
Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Henrique Lopes Pereira

Development of MOSGUITO: a user-friendly graphical
interface for meta-omics data analyses

October, 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Henrique Lopes Pereira

Development of MOSGUITO: a user-friendly graphical
interface for meta-omics data analyses

Master dissertation
Master Degree in Bioinformatics

Dissertation supervised by
Andreia Filipa Ferreira Salvador
Vı́tor Manuel Sá Pereira

October, 2022

i

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO
POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na
licença abaixo indicada. Caso o utilizador necessite de permissão para poder fazer um uso
do trabalho em condições não previstas no licenciamento indicado, deverá contactar o autor,
através do RepositóriUM da Universidade do Minho.

Atribuição-CompartilhaIgual
CC BY-SA
https://creativecommons.org/licenses/by-sa/4.0/

A G R A D E C I M E N T O S

Ao fazer esta tese, pude contar com o apoio de várias pessoas sem as quais este trabalho
não teria chegado ao ponto em que chegou. Este é o meu obrigado a quem me apoiou
e ajudou. À Andreia, pois sem uma boa orientadora fica bastante complicado realizar e
concretizar uma boa tese, sendo que sem a sua ajuda e presistêcia nada disto era possı́vel.
Ao professor Vı́tor, mentor disponı́vel para todos os momentos em que se requeria a sua
participação e ajuda. Ao João, que foi das pessoas que mais me acompanhou e ajudou a
desbloquear quando certas complicações apareciam. Aos meus colegas e amigos que me
apoiaram e ajudaram sempre que precisei, estando sempre disponı́veis para me ajudar e
aturar em qualquer situação. Um grande obrigado à minha famı́lia principalmente aos meus
pais que de tudo fizeram para apoiar o seu filho a ultrapassar mais uma etapa da sua vida.
Por fim agradeço a Deus por todo o apoio e ajuda incondicional.

ii

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

A B S T R A C T

Complex microbial communities are essential to all ecosystems, and by linking microbial
identity to function, meta-omics technologies facilitate the interpretation of the processes cat-
alyzed by microorganisms. MOSCA is a command-line pipeline that performs bioinformatics
analyses of metagenomics, metatranscriptomics, and metaproteomics. MOSGUITO is a web-
based tool developed in React, which allows the configuration of MOSCA’s workflow and
the visualization of MOSCA outputs. Although the metadata and the configuration options
of MOSCA could be easily customized and downloaded through MOSGUITO, MOSGUITO
was unable to interact with MOSCA automatically. In this thesis, a third-tier client-server
architecture was developed containing the Client MOSGUITO, the Server MOSCA, and a
Database. MOSGUITO as a client-side can retrieve, store and delete data from the Database
and start running analysis on MOSCA as a server. MOSCA as a server can receive files from
the client-side and start an analysis run. The database can store results from MOSCA, input
files from users, and respective user information from their login session. A full guide to how
to utilize this new version of MOSGUITO is provided. MOSGUITO client-side can interact
with MOSCA as a server using Flask APIs, end users don’t need to have knowledge on
command-line pipelines to use MOSCA, nor the computer resources to download it. There-
fore users using MOSGUITO can optimize the usage and configuration of MOSCA, being
able to analyze the data from omics experiments with a simple interaction with MOSGUITO.

Keywords: Meta-omics, MOSCA, Flask, MOSGUITO, API

iv

R E S U M O

Comunidades microbianas complexas são essenciais em todos os ecossistemas, as tecnologias
metaómicas facilitam a interpretação dos processos catalisados pelos microrganismos, pois
permitem ligar a identidade dos microrganismos à sua função. MOSCA é um pipeline
que funciona à base de linha de comandos que realiza análises de bioinformática de meta-
genómica, metatranscriptómica e metaproteómica. O MOSGUITO é uma ferramenta web
desenvolvida em React, que permite a configuração do fluxo de trabalho do MOSCA e a
visualização dos resultados. Embora os meta dados e as opções de configuração do MOSCA
possam ser facilmente personalizados e transferidas através do MOSGUITO, o MOSGUITO
não conseguia interagir com o MOSCA automaticamente. Nesta tese, foi desenvolvida uma
arquitetura cliente-servidor de terceiro nı́vel contendo o Cliente MOSGUITO, o Servidor
MOSCA e uma Base de Dados. O MOSGUITO como cliente pode recuperar, armazenar e
excluir dados da base de dados e começar a executar análises no MOSCA como servidor. O
MOSCA como servidor pode receber arquivos do lado do cliente e iniciar uma execução
de análise. A base de dados pode armazenar resultados do MOSCA, ficheiros de input
submetidos pelos utilizadores e respetivas informações da sessão de Login do utilizador.
É apresentado um guia completo de como utilizar esta nova versão do MOSGUITO. O
lado do cliente MOSGUITO pode interagir com o MOSCA como um servidor usando APIs
construı́das utilizando a framework Flask. Os Utilizadores finais não precisam ter conheci-
mento sobre linhas de comando para usar o MOSCA e sem a necessidade de recursos de
computador para o transferir. Assim, os utilizadores do MOSGUITO otimizam o uso e a
configuração do MOSCA, podendo analisar seus dados com uma simples interação com o
MOSGUITO.

