main goal of this work is to build GSM models for the bacteria A. caldus SM-1 and
A. ferrooxidans DSM 10331. From this work, we expect to add knowledge to extremophiles
metabolism and interactions providing a guide for future experiments on these two organisms.
In order to achieve this, the following goals need to be fulfilled:

• Obtain a high-quality functional annotation of both organism genomes;

• Generate a draft for both metabolic networks;

• Perform refinement and manual curation of the network using information from literature;

• Convert the metabolic network into a stoichiometric model;

• Validate the reconstructed models using experimental data;

• Analyze both organisms and community metabolic networks to find potential compound
or proteins with biological interest;

3.2.1 Document organization

Chapter 2, ’State of the art’, contains literature information regarding the subject areas ad-
dressed in this work. It starts with a systems biology overview followed by a detailed
description of a GSM model reconstruction as well as a summary of other studies performed
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with reconstructed GSM models and computational tools frequently used in this matter. The
chapter ends with an overview of extremophiles as well as of the bacteria present in this study.

Chapter 3, ’Materials and methods’, contains a detailed description of the development of
this work. This chapter starts by explaining the efforts made in genome functional annotation
followed by the generation of the models’ draft metabolic network. Next, it is explained the
formulation of the organisms’ biomass equations as well as the manual curation performed on
the models’ metabolic network. Lastly, the efforts made into the models’ validation is explained
as well as the procedure for the community model construction.

Chapter 4, ’Results and discussion’, covers the results of this work and their respective
discussion. It starts with the results of the genomes’ annotation followed by an overview of
the models’ metabolic network. Moreover, a detailed description of the organisms’ biomass
equations is given and the results obtained from the models’ validation is provided. Lastly, the
results obtained from the simulations of the community model are presented.

Chapter 5, ’Conclusions and future work’, contains the conclusions taken from this work as
well as a few perspectives on possible future work that can be done with these models.
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S TAT E O F T H E A RT

4.1 systems biology

The emergence of the field of systems biology comes through a necessity of processing the expo-
nential growth of omics data being generated and stored correlated with numerous applications
of great benefit. This field is focused on analyzing the different levels of components and their
interactions from a single molecule to the whole organism [17, 18] in order to comprehend
their organization and to predict its behavior [19, 20] through the construction of mathematical
models. This methodology is more easily applied to the prokaryotic organisms due to a simpler
compartmentalization and fewer genomic information. Nonetheless, eukaryotic models are
of great relevance (e. g., protein post-translation mechanisms) with the increasing number of
eukaryotic models being made in recent years [21].

The introduction of whole-genome high-throughput sequencing techniques promoted the
completion of several sequencing projects generating large-scale data sets [22] allowing more
complex analyses opening a whole new set of opportunities in the fields of systems biology as
well as in metabolic engineering.

The data retrieved from NGS enables the reconstruction of GSM models [3], delivering
new insights into the metabolism of the organism of interest as well as its mechanisms under
several environmental and genetic conditions. Thus, a model can be seen as a guide to wet lab
experiments due to its faster and cheaper phenotype predictions [4]. The knowledge retrieved
from GSM models can be of great interest for several fields ranging from industrial purposes
with the creation of cell factories [23] to medical use through drug targeting studies [24].

4.2 genome-scale metabolic models

Whole-genome sequencing and annotation alongside with stored biochemical data from several
biological databases [25, 26] made the reconstruction of GSM models possible. Preferably, these
models would integrate different levels of information, ranging from reactions stoichiometry
to reactions kinetics and regulatory information. However, there is still a massive gap in
knowledge regarding kinetic and regulatory data since this dynamic information only exists

4



4.2. Genome-scale metabolic models 5

for part of some well-studied organisms [27, 28]. Nonetheless, it is still possible to predict
several features of the metabolic systems through steady-state analysis e. g., growth rate under
a variety of environmental and genetic conditions as well as prediction of essential genes.

Currently, prokaryotic models are more abundant when compared to eukaryotic models. In
fact, eukaryotes have a higher quantity of genomic information leading to a more specialized
compartmentalization for each cell as well as a different type of tissues in higher eukaryotes,
making these models more demanding [8].

GSM models are valuable bioinformatics tools enabling the in silico simulation of the organism
or cell phenotype behaviour. For this, it is necessary to retrieve information for each reaction,
such as the substrates and products, its stoichiometry, reversibility, and location [29].

The complete procedure for the development of GSM models was firstly described by Thiele
and Palsson, in 2010, and involves four major steps: Draft reconstruction, Refinement of
reconstruction, Conversion of reconstruction into computable format and Network evaluation
[8].

Throughout the reconstruction, a GSM model heavily depends on the information available in
several biological databases regarding genome sequences and annotation and/or the functional
capabilities of the proteins [30]. This genomic information is used to create a draft metabolic
network of the intended organism or cell, which, after several evaluations is converted into
a GSM model alongside with the addition of an objective function, energy requirements and
several other constraints. One of the most used objective functions is the biomass equation
that accounts with all the building blocks needed to construct a single organism or cell. The
biomass equation is not generated in the draft metabolic network since it is not generated by
the genome but rather by the necessity of each cell.

Finally, the model should be exported to a universally accepted format, such as Systems
Biology Markup Language (SBML) file in order to be tested through several simulation methods.
These simulations are intended to test the predictive behaviour of the model, hence the
coherence of the model is checked by comparing the in silico results to available experimental
data. In this process, several steps of the reconstruction are reviewed in an iterative manner
until the GSM model is completed and ready to use for applications such as the identification
of potential drug targets [5] as well as over/under production of compounds of interest [6, 7].
Although several tools have been developed to automate several steps of the reconstruction,
such as merlin [3], revision of literature is a constant necessity if the goal is a GSM model with
good predictive capabilities.

Moreover, biological databases assist the user throughout the reconstruction of the model
making them an essential tool in systems biology. Throughout the next chapters it is specified
the support of the databases in the several steps of the reconstruction. In table 1 are listed some
useful databases for the reconstruction of a GSM model.

Table 1: Relevant databases for the reconstruction of a GSM model
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Database Description Web address Reference

EMBL Nucleotide Database
(EBI)

Bioinformatics sequence analysis tools
as well as full-featured text search en-
gine with cross-referencing and data
retrieval capabilities.

https://www.ebi.ac.uk/ena [31]

National Center for Biotech-
nology Information (NCBI)

Genomic and biochemical data con-
taining several databases with infor-
mation regarding whole genome se-
quences and annotation, protein func-
tions and domains, taxonomy, litera-
ture and chemical properties.

https://www.ncbi.nlm.nih.gov/ [32]

BioCyc Collection of Pathway/ Genome
Databases (PGDB) as well as software
tools to explore the data.

https://biocyc.org/ [33]

BKM-react Biochemical reaction database con-
taining known enzyme-catalyzed and
spontaneous reactions.

http://bkm-react.tu-bs.de/ [34]

BRaunschweig Enzyme
Database (BRENDA)

Biochemical and molecular informa-
tion of ezymes. EC system.

https://www.brenda-enzymes.org/ [35]

ExPASy Bioformatics Re-
sources Portal

Provides access to scientific databases
and software tools in proteomics, ge-
nomics, phylogeny, systems biology,
population genetics, transcriptomics
among others.

https://www.expasy.org/ [36]

KEGG Information regarding genes, metabo-
lites, reactions, and pathways being
able to build interaction networks.

https://www.genome.jp/kegg/ [37]

MetaCyc Curated database of experimentally
tested metabolic pathways.

https://metacyc.org/ [38]

SABIO-RK Curated database of biochemical reac-
tions, their kinetic rate equations with
parameters and experimental condi-
tions.

http://sabio.villa-bosch.de/ [39]

Transporter Classification
Database (TCDB)

Transporter proteins functional infor-
mation. Transport Classification (TC)
system.

http://www.tcdb.org/ [40]

Universal Protein Resource
(UniProt)

Protein sequence functional informa-
tion.

https://www.uniprot.org/ [41]

Biochemical, Genetic and
Genomic (BiGG) Models

GSM network reconstructions with
standardized identifiers.

http://bigg.ucsd.edu/ [42]

BioModels Curated mathematical models of bio-
logical systems.

https://www.ebi.ac.uk/biomodels/ [43]

ModelSEED Provides access to tools for the re-
construction, exploration, comparison,
and analysis of metabolic models as
well as to biochemical reactions and
genome annotations.

http://modelseed.org/ [44]
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4.2.1 Genome annotation

The genome annotation is a crucial task since the whole model depends on the correct
assignment of gene functional annotation. This step starts with data analysis obtained from
the genome annotation which can be accessed in several public genomic databases such as
Genomes Online Database (GOLD) and NCBI. It is essential to retrieve relevant annotated data
such as gene names and functions, unique identifiers, EC [45] and TC [46] numbers which can
be retrieved from KEGG as well as BRENDA and TCDB, respectively. It is also important to
identify the subunits of the protein complexes due to the possibility of more than one gene
being required to encode for one enzyme.

Furthermore, to perform a genome (re)annotation of the intended organism’s genome
sequence using tools such as Basic Local Alignment Search Tool (BLAST) [47] and HMMER [48] is
required, due to the importance of high reliability in this step. These tools operate based on
sequence similarity retrieving a similarity score which represents a confidence level of a given
gene function assignment. The assignment of this gene function in the model will depend on
this confidence score. merlin uses these tools against the NCBI and EBI databases and compares
the results with the uniprot database in order to achieve a curated annotation.

In metabolic models, only the genes encoding enzymes and membrane transport proteins
and metabolic genes will be included and corresponding metabolic/transport reactions will be
added. Metabolic genes with a low annotation score should be manually reviewed to assign a
putative function. However, one should be careful in doing so since the miss-attribution of the
function can lead to gaps in the network or even the inclusion of reactions and /or metabolites
inexistent in the given organism.

BRENDA, as well as UniProt, are usually used to confirm the genes annotation, reducing
several possible errors in the assignment of the EC number. Also, databases such as KEGG,
ExPASy, BioCyc, and MetaCyc, (table 1) can be used since they provide valuable information
regarding the set of reactions deducted from the organism’s genome sequence.

4.2.2 Metabolic network assembly

In this step, the draft metabolic network is assembled. It starts by building the reaction set
catalyzed by the metabolic genes (genes that encode for enzymes and transport proteins).

4.2.2.1 Assembly of the reaction set

To build a draft metabolic network, the assembly of the reaction set is necessary. The metabolic
genes need to be identified and the respective metabolic reactions can be connected with the
draft reconstruction by associating the EC and TC numbers to the respective substrates and
products. This information can be retrieved from several pathway databases such as KEGG,
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ExPASy, TCDB and BRENDA, mentioned in table 1, by using the respective identifiers to which
each reaction is associated [49]. At the end of this stage, the user should have, the name of the
reactions and genes as well as the respective reactants and products. Reaction directionality and
stoichiometry as well as spontaneous reactions, GPR associations and compartmentalization
will also be added to the reaction set being further discussed in the next few chapters.

Moreover, the EC nomenclature system looks to categorize all enzymes accordingly to
their functions [45]. For this, a four number code was created in order to standardize the
classification, whereas the first number classifies the enzyme into one of the six major classes
(oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases). As the number goes
further to the right the classification increases its specificity.

Analogously, the TC has the objective of creating a universal classification system for
membrane transport proteins [46] based on functional and phylogenetic information. The
standard code is represented by four numbers and one letter (second digit) with the first
number representing one of the seven major transport proteins classes (channels and pores,
electrochemical potential-driven transporters, primary active transporters, group translocators,
transmembrane electron carriers, accessory factors involved in transport and incompletely
characterized transport systems). In the same way as the EC classification system, the further
to the right the number goes the more specific the classification is.

It is worth noting that many false positives can be present in this first list of reactions set.
Usually, proteins related to Deoxyribonucleic acid (DNA) methylation or rRNA modification as
well as enzymes involved in the acid nucleic metabolism and signal transfer are given an EC
number, however, these reactions are not included in the metabolic model [8]. Also, reactions
catalyzed by enzymes without EC numbers assigned, such as transport and exchange reactions
and missing reactions known to exist in an organism, need to be further added to the reactions
set of the metabolic network. In order to add these reactions and to validate the metabolic
network, a careful examination of literature is required. Moreover, an enzyme can be related to
several reactions being important to include in the model only the reactions associated with
the intended organism.

4.2.2.2 Spontaneous reactions and Reaction stoichiometry

The next step in the reconstruction is the addition of nonenzymatic and spontaneous reactions
to the metabolic network. Notably, only the spontaneous reactions that have at least one
metabolite linking them to the rest of the network should be added, in an effort to avoid too
many dead-end metabolites [26]. Commonly, associating these spontaneous reactions to an
artificial gene and protein facilitates the analysis of reaction and gene essentiality studies. This
artificial GPR association also facilitates the differentiation between spontaneous reactions
and reactions without a known gene [8]. Moreover, spontaneous reactions can be retrieved
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from literature or several pathway databases such as KEGG. Several tools such as merlin and
MicrobesFlux [50] retrieve these reactions automatically from the database mentioned above.

In table 1 are listed some useful databases for the reconstruction of a GSM model. At the end
of this step, every reaction should have an equal charge and number of atoms on both sides of
the reaction (balanced equations). The inability to perform this step correctly may lead to the
synthesis of protons or energy (Adenosine Triphosphate (ATP)) out of nothing [8]. Furthermore,
the cofactor utilization in reaction stoichiometry may be related to an important issue. When is
not known if certain enzymes NADH or NADPH, or even both, for many metabolic reactions
is common to add the same reaction twice for the use of NADH and NADPH. This may raise a
problem since the presence of reactions that accept both cofactors lead to an increase in net
transhydrogenation reactions which is not very likely to occur under normal conditions. A
possible solution for this is to discard some of these reactions from the network or to consider
them irreversible [26].

Moreover, it is also important to analyze the reaction directionality, which can be modelled
through the reaction lower and upper bounds. In order to accomplish this, several approaches
can be taken:

• revision of literature for biochemical data of the intended organism as well as published
models stored in databases such as BiGG and ModelSEED (table 1). Also, biochemical
databases such as BRENDA and KEGG (table 1) can present this information. However,
one should be careful since these databases present the same directionality for a specific
reaction regardless of the organism.

• Estimation of standard Gibbs free energy of formation (∆fG’o) and reaction (∆rG’o) in a
biochemical system [8]. These values can be obtained from KEGG.

• Usually, reactions comprising the transfer of phosphate from ATP to an acceptor are
irreversible except for the ATP synthetase.

• Commonly, reactions with quinones are irreversible.

The miss-assigned direction can have a significant impact on the reliability of the model. If
either no information is available, and none of the rules applies, one should carefully leave the
reaction reversible [8].

4.2.2.3 Gene Protein Reactions associations

Special attention to cases where the rule one-gene-to-one-enzyme-to-one-reaction does not
apply is needed.

Promiscuous enzymes are cases where one gene encodes one enzyme which can catalyse
several reactions, thus associating one gene to several reactions. In these cases, the EC number
is associated with one gene and several reactions identifiers (ID).
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Isoenzymes are cases where more than one gene encodes for the same enzyme, catalyzing
the same reaction or set of reactions. In the metabolic network, in such cases, reactions
are associated with multiple genes with the Boolean rule OR meaning that an enzyme can
independently catalyse the reaction.

Lastly, in the presence of an enzymatic complex one or more genes encode for one subunit
of the complex with these genes being associated with one or more reactions. Usually, all the
subunits need to be present in order to catalyze the reaction specifying the Boolean rule AND,
however, this case is not always valid. In some cases, is possible that in two isoenzymes one of
them is an enzymatic complex. Such cases should be treated as isoenzyme1 OR (isoenzyme2a

AND isoenzyme2b) [8].

4.2.2.4 Compartmentation and localization

In this step, a higher level of complexity is added to the model due to the creation of cell
compartments defining the organelle(s) in which an enzyme operates. Additionally, intracellular
transport reactions should be carefully added since there is not much genomic information
regarding these reactions and too many intracellular transport reactions can originate futile
cycles.

In prokaryotes, the compartments available are often cytosol, periplasmic space, and ex-
tracellular space. For lower eukaryotes, this division is not so simple, since there is a higher
complexity associated with the organism. For these organisms, several cell compartments can
be created, namely, Golgi apparatus, lysosome, mitochondrion, endoplasmic reticulum, or
glyoxysome whereas for higher eukaryotes, it is even necessary to take into account multi-tissue
interaction [51]. Moreover, the exchange reactions (drains) between the extracellular space and
the interior space (periplasmic space in gram-negative bacteria, cytosol in all other cases) are
considered inputs or outputs of the system [26].

The compartmentalization of the model allows the user to differentiate similar reactions with
the same metabolites that occur in distinct compartments. These metabolites are distinguished
by the addition of a compartment identifier to its name reflecting the metabolite localization.
In this way, it is possible to process one metabolite in different compartments as distinct
metabolites are important, especially for the metabolites with no transporters associated with
them and in which diffusion does not usually occur.

Information regarding compartmentalization can be found in several online databases such
as UniProt as well as in literature data. Moreover, enzyme localization can be predicted through
its amino acid sequence and physiologic data of the organism by using software tools such as
TargetP [52] or PSort [53]. Commonly, when no relevant information is found for an enzyme
localization, the enzyme is assigned to the cytosol.
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4.2.2.5 Manual curation

After the reconstruction of the draft network, it is normal to find gaps within the metabolic
network. These gaps can occur due to a missing reaction in the pathway leading to the
accumulation of undesired metabolites. Likewise, the rest of the pathway will not occur due to
the missing substrate, which would be produced by the absent enzyme(s). Reactions without
any gene associated might reveal these gaps in the model [49]. In this step, an extensive revision
of literature of the organism of study is necessary, or, in case of information unavailability,
revision of literature of phylogenetic close organisms. Also, databases such as KEGG should
be used since it can present manually drawn pathway maps with molecular interaction and
reaction networks [49].

In order to standardize this refinement and to increase its efficiency, a pathway-by-pathway
analysis should be done. Thus, one should start from the main pathways leading to the
secondary pathways and end with reactions with no pathways associated with them, making it
easier to identify network gaps [8].

Each entry of the reaction set should be revised and reactions with no literature evidence
should be discarded from the model. Moreover, not every reaction associated with an enzyme
occurs in the intended organism being necessary to confirm which reactions are known to take
place in the organism [26]. Furthermore, since metabolites may be protonated or deprotonated
within a cell, one should determine the charged formula for each depending on its location.
Also, the assignment of ambiguous identifiers such as incomplete EC numbers as well as
generic terms, can miss-assign a reaction or even discard one from the network.

At the end of this stage, one should have a debugged GSM metabolic network ready to be
converted into a mathematical model. It is worth noting that since the reconstruction of the
GSM model is an iterative process, the metabolic network obtained at this stage may need
further modification depending on the results and inconsistencies obtained in the next stages.

4.2.3 Conversion from metabolic to a mathematical model

In this stage, the reaction set is converted to a mathematical model through, firstly the addition
of objective function (usually biomass), energy requirements and other constraints and later
the conversion of the metabolic network to a stoichiometric matrix.

4.2.3.1 Biomass and Energy requirements

Before converting the metabolic network to a mathematical model, it is necessary to add
the biomass equation to the reaction set. This biomass equation accounts for every biomass
component and their relative contribution to the overall biomass composition necessary for
cellular growth. This equation can either be constituted of building blocks (e.g., amino acids
and nucleotides) or macromolecules with drains of building blocks or macromolecules guiding
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the flux to the biomass equation being created. In the case of the biomass equations being
constituted of macromolecules, a set of reactions for the assembly of these from the building
blocks should be created. For both cases, the fractional amount of each biomass component
needs to be specified depending on the intended organism [26]. These coefficients represent an
individual impact on the overall cellular biomass composition. Therefore, the formation of the
biomass equation can be represented as follows:

p

∑
k=1

Ck.Xk −→ Biomass (1)

Where:

• Ck represents the coefficient of a biomass component (metabolite or macromolecule)

• Xk represents a component of the biomass

The flux through this reaction represents the specific growth of the intended organism
being measured in grams of biomass per time unit (h−1) since all biomass precursors are
converted to mmol gDW−1. Thus, the biomass equation sums the moles of each component
necessary to produce 1 g dry weight of cells. The determination of the coefficients for each
biomass component should be experimentally determined or retrieved from the physiologic
and biochemical data of the target organism. If such data cannot be found, data from a
phylogenetically close organism can be used. However, one should be careful since studies
have shown that the slightest change in the biomass composition can induce substantial
changes in the model prediction ability [54]. When no experimental data is available the
relative contribution of amino acids and nucleic acids can be estimated from the genomic
and/or transcriptomic data [54] and an approach to estimate cofactors in prokaryotes has also
been proposed [55]. In the case of lipids and carbohydrates, a thorough revision of literature is
necessary.

The biomass equation should account for growth-associated energy requirements in the form
of molecules of ATP necessary for 1 gram of biomass synthesized. These energy requirements
are represented as the hydrolysis of ATP into Adenosine Pyrophosphate (ADP) and orthophos-
phate being related to maintenance of the membrane potential, turnover of macromolecules,
and polymerization of amino acids and nucleotides required for cell replication [26]. The values
for these requirements are retrieved from chemostat growth experiments. Alternatively, one
can either determine these energy requirements by fitting the model simulation results to exper-
imental data on growth yields [26] or by determining the energy required for macromolecular
synthesis [8].

Moreover, non-growth associated energy requirements should also be taken into account.
These requirements are associated with cell maintenance processes, such as membrane potential
and turgor pressure [56]. In order to incorporate this into the model, one should add an
irreversible reaction to the reaction set, converting ATP into ADP and inorganic phosphate.
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The coefficients for this reaction or flux rate can either be retrieved from the literature or
experimentally determined.

Finally, it is necessary to specify the ratio between ATP synthesis and oxygen consumption
for the electron transport chain. In detailed models, this ratio can be calculated through the
association between electron transport, proton translocations, respiration and protons usage
in transport [57]. However, in less detailed models, one should manually define this ratio by
fitting the model to overall growth yields [58].

With the biomass equation defined and both the growth-associated and non-growth asso-
ciated energy requirements accounted for, the reaction set is ready to be represented as a
stoichiometric matrix. For this, the principles of chemical engineering are applied to represent
the dynamic mass balance of a metabolite through a single equation where the variation of
metabolite concentration throughout time is calculated. However, due to the lack of information
regarding kinetic data, an approximation to the steady-state is required. A network with M
metabolites and N reactions can be represented as:

N

∑
j=1

Si.vj = 0, i = 1, ...M (2)

Where:

• vj represents the rate of a reaction j

• Sij represents the stoichiometric coefficient of a metabolite i in a reaction j

• i represents the concentration of a metabolite

• j represents each reaction

Note that, in a steady-state environment, the concentrations of the metabolites do not change
throughout time due to the reduction of mass balance of each metabolite to a set of linear
equations [26]. Thus, the rates of consumption of metabolites must be equal to the rates of
production being represented in a network with M metabolites and N reactions as:

S.v = 0 (3)

Where:

• v is the flux vector

• S is the stoichiometric matrix (M x N) where each reaction and metabolites are repre-
sented in the columns and rows, respectively whereas the stoichiometric coefficients are
represented in each cell

Besides the internal fluxes of the cell, v also accounts for the exchanges fluxes thus, repre-
senting metabolite transportation through the cell membrane. Commonly, the number of fluxes
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is greater than the number of mass balance constraints (undetermined system), resulting in
the space of possible solutions that may satisfy the mass balance constraints, the null space
of S [26]. However, with the implementation of additional constraints, the null space of S is
reduced to a set of feasible solutions, the flux cone of solutions [30].

Constraints added to the model will reduce the feasible flux space of solutions. The
reversibility of reactions is represented through these constraints by imposing a flux range
allowed for each reaction. Therefore, the implementation of lower and upper bounds as model
constraints is necessary being represented as inequalities:

αj ≤ vj ≤ β j, j = 1, ...N (4)

Where:

• vj represents the flux vector

• αj represents the lower bound

• βj represents the upper bound

In practical terms, reversible reactions can be constrained between -1000 and 1000 represent-
ing minus and plus infinity, respectively. Whereas in irreversible reactions, one of the bounds
is set to zero depending on the directionality of the reaction. If the value for the maximum
and/or minimum flux of a specific reaction is known, one should constrain with the respective
value. The exchange fluxes are likewise constrained, depending on the nutrients available in
the medium with the lower bound being in accordance with experimental data of maximum
specific uptake rate or to data from limiting substrate studies [26].

In growth-limiting substrate conditions, one should limit the uptake rate by assignment of a
specific value to the lower bound of the intended exchange reaction. In the eventuality of a non-
existence metabolite in the medium, the corresponding transport fluxes should be constrained
to zero [8]. For maximum production of a metabolite, constraints for the upper bounds are
necessary. Depending on the environmental conditions being tested, other constraints must be
added.

Finally, the stoichiometric representation of the model should be saved in the standard
format, , for example SBML, in order to be further used in simulations. These simulations
can be made in specialized tools for this purpose, such as COnstraint-Based Reconstruction and
Analysis (COBRA) toolbox [59] or OptFlux [60].

4.2.4 Metabolic model evaluation and simulation methods

With the mathematical model constructed and the constraints applied to it, behaviour predic-
tions, for each environmental condition created, are now possible.
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Flux Balance Analysis (FBA) is a frequently used approach to evaluate the predictive behaviour
of the model, which is able to compute a set of solutions out of the flux cone [61]. This problem
of linear programming calculates an optimal flux distribution for a specified objective function
(linear combination of fluxes) in a steady-state system. A set of constraints are given defining
the feasible flux space, which will be further constrained with environmental specific conditions.
The retrieved result is a particular flux distribution from the edge of the feasible flux space.
However, it is possible to attain several optimal solutions through different flux distributions for
the same objective function. For such cases, one should use the simulation method parsimonious
Flux Balance Analysis (pFBA) which will resort to the optimal space of solutions computed by
the FBA, retrieving the solution that minimizes the sum of all the fluxes. Several tools have
been developed to resolve the optimization problem of FBA as described in later sections.
Therefore, the linear programming problem in FBA can be represented as:

Maximize Z
subject to S · v = 0

αj ≤ vj ≤ β j, j = 1, ..., N

(5)

Where:

• Z is the linear objective function

• v is the flux vector

• S is the stoichiometric matrix

• αj and βj is the lower and upper bound, respectively

The linear objective function (Z) can be to maximize or minimize either the production
of biomass or any other metabolite. Commonly, the maximization of biomass production
as an objective function for different growth conditions is used, being further compared to
experimental data of specific growth rate and growth yields studies [62]. Usually, an organism
tends to maximize growth and biomass formation when in the presence of a carbon limiting
medium [63], hence one should constrain various reactions in order to test several physiological
responses of the organism. If necessary, ATP requirements can be changed accordingly to
experimental data, in order to reduce possible inconsistencies between in silico and in vivo
results.

Moreover, active/inactive pathways in a variety of environmental conditions (i.e., aero-
bic/anaerobic growth) should be analyzed and compared to experimental data. In case of any
discrepancy, the model will need further curation of the reaction set. Analysis of dead-end
pathways should assist the debugging at this stage. Also, the predictive behaviour of the model
in a deletion mutant scenario should be in accordance with experimental data. If these do not
match, a review of the genome annotation will be necessary [26].
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If the predictive behaviour of the model is considered realistic in the evaluation tests other
simulation methods can be performed depending on the application of the model to the user.
In order to predict exchange fluxes, one can perform Metabolic Flux Analysis (MFA) [64] which
characterizes by turning an undetermined system into a determined system, taking also into
account experimental data of measured fluxes. MFA is able to provide valuable insights into
cellular physiology under specific conditions as well as to predict its metabolic capability after
genetic or environmental perturbations.

Moreover, a frequently used approach to test the robustness of the metabolic model is the
simulation method Flux Variability Analysis (FVA). This approach computes the minimum and
maximum allowable flux through each metabolic reaction to achieve optimal and sub-optimal
objectives [65] allowing the user to investigate network flexibility and redundancy as well as to
study flux distributions under sub-optimal growth.

4.2.5 Community models

The increasing generation of systems biology data enabled the construction of accurate
metabolic models possible. Consequently, the advances in metabolic modelling resources
and technologies led to a focus on the prediction of community behaviour [66]. However,
community phenotypic prediction presents greater challenges than single species metabolic
models due to interspecies interactions and more complex objective reactions [67]. Microbial
communities have a large impact on nature ranging from soil ecology to environmental engi-
neering. Thus, being able to predict their response to several environmental catalysts is of great
relevance. Moreover, the comprehension of the community mechanics is essential in order to
be able to design and engineer microbial ecosystems for desirable outputs [68, 69].

A common approach used for the reconstruction of these community metabolic models is
through the reconstruction of high-quality individual models. This approach is based on the
reconstruction of single-species models which will further be treated as compartments of a
single cell, hence forming a community with all its interspecies interactions. However, in order
for this approach to be accurate, the species in the study should be well characterized [67].

An alternative approach is to consider the community as a single supra-organism comprising
either the genome of all the individual species or using a metagenome of the community. The
networks of all organisms are combined by ignoring compartments of each individual species,
resulting in a single cell that includes the systems of all the members of the community [70, 71].

Lastly, an approach using an automated single-organism pipeline is also commonly employed,
resulting in fast-generating high-throughput individual models for each species. Softwares
such as ModelSEED [44], COBRA [59], RAVEN [72] are normally used. Nevertheless, these
top-down approaches may not be as accurate as the high-quality manual curated bottom-up
approaches, since the models produced hold a certain similarity between them.
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Furthermore, in the case of the species genome unavailability, steps such as genome structural
annotation, gene calling, and genome functional annotation can be used [67]. The use of omics
data in such community model’s can improve the model’s prediction capacity as well as the
knowledge of the community interspecies interactions [73].

4.2.6 Computational Tools

The manual reconstruction of the process above for the GSM model is a time-consuming
procedure [74]. Protocols have been described [8], reviews made [49, 29] and hundreds of GSM
models have been manually built. However, the evolution of both technology and knowledge
allowed for the development of several automated tools further aiding the reconstruction
of GSM models [1]. These tools speed up the process by automating several steps of the
reconstruction, such as the construction of the draft network, gap-filling, formation of the
biomass equation as well as providing useful information for the manual curation of the model.
Feature comparison of the tools discussed in this chapter is presented in table 2.

Each tool has its drawbacks and advantages. MetaDraft and AuReMe are very fast in
building accurate GSM models for an organism in which already exists curated GSM models
of phylogenetic close organisms. MetaDraft offers a user-friendly interface while AuReMe is
command line-based focusing on traceability. For large-scale studies, tools such as ModelSEED
and Pathway Tools are more suitable since these are the fastest to build a GSM model.
Both ModelSEED and merlin allow for a sequence FASTA an input file, however, although
merlin allows the user to curate and re-annotate the functional annotations of the submitted
genome, other tools such as RAVEN and Pathway Tools require annotated genomes as input.
Furthermore, while merlin has an integrated annotation tool, ModelSEED redirects to Rapid
Annotation of microbial genomes using Subsystems Technology (RAST) annotation system [78].
Moreover, ModelSEED allows users to perform for FBA simulations however, it provides no
chance for manual curation. For this, Pathway Tools and merlin are more suitable, guiding
the user throughout the reconstruction, thus reducing the time and effort required for manual
curation. AuReMe and MetaDraft generate draft networks with higher similarity to curated
networks than the other tools with both RAVEN and merlin being capable of predicting
subcellular localization. For less characterized species, RAVEN is a useful tool since it provides
biochemical information from different databases. Besides the commonly used databases for
biochemical information (KEGG and MetaCyc), merlin also uses the database TCDB for a better
annotation of the transport proteins [1].