Palavras-Chave: Metaómica, MOSCA, Flask, MOSGUITO, API

v

C O N T E N T S

1 introduction 1

1.1 Context and motivation 1

1.2 Objectives 2

1.3 Thesis organization 2

2 state of the art 4

2.1 Meta-Omics Analysis 4

2.1.1 Metagenomics 4

2.1.2 Metatranscriptomics 6

2.1.3 Metaproteomics 7

2.2 Automation of MOSCA pipeline 9

2.3 MOSGUITO: Interactive Web-based application for MOSCA pipeline 12

2.4 Overview of web services performing analysis of omics data 13

2.5 Client-Server 16

2.5.1 Client-Server architecture 16

2.5.2 Server 17

2.5.3 Database Management System 19

2.6 Web Service 20

2.6.1 Types of Application program interface 20

2.6.2 Authentications Methods for web Services 22

3 materials and methods 25

3.1 Server 25

3.2 Mother API 25

3.3 Database 26

3.4 Client-Side 26

3.5 Authentication 27

4 results 28

5 discussion of the results 48

6 conclusions and future perspectives 51

vi

L I S T O F F I G U R E S

Figure 1 Meta-Omics Software for Community Analysis (MOSCA) metage-
nomics (MG) architecture workflow. Blue icons: the main steps of
the workflow; Yellow icons: the bioinformatics tools utilized in each
step; Green icons: the inputs needed to perform the analysis; Orange
icons: the intermediate files i.e., files outputted by one step that serve
as input to another step; and Navy Blue icons: the output files. 5

Figure 2 MOSCA metatranscriptomics (MT) architecture Workflow. Blue icons:
the main steps of the workflow; Yellow icons: the bioinformatics tools
utilized in each step; Green icons: the inputs needed to perform the
analysis; Orange icons: the intermediate files i.e., files outputted by
one step that serve as input to another step; Red icons: the interme-
diate files needed to be produced by other analysis i.e., MG step; and
Navy Blue icons: the output files. 6

Figure 3 MOSCA metaproteomics (MP) architecture workflow. Blue icons: the
main steps of the workflow; Yellow icons: the bioinformatics tools
utilized in each step; Green icons: the inputs needed to perform
the analysis; Orange icons: the intermediate files i.e., files outputted
by one step that serve as input to another step; and Red icons: the
intermediate files utilized by tools produced in different analyses i.e.,
MG. 8

Figure 4 MOSCA rules dependencies, in blue is show the main steps of
MOSCA; in yellow intermediate steps; grey a step to produce output
files; and red the rule ”all” to check that all rules have run with
success. 11

Figure 5 Application structure of MOSca’s Graphical User Interface (GUI) TO
perform meta-omics analyses (MOSGUITO). Purple boxes represent
the entry point to the application, red boxes represent the pages
available for user interaction and green boxes represent the categories
of pages, inside which the pages are nested in the side bar. 13

Figure 6 Different categories of client-server architectures one-tier, two-tier,
three-tier and N-tier. 17

vii

list of figures viii

Figure 7 Kubernetes architectures concept, divided into nods containing an
instance to run, a Load Balancer to connect the users outside of the
cluster to the respective nodes, and a control Aplication Program-
ming Interface (API) that stores information from the nodes and
services. 19

Figure 8 MOSGUITO as a web service implemented architecture, with the
construction of the server utilizing MOSCA, the interconnection using
APIs and the respective MOSGUITO as the client-side. 29

Figure 9 Comparison of the snakemake workflow, in the first version of
MOSCA and in the actual version of MOSCA. The first one only
receive inputs for the preprocess step, while in the new version is
able to receive inputs in all rules, making every rule independent or
not from others depending on the presence of their inputs. 30