It is worth mentioning that web interfaces have the advantage of centralizing all software and
reference data in a single location allowing for an instant benefit regarding model reconstruction
methods as well as model underlying data. Whereas the standalone interface tools offer more
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Table 2: Adapted from [1]. Feature comparison between several automated GSM model tools with a
classification system where 1 is the worst and 5 the best.

Feature AuReMe MetaDraft merlin ModelSeed Pathway
tools

RAVEN

Up to date reference databas-
es/resources

5 5 5 5 5 5

Software availability (easy ac-
cess as well as free)

5 5 5 5 3 5

Dependence on free software
and databases

5 5 5 5 4 3

Comprehensive documentation 3 4 3 4 5 5

It meets current standards of in-
put and output

4 5 5 2 2 5

User-friendly interface 3 5 5 5 5 3

Open-source code 5 5 1 5 1 5

Completeness of model infor-
mation fields

3 5 5 3 4 4

Similarity between automated
draft reconstruction with manu-
ally curated models

5 5 3 3 3 3

Automatization 4 3 2 5 4 3

Manual refinement assistance 3 1 5 1 5 3

Provides identifiers from other
databases for metabolites and
reactions

3 5 1 5 5 5

Traceability 3 2 3 2 3 2

Automatic integration of experi-
mental data for curation

3 1 1 2 3 1

Flexibility in parameter settings 4 4 4 3 3 4

Gap-filling Yes No No Yes Yes Yes

Simulation ready Yes Yes No Yes Yes Yes

Associated databases KEGG,
BiGG
Models,
MetaCyc

BIGG Mod-
els

KEGG,
MetaCyc,
UniProtKB,
TCDB, NCBI

ModelSEED
(In-house
reaction
database)

PGDB, Meta-
Cyc

KEGG,
MetaCyc

Reference [75] [76] [3] [44] [77] [72]

privacy to the researcher regarding their private genome sequences/annotations. The tools
operated through MATLAB have the disadvantage of requiring a license.

Moreover, gap-filling is one of the most important steps in manual curation and can be very
time-consuming. ModelSEED and Pathway Tools have an automated gap-filling while RAVEN
suggests candidate reactions and merlin provide tools to find gaps. However, automated
gap-filling still requires manual refinement since the focus of these automated algorithms
is to restore model connectivity and pathway completeness and not accuracy. Most gap-
filling algorithms are variants of the GapFill algorithm [79] which presents mixed-integer
linear programming (MILP) to determine the minimum set of reactions to be added to the
model. A major drawback of MILP is the substantial amount of time required to resolve the
problem, particularly without a commercial optimization software. However, efforts are being
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made, through linear programming, to reduce the computation time required for gap-filling
[80, 81, 82].

Moreover, tools with no simulation support require the use of additional platforms, such
as COBRA Toolbox, OptFlux, MEWpy among others. COBRApy allows the user to access
the tools of the COBRA toolbox through python. The COBRA toolbox is a set of tools
designed for the reconstruction and analysis of constraint-based metabolic models. This
toolbox presents a variety of tools for many different objectives namely, FBA, visualization,
reconstruction, gap-filling, sampling, fluxomics, metabolic engineering, support to novel
solvers, novel input/Output, support and test suites. OptFlux was designed to meet the arising
necessities in the metabolic engineering field. This software presents several functionalities
such as phenotype simulation through methods of FBA and MFA, Minimization of Metabolic
Adjustment (MOMA) [83] and Regulatory on/off minimization of metabolic flux changes (ROOM) [84].
Moreover, it is capable of performing a pathway analysis through the calculation of Elementary
Flux Modes (EFMs) [85]. Also, allows for strain optimization through the Evolutionary Algorithms
(EAs) [86], Simulated Annealing (SA) meta-heuristics [87] and OptKnock tool [88].

Furthermore, MEWpy [89] is a Metabolic Engineering Workbench designed in python
for metabolic and regulatory modelling approaches as well as phenotype simulations. It
encompasses a range of different phenotype prediction methods and EAs for metabolic
engineering optimization being able to support ReFramed and COBRApy libraries. Reframed
is a refactored version of the tool FRAmework for Metabolic Engineering and Design (FRAMED)
which is a python tool for analysis and modelling of metabolic models allowing for several
constraint-based simulation methods including community simulation. It offers support for
the SteadyCom [90] algorithm which is capable of predicting the composition of a community
whilst assuring community stability, given an environmental condition. Moreover, [91] is
a python tool capable of predicting microbial community interactions through a global or
detailed analysis. The global analysis is capable of predicting the competition for metabolites
and how can the species interaction decrease the necessity for outside resources. The detailed
analysis provides insights into species dependency, species uptake necessity for survival, the
capacity of a species to produce a metabolite and an overall score that takes into account the
previous three resulting in a probability of cross-feeding interaction.

The evolution of NGS technologies lead to an increase in the number of complete genomes
sequenced. This growth, coupled with recent advances in GSM model reconstruction method-
ologies, is allowing us to build a model for each sequenced organism. However, there is a
need for further improvement of the GSM model reconstruction methods towards shortening
the time and efforts required for manual curation with more accurate results. Draft models
generated from automated tools still require manual curation before presenting precise predic-
tions [74] being common to find inaccurate reactions, GPR associations as well as incorrectly
constrained reactions. This may be caused by incorrect mass and energy balance informa-
tion stored in the databases [78] as well as an erroneous assignment of genes to reactions.



4.2. Genome-scale metabolic models 20

Moreover, the lack of organism-specific information presents a drawback for the formation of
the biomass equation. In efforts to resolve these problems, some solutions are already being
established. It is possible to assess the quality of the draft network through the tool memote
[92]. Moreover, biomass generation equations of biologically related organisms can assist in
the manual curation. Furthermore, the automatic extraction of the biomass equation of the
intended organism as well as GPR associations from literature through text mining methods
will have a great relevance towards the automation of the manual curation process. Notably,
although automated methods for the formation of the biomass equation can be helpful, these
do not replace the relevance of the biomass equation to be experimentally determined.

4.2.7 Model applications

Several applications can be taken from a GSM model. The analysis of GSM models for the
identification of drug targets will facilitate the development of more efficient pharmaceutical
compounds with lesser side effects. Additionally, predictive behaviour for different conditions
and network analysis for product optimization while maintaining biomass levels are of great
use for industrial applications. Also, the analysis of a pan-reactome through models of closely
related organisms can provide valuable insights in several fields. Finally, modelling of an
organism’s interaction promotes the knowledge related to the mechanisms of interaction,
contributing to several benefits.

GSM models allow the analysis of critical genes in which the absence of any of them will
result in a non-viable network. In 2004, Yeh and co-workers provided the reconstruction
model for Plasmodium falciparum [93], which was later presented with a list of potential drug
targets by Fatumo and co-workers, in 2007 [94]. Moreover, Bordbar and co-workers, in 2010,
[95] presented an interaction between the alveolar macrophage submodel of the Recon 1

[96] Homo sapiens metabolic reconstruction and the iNJ661 Mycobacterium tuberculosis in silico
strain [97], hence building a host-pathogen model. This in silico interaction provided a better
understanding of the pathogenic mechanisms, thus aiding in the identification of potential
new drug targets. Altogether, these studies, coupled with many others, not mentioned here,
promoted by the evolution of systems biology, provide precious insights into the identification
of drug targets [30].

Moreover, the optimization of GSM models through knockout of genes or up- or down-
regulation of gene expression for the over-production of metabolites of interest is rapidly
increasing. In 2018, Yang and co-workers, with the objective of over-express D-phenyllactic
acid, an aromatic polymer, used the model of the metabolically engineered Escherichia coli strain
XB201T (iJO1366 [98]). It was proven in silico that the knockout of two genes (tyrB, aspC) would
enhance the production of the intended compound [99]. In another study, the application of
several algorithms was used in order to optimize the production of dodecanedioic acid in the
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Yarrowia lipolytica GSM model, iYLI647, [100]. Optimizations like these lead to a re-design of an
organism’s metabolic network, promoting the development of cell factories for industrial and
medical interests.

In other cases, the analysis of GSM models can promote the functional identification of
unidentified reactions and/or enzymes. Using the E. coli model iJO1366, genes previously
thought to be non-essential were predicted to be essential in a critical gene analysis [101]. This
discrepancy was thought to be caused by unidentified reactions affecting the essentiality of
a gene after its knockout. In order to test this, several genes were selected for experimental
validation due to their sequence similarity. Through knockout of some of the genes the authors
concluded that the missing genes can be compensated by other genes in alternative reactions,
thus identifying possible isoenzymes [101]. Moreover, an algorithm was developed with
the objective of finding promiscuous enzymes in a target organism through the use of its
model [102]. In short, the algorithm looks for sequence homology in a gene similarity tree
generating matrix of primary and potential promiscuous functions of enzymes encoded by
the corresponding genes. A ’replacer’ gene with a potential promiscuous function similar to
the primary function of another conditionally essential gene is then identified. This algorithm
has been used in several studies [44], proving its usefulness. Ultimately, high-quality GSM
models facilitate the identification of new enzyme functions and enzyme promiscuity being
very beneficial due to the lack of experimental data for many enzyme functions.

Furthermore, the use of GSM models for the analysis of the pan-reactome, the whole set
of reactions of an organism, of phylogenetic close organisms, either for different strains of a
species [103, 104] or for different species of a genus [105, 106], enhances the acquired knowledge
of metabolic traits and lifestyles for these organisms. A study conducted to test the differences
in the pan-reactome of 410 Salmonella strains using a reconstructed GSM for each strain revealed
differences in the accessory reactome, a set of reactions present in only some strains. This
study provided new information regarding preferred growth environments of the Salmonella as
well as information about their evolution [105]. Identically, in 2018, other study analyzed the
pan-reactome of 24 different species of Penicillium using a reconstructed GSM model for each
species [106]. The study showed that despite the primary metabolism being highly conserved,
the biosynthetic pathways for secondary metabolites were very different, thus contributing to
the genomic differences amongst the 24 species of the genus. As shown above, analysis of the
pan-reactome of close phylogenetic organisms coupled with automatic GSM reconstruction
tools can present high biological importance.

Additionally, modeling of metabolic interactions between different cells or organisms has
significantly increased its importance [76, 107, 108]. In 2019, a study conducted using GSM
models to assess the impact of costless metabolites, defined in the study as metabolites that
do not negatively affect the fitness cost of the organism when excreted, on the growth of
different microorganisms under several environmental conditions and mediums. The authors
concluded that the secretion of costless metabolites has a positive impact on the growth of
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other microorganisms and, consequently in the taxonomic diversity observed in nature [108].
In another study, the interaction between four different gut bacteria using their GSM model
provided precious insights into the contribution/competition on the production of short-chain
fatty acids, amino acids, and gases which are known compounds to have essential roles in both
intermicrobial metabolic interactions and the regulation of human metabolism [109]. The use of
more microorganisms and exchanged metabolites will further increase the relevance of the data
retrieved. Similarly, in 2018, Kumar and co-workers, reconstructed Community Metabolic Models
(CMM) through the incorporation of GSM models of each species of the gut microbiota [110].
These CMM allowed for the identification of a lower rate of production of essential amino-acids
in malnourished children. Moreover, the interaction between a host and its pathogen can
also be studied through the use of GSM models [111]. Also in 2018, another study examined
the impact of a pathogen in the host’s plant photosynthetic pathways through the use of its
GSM models [112]. Through this modulation, the authors concluded a negative impact of the
pathogen in the Calvin cycle fluxes and further carbon fixation providing additional insights
into the defence and attack mechanism of the plant and pathogen, respectively.

Although having described many applications of the GSM model, metabolic engineering has
yet to achieve its full potential. The rapid increase in GSM model applications is correlated
with the increased amount of biological data and information as well as automatic GSM model
reconstruction tools availability. GSM models achieved the integration of data such as protein
allocation [113, 114], cellular macromolecular composition [115, 116], and protein structural
information [117, 104] with enzyme–substrate interactions, structure of protein–protein com-
plexes, and post-translational modification still having to be further attained [74]. For this,
higher coverage of GPR associations, reconciling model inconsistencies, developing novel
mathematical modelling techniques for high-throughput data and the incorporation of cellular
processes beyond metabolism [118] have yet to be achieved.

4.3 extremophiles

Extremophiles are defined as organisms capable of thriving in environments with significant
chemical and physical barriers for life support as described in table 3. These extremophiles
belong to Archaea, Prokarya, and Eukarya domains [10] have developed strategies and mecha-
nisms to survive under these extreme environments [9]. Studying the mechanisms of these
extremophiles provides fundamental insights having great interest in biotechnological e. g.,
extremozymes and commercial purposes e. g., production of biofuel [119].

Many acidophiles are found in acid mine drainage water or mine spoils with enough
oxidation of elemental sulfur and sulfide minerals to produce sulfuric acid resulting in a higher
pH value of the environment. Acidophiles thrive in high pH environments by excreting acid
out of the cell in order to maintain a pH gradient through the plasma membrane. In this way,
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Table 3: Adapted from [2]. Extremophile classification and characteristics.
Environment

parameter Class
Defining growth

condition Environment/Source
Example organism

High temperature Thermophile 60-80
oC Hot-springs Synechococcus lividus,

Sulfolobus sp.

High temperature Hyperthermophile >80
oC Submarine

hydrothermal vents
Pyrolobus fumarii,

strain 121

Low temperature Psychrophiles <15
oC Ice, snow Psychrobacter,

Methanogenium spp.

Low pH Acidophiles pH<5 Acid mine drainage,
volcanic springs

Picrophilus
oshimae/torridus,

Stygiolobus azoricus

High pH Alkaliphiles pH>9 Soda lakes Bacillus firmus OF4,
Haloanaerobium

alcaliphilum

High pressure Barophiles High pressure Deep ocean Pyrococcus sp.,
Colwellia sp

High salinity Halophiles 2 - 5 M NaCl Salt lakes, last mines Halobacteriaceae,
Dunaliella salina,

Halanaerobacter sp.

Radiation Radiophile High levels of
radiation

Radioactive waste
from mining

Deinococcus
radiodurans,

Thermococcus
gammatolerans

Desiccation Xerophile Anhydrobiotic Desert, rock surfaces Artemia salina,
Deinococcus sp., lichens,
Methanosarcina barkeri

Rock-dwelling Endolith Resident in rock Upper subsurfaces to
deep subterranean

Lichens,
cyanobacteria,

Desulfovibrio cavernae

the organism ensures an internal pH range of 5,0–7,5 allowable for biological reactions to occur.
Commonly these organisms have reverse membrane potentials, highly impermeable to H3O+,
with an elevated concentration of secondary transporters and extracellular enzymes that can
operate at a high pH value. Acidophiles not only are resistant to metal-rich environments but
can also generate energy or ATP from metals being a precious source of acid-stable enzymes
[10].

Thermophiles prosper in environments with elevated temperatures, ranging from 61–79
oC

being usually found in a variety of environments, namely, in hot springs, bioreactors, deep
oil wells, geothermal plants, coal piles, compost heaps, deep-sea hydrothermal vents. These
organisms adapted to the higher temperatures by modifying the lipid compositions of the
membranes such that they are in a liquid crystalline state, conferring a lower rate of proton
permeation to the cell. The enzymes from these organisms present the same function as their
non-extreme counterparts, with the advantage of bestowing the capability to perform their
function under high temperatures, extreme pH values, high substrate concentrations, and
high pressure without denaturing. This provides several benefits for the industrial area since
biocatalysts are widely used and most procedure conditions are severe [9]. Thus, the study of
thermophiles presents several benefits in an industrial paradigm, having contributed already
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in processes such as anaerobic fermentative processes for water treatment, fuel production,
sulfur removal from crude oil, etc [10].

The study of extremophiles generated great benefits through diverse fields. The discovery
of the DNA polymerase from thermophilic bacteria [120] boosted the advances in molecular
biology and life sciences in the last decades. On the opposite side, the cold-active enzymes from
psychrophiles are highly used in food processing to improve milk fermentation, to store frozen
yogurt, and to improve ice-cream production [121]. Moreover, the use of thermophiles for
the production of hydrogen through hydrogenases and anaerobic fermentation is widespread
[122]. Another thermophile example is in the production of biofuel which showed to exceed
the mesophilic microorganisms based on traditional methodologies since the process involves
high temperature and low ph [123]. Moreover, the nucleoside phosphorylase from hyperther-
mophiles was used for the synthesis of nucleoside analogues for antiviral treatment [124] since
it was discovered that the use of these enzymes lowers the risk of microbial contamination and
viscosity of higher solubility of substrates [125]. Therefore, the use of extremophiles is proving
to be of great benefit in biotechnological and commercial applications showing an elevated
relevance in the fields of medicine (e.g., antibiotics and antitumors), food technology (e.g.,
phytases and phosphatases), biofuel production (e.g., proteases and lipases), cosmetic industry
(carotenoids), biomining and contaminated soil remediation (xenobiotic-degrading enzymes),
agriculture (plant growth inducers), and organic residue cycling (cellulose and lignocellulose)
[126].

Notably, these extremophiles are commonly found in nature living in a highly social multi-
species microbial community, which through collective response to their environment, leads to
a response at a larger scale [127]. The resulting interactions can either be for space competition
or cooperation with beneficial metabolic exchanges boosting their chances of survival [91].
These mutualistic exchanges can lead to interspecies dependencies further increasing the
importance of the study of extremophiles communities [128].

4.3.1 Acidithiobacillus caldus SM-1

Acidithiobacillus caldus SM-1 is a moderately thermophilic and obligately acidophilic proteobac-
terium with its optimal growth temperature ranging between 40

oC and 45
oC and pH ranging

between values of 2 and 2,5 [15]. This rod-shaped (0.4 x 2.0 μm) gram-negative bacterium is
motile with one or more flagella using CO2 as the primary carbon source for autotrophic growth
[129]. Although A. caldus is not able to grow heterotrophically, it has been shown its capacity
to grow mixotrophically with glucose or yeast extract as carbon sources and tetrathionate as
energy source [130].

This obligately aerobic bacterium [131] is widely used in biomining [132, 133] as well as
in acid mine drainage [15] due to its sulfur-oxidizing capability. In biomining, it is used for
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oxidization of elemental sulfur and reduced inorganic sulfur compounds (RISCs), generating the
required acidity for the process and later removal of the accumulated elemental sulfur, which
would retard the oxidation of ores [134]. The RISCs oxidation by A. caldus has shown many
advantages being already proved that mechanisms behind this oxidization are related to ATP
generation via electron transport phosphorylation [15].

4.3.2 Acidimicrobium ferrooxidans DSM 10331

Acidimicrobium ferrooxidans DSM 10331 is a moderately thermophilic, iron-oxidizing acidophile
with an optimal growth temperature of between 45-50

oC and pH value of 2. It is able to
grow under heterotrophic conditions with yeast extract as carbon source [16]. Under anaerobic
conditions uses hydrogen as an electron donor and ferric iron as an electron acceptor [135].

This gram-positive small (0.4 μm x 1-1.5 μm) rod-shaped bacterium was firstly isolated in 1996

from a hot spring in Iceland by Clark and Norris, having remained extremely phylogenetically
isolated as the single type strain in the actinobacterial subclass Acidimicrobidae for several years
[16]. Under autotrophic growth, A. ferrooxidans DSM 10331 present a low requirement for CO2

forming small colonies when grown on ferrous iron. Nowadays, this microorganism has been
used for its ability to oxidize ferrous iron to ferric iron in order to produce ATP being extremely
useful in the biomining field [136].

4.3.3 A. caldus SM-1 and A. ferrooxidans DSM 10331 community

Several studies have been using A. caldus SM-1 and A. ferrooxidans DSM 10331 for metal
sulfide oxidation, suggesting a preferable interaction by these bacteria [137, 138, 139, 140, 141].
However, little is known regarding their interaction. Hence, studying these organisms in a
community can provide valuable insights into their interaction mechanisms.
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S C H E D U L E

• Weeks 1-12: Studying the state-of-the-art; using merlin and implemented methods to
perform A. caldus SM-1 and A. ferrooxidans DSM 10331 genomes’ functional annotation;
writing pre-thesis.

• Weeks 13-19: Developing a draft of the A. caldus SM-1 and A. ferrooxidans DSM 10331
metabolic networks.

• Weeks 20-25: Applying concepts of constraint-based modelling and flux balance analysis.

• Weeks 26-34: Using scientific literature information and experimental data for both
metabolic model validation.

• Weeks 35-40: Analyze both organism metabolic networks to find potential compounds or
proteins of interest.

• Weeks 13-40: Writing the thesis.
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M AT E R I A L S A N D M E T H O D S

In this section, a description for each step of the metabolic model reconstruction using the
semi-automated reconstruction tool merlin is provided.

6.1 genome files

Genome files regarding the specific organism were automatically retrieved from the NCBI
assembly directory using the taxonomy ID 990288 and 525909 for A. caldus and A. aferrooxidans,
respectively.

6.2 genome annotation

A functional annotation against each genome was performed with an e-value threshold of
1.0e-30 and a maximum of 100 homolog sequences for each gene. For time-consuming purposes
and to ensure priority of curated data, a first BLASTp against the UniProt-SwissProt database
was performed. Genes with no hits were then submitted to a second BLASTp against the
UniProt-Translated EMBL Database (TrEMBL) database. For each homolog sequence of each
gene merlin assigns a score being represented as:

score = α× Score f + (1− α)× Scoret (6)

Where:

• α is a weighting parameter

• Scoref is the frequency of each EC number for every gene homology result

• Scoret is the taxonomy score for the organisms associated with every homology result

merlin automatically assigns the homology result with the best score to every gene, automa-
tizing otherwise a time consuming process.

27
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6.2.1 Automatic workflow

In order to add robustness to the annotation results, an additional feature was performed. In
this step, a list of phylogenetic close organisms was provided to merlin as represented in tables
4 and 5. For each gene, the software searches the blast hits for the organism/genus provided
in the automatic workflow list and assigns a confidence label. This is done to each database
generated by the two blasts. In this way, merlin prioritizes hits from related organisms reducing
the chance of false positives. A lower e-value threshold is set for the more distant organisms in
order to reduce the false-positive hits by demanding a higher level of similarity between the
query and homologue sequences.

Table 4: Automatic workflow used for A. ferrooxidans
Taxa type Taxon E-value

species Acidimicrobium ferrooxidans (strain DSM
10331 / JCM 15462 / NBRC 103882 /

ICP)

1E-20

genus Acidimicrobium 1E-20

genus Actinobacteria 1E-20

genus Rubrobacter 1E-30

genus Bifidobacterium 1E-30

genus Frankia 1E-30

genus Nocardioides 1E-30

genus Propionibacterium 1E-40

genus Bacillus 1E-40

Table 5: Automatic workflow used for A. caldus
Taxa type Taxon E-value

species Acidithiobacillus caldus (strain SM-1)
(strain DSM 10331 / JCM 15462 /

NBRC 103882 / ICP)

1E-20

genus Acidithiobacillus 1E-20

genus Thiobacillus 1E-20

genus Thioalkalivibrio 1E-30

genus Aquifex 1E-30

genus Picrophilus 1E-30

genus Sulfolobus 1E-30

genus Thermoplasma 1E-40

genus Escherichia 1E-40



6.3. Assembly of the draft metabolic network 29

6.3 assembly of the draft metabolic network

merlin resorts to KEGG to import the metabolic data. All spontaneous reactions, enzymatic
reactions with an EC number encoded by the organism’s genome as well as the metabolites
present in those reactions are integrated into the metabolic model, generating a draft metabolic
network.

6.3.1 Compartmentalization

For the model compartmentalization a web-based tool, Psort 3.0 was used. This tool predicts
the subcellular localization of proteins given a protein FASTA file of the organism. merlin
allows for the integration of the results of this tool in the long format.

6.3.2 Transporter proteins and exchange reactions

The integration of the tool Transport Systems Tracker (TranSyT) in merlin allows for the annotation
of the transporter proteins through sequence homology against the TCDB by associating
genes with the TC number. Then, TranSyT integrates the transport reactions between the
compartments available into the model. For every reaction between the extracellular and
intracellular, space this tool creates an exchange reaction for the respective metabolite. These
reactions allow dictating which metabolites are able to be imported or exported of the metabolic
model. In this way, it is possible to simulate growth mediums, environmental conditions as
well as intra-community metabolic interactions.

6.3.3 Gene-Protein-Reaction associations

Genes are connected to reactions through the GPR associations. This is important to correctly
predict mutant phenotypes through gene knockout. merlin does these associations by resorting
to the information present in KEGG BRITE, retrieving the respective GPR rules for each gene
through homology of orthologs genes.

6.4 biomass formulation and energy requirements

The biomass reaction represents the molecular composition of the cell to be modelled. It should
account for all the metabolites required for the cell to replicate. For this, experimental data
of the organism was used, when available, since an erroneous biomass equation can have an
impact on the model’s performance. Whenever this information could not be found, data
from phylogenetically related organisms or other models was used. In this work, an approach
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using abstract macromolecules entities in the biomass was preferred for both organisms being
its relative content stoichiometrically represented by grams of macromolecule per gram of
biomass.

Both biomass equations are composed of seven macromolecules: DNA, Ribonucleic acid
(RNA), Protein, Cofactors, Carbohydrates, Cell wall and Lipids. A total of seven reactions
were created to form these macromolecules through the respective building blocks. The
relative macromolecule contents of the biomass were based on the stoichiometric model of
Acidithiobacillus Ferrooxidans [142] and on the Bacillus subtilis model [143] for the A. caldus and
A. ferrooxidans models, respectively.

Moreover, merlin’s tool "e-Biomass" infers, through genomic data, the stoichiometric coefficient
of the precursors of DNA, RNA and protein. For the Cofactors equation, a set of universal
cofactors were used as described in [55]. Changes in some precursors were made whenever
information of specific cofactors of the organism was available. A reaction to produce a generic
fatty acid was added to both models. Information regarding fatty acid composition and the
respective molar fraction was based on the literature [144, 145]. This generic fatty acid will
then substitute the R groups from the lipids in the biomass equation of the respective models.

Lastly, it is required to create an ATP hydrolysis reaction to account for the growth- and
non-growth associated maintenance where the first is represented by the stoichiometry and
the last through the reaction flux boundaries. Growth associated maintenance was calculated
as described in [8] and the values of the non-growth associated maintenance were based on
the Acidithiobacillus Ferrooxidans model [142] for the A. caldus model and on the Mycobacterium
tuberculosis model [146] for the A. ferrooxidans.

6.5 manual curation of the draft network

After the implementation of the biomass reaction into the model, it is necessary to add a
minimum defined medium in order for the model to become feasible.

6.5.1 Reaction reversibility and directionality

Since all reactions imported from KEGG are reversible it is necessary to correct their reversibility
and directionality. merlin’s tool "Correct Reversibility" allows to automatically correct this by
resorting to the Zeng database [147] and choosing the organism type. However, multiple
reactions still need to be manually curated. For this, databases such as ModelSEED, BiGG and
MetaCyc were used.
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6.5.2 Gap-Filling

In order to ensure the model complies with steady-state assumptions, an analysis of the
model’s network connectivity was necessary. An unconnected network would result in the
accumulation of dead-end metabolites which would fail the steady-state assumption in which
the variation of the metabolite’s concentration must be zero. merlin’s tool "Blocked reactions"
highlights dead-end reactions as well as reactions that lead to a blocked reaction. This allows to
easily identify the blocked metabolites in the metabolic network. Moreover, the tool "Draw in
browser" colours enzymes and reactions of a selected KEGG pathway depending on the current
state of the model, as shown in figure 1.

Figure 1: KEGG metabolic pathway with the merlin feature Draw in browser

Where:

• Green - Enzyme in model

• Dark blue - Reaction in the model, however enzyme missing from the model

• Light blue - Reaction that leads to a blocked reaction

• Red - Blocked reaction

Moreover, the tool Biological networks In Silico Optimization (BioISO) identifies where in the
metabolic network the flux stops, given an objective function. This tool can be of great use
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i. e. to ensure the flux reaches the biomass equation. A pathway-by-pathway analysis was
performed and model feasibility was ensured. Commonly, several miss-annotations were
detected and corrected using genome information and KEGG’s organism reference pathways.
However, the presence of some reactions was only supported by literature and in such cases,
the reactions were added to the model but the enzyme was not associated with any gene.

6.5.3 Mass balancing

The balance of several reactions was corrected since an incorrect balance can lead to misleading
flux distributions and model predictions. For this, merlin has an automated tool that highlights
unbalanced reactions as well as provides the molecules and respective quantity on both sides
of the reaction. Databases such as BiGG, ModelSEED and MetaCyc were used as well as
genome-scale models of phylogenetic close organisms.

6.6 model validation

In order to validate both models, several strategies were employed. Different environmental
conditions were tested. For each condition, an analysis of the flux distribution and exchanged
metabolites was made. These simulations were performed using cobra toolbox and Mewpy [89].
pFBA simulations were made and the results were compared to experimental data, whenever
available.

6.6.1 Environment conditions

A set of environmental conditions were tested depending on the characteristics of the organisms
being evaluated. Moreover, a condition with no open drains was tested to access model
redundancy. For all environmental conditions, the simulation method pFba was used with the
objective function being maximizing the biomass production.

6.6.1.1 A. caldus

A. caldus is an obligatory aerobic organism, thus it is only able to grow in the presence of
oxygen. Moreover, A. caldus is able to grow autotrophically with sulfur or tetrathionate as
energy sources, as replicated in tables 15 and 16, respectively. Values for CO2 uptake were
based on literature [148, 149].

A. caldus is also able to grow mixotrophically with glucose as carbon source and tetrathionate
as energy source as scrutinized in table 19, respectively. The value of glucose uptake was based
on literature [150].
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6.6.1.2 A. ferrooxidans

A. ferrooxidans is a facultative aerobe, thus aerobic and anaerobic environmental conditions
were tested. A second biomass equation was created for anaerobic conditions and cell growth
was ensured for both conditions. Moreover, A. ferrooxidans is a facultative autotrophic organism,
meaning that is able to fix carbon through CO2, whenever present. Although it is also able
to grow heterotrophically on yeast extract, it is not possible to replicate such environmental
condition since a medium with yeast extract is not defined and hence it cannot be simulated.

6.6.2 Flux distribution

An analysis of flux distribution was made for both models. Carbon and energy metabolism
were scrutinized. Crucial sectors of the metabolism such as the Calvin cycle, glycolysis/gluco-
neogenesis and pentose phosphate were thoroughly analysed.

Regarding the energy metabolism, a pathway ’Oxidative phosphorylation’ was created since
this pathway was missing. Moreover, A. caldus generates ATP through oxidation and reduction
of sulfur, thus sulfur metabolism was analyzed. A. ferrooxidans generates H+ gradient through
oxidative reductions of iron which was also analysed.