Figure 10 Database Schema with all fields and respective father and child
relationships tables, containing the information about primary and
foreign keys. 32

Figure 11 ”Login page” from MOSGUITO 33

Figure 12 ”Home page” from MOSGUITO containing information about the
project. 34

Figure 13 ”General configuration” page of MOSGUITO, with the side bar on
the left, showing the main sections of MOSGUITO and the pages of
the “Configuration” section. 36

Figure 14 “Experiments” page of MOSGUITO. Blue buttons add or remove one
line at the end of the table, pink button downloads the data in the
table in TSV format, and for each line, information concerning each
dataset can be inputted: the files paths, the “sample” category, the
type of data, the “condition” category, and a name to be associated in
the outputs. 37

Figure 15 “Upload Inputs” page of MOSGUITO. Red buttons to upload the
file, and a dropdown list to select the type of file associated with the
input. 37

Figure 16 “My Inputs” page of MOSGUITO. Red buttons to download and
delete files selected in the table, and a blue one to clear select files. 38

Figure 17 “Analyses” page of MOSGUITO is divided into three major steps
one to select the analyses to realize, another to match the inputs
files to the experiments dataset and another to give a name to the
corresponding analyses. 39

list of figures ix

Figure 18 In the section a) shows a snapshot of “FastQC reports” page of
MOSGUITO. For each result will be a “Accordion” with the name
of the report, and inside that “Accordion”, the FastQC Report with
all the interactions possible a FastQC have. In the section b) shows a
snapshot of “Annotation Results” page, for each annotation result it
will present an “Accordion” with the respective Krona Plot and all
the interactions associated with it. 40

Figure 19 “AssemblyQC” page of MOSGUITO. For each assembly table will be
an “Accordion” with the name of the table, the table can be sorted
by clicking in the column names. And in the rows for page, you can
select how many rows per page you want to show. 41

Figure 20 “Differential Analysis” page of MOSGUITO. For each Heatmap in
the differential analysis of MOSCA, you will get the label and the
corresponding heatmap, when you click on the image, it will stand
out from the webpage. 42

Figure 21 “KEGGmaps” page of MOSGUITO. In the a) section a snapshot of
an Accordion with all the KEGGmaps possible to visualize, you can
choose a max of 6, other way it will show a warning message, click
on the blue bottom to show the selected KEGGMaps. In the b) section
a snapshot of the KEGGmaps results, the selected one, clicking on
the image will have the image stand out from the website, the blue
button will make the KEGGmaps page return to the a) section. 43

Figure 22 In the section a) shows a snapshot of the “EntryReport” page, the
page presents a search bar in the right top, the search bar presents
a button (“x”) to clear the search bar faster, and in the bottom a red
button to download the current state of the data in the table. In
section b) shows a snapshot of the “GeneralReport” page, the page
presents the table and the search bar. In section c) shows a snapshot
of “ProteinReport” page, the pagent presents a search bar in the right
top with a button (“x”) to clear the search bar, and in the bottom a
red button to download the current state of data in the table. 45

L I S T O F TA B L E S

Table 1 Comparison of different web services for meta-omics analysis. Com-
paring Automatic data retrieval, if the tool can retrieve the results
from the pipeline to the web; workflow types, if the workflow Rules-
Driven, Sequential, or a State Machine; Types of inputs; and types of
outputs. 15

Table 2 Comparison of different python frameworks to develop RESTful APIs.
Comparing framework architecture, modular or monolithic; Authen-
tication Method, if the out-of-the-box framework contains it; It shows
if the out-of-the-box framework contains an Authentication Method,
a caching system, a database module, and a web template engine; It
shows the principal communication protocols the framework support,
for the requested and receiving messages. 23

Table 3 Parameters of the configuration file and the respective page of MOS-
GUITO and type of input available for changing its value on the
client-side. 35

Table 4 Comparison of different web services for meta-omics analysis. Com-
paring features in the client-side of the application. Each column
represents a different feature: Graphical visualization/interaction, if
client-side of meta-omics tools can display results; Authentication,
if client-side contains authentication module or not to protect end
user data; Storing Files, if web service can store input and output
files, 1º signal for inputs 2º signal for outputs, i.e., in MetaGOmics
doesn’t store input files, but stores output files; Configuration Work-
flow, if end-user are able to configure the workflow of meta-omics
pipeline from the web; Step Configuration, if end-users can select
each rule to run without previous rules; Client Usage Guide, if in
the respective Client-Side exist hints to help end users work with the
application. ”?” represents tools that do not have the feature reported
in the applications or that the client-sides are difficult to access. 50

x

A C R O N Y M S

API Aplication Programming Interface.