6.7 microbial community

The community was built and simulated using the tool ReFramed [151]. Each model was
treated as a compartment and an additional extracellular space common to both models was
added. A community biomass reaction was added taking into account the biomass of both
organisms. A community minimum medium comprised of each organism’s minimum medium
was used and an aerobic autotroph condition was tested.

Moreover, SteadyCom [90] was used to infer the weight of each organism to the community.
Lastly, SMETANA [91] was used to analyse the probability of interactions between the members
of the community and the results were compared to the ReFramed simulation results.
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R E S U LT S A N D D I S C U S S I O N

7.1 genome annotation

A GSM model reconstruction starts with functional annotation of the genome if the structural
annotation has already been performed. In addition, only the annotation of metabolic genes
(genes encoding for an enzyme or transport protein) will be taken into account. As represented
in table 6, these genes correspond to around 30% and 40% of the entire genome for the A.
caldus and A. ferrooxidans models, respectively. Out of these annotated genes, 176 and 122 were
associated with partial EC numbers for each of the respective organisms.

Table 6: Annotated genes of each organism.

A. caldus A. ferrooxidans

Genes 3186 1964

Annotated genes 940 785

% of annotated genes 29.50 39.97

7.1.1 A. caldus

A total of 940 genes were annotated after the ’Automatic workflow’ corresponding to 29.5% of
the entire genome. There were no confidence label ’A’ matches in the automatic workflow for
the UniProt-SwissProt database due to the absence of available entries for A. caldus, as depicted
in figure 2. There were 148, 110, 23 and 95 genes assigned to the confidence label ’B’, ’C’, ’D’
and ’E’, respectively. The further it goes taxonomically from A. caldus the lesser the probability
of a homolog sequence, hence the frequency of the labels should decrease as the software runs
the list provided to the ’Automatic Workflow’. Escherichia was attributed to the last confidence
label since is the model organism for the gram-negative bacteria, thus having an abundance of
curated information, resulting in 262 genes assigned to the label ’I’. A total of 213 genes were
left as ’Default’ since none of the confidence labels could be applied. The genes that could not
be annotated through the UniProt-SwissProt database had at least one homologue sequence

34
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from A. caldus in the annotation through the UniProt-TrEMBL database. Consequently, all
genes were assigned with the label ’A’.

Figure 2: Automatic workflow results for the A. caldus model representing the number of genes assigned
to each confidence label for both databases.

A total of 840 genes were left with the same EC number for both databases, as shown in
figure 3. The EC number of 100 genes was changed after the ’Automatic Workflow’ for the
UniProt-SwissProt database and no changes were made for the genes annotated through the
UniProt-TrEMBL database.
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Figure 3: EC number changed with automatic workflow for the A. caldus model.

7.1.2 A. ferrooxidans

A total of 8, 0, 0 genes were left with the confidence label ’A’, ’B’, ’C’, respectively, as represented
in figure 4. The lack of labels ’B’ and ’C’ may be explained by the few respective genera’s
curated entries which, in this case, did not correspond to any homolog sequence. Moreover, in
the same way as for A. caldus, the gram-positive model genus Bacillus was selected for the last
confidence label, resulting in the annotation of 234 genes. A total of 305 were left as ’Default’.
Similar to A. caldus, the only genes annotated in the UniProt-TrEMBL database were through
entries of the own organism.
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Figure 4: Automatic workflow results for the A. ferrooxidans model representing the number of genes
assigned to each confidence label for both databases.

As shown in figure 5 a total of 632 and 7 genes EC numbers were left unchanged for the
UniProt-SwissProt and UniProt-TrEMBL databases, respectively. A total of 100 and 46 gene’s
EC numbers were changed for the Swiss-Prot and TrEMBL databases, respectively, due to
a given priority of the ’Automatic Workflow’ selected genera which shifted the functional
annotation from the best possible result to a more accurate one since in the construction of
these models is preferable quality over quantity of information.
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Figure 5: EC number changed with automatic workflow for the A. ferrooxidans model.

Enzyme classification system divides enzymes into 7 families: EC 1. Oxidoreductases, EC
2. Transferases, EC 3. Hydrolases, EC 4. Lyases, EC 5. Isomerases, EC 6. Ligases and EC 7.
Translocases. As seen in figure 6, the first three classes hold the majority of enzymes in both
models whilst the EC 5. isomerases represent the less frequent class in both models. Around
17% of the total EC numbers for both models represent an incomplete EC number. These were
not included in the model unless a reaction could be catalysed by an incomplete EC number.

Figure 6: Overview of enzymes class present in each model.
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7.2 metabolic network

After genome annotation, the KEGG reactions associated with the resulting EC numbers were
imported into the model and a draft metabolic network was generated.

An overall comparison between the draft networks and the curated ones was made, being
represented in table 7. The number of reactions, metabolites and pathways in the models
decreased from the draft to the curated models due to the refinement of the network during the
manual curation. Furthermore, the curated models contain around 20% of the total reactions
added manually. This may be due to the lack of functional information on the organisms in
this study as well as on phylogenetically close organisms, which consequently would result in
several missing reactions.

Moreover, unique reactions are reactions that are present in one model and absent in the
other by comparing between the draft models and the curated ones. Therefore, the A. caldus
draft model contains 319 reactions that are not present in the A ferrooxidans draft model with
the latter possessing 404 unique reactions. Whilst in the curated models, the value of unique
reactions slightly increased for the A. caldus model and decreased for the A. ferrooxidans model.
The same comparison can be made for the metabolites, however, in this case, the number of
unique metabolites decreased in both models from the draft to the curated ones.

Table 7: Overview of the metabolic network of draft and curated models.

Draft Curated

A. caldus A. ferrooxidans A. caldus A. ferrooxidans

Reactions in model 945 1030 846 817

Reactions inserted by
homology (%)

660 (69.84) 729 (70.78) 457 (54.02) 470 (57.53)

Reactions inserted
manually (%)

- - 184 (21.75) 161 (19.71)

Unique reactions (%) 319 (33.76) 404 (39.22) 339 (40.07) 305 (37.33)

Spontaneous
reactions (%)

117 (12.38) 123 (11.94) 11 (1.30) 12 (1.47)

Total metabolites 1066 1202 646 640

Unique metabolites
(%)

246 (23.08) 382 (31.78) 184 (28.48) 174 (27.19)

Pathways in model 115 126 86 95
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7.2.1 Compartmentalization

7.2.1.1 A. caldus

A total of 5 compartments were predicated for the A. caldus model, as represented in table
8. However, the model only contains 3 compartments: cytoplasm, periplasm and extracel-
lular. ’Cytoplasmatic membrane’ represent transport reactions from the cytoplasm to the
periplasm whilst ’outer membrane’ represent the exchange reactions from the periplasm to the
extracellular space. Genes with unknown localization were assigned to the cytoplasm.

Table 8: Compartments predicted by PSORTb 3.0 for the A. caldus model.

Compartment Gene count

Cytoplasmic 1417

Cytoplasmic_membrane 699

Extracellular 31

Outer_membrane 48

Periplasmic 66

Unknown 925

7.2.1.2 A. ferrooxidans

A total of 4 compartments were predicated for the A. ferrooxidans model, as shown in table 9.
As A. ferrooxidans is a gram-positive bacteria it lacks the periplasm compartment. Therefore
an abstract compartment, Proton Motive Force (PMF), was created in order to be able to
simulate the H+ gradient for the generation of ATP. Additionally, the model contains two
additional compartments: cytoplasm and extracellular space. Similar to A. caldus the predicted
compartment ’Cytoplasmic_membrane’ represent the transport reactions.

Table 9: Compartments predicted by PSORTb 3.0 for the A. ferrooxidans model.

Compartment Gene count

Cellwall 5

Cytoplasmic 1147

Cytoplasmic_membrane 610

Extracellular 28

Unknown 174
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7.2.2 Transport Reactions and drains

A comparison between the draft and curated models was performed. Although the number of
drains is similar, the curated models contain more transport reactions, as represented in table
10. This is explained by the higher number of compartments in the curated models. The draft
models only contain two compartments (inside and outside) therefore the transport reactions
existing in these models are only between these 2 compartments.

Table 10: Comparison of the number of transport reactions and drains between the draft and curated
models.

Draft Curated

A. caldus A. ferrooxidans A. caldus A. ferrooxidans

Drains 72 74 65 72

Transporters 91 99 156 112

7.2.2.1 A. caldus

A total of 156 transport proteins were annotated in the A. caldus model. The most common
direction of the transporters was from the outside to inside the model totalling around 35% of
the transporters, as represented in figure 7.

Figure 7: Direction of the transport proteins in the A. caldus model.
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As represented in figure 8, uniport transport proteins are the most common type of trans-
porters present in the model, totalling around 38% of the model’s transporters. This type of
transport proteins allows for the transport of only one metabolite at the same time. Symport
proteins allow for the transport of more than one metabolite at the same time in the same
direction, which contrasts with antiport proteins that allow for the transport of more than
one metabolite in opposite directions. These transport proteins total around 27% and 14%,
respectively, of the transporters in the model. Lastly, ABC transporters are transport proteins
associated with energy cost, in other words, they require the consumption of ATP to be
activated, totalling around 21% of the transporters in the model.

Figure 8: Type of the transport proteins in the A. caldus model.

7.2.2.2 A. ferrooxidans

Similar to the A. caldus model, the most common direction of the transport proteins in the
A. ferrooxidans model is from the outside to inside totalling around 48%, as represented in
figure 9. However, there is a difference of around 30% between this direction and the reversible
transporters, whilst in the A. caldus model it is only of 6%.
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Figure 9: Direction of the transport proteins in the A. ferrooxidans model.

The most common type of transport proteins of the A. ferrooxidans model is the ABC
transporters with 58% of the model’s total transporters, as can be seen in figure 10. Uniport
and symport proteins are also present in this model with a relative frequency of 22% and
16%, respectively. The least common type of transporters is the cofactor and redox transport
proteins. As the name suggests cofactor transporters allow the movement of a cofactor whilst
redox transporters facilitate the movement of metabolites against the gradient without the use
of ATP.
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Figure 10: Type of the transport proteins in the A. ferrooxidans model.

7.2.3 Gap-filling

Network connectivity is essential for the model’s performance. Dead-end metabolites lead to
blocked reactions, therefore it is necessary to ensure that all metabolites in the model have at
least one reaction that can consume them and another that can produce them, otherwise the
model would fail the steady-state assumption. Moreover, incorrect reaction’s directionality
can lead to gaps in the network which will further lead to dead-end metabolites and blocked
reactions [8].

As represented in table 11, A. caldus draft model contains 589 blocked reactions which
represent around 62% of the total reactions in the network. Moreover, the draft network has
512 dead-end metabolites which represent around 48% of the total metabolites present in the
network. Similarly, A. ferrooxidans draft model comprises 649 and 601 blocked reactions and
dead-end metabolites, respectively. These numbers correspond to 63% and 50% of the total
reactions and metabolites, respectively, present in the draft network. After manual curation, no
gaps were present in the models’ metabolic network.

Table 11: Number of blocked reactions and dead-end metabolites of the draft models.

A. caldus A. ferrooxidans

Blocked reactions 589 649

Dead-end metabolites 512 601
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7.2.4 Unbalanced reactions

Whenever present in the model, unbalanced reactions can lead to erroneous model predictions
since the principles behind mass conservation could not be applied and the model would fail
the steady-state assumption. An analysis of these reactions was performed and the unbalanced
reactions were corrected. As represented in figure 11, the draft A. caldus and A.ferroxidans
models contained, respectively, 149 and 157 unbalanced reactions which represent around 15%
of each metabolic network. After manual curation, these reactions were all corrected with
the exception of drains as well as the reactions for macromolecule formation which will be
naturally unbalanced due to their chemical formula being represented as ’R’.

Figure 11: Comparison of the percentage of unbalanced reactions between the draft and curated models.

7.2.5 GPR

7.2.5.1 A. caldus

An analysis of the GPR associations present in the model was performed. There are 4 different
situations in which the GPR rule can be made. ’Default’ associations is when one gene is
associated with only one reaction whilst ’Promiscuous enzymes’ are situations where the same
gene is associated to multiple reactions. Moreover, ’Enzymatic complex’ is when the Boolean
rule ’AND’ is present in the GPR rule and ’Isoenzymes’ are cases when the Boolean rule ’OR’
is present in the GPR rule [8].
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The model contains a total of 697 GPR associations. Out of this total, the model presents
around 27%, 24%, 23% and 1% for ’Default’ associations, ’Isoenzymes’, ’Promiscuous enzymes’
and ’Enzymatic complex’, respectively. Lastly, around 25% of the model’s reactions do not
contain a GPR association. These are reactions present in the model that are not associated
with a gene. These reactions are exchange reactions and macromolecule formation reactions
which are naturally not associated with a gene, as well as manually inserted reactions that are
known to be present in the organism, however, they could not be associated with a gene.

Figure 12: GPR rules in the A. caldus model.

7.2.5.2 A. ferrooxidans

Similar to the A. caldus model, GPR rules were associated with the respective reactions for
the A. ferrooxidans model. A total of 644 GPR associations were made with around 28% being
’Default’ associations and 22% having no GPR rule. The results for this model are similar to
the results of the A. caldus model.
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Figure 13: GPR rules in the A. ferrooxidans model.

7.2.6 Model Comparison

Several basic model characteristics were compared between the models being reconstructed
and other curated models present in the BiGG database. For this, it was chosen the model
of the reference organisms for the gram- positive and negative bacteria, Bacillus subtilis and
Escherichia coli K-12 MG1655, respectively. In addition, it was also chosen the model of an
organism that shares the same phylum of the bacteria in the study, being represented in table
12. Although the models shared a similar percentage of genes present in the model, the
reconstructed models contain a slightly greater number of reactions per gene. This may be due
to a lack of information on the organisms in the study as well as of the phylogenetically close
organisms. A few of the reactions added to the models were unable to be associated with a
gene due to a lack of information.
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Table 12: Model comparison

Organism
Bacillus Mycobacterium

A. ferrooxidans
Escherichia Pseudomonas

A. caldus
subtilis tuberculosis coli K-12 MG1655 putida

Model iYO844 iEK1008 - iJO1366 iJN746 -

Organism Genes 4114 4402 1964 4405 5350 3186

Model Genes 844 1008 408 1367 746 416

% of genes in model 20.52% 22.90% 20.77% 31.03% 13.94% 13.06%

Reactions 1250 1226 817 2583 950 846

No of reactions/Gene 1.48 1.22 2.00 1.89 1.27 2.03

Metabolites 990 998 640 1805 911 646

7.3 biomass equation

7.3.1 A. caldus

As represented in table 13, the biomass composition of the A. caldus model is composed
of 7 macromolecule entities. The respective fraction (represented in grams of molecule per
gram of dry weight) of each entity was retrieved by merlin for DNA, RNA and protein. For
the remaining macromolecules, the values were based from another model [142] and then
normalised in order for the sum of each molar fraction to totalize 1. An Exopolysaccharides (EPS)
reaction was considered, however it was discarded since the organism does not need the EPS
formation in order to produce biomass.

Table 13: Biomass composition of A. caldus.

Macromolecule gmolecule/gDW Source

DNA 0,03 merlin

RNA 0,15 merlin

Protein 0,59 merlin

Cofactors 0,04 [142]

Carbohydrates 0,03 [142]

Cell Wall 0,07 [142]

Lipids 0,10 [142]

As represented in supplementary tables 32 and 33, the DNA and RNA equations produce
diphosphate alongside the macromolecule DNA and RNA, respectively. The stoichiometry
(millimole of the precursor per gram of the macromolecule) is inferred by the merlin e-biomass
tool through genomic information.
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Similar to the DNA and RNA equations, the protein reaction, as represented in supplemen-
tary table 34, takes into account the amino acids and their respective stoichiometry inferred
by the tool ’e-Biomass’ through the organism proteomics data. The equation produces the
macromolecule ’Protein’ and H2O as well as the tRNA of each amino acid.

The cofactor composition, as represented in supplementary table 35, was based on a set of
universal cofactors for bacteria as described in [55]. The quinone was changed to Ubiquinone-8
as it is described in the literature as the main Acidithiobacillus quinone [152]. Moreover, the
cofactor pyridoxal phosphate was removed as there was no genomic or literature evidence of
the presence of this compound in the organism.

Bacteria often produce a reserve hydrocarbonate in order to be able to store carbon whenever
there is more than what is required. As shown in supplementary table 36, starch was taken
into account for the formation of the biomass being based in genomic evidence [15].

The macromolecule ’Cell Wall’ accounts for the lipopolysaccharide (LPS) and peptidoglycan
composition, as shown in supplementary table 37. For this KEGG’s complex compounds
were used in order for the flux to go through the respective pathways. Otherwise the model
would produce the simple compounds individually without taking into account the whole
metabolite. Moreover, the peptidoglycan composition was based on literature [153] whilst
the LPS composition as well as the respective molar faction was based on the Acidithiobacillus
ferrooxidans (At. ferrooxidans) model.

The ’Lipid’ macromolecule contains a set of several phospholipids present in the membrane
of the bacteria. As no information was found in the literature relative to the lipid composition
of A. caldus, this composition was based on the At. ferrooxidans model as well as on genomic
information, being represented in supplementary table 38.

Although the fatty acid composition is not directly involved in the biomass equation, fatty
acids are relevant for the generation of the ’Lipid’ macromolecule. Each phospholipid contains
a variable number of fatty acid chains, depending on the ’R’ groups of its composition. For
this, a generic fatty acid was formulated as represented in supplementary table 39 with its
composition being based on literature [144].

7.3.2 A. ferrooxidans

Similar to the A. caldus model, the biomass composition of A. ferrooxidans contains 7 macro-
molecule entities, as represented in table 14. The relative quantities of each macromolecule were
based on the merlin ’e-Biomass’ tool for the DNA, RNA, and Protein macromolecules, while
for the remaining macromolecules was based on literature [143, 154]. Since A. ferrooxidans is
able to grow in anaerobically, a biomass equation was formulated for this condition. The main
difference between the two biomass reactions is the Cofactor macromolecule as the anaerobic
biomass reaction takes into account an anaerobic Cofactor reaction.
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Table 14: Biomass composition of A. ferrooxidans.

Macromolecule gmolecule/gDW Source

DNA 0,03 merlin

RNA 0,07 merlin

Protein 0,53 merlin

Cofactors 0,05 [143]

Carbohydrates 0,03 [154]

Cell Wall 0,22 [143]

Lipids 0,08 [143]

Both DNA and RNA equations, as represented in supplementary tables 40 and 41, are inferred
through merlin’s ’e-biomass’ tool producing diphosphate as well as DNA and RNA, respectively.
The stoichiometry coefficients are based on genomic information from the assembly retrieved
files.

Similar to DNA and RNA, merlin’s ’e-biomass tool also predicts amino acid composition
through the organism’s proteome. The Protein reaction is represented in supplementary table
42.

Moreover, the cofactor composition was based on a set of universal cofactors for bacteria, as
described in the literature [55], which are represented in supplementary table 43. Menaquinone-
9 was added to the composition as it was described in the literature of a phylogenetically
close organism as the major quinone [145]. Moreover, a cofactor composition for anaerobic
conditions without the heme compound was also added to the model since this compound
requires oxygen to be produced.

Since no information was found in the literature for carbohydrates used by the organism,
genomic information was used and the composition is represented in supplementary table 44.

Furthermore, the ’Cell Wall’ macromolecule is composed by the complex compounds, as
represented in supplementary table 45. Although gram-positive bacteria do not contain LPS in
the cell wall, they contain teichoic and/or lipoteichoic acids depending if these are attached to
the cell wall or to the membrane, respectively. Since no information was found in the literature
regarding these carbohydrates chains, genomic information was used. For the peptidoglycan
composition information of a related organism was used [145].

Analogously to the A. caldus model, the fatty acid composition is not directly involved in the
biomass. However, this composition is relevant for the formation of the ’Lipid’ macromolecule.
The fatty acid composition, represented in supplementary table 46, was based on literature
[145].

Lastly, the phospholipid composition was based on genomic information as well as on
literature [155, 156, 157]. As represented in supplementary table 47, the A. ferrooxidans major
phospholipid is phosphatidylglycerol.
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7.4 model validation

7.4.1 Environmental conditions

7.4.1.1 Medium absence

A first environmental condition was tested for both organisms which consisted in closing all
drains, therefore there would be no uptake of any compound by the models. This test resulted
in no biomass production for both organisms, as expected. This means that no ATP and carbon
were being generated inside the models.

7.4.1.2 A. caldus

For the validation of the A. caldus model three environmental conditions were tested: two
autotrophic conditions with different energy sources and one mixotrophic condition. The
growth medium used for both aerobic conditions is represented in tables 15 and 16.

Table 15: Aerobic condition with sulfur as energy source

Reaction ID Metabolite Name Metabolite Formula Lower Bound

R_Drain_H20__extr H2O H2O -1000.0

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00007__extr Oxygen O2 -1000.0

R_EX_C00087__extr Sulfur S -1000.0

R_EX_C14818__extr Fe2+ Fe -1000.0

R_EX_C00009__extr Orthophosphate H3PO4 -1000.0

R_EX_C00014__extr Ammonia NH3 -1000.0

Table 16: Aerobic condition with tetrathionate as energy source

Reaction ID Metabolite Name Metabolite Formula Lower Bound

R_EX_C02084__extr Tetrathionate H2S4O6 -1000.0

R_Drain_H20__extr H2O H2O -1000.0

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00059__extr Sulfate H2SO4 -1000.0

R_EX_C00007__extr Oxygen O2 -1000.0

R_EX_C14818__extr Fe2+ Fe -1000.0

R_EX_C00009__extr Orthophosphate H3PO4 -1000.0

R_EX_C00014__extr Ammonia NH3 -1000.0
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Small differences were found between the two autotrophic conditions. Regarding the
requirement for the energy source, the model predicts a lesser consumption rate of tetrathionate
while optimizing biomass production rate, as can be seen in tables 17 and 18. Moreover, the
model predicted a production of sulfate which results from the oxidation of sulfur-based
compounds which goes in agreement with experimental data [158], as represented in tables
17 and 18. Furthermore, the predicted growth rate was 0.01852 h−1 which goes in accordance
with the literature [159, 160, 161, 162].

Table 17: Consumption and production rate of the A. caldus model for the autotrophic condition with
sulfur as the energy source.

Reaction ID Metabolite name Metabolite formula Consumption rate
(mmol/gDW/h)

C
on

su
m

pt
io

n

R_EX_C00007__extr Oxygen O2 -28.89487

R_Drain_H20__extr H2O H2O -25.98921

R_EX_C00087__extr Sulfur S -21.27575

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00014__extr Ammonia NH3 -0.1913

R_EX_C00009__extr Orthophosphate H3PO4 -0.01663

R_EX_C14818__extr Fe2+ Fe -0.0001

Reaction ID Metabolite name Metabolite formula Production rate
(mmol/gDW/h)

Pr
od

uc
ti

on

R_EX_C00059__extr Sulfate H2SO4 21.27229

R_EX_C00080__extr H+ H 9.42567

R_Drain_biomass__extr Biomass - 0.01852

R_Drain_5_Deoxyadenosine_C05198__extr 5’-Deoxyadenosine C10 H13 N5O3 0.0001

R_EX_C00237__extr CO CO 0.0001

R_drain_Glycolate__extr Glycolate C2 H4O3 0.0001



7.4. Model Validation 53

Table 18: Consumption and production rate of the A. caldus model for the autotrophic condition with
tetrathionate as the energy source.

Reaction ID Metabolite name Metabolite formula Consumption rate
(mmol/gDW/h)

C
on

su
m

pt
io

n

R_EX_C00007__extr Oxygen O2 -31.69491

R_Drain_H20__extr H2O H2O -30.26152

R_EX_C02084__extr Tetrathionate H2S4O6 -9.49754

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00014__extr Ammonia NH3 -0.1913

R_EX_C00009__extr Orthophosphate H3PO4 -0.01663

R_EX_C14818__extr Fe2+ Fe -0.0001

Reaction ID Metabolite name Metabolite formula Production rate
(mmol/gDW/h)

Pr
od

uc
ti

on

R_EX_C00059__extr Sulfate H2SO4 37.98669

R_EX_C00080__extr H+ H 3.53656

R_Drain_biomass__extr Biomass - 0.01852

R_Drain_5_Deoxyadenosine_C05198__extr 5’-Deoxyadenosine C10 H13 N5O3 0.0001

R_EX_C00237__extr CO CO 0.0001

R_drain_Glycolate__extr Glycolate C2 H4O3 0.0001

A. caldus is able to grow under mixotrophic conditions using glucose as the carbon source
and tetrathionate as the energy source. This was used to simulate the mixotrophic conditions
with the growth medium being represented in table 19.

Table 19: Mixotrophic condition

Reaction ID Metabolite Name Metabolite Formula Lower Bound

R_Drain_H20__extr H2O H2O -1000.0

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00059__extr Sulfate H2SO4 -1000.0

R_EX_C00007__extr Oxygen O2 -1000.0

R_EX_C02084__extr Tetrathionate H2S4O6 -1000.0

R_EX_C00267__extr alpha-D-Glucose C6 H12O6 -0.4438

R_EX_C14818__extr Fe2+ Fe -1000.0

R_EX_C00009__extr Orthophosphate H3PO4 -1000.0

R_EX_C00014__extr Ammonia NH3 -1000.0

Small differences were found in the consumption rate of tetrathionate and oxygen between
the mixotrophic and autotrophic conditions, as can be seen in tables 20 and 18. Moreover, the
model predicted a growth rate of 0.08791 h−1 having a greater growth rate than in autotrophic
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conditions which is corroborated by literature [163, 164]. This occurs since in this condition
there are two carbon sources available to the model.

Table 20: Consumption and production rate of the A. caldus model for the mixotrophic condition.

Reaction ID Metabolite name Metabolite formula Consumption rate
(mmol/gDW/h)

C
on

su
m

pt
io

n

R_EX_C00007__extr Oxygen O2 -33.17236

R_Drain_H20__extr H2O H2O -29.42972

R_EX_C02084__extr Tetrathionate H2S4O6 -9.93972

R_EX_C00014__extr Ammonia NH3 -0.90814

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00267__extr alpha-D-Glucose C6 H12O6 -0.4438

R_EX_C00009__extr Orthophosphate H3PO4 -0.07893

R_EX_C14818__extr Fe2+ Fe -0.00047

Reaction ID Metabolite name Metabolite formula Production rate
(mmol/gDW/h)

Pr
od

uc
ti

on

R_EX_C00059__extr Sulfate H2SO4 39.74245

R_EX_C00080__extr H+ H 4.54081

R_Drain_biomass__extr Biomass - 0.08791

R_Drain_5_Deoxyadenosine_C05198__extr 5’-Deoxyadenosine C10 H13 N5O3 0.00047

R_EX_C00237__extr CO CO 0.00047

R_drain_Glycolate__extr Glycolate C2 H4O3 0.00047

7.4.1.3 A. ferrooxidans

Regarding the A. ferrooxidans model an aerobic and anaerobic condition was tested with the
respective growth medium being represented in tables 21 and 23. For the aerobic condition, the
model predicts a very low consumption rate of oxygen, when compared to the A. caldus model,
as can be seen in table 22. Moreover, as represented in tables 22 and 24, the model predicts a
similar growth rate between the two environmental conditions as observed in other studies
[165, 166].
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Table 21: Aerobic condition

Reaction ID Metabolite Name Metabolite Formula Lower Bound

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00059__extr Sulfate H2SO4 -1000.0

R_Drain_Oxigen_C00007__extr Oxygen O2 -1000.0

R_EX_C14818__extr Fe2+ Fe -1000.0

R_EX_C00009__extr Orthophosphate H3PO4 -1000.0

R_EX_C00014__extr Ammonia NH3 -1000.0

R_Drain_C00001__extr H2O H2O -1000.0

Table 22: Consumption and production rate of the A. ferrooxidans model for the aerobic condition.

Reaction ID Metabolite name Metabolite formula Consumption rate
(mmol/gDW/h)

C
on

su
m

pt
io

n

R_EX_C00011__extr CO2 CO2 -0.7106

R_Drain_Oxigen_C00007__extr Oxygen O2 -0.42744

R_EX_C00014__extr Ammonia NH3 -0.16307

R_EX_C00009__extr Orthophosphate H3PO4 -0.01082

R_EX_C00059__extr Sulfate H2SO4 -0.00255

R_EX_C14818__extr Fe2+ Fe -0.00013

Reaction ID Metabolite name Metabolite formula Production rate
(mmol/gDW/h)

Pr
od

uc
ti

on

R_Drain_C00001__extr H2O H2O 2.17576

R_EX_C00080__extr H+ H 1.28666

R_Drain_biomass__extr Biomass - 0.01871

R_Drain_C00237__extr CO CO 0.00013

R_Drain_C05198__extr 5’-Deoxyadenosine C10 H13 N5O3 0.00013

For the anaerobic condition, ferric iron was used since no information was found on the
oxidation of ferrous iron without the use of oxygen. The model also predicted a slightly greater
consumption rate of iron as represented in table 24.
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Table 23: Anaerobic condition

Reaction ID Metabolite Name Metabolite Formula Lower Bound

R_EX_C14819__extr Fe3+ Fe -1000.0

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00059__extr Sulfate H2SO4 -1000.0

R_EX_C00009__extr Orthophosphate H3PO4 -1000.0

R_EX_C00014__extr Ammonia NH3 -1000.0

R_Drain_C00001__extr H2O H2O -1000.0

Table 24: Consumption and production rate of the A. ferrooxidans model for the anaerobic condition.

Reaction ID Metabolite name Metabolite formula Consumption rate
(mmol/gDW/h)

C
on

su
m

pt
io

n

R_EX_C14819__extr Fe3+ Fe -1.54052

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00014__extr Ammonia NH3 -0.16365

R_EX_C00009__extr Orthophosphate H3PO4 -0.01101

R_EX_C00059__extr Sulfate H2SO4 -0.0026

Reaction ID Metabolite name Metabolite formula Production rate
(mmol/gDW/h)

Pr
od

uc
ti

on

R_EX_C00080__extr H+ H 2.99231

R_EX_C14818__extr Fe2+ Fe 1.54052

R_Drain_C00001__extr H2O H2O 1.32069

R_Drain_biomass_anaerobic__extr Biomass_anaerobic - 0.01874

R_Drain_C00237__extr CO CO 0.00015

R_Drain_C05198__extr 5’-Deoxyadenosine C10 H13 N5O3 0.00015

7.4.2 Flux distribution

7.4.2.1 Carbon distribution

The organisms shared a similar carbon metabolism which is represented in figure 14. The
models fixate carbon through the Calvin-Benson cycle. The carbon will then go to glycolysis
through the production of glycerate 3-phosphate generating pyruvate and small amounts of
ATP.

The carbon will then continue the Calvin cycle which overlaps with the gluconeogenesis
to form D-glucose 1-phosphate. The metabolite will be a precursor of UDP-glucose and
ADP-glucose which will form trehalose in the A. ferrooxidans model and starch in the A. caldus
model.
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Moreover, D-Glyceraldehyde 3-phosphate will enter the pentose phosphate pathway to
generate 5-Phospho-alpha-D-ribose 1-diphosphate (PRPP) which is an important compound for the
production of amino acids as well as nucleic acids.
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Figure 14: Carbon metabolism of the autotrophic metabolism of both models.
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Moreover, the models present a complete Calvin cycle as well as the glycolysis pathway.
Regarding the citrate cycle, A. caldus contains an incomplete cycle, as described in the literature
[15], with the missing reactions being: R02164, R02570, R03316 and R00621.