CLI command-line interface.
CRUD CRUD (Create, Read, Update and Delete).

dbms Database Management System.

MG metagenomics.
MOSCA Meta-Omics Software for Community Analysis.
MOSGUITO MOSca’s Graphical User Interface (GUI) TO perform meta-omics analyses.
MP metaproteomics.
MT metatranscriptomics.

OAuth OAuthentication.

PSMs peptide-spectrum matches.

QC Quality Control.

URI Uniform Resource Identifier.
URL Uniform Resource Locator.

xi

A C R O N Y M S

API Aplication Programming Interface.

CLI command-line interface.
CRUD CRUD (Create, Read, Update and Delete).

dbms Database Management System.

MG metagenomics.
MOSCA Meta-Omics Software for Community Analysis.
MOSGUITO MOSca’s Graphical User Interface (GUI) TO perform meta-omics analyses.
MP metaproteomics.
MT metatranscriptomics.

OAuth OAuthentication.

PSMs peptide-spectrum matches.

QC Quality Control.

URI Uniform Resource Identifier.
URL Uniform Resource Locator.

xii

1

I N T R O D U C T I O N

1.1 context and motivation

Complex microbial communities are essential to all ecosystems, and by linking microbial
identity to function, omics technologies facilitate the interpretation of the processes catalyzed
by microorganisms. Analysis of meta-omics data can be very challenging, and for that
purpose, several bioinformatics pipelines have been developed. MOSCA is a command-
line bioinformatics pipeline that performs MG, MT, and MP integrated analysis. A web
interface for MOSCA will enable its utilization by users less familiarized with command-line
interfaces. MOSCA workflow includes computationally intensive steps such as assembly
and annotation, which demand a lot of computational resources such as Random access
memory (RAM) and Central Process Unit (CPU). Integrating MOSCA as a web service
alleviates the need for expensive resources dedicated to meta-omics analysis. The first
version of MOSGUITO (available at https://iquasere.github. io/MOSGUITO) is a ReactJS
application developed to build’s configuration files and to facilitate the analysis of MOSCA
results. The MOSCA results are presented in an organized structure, allowing users to
interact with them. MOSGUITO helps in the configuration step by producing a file that is
used for the customization of the MOSCA workflow, but the upload of MOSCA results to
MOSGUITO remains limited. This could be overcome by implementing a web service with
MOSGUITO as an interface and MOSCA running in the background. With that, users would
not need to download the MOSCA pipeline and would interact only with MOSGUITO.
Another improvement could be the separation of MOSCA into various stages of analyses,
allowing to select the analysis step to perform without using a command prompt. Also very
important would be the control of the access to the web service by using user accounts. The
account could be used from a third-party organization using OAuthentication (OAuth), and
consequently, the user would not need to create a new account and could be notified by
email when the data analyses is complete.

1

1.2. Objectives 2

1.2 objectives

The objective of this thesis is to develop a web version of MOSCA. The specific objectives
are the following:

1. Create a database that allows to organize data from various users.

2. Create a graphical user interface to visualize pertinent information such as inputs,
running analysis status, and outputs.

To achieve these objectives, the following tasks were implemented:

1. Divide and organize MOSCA’s steps in order users to perform different steps in the
MOSCA analyses pipeline transforming it into a Micro-service Workflow.

2. Connect all the different containers in a Docker workflow Manager to manage all
requests from the web service and utilize all the resources available for the respective
requests.

3. Implement an API to manage all user requests; interact with docker workflow manager
and database. The API will retrieve information from the database, namely the results
files from the analyses, inputs, parameters used to configure the analyses, and state of
all steps involved in the analyses.

4. Develop a Database to store and manage all users and their respective projects and
files.

5. Develop a Login for the users. Users can log in using third-party accounts utilizing
OAuth.Users Log-in with Google will allow to save the results in their Google Drive.

6. Integrate the web-server with front-end MOSGUITO, to directly link execution argu-
ment inputs and presentation of results.

7. Integrate this implementation in a server.

1.3 thesis organization

This thesis presents the construction of MOSGUITO/MOSCA as a unified fully automated
tool, providing the capabilities of the MOSCA pipeline through the graphical interface of
MOSGUITO. In chapter two, a survey of the state-of-the-art is made regarding the general
steps involved in the analysis of MG, MT, and MP data. A survey of web tools for omics
analyses is also presented. Also included is an overview of different types of client-server
applications and methods, giving a small introduction to their principle compositions like

1.3. Thesis organization 3

server side, client-side, the use of a Database and different types of user authentication.
There is also an approach to web services the different types and an annotation of the Rest
type and the different frameworks to develop them. Chapter 3 explains the architecture of
MOSGUITO/MOSCA the steps involved in the construction of the application and the most
important packages that were used in the development of MOSCA’s web service. Chapter 4

offers a complete guide on how to work with the application. In Chapter 5 a discussion is
present. Chapter 6 consists of the thesis’s main conclusions, its limitations, and its future
prospects.

2

S TAT E O F T H E A RT

2.1 meta-omics analysis

2.1.1 Metagenomics

MG is the study of the genomes of the organisms present in an environmental sample. MG
gives a general information on potentially novel biocatalysts or enzymes, genomic linkages
between functions and phylogeny for uncultured organisms, and evolutionary profiles of
community function and structure (Sleator et al., 2008). MG can be integrated with MT
or MP approaches to describe the functional activity, i.e., levels of expression for genes of
interest (Gilbert et al., 2008; Béja et al., 2000). MG pipelines usually contain the following
steps: Preprocessing consisting mainly on removing adapters and spurious /erroneous reads;
Assembly consisting on the alignment of reads into contigs that represent the sequences
present in the original sample as closely as possible; Binning that is the process of sorting
DNA sequences into groups that might represent an individual genome or genomes from
closed related organisms; Annotation that identifies the predicted genes present in the study
sample; and Quantification, that measures the relative abundance of organisms and genes
(Carvalho and Irizarry, 2010). These steps are included in MOSCAs MP workflow (Fig.1).
The MOSCA process for MG data will be described here:

Preprocessing in MOSCA receives reads (FastQ) as input. FastQC (Brown et al., 2017) is
used for Quality Control (QC) of the reads, and information from the reports of FastQC are
used to set the parameters of Trimmomatic (Bolger et al., 2014), for removal of adapters and
spurious/erroneous reads. This phase contains one visible output, the FastQC reports, and
prepossessed reads (FastQ) that will be used in assembly.

The Assembly step takes as input high-quality reads and uses de novo assemblers,
MetaSPAdes (Nurk et al., 2017) or Megahit (Li et al., 2016), to assemble the reads into
contigs (in FASTA format). The quality control of the assembly is performed by MetaQUAST
(Mikheenko et al., 2016) and Bowtie2 (Langmead et al., 2009) which produce quality reports
of the assembly in TSV format. Assembly is an optional step of MOSCA’s workflow.

4

2.1. Meta-Omics Analysis 5

Figure 1: MOSCA MG architecture workflow. Blue icons: the main steps of the workflow; Yellow
icons: the bioinformatics tools utilized in each step; Green icons: the inputs needed to
perform the analysis; Orange icons: the intermediate files i.e., files outputted by one step
that serve as input to another step; and Navy Blue icons: the output files.

Binning takes as input the contigs obtained from the assembly and sorts their sequences
into groups that might represent an individual genome or genomes from closely related
organisms. MaxBin2 (Wu et al., 2016) is used to build bins (in FASTA format) and bins
evaluation with CheckM obtains reports in TSV format. If assembly is not executed, binning
is not either.

Annotation of metagenomes takes as input either the contigs constructed in the assembly
step or the preprocessed reads. Before Annotation, the gene calling takes place by using
FragGeneScan (Rho et al., 2010), which provides protein sequences (in FASTA format) for
homology-based annotation with UPIMAPI and domain-based annotation with reCOGnizer.
Results from annotation are organized into TSV and EXCEL tables and Krona plots.

2.1. Meta-Omics Analysis 6

MG Quantification is the last stage of annotation in MOSCA. It outputs readcounts for
each gene.

2.1.2 Metatranscriptomics

MT analysis enables an understanding of how the microbiome responds to the environment
by studying the functional analysis of genes expressed by the microbiome. It can also
estimate the microbial population’s taxonomic composition. MT projects workflows are
divided into the main steps: Preprocessing, Functional Annotation, Quantification, and
Differential Expression Analysis. MOSCA includes these steps into its MT workflow (Fig. 2).