A. ferrooxidans showed a complete citrate cycle, however, it is only partially used in the
simulations performed. The model uses this pathway to produce succinate which is used in
the oxidative phosphorilation.

7.4.2.2 Energy Metabolism

A. caldus is able to obtain energy through oxidation and reduction of sulfur-based compounds,
as represented in figure 15. Whenever sulfur is given in the medium, the compound will
enter into the periplasm and then into the cytoplasm through the respective transporters. In
the cytoplasm, sulfur will produce sulfite and hydrogen sulfide. The latter will be used for
the production of amino acids and will also cycle to sulfur in order to generate H+ into the
periplasm. These compounds will produce thiosulfate which will further generate sulfate
realising H+ to the periplasm. Sulfite will also produce Adenosine 5’-phosphosulfate (APS)
which will further generate sulfate and small amounts of ATP going in agreement with the
literature [167].

Moreover, whenever tetrathionate is given to the model instead of sulfur the metabolism is
similar. After the tetrathionate reaches the cytoplasm a first reaction converting the metabolite
into sulfur and thiosulfate occurs. Once tetrathionate is converted to thiosulfate and sulfur the
flux distribution of the sulfur metabolism will then proceed accordingly with figure 15.
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Figure 15: Sulfur metabolism from the A. caldus model.

7.5 community

The A. caldus and A. ferrooxidans community was built using reFramed. The metabolites’ and
reactions’ names were changed depending on which organisms they are located in. Therefore,
if the organism is A. caldus a suffix ’_acaldus’ is added to the name. Extracellular metabolites
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have a suffix ’_extr’. Furthermore, the drains of the community were created using the drains
of both models.

The community’s biomass is defined as follows:

MacromoleculeA + MacromoleculeB + ...− > BiomassAcaldus + BiomassCommunity (7)

MacromoleculeA + MacromoleculeB + ...− > BiomassA f errooxidans + BiomassCommunity (8)

Community_growth : BiomassCommunity− > (9)

Where:

• Equation 7 represents the biomass production of the A. caldus model;

• Equation 8 represents the biomass production of the A. ferrooxidans model;

• Equation 9 represents the community’s drain for the community’s biomass.

Moreover, the community model was built by treating the models as compartments within
a community extracellular space, common to both models. Therefore, if a metabolite within
the A. caldus model is exported by the community it takes the path: cytoplasm -> periplasm ->
extracellular space -> outside.

7.5.1 Environmental condition

A community medium using the required metabolites for aerobic autotrophic growth of both
organisms was used, as represented in table 25, and a pFBA maximizing the community’s
biomass production was performed. The community had a major consumption rate of sulfur
for energy production as well as oxygen. Moreover, the community model predicted a sulfate
production rate of 21.1923 mmol.gDW.h−1 and a biomass production rate of 0.0206 h−1, as
shown in table 26.
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Table 25: Environmental condition used for community simulation

Reaction ID Metabolite Name Metabolite Formula Lower Bound

R_EX_C00001__extr H2O H2O -1000.0

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00059__extr Sulfate H2SO4 -1000.0

R_EX_C00007__extr Oxygen O2 -1000.0

R_EX_C00087__extr Sulfur S -1000.0

R_EX_C14818__extr Fe2+ Fe -1000.0

R_EX_C00009__extr Orthophosphate H3PO4 -1000.0

R_EX_C00014__extr Ammonia NH3 -1000.0

Table 26: Consumption and production rate of the community model.

Reaction ID Metabolite name Metabolite formula Consumption rate
(mmol/gDW/h)

C
on

su
m

pt
io

n

R_EX_C00007__extr Oxygen O2 -28.7637

R_EX_C00001__extr H2O H2O -25.9426

R_EX_C00087__extr Sulfur S -21.1951

R_EX_C00011__extr CO2 CO2 -0.7106

R_EX_C00014__extr Ammonia NH3 -0.1798

R_EX_C00009__extr Orthophosphate H3PO4 -0.0119

R_EX_C14818__extr Fe2+ Fe -0.0001

Reaction ID Metabolite name Metabolite formula Production rate
(mmol/gDW/h)

Pr
od

uc
ti

on

R_EX_C00059__extr Sulfate H2SO4 21.1923

R_EX_C00080__extr H+ H 9.0577

R_EX_e_Biomass__extr Biomass - 0.0206

R_EX_C05198__extr 5’-Deoxyadenosine C10 H13 N5O3 0.0001

R_EX_C00237__extr CO CO 0.0001

7.5.2 SteadyCom

The SteadyCom tool predicted a microbial abundance of 94.94% of the A. ferrooxidans and 5.06%
of the A. caldus, as represented in table 27. The results of this tool suggest that A. ferrooxidans
provides a major role in the community’s maintenance. Although these results are in agreement
with the literature [140], the dynamics of the community heavily depends on the leaching
experiment being performed since the minerals present can have a big impact on the growth of
community’s constituents [138, 168]. Although sulfur-oxidizers do not have a primary role in
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the oxidation process, some researchers have found that these organisms can outnumber the
iron-oxidizers [14].

Table 27: SteadyCom output for abundance of species within the community.

Community species’ Community species’ abundance (%) Community’s growth rate (h−1)

A. caldus 5.06

0.020508

A. ferrooxidans 94.94

7.5.3 SMETANA

SMETANA outputs a probability of cross-feeding for exchanged metabolites. In table 28 are
represented the predicted exchanged metabolites with over a 30% chance of cross-feeding.

Table 28: Predicted interactions between A. ferrooxidans and A. caldus by SMETANA

Donor Bigg ID Kegg ID Metabolite Name SMETANA

A
.f

er
ro

ox
id

an
s

cgly C01419 Cys-Gly 0.93

pi C00009 Orthophosphate 0.54

o2 C00007 Oxygen 0.52

fe2 C14818 Fe2+ 0.5

ppi C00013 Diphosphate 0.46

A
.c

al
du

s

o2 C00007 Oxygen 0.6

so4 C00059 Sulfate 0.5

tsul C00320 Thiosulfate 0.43

fe2 C14818 Fe2+ 0.36

Notably, the tool predicts an exchange of fe2+, thiosulfate and sulfate. These metabolites are
associated with the energy metabolism which takes a key role in bioleaching experiments [169].

7.5.4 Organism interaction

An analysis of the interactions between the two organisms within the community was per-
formed. As represented in supplementary tables 48 and 49, A. caldus consumed the majority of
the oxygen and CO2, predicting a bigger energy/carbon necessities than A. ferrooxidans.

Moreover, the organisms exchanged small amounts of hydrogen sulfide and bicarbonate from
A. ferrooxidans to A. caldus, as shown in table 29. Furthermore, from A. caldus to A. ferrooxidans
the organisms exchanged phosphatidylethanolamine, hexadecanoic acid, D-Alanyl-D-alanine,
phosphatidylserine, gamma-L-Glutamyl-L-cysteine, phosphatidylglycerol and phosphatidate.
Whilst A. ferrooxidans required less oxygen and carbon than A. caldus, this prediction suggests
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that A. caldus assists A. ferrooxidans in lipid production. In exchange, A. ferrooxidans aids A.
caldus with the more complex sulfur metabolism.

Table 29: Metabolites exchanged within the community.

Donor Metabolite ID Metabolite Name Production rate (|mmol/gDW/h|)

A
.c

al
du

s

M_C00669__extr gamma-L-Glutamyl-L-cysteine 0.07383

M_C00249__extr Hexadecanoic acid 0.00808

M_C00344__extr Phosphatidylglycerol 0.00200

M_C00993__extr D-Alanyl-D-alanine 0.00077

M_C00350__extr Phosphatidylethanolamine 0.00051

M_C02737__extr Phosphatidylserine 0.00005

M_C00416__extr Phosphatidate 0.00001

A
.f

er
ro

ox
id

an
s

M_C00288__extr Bicarbonate 0.20287

M_C00283__extr Hydrogen sulfide 0.07102

M_C00013__extr Diphosphate 0.00025

It is worth noting that while maximizing the community’s biomass production rate the
model predicted a zero growth rate for the A. caldus model. These results suggest that the
main role of this organism within the community is to assist A. ferrooxidans whilst the latter
contribute to the growth of the community.

Furthermore, a reaction consuming the biomass of both organisms was added to the model
and a pFBA maximizing this reaction was performed. The stoichiometry of both metabolites
was set to 1 with the reaction being represented in equation 10.

BiomassA f errooxidans + BiomassAcaldus− > (10)

Small differences were found, however, it was noted that by maximizing the growth rate of
both organisms the community presented a lower growth rate, as represented in table 30. As
can be seen in supplementary tables 50 and 51, A. caldus requires more carbon to grow leaving
less available to A. ferrooxidans which consequently will have a lower growth rate affecting the
community. Moreover, as can be seen in table 31, A. caldus contributed less to the A. ferrooxidans
lipid production whilst the latter donated a reduced amount of hydrogen sulfide to A. caldus
due to the greater focus on their own respective biomass production rate.
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Table 30: Consumption and production rate of the community model while maximizing both organisms’
growth rate.

Reaction ID Metabolite name Consumption rate
(|mmol/gDW/h|)

Difference

C
on

su
m

pt
io

n

R_EX_C00007__extr Oxygen 28.83442 0.07072

R_EX_C00087__extr Sulfur 21.23885 0.04375

R_EX_C00001__extr H2O 25.96892 0.02632

R_EX_C00014__extr Ammonia 0.18585 0.00605

R_EX_C00009__extr Orthophosphate 0.01435 0.00245

R_EX_C14818__extr Fe2+ 0.00012 0.00002

R_EX_C00011__extr CO2 0.71060 0.00000

Reaction ID Metabolite name Production rate
(|mmol/gDW/h|)

Difference

Pr
od

uc
ti

on

R_EX_C00080__extr H+ 9.25258 0.19488

R_EX_C00059__extr Sulfate 21.23569 0.04339

R_EX_C00160__extr Glycolate 0.00005 0.00005

R_EX_C05198__extr 5’-Deoxyadenosine 0.00012 0.00002

R_EX_C00237__extr CO 0.00012 0.00002

R_Community_growth_alt Biomass 0.00976 -0.01084

Table 31: Metabolites exchanged within the community while maximizing both organisms’ growth rate.

Donor Metabolite ID Metabolite Name Production rate
(|mmol/gDW/h|)

Difference

A
.c

al
du

s

M_C00669__extr gamma-L-Glutamyl-L-
cysteine

0.03553 -0.03830

M_C00249__extr Hexadecanoic acid 0.00364 -0.00444

M_C00344__extr Phosphatidylglycerol 0.00095 -0.00105

M_C00993__extr D-Alanyl-D-alanine 0.00037 -0.00041

M_C00350__extr Phosphatidylethanolamine 0.00024 -0.00027

M_C02737__extr Phosphatidylserine 0.00002 -0.00003

M_C00416__extr Phosphatidate 0.00001 -0.00001

A
.f

er
ro

ox
id

an
s

M_C00288__extr Bicarbonate 0.09472 -0.10815

M_C00283__extr Hydrogen sulfide 0.03420 -0.03682

M_C00013__extr Diphosphate 0.00000 -0.00025

In bioleaching experiments, A. caldus has an indirect contribution by reducing the pH of
the medium which prevents the precipitation of iron as secondary minerals [138]. Moreover,
during mineral oxidation, it is commonly released ferrous iron and thiosulfate which later
decomposes into sulfur. Iron oxidizers take a key role in oxidizing the ferrous iron into ferric
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iron whilst Sulfur oxidizers oxidize the elemental sulfur [168]. Whilst the oxidation of ferrous
iron to ferric iron allows for a greater mineral dissolution [170], the removal of elemental
sulfur keeps the minerals’ catalytic surface clean. Otherwise, this accumulated sulfur would
compromise the dissolution of ferric iron through the formation of unwanted passivation layers
[171, 172].

Moreover, these autotrophic sulfur-oxidizers release organic carbon which is consumed by
the mixotrophic/heterotrophic iron oxidizers [141]. In return, the latter generates ferric iron
which stimulates mineral dissolution producing sulfur and CO2. This CO2 can then be used as
an energy source by the autotrophic sulfur-oxidizers [138].

Although it was not possible to simulate a mineral oxidation environment the community
showed a major consumption rate of sulfur exhibiting the greater sulfur oxidation capacities of
A. caldus. Moreover, Clark and Norris demonstrated that A. ferrooxidans is able to efficiently
utilize CO2 whenever in CO2 limiting conditions [136]. This was accurately predicted by the
community model through the low consumption rate of CO2 when compared to A. caldus
which required more CO2 and did not produce biomass. Furthermore, it was shown that A.
caldus improves the oxidation of ferrous iron by the A. ferrooxidans in bioleaching conditions
[138]. Although A. ferrooxidans exhibited a greater consumption rate of ferrous iron in the
community when compared to the isolated model, the difference between the two consumption
rates is minimal.



8

C O N C L U S I O N S A N D F U T U R E W O R K

In this work, a highly curated GSM model of the organism A. caldus SM-1 and A. ferrooxidans
were reconstructed. Additionally, a community model with these GSM models was built. The
manual curation efforts of the reconstruction were based on genomic information, literature,
phylogenetically related organisms and biological databases for the models to be as accurate as
possible. The A. caldus model can grow in autotrophic and mixotrophic conditions while in the
presence of oxygen. Moreover, the A. ferrooxidans model can grow in aerobic and anaerobic
autotrophic conditions. Furthermore, the community model can simulate the phenotypic
behaviour of the organisms and their dynamics under aerobic autotrophic conditions, which
can serve as a guide for microbial interactions and in bioleaching experiments.

The carbon metabolism of both models was thoroughly analysed. The models fixate carbon
through a complete Calvin cycle which aids the glycolysis/gluconeogenesis pathway, which is
complete in both models. Special attention was given to the energy metabolism of A. caldus
as is well described in the literature. Accordingly, the model allows for the uptake of sulfur
and tetrathionate which results in the production of ATP and sulfate. Furthermore, the A.
caldus model presents an incomplete citrate cycle, whilst the A. ferrooxidans model predicts
the partial use of this cycle to generate succinate, which will be further used in the oxidative
phosphorylation for the production of ATP.

The main objectives of this study were to reconstruct the models and analyse the interactions
and general behaviour of A. caldus and A. ferrooxidans within the community. The community
model predicted a significant consumption rate of sulfur, highlighting the greater sulfur-
oxidizing capacities of A. caldus, with SteadyCom predicting a greater microbial abundance of
A. ferrooxidans. Moreover, while maximizing the community’s biomass production rate, the
model predicted an A. ferrooxidans’ growth rate of 0.0206 h−1 while A. caldus did not grow. Yet,
it was observed that A. ferrooxidans presented a greater growth rate in the community when
compared to the single model simulations. Additionally, the organism interactions’ analysis
showed that A. caldus exchanged lipid-production related compounds whilst A. ferrooxidans
donated hydrogen sulfide. Moreover, while maximizing the growth rate of both organisms
within the community, a lower growth rate of the community was observed. A. caldus showed
a greater carbon consumption rate, which consequently leaves less available to A. ferrooxidans
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resulting in a lower growth rate of the latter. It seems that the community’s growth rate is
affected due to a greater focus on their respective individual growth rate. These results suggest
that A. caldus has a role in the community in which it assists A. ferrooxidans growth while
the latter provides a vital role in the community growth rate. The models and respective
genome files, merlin workspaces and the in-house built simulation scripts are available at
https://github.com/ruirnunes/MicrobialCommunity.