Figure 2: MOSCA MT architecture Workflow. Blue icons: the main steps of the workflow; Yellow
icons: the bioinformatics tools utilized in each step; Green icons: the inputs needed to
perform the analysis; Orange icons: the intermediate files i.e., files outputted by one step
that serve as input to another step; Red icons: the intermediate files needed to be produced
by other analysis i.e., MG step; and Navy Blue icons: the output files.

2.1. Meta-Omics Analysis 7

Preprocessing is done as described for the MG, with the addition of removing reads
identified as rRNA by SortMeRNA (Kopylova et al., 2012).

Quantification and normalization takes as input preprocessed MT reads and aligns them
to a reference. If MG data is provided with MT, contigs from the MG workflow will be
used as reference. Otherwise, MT assembly with Trinity will provide contigs that serve as
estimations of the transcripts that generated MT reads, and those will be used for reading,
mapping and quantification. MT normalization in MOSCA uses either TMM or RLE, with
the option of which left to the user. These are two methods wisely used for RNA-Seq
Analyses (Maza, 2016).

Differential expression analysis takes normalized readcounts coming from the Quantifi-
cation phase of MOSCA MT, and performs statistical analysis to discover significant changes
in expression level between experimental groups. The analysis is made using DeSEQ2 (Love
et al., 2014), which estimates variance-mean dependence in count data from high-throughput
sequencing assays and tests for differential expression based on a model using the negative
binomial distribution. This phase produces two different outputs, several plots (in JPG
format), and significance reports in CSV format.

2.1.3 Metaproteomics

MP identifies the main functions driving microbial behavior by performing the identification
and quantification of proteins (Wilmes et al., 2015). MP pipelines workflows usually contain
the following main steps: Database construction, Protein identification, Protein quantification
and Differential expression analysis. These steps are included in MOSCA’s MP workflow
(Fig. 3).

2.1. Meta-Omics Analysis 8

Figure 3: MOSCA MP architecture workflow. Blue icons: the main steps of the workflow; Yellow
icons: the bioinformatics tools utilized in each step; Green icons: the inputs needed to
perform the analysis; Orange icons: the intermediate files i.e., files outputted by one step
that serve as input to another step; and Red icons: the intermediate files utilized by tools
produced in different analyses i.e., MG.

First database generation receives as input the preprocessed MG reads (in FastQ format)
and the ORFs (FASTAp) from MG Annotation and builds a FASTA database for MP with all
the possible sequences to be present in the dataset studied. MetaPhlan2 (Truong et al., 2015)
characterizes taxonomically the preprocessed reads, and for the taxa obtained it retrieves

2.2. Automation of MOSCA pipeline 9

reference proteomes, which are added to the database. The sequence of the protease used
(in FASTA format) is also added to the database. Two different workflows are available.
In the Compomics workflow, the cRAP database (common Repository of Adventitious
Proteins, containing a set of proteins commonly found in proteomics experiments which are
mainly contaminants) will be added, and a decoy database will be generated using FastaCLI
from SearchCLI (Wang et al., 2012) from the complete collection of proteins. If using the
MaxQuant workflow, the Database will be inputted directly to Protein identification, without
decoy database generation. The main output of this step is either the decoy or the base
database, in FASTA format.

MaxQuant workflow uses MaxQuant, a quantitative proteomics software designed for
analyzing large mass-spectrometric datasets. MaxQuant workflow receives the respective
Database generated from the previous phase and spectra (MGF) data files. It includes
Andromeda (Cox et al., 2011), which is a search engine based on a probability calculation
for the sorting of peptide-spectrum matches (PSMs). PSMs allow to relate spectra to
peptides present in the database. MaxQuant uses Andromeda to determine mass-dependent
recalibration function based on a preliminary database search and used after again to identify
one or more fragmented peptides, transforming the previous inputs information into a
Protein groups (TXT) file. The last step of the MaxQuant workflow, it uses MaxLFQ (Cox
et al., 2014) a pipeline for proteome-wide quantification, transforming Protein groups files
into Protein quantification (TXT) that is used in stage four Quantification post-processing.

Compomics workflow receives a decoy database from the previous stage, and spectra
(MGF) files as input. It uses SearchCLI to match peptides to spectra and PeptideShaker and
to identify the proteins from PSMs. Protein quantification is obtained as spectra counts from
PepetideShaker.