Although this study provides several insights into the interaction mechanisms of these two
bacteria, other approaches can be assessed. Both models can be further curated as the biomass
equation of the organisms was based on phylogenetically related organisms. Whilst this does
not affect the models’ performance, an accurate biomass reaction would improve the robustness
of the models. Moreover, the lack of literature regarding these organisms imposed a problem
throughout both models’ reconstruction. As new insights into the organisms’ metabolism are
discovered, they can be incorporated into the models improving their accuracy. Moreover,
several bioleaching critical conditions cannot be simulated in these models. However, mineral
oxidation reactions and their kinetics considered and used with these models. It would be
interesting to analyse, for example, the community model’s behaviour while optimizing mineral
oxidation reactions with energy-limiting sources.

https://github.com/ruirnunes/MicrobialCommunity
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Table 32: DNA equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gDNA)

Reactants

dCTP C00458 0.844

dATP C00131 0.663

dGTP C00286 1.017

dTTP C00459 0.701

Products

e-DNA - 1.000

Diphosphate C00013 3.226

Table 33: RNA equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gRNA)

Reactants

GTP C00044 0.994

CTP C00063 0.759

UTP C00075 0.565

ATP C00002 0.765

Products

e-RNA - 1.000

Diphosphate C00013 3.084
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Table 34: Protein equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient (mmol/gProtein)

Reactants

L-Leucyl-tRNA C02047 1.056

Glycyl-tRNA(Gly) C02412 0.725

L-Asparaginyl-tRNA(Asn) C03402 0.225

Glutaminyl-tRNA C02282 0.391

L-Isoleucyl-tRNA(Ile) C03127 0.425

L-Arginyl-tRNA(Arg) C02163 0.703

L-Aspartyl-tRNA(Asp) C02984 0.457

L-Cysteinyl-tRNA(Cys) C03125 0.083

L-Seryl-tRNA(Ser) C02553 0.484

L-Tryptophanyl-tRNA(Trp) C03512 0.158

L-Valyl-tRNA(Val) C02554 0.63

L-Histidyl-tRNA(His) C02988 0.235

L-Glutamyl-tRNA(Glu) C02987 0.52

L-Lysyl-tRNA C01931 0.272

L-Methionyl-tRNA C02430 0.198

L-Threonyl-tRNA(Thr) C02992 0.419

L-Phenylalanyl-tRNA(Phe) C03511 0.325

L-Prolyl-tRNA(Pro) C02702 0.49

L-Alanyl-tRNA C00886 1.044

L-Tyrosyl-tRNA(Tyr) C02839 0.233

Products

tRNA(Thr) C01651 0.419

tRNA(Ser) C01650 0.484

tRNA(Lys) C01646 0.272

tRNA(Glu) C01641 0.52

tRNA(Met) C01647 0.198

tRNA(Gln) C01640 0.391

tRNA(Phe) C01648 0.325

tRNA(Tyr) C00787 0.233

tRNA(Trp) C01652 0.158

tRNA(Gly) C01642 0.725

tRNA(Ala) C01635 1.044

tRNA(Arg) C01636 0.703

tRNA(His) C01643 0.235

Continued on next page
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Table 34 – continued from previous page

Metabolite KEGG ID Stoichiometry Coefficient (mmol/gProtein)

tRNA(Asn) C01637 0.225

tRNA(Pro) C01649 0.49

tRNA(Val) C01653 0.63

tRNA(Asp) C01638 0.457

tRNA(Ile) C01644 0.425

tRNA(Leu) C01645 1.056

tRNA(Cys) C01639 0.083

e-Protein - 1

H2O C00001 9.074

Table 35: Cofactor equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gCofactor)

Reactants

Ubiquinone-8 C17569 0.145

NADH C00004 0.145

NAD+ C00003 0.145

CoA C00010 0.145

S-Adenosyl-L-methionine C00019 0.145

FAD C00016 0.145

Heme C00032 0.145

Glutathione C00051 0.145

Thiamin diphosphate C00068 0.145

FMN C00061 0.145

Riboflavin C00255 0.145

Tetrahydrofolate C00101 0.145

Products

e-Cofactor - 1.000



88

Table 36: Carbohydrate equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gCarbohydrate)

Reactants

Starch C00369 0.76

Products

e-Carbohydrate - 1

Table 37: Cell Wall equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gCellWall)

Reactants

KDO2-lipid A C06026 0.197

ADP-L-glycero-beta-D-manno-heptose C06398 0.138

Undecaprenyl-diphospho-N-
acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-
glutamyl-meso-2,6-diaminopimeloyl-

D-alanyl-D-alanine

C05898 0.246

Products

e-CellWall - 1.000

Table 38: Lipid equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gLipid)

Reactants

Phosphatidylglycerol C00344 0.665

Phosphatidylethanolamine C00350 0.270

Phosphatidyl-N-methylethanolamine C01241 0.773

Cardiolipin C05980 0.090

Products

e-Lipid - 1.000
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Table 39: Fatty acid equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient
(gPrecursor/gFatty acid)

Reactants

Dodecanoic acid C02679 0.047

Octadecanoic acid C01530 0.421

Hexadecanoic acid C00249 0.457

Tetradecanoic acid C06424 0.074

Products

e-FattyAcid - 1.000

Table 40: DNA equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gDNA)

Reactants

dCTP C00458 1.105

dATP C00131 0.514

dGTP C00286 1.105

dTTP C00459 0.512

Products

e-DNA - 1.000

Diphosphate C00013 3.236

Table 41: RNA equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gRNA)

Reactants

ATP C00002 0.585

UTP C00075 0.420

GTP C00044 1.089

CTP C00063 0.994

Products

Diphosphate C00013 3.087

e-RNA - 1.000
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Table 42: Protein equation of A. caldus.

Metabolite KEGG ID Stoichiometry Coefficient (mmol/gProtein)

Reactants

L-Leucyl-tRNA C02047 1.014

Glycyl-tRNA(Gly) C02412 0.832

L-Asparaginyl-tRNA(Asn) C03402 0.148

L-Methionyl-tRNA C02430 0.146

Glutaminyl-tRNA C02282 0.239

L-Isoleucyl-tRNA(Ile) C03127 0.383

L-Cysteinyl-tRNA(Cys) C03125 0.057

L-Seryl-tRNA(Ser) C02553 0.515

L-Lysyl-tRNA C01931 0.120

L-Glutamyl-tRNA(Glu) C02987 0.572

L-Histidyl-tRNA(His) C02988 0.206

L-Tryptophanyl-tRNA(Trp) C03512 0.134

L-Valyl-tRNA(Val) C02554 0.926

L-Threonyl-tRNA(Thr) C02992 0.504

L-Arginyl-tRNA(Arg) C02163 0.815

L-Aspartyl-tRNA(Asp) C02984 0.508

L-Phenylalanyl-tRNA(Phe) C03511 0.254

L-Prolyl-tRNA(Pro) C02702 0.511

L-Alanyl-tRNA C00886 1.288

L-Tyrosyl-tRNA(Tyr) C02839 0.169

Products

tRNA(Trp) C01652 0.134

tRNA(His) C01643 0.206

tRNA(Ile) C01644 0.383

tRNA(Leu) C01645 1.014

tRNA(Phe) C01648 0.254

tRNA(Thr) C01651 0.504

tRNA(Ala) C01635 1.288

tRNA(Pro) C01649 0.511

tRNA(Arg) C01636 0.815

tRNA(Asn) C01637 0.148

tRNA(Asp) C01638 0.508

tRNA(Tyr) C00787 0.169

tRNA(Cys) C01639 0.057

Continued on next page
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Table 42 – continued from previous page

Metabolite KEGG ID Stoichiometry Coefficient (mmol/gProtein)

tRNA(Gln) C01640 0.239

tRNA(Ser) C01650 0.515

tRNA(Glu) C01641 0.572

tRNA(Gly) C01642 0.832

tRNA(Lys) C01646 0.120

tRNA(Val) C01653 0.926

tRNA(Met) C01647 0.146

H2O C00001 9.341

e-Protein - 1.000

Table 43: Cofactor equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gCofactor)

Reactants

NADH C00004 0.144

NAD+ C00003 0.144

CoA C00010 0.144

S-Adenosyl-L-methionine C00019 0.144

Pyridoxal phosphate C00018 0.144

FAD C00016 0.144

Heme C00032 0.144

Glutathione C00051 0.144

Thiamin diphosphate C00068 0.144

FMN C00061 0.144

Riboflavin C00255 0.144

Tetrahydrofolate C00101 0.144

Menaquinone-9 - 0.144

Products

e-Cofactor - 1.000
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Table 44: Carbohydrate equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gCarbohydrate)

Reactants

alpha,alpha-Trehalose C01083 2.921

Products

e-Carbohydrate - 1.000

Table 45: Cell wall equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gCellWall)

Reactants

Lipoteichoic acid C20898 0.137

Undecaprenyl-diphospho-N-
acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-
glutamyl-meso-2,6-diaminopimeloyl-

D-alanyl-D-alanine

C05898 0.167

Products

e-CellWall - 1.000

Table 46: Fatty acid equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(gPrecursor/gFatty acid)

Reactants

Octadecanoic acid C01530 0.092

Hexadecanoic acid C00249 0.899

Tetradecanoic acid C06424 0.009

Products

e-FattyAcid - 1.000
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Table 47: Lipid equation of A. ferrooxidans.

Metabolite KEGG ID Stoichiometry Coefficient
(mmol/gLipid)

Reactants

Phosphatidylglycerol C00344 0.865

Phosphatidylethanolamine C00350 0.324

Phosphatidylserine C02737 0.031

Cardiolipin C05980 0.008

Products

e-Lipid - 1.000

Table 48: Consumption and production rate of the A. caldus model within the community.

Reaction ID Metabolite name Consumption rate
(|mmol/gDW/h|)

C
on

su
m

pt
io

n

M_C00007__extr Oxygen 28.76333

M_C00001__extr H2O 25.942588

M_C00087__extr Sulfur 21.195146

M_C00011__extr CO2 0.545833

M_C00288__extr HCO3- 0.203908

M_C00014__extr Ammonia 0.149759

M_C00283__extr Hydrogen sulfide 0.071021

M_C00013__extr Diphosphate 0.00128

Reaction ID Metabolite name Production rate (|mmol/gDW/h|)

Pr
od

uc
ti

on

M_C00059__extr Sulfate 21.19234

M_C00080__extr H+ 8.95115

M_C00669__extr gamma-L-Glutamyl-L-cysteine 0.073829

M_C00249__extr Hexadecanoic acid 0.008083

M_C00344__extr Phosphatidylglycerol 0.002000

M_C00993__extr D-Alanyl-D-alanine 0.000772

M_C00350__extr Phosphatidylethanolamine 0.000509

M_C02737__extr Phosphatidylserine 0.000048

M_C00416__extr Phosphatidate 0.000012
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Table 49: Consumption and production rate of the A. ferrooxidans model within the community.

Reaction ID Metabolite name Consumption rate
(|mmol/gDW/h|)

C
on

su
m

pt
io

n

M_C00011__extr CO2 0.164767

M_C00669__extr gamma-L-Glutamyl-L-cysteine 0.073829

M_C00014__extr Ammonia 0.030018

M_C00009__extr Orthophosphate 0.01193

M_C00249__extr Hexadecanoic acid 0.008083

M_C00344__extr Phosphatidylglycerol 0.002000

M_C00993__extr D-Alanyl-D-alanine 0.000772

M_C00350__extr Phosphatidylethanolamine 0.000509

M_C00007__extr Oxygen 0.000367

M_C14818__extr Fe2+ 0.00015

M_C02737__extr Phosphatidylserine 0.000048

M_C00416__extr Phosphatidate 0.000012

Reaction ID Metabolite name Production rate (|mmol/gDW/h|)

Pr
od

uc
ti

on

M_C00288__extr Bicarbonate 0.20391

M_C00080__extr H+ 0.10658

M_C00283__extr Hydrogen sulfide 0.07102

M_e_Biomass__extr e-Biomass 0.02063

M_C00013__extr Diphosphate 0.00128

M_C05198__extr 5’-Deoxyadenosine 0.00015

M_C00237__extr CO 0.00015
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Table 50: Consumption and production rate of the A. caldus model within the community while maxi-
mizing both organisms’ growth rate.

Reaction ID Metabolite name Consumption rate
(|mmol/gDW/h|)

Difference

C
on

su
m

pt
io

n

M_C00011__extr CO2 0.63629 0.09046

M_C00007__extr Oxygen 28.83424 0.07091

M_C00087__extr Sulfur 21.23885 0.04370

M_C00001__extr H2O 25.96892 0.02633

M_C00014__extr Ammonia 0.17286 0.02310

M_C00009__extr Orthophosphate 0.00992 0.00992

M_C14818__extr Fe2+ 0.00005 0.00005

M_C00013__extr Diphosphate 0.00000 -0.00128

M_C00283__extr Hydrogen sulfide 0.03420 -0.03682

M_C00288__extr HCO3- 0.09472 -0.10919

Reaction ID Metabolite name Production rate
(|mmol/gDW/h|)

Difference

Pr
od

uc
ti

on

M_C00080__extr H+ 9.20390 0.25275

M_C00059__extr Sulfate 21.23569 0.04335

M_e_Biomass__cytop_acaldus e-Biomass 0.00976 0.00976

M_C05198__extr 5’-Deoxyadenosine 0.00005 0.00005

M_C00237__extr CO 0.00005 0.00005

M_C00160__extr Glycolate 0.00005 0.00005

M_C00416__extr Phosphatidate 0.00001 -0.00001

M_C02737__extr Phosphatidylserine 0.00002 -0.00003

M_C00350__extr Phosphatidylethanolamine 0.00024 -0.00027

M_C00993__extr D-Alanyl-D-alanine 0.00037 -0.00041

M_C00344__extr Phosphatidylglycerol 0.00095 -0.00105

M_C00249__extr Hexadecanoic acid 0.00364 -0.00444

M_C00669__extr gamma-L-Glutamyl-L-
cysteine

0.03553 -0.03830
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Table 51: Consumption and production rate of the A. ferrooxidans model within the community while
maximizing both organisms’ growth rate.

Reaction ID Metabolite name Consumption rate
(|mmol/gDW/h|)

Difference

C
on

su
m

pt
io

n

M_C00416__extr Phosphatidate 0.00001 -0.00001

M_C02737__extr Phosphatidylserine 0.00002 -0.00003

M_C14818__extr Fe2+ 0.00007 -0.00008

M_C00007__extr Oxygen 0.00017 -0.00019

M_C00350__extr Phosphatidylethanolamine 0.00024 -0.00027

M_C00993__extr D-Alanyl-D-alanine 0.00037 -0.00041

M_C00344__extr Phosphatidylglycerol 0.00095 -0.00105

M_C00249__extr Hexadecanoic acid 0.00364 -0.00444

M_C00009__extr Orthophosphate 0.00443 -0.00750

M_C00014__extr Ammonia 0.01299 -0.01703

M_C00669__extr gamma-L-Glutamyl-L-
cysteine

0.03553 -0.03830

M_C00011__extr CO2 0.07431 -0.09046

Reaction ID Metabolite name Production rate
(|mmol/gDW/h|)

Difference

Pr
od

uc
ti

on

M_C05198__extr 5’-Deoxyadenosine 0.00007 -0.00008

M_C00237__extr CO 0.00007 -0.00008

M_C00013__extr Diphosphate 0 -0.00128

M_e_Biomass__cytop_aferrooxidans e-Biomass 0.00976 -0.01087

M_C00283__extr Hydrogen sulfide 0.03420 -0.03682

M_C00080__extr H+ 0.04868 -0.05790

M_C00288__extr HCO3- 0.09472 -0.10919
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