Quantification-Preprocessing consists in the utilization of two different methods to realize
statistical analyses, the first being the Local least squares imputation (Zhang et al., 2008), used
to substitute missing values with estimations obtained from the available quantifications,
and variance stabilization normalization is used to stabilize the variance of the data and
normalize it (Lin et al., 2008).

2.2 automation of mosca pipeline

MOSCA is a tool that uses Snakemake to achieve complete automation (Mölder et al., 2021).
Snakemake workflows are specified by decomposing them into steps represented as rules.
Each rule specifies how to generate a set of output files from a set of input files. A shell
command, a block of Python code, an external script (Python, R), a Jupyter notebook, or a
wrapper can accomplish this. The first rule is only defined with inputs and no outputs, and
Snakemake rollback rules until it finds that the inputs of a precedent rule. If those inputs are

2.2. Automation of MOSCA pipeline 10

present, it will begin by running that rule until it reaches the last one, which is the rule with
only inputs. As a result, if the workflow breaks in the middle of an analysis, Snakemake
workflows can resume from the point where it broke without losing any information gathered
in previous rules. Snakemake can accomplish this by utilizing the various files already
generated in previous run rules and by searching the input files from the various rules it
detects the last rule run, starting from that rules again. In the case of MOSCA pipeline
the snakemake workflow contains 15 rules, ”all”, ”preprocess”, ”join reads”, ”assembly”,
”binning”, ”fastq2fasta”, ”annotation”, ”recognizer”, ”quantification analysis”, ”metaphlan”,
”protein report”, ”entry report”, ”differential expression”, ”keggcharter” and ”report”. Rule
”all” is the last rule of the workflow containing only inputs. ”join reads” and ”fastq2fasta”
are intermediate rules, they work to transform files to be used by other rules. ”report” is the
rule producing three files containing the principal information obtained in all the steps of
MOSCA. Any other step is a principal step for producing and obtaining results. Fig.4 shows
the dependencies between each step of MOSCA.

2.2. Automation of MOSCA pipeline 11

Figure 4: MOSCA rules dependencies, in blue is show the main steps of MOSCA; in yellow interme-
diate steps; grey a step to produce output files; and red the rule ”all” to check that all rules
have run with success.

2.3. MOSGUITO: Interactive Web-based application for MOSCA pipeline 12

2.3 mosguito : interactive web-based application for mosca pipeline

MOSGUITO is an interactive web-based application implemented using ReactJS (ReactJS.org,
’ ReactJS official’. [Online], 2022). MOSGUITO is available at https://iquasere.github.io/

MOSGUITO and is only able to build a configuration file to use in MOSCA and to upload
a zip file with results from MOSCA analyses. MOSGUITO is organized into seven pages
a ”config” page that provides input fields to set general configurations affecting the entire
workflow, especially the MG and MT workflows; an ”experiments” page that provides a
metadata table about each dataset; a ”uniprotColumns”, a ”uniprotDatabases” and a ”keg-
gmaps” pages that provide selection panels where Uniprot columns and Uniprot databases
for UPIMAPI and metabolic maps for KEGGCharter are set, respectively; a ”proteomic-
sConfiguration” page which provides fields of input to configure the MP workflow; and a
”results” page providing a button to upload a results ZIP file outputted by MOSCA at the
end of its analysis, displaying the results inside MOSGUITO(Fig. 5).

https://iquasere.github.io/MOSGUITO
https://iquasere.github.io/MOSGUITO

2.4. Overview of web services performing analysis of omics data 13

Figure 5: Application structure of MOSGUITO. Purple boxes represent the entry point to the applica-
tion, red boxes represent the pages available for user interaction and green boxes represent
the categories of pages, inside which the pages are nested in the side bar.

2.4 overview of web services performing analysis of omics data

There are already several pipelines developed for the study of omics, many of them available
online. Table. 1 presents a general comparison of some of the most popular. The pipelines
workflows can be categorized into three different types: ”Sequential” is frequently chart-
based, progressing from one phase to the next, each stage is dependent on the previous
phase’s actions being completed; ”State Machine” is a little more complex, and activities
in these workflows frequently switch back and forth between steps as needed and; ”Rules-

2.4. Overview of web services performing analysis of omics data 14

Driven” which is carried out in accordance with a sequential procedure governed by rules.
MG-RAST (Wilke et al., 2015) is a web tool with a Rules-Driven workflow that receives raw
sequence data as input. Users of MG-RAST can upload raw sequence data in the formats
of fastq, fasta, and sff. MG-RAST outputs tables with taxonomic information, Images,
graphs, for example, compare annotation data, PCoA, heatmaps, and dendrograms it let
users download files resulting from each step and processing. SLIDE (Ghosh et al., 2018)
is an open-source, web-based tool to visualize large-scale-omics data interactively. SLIDE
accepts a text-delimited input data file containing a matrix of expression values (comma,
tab, space, semi-colon, pipe). SLIDE contains a Sequential workflow, outputs a quantitative
visualization of omics data in expression-based heatmaps on a standard web browser, and
allow users to move around the heatmaps interactively and make sub-analyses of specific
feature groups. MetaOmics (Ma et al., 2018) is a comprehensive analytical pipeline and
browser-based software suitable to meta-analyze multiple transcriptomic studies for various
biological purposes, including quality control, differential expression analysis, differential
co-expression network analysis, clustering, prediction, pathway enrichment analysis, and
dimension reduction. MetaOmics contains a Sequential workflow, receives as input tables in
TXT and CSV format, outputs different graphs in JPG format with Enrichment pathways
and diagnostic plots and tables with functional annotation and Differential expressed
genes to visualize in the local web. RAMONA (Sass et al., 2015) is a Web application
for multilevel omics data gene set analysis. RAMONA contains a Sequential workflow,
receives as input a list of genes and outputs interactive visualizations of the inferred active
terms in the context of their respective pathways or ontology hierarchy. MetaGOmics
(Riffle et al., 2018) is a Web application that automates the quantitative functional (using
Gene Ontology) and taxonomic analysis of metaproteomics data. MetaGOmics contains
a Sequential workflow, receives as input FASTA files and outputs a text report or images
comparing the ratios of GO terms in the two experiments, the end users are only able to
download the results. iMetaLab (Liao et al., 2018) is a cloud-based platform with a user-
friendly web interface that allows general users to quickly acquire peptide and taxonomic
abundance information as well as protein function annotation from raw mass spectrometry
data. iMetaLab contains a Rules-Driven workflow, receives as input mass spectrometry data
and outputs interactive visualizations mass spectrometry performance, identified unique
peptides and proteins, taxonomy profile and function annotation. Unipept (Mesuere et al.,
2016) is an open source web application that is designed for MP analysis with a focus on
interactive data visualization. Unipept contains a Rules-Driven workflow, receives as input
mass spectrometry, dataset containing peptide analysis and outputs interactive visualizations
heatmaps, tables and graphics containing taxonomy information. COMAN (Ni et al., 2016)
is a web-based application for functional characterisation and comprehensive analysis of
high-throughput MT data. COMAN contains a Sequential workflow and receives as input

2.4. Overview of web services performing analysis of omics data 15

Illumina paired-end sequencing reads in FASTQ format and a metadata file specifying the
sample conditions for comparative statistical analysis and outputs interactive visualizations
KeggMaps, Graphics containing statistic information and tables. WebCARMA (Gerlach et al.,
2009) is a web application for the taxonomic and functional classification of unassembled
(ultra-)short reads from MG communities. WebCARMA contains a Sequential workflow
and receives as input MG reads and outputs ZIP file containing taxonomic and functional
information.

Table 1: Comparison of different web services for meta-omics analysis. Comparing Automatic data
retrieval, if the tool can retrieve the results from the pipeline to the web; workflow types, if
the workflow Rules-Driven, Sequential, or a State Machine; Types of inputs; and types of
outputs.

2.5. Client-Server 16

2.5 client-server

Client-server is a system architectural model in information technology that consists of
two parts: client and server systems that communicate across a computer network. A
client-server application is a type of distributed system that includes both client and server
software. The client-server application allows for more efficient task distribution. The client
process is constantly connecting to the server, while the server process is still waiting for
requests from any client. A client is a computer hardware device that runs software and
connects to a server to access a service. A server is a computer with dedicated software
that runs on it and provides services to other machines. The client-server concept described
how a server makes services and resources available to one or more clients. A one-to-many
relationship exists between server and client, which means that a single server can give
internet resources to several clients at the same time. When a client requests a link to a
server, the server might accept or refuse the request. If the link is permitted, the server will
create and maintain a connection with the client using a specified protocol.

2.5.1 Client-Server architecture

The client-server architecture can be divided into four different categories: one-tier, two-tier,
three-tier, and N-tier (Software Architecture: One-tier, Two-tier, Three Tier, N Tier, n.d.) (Fig.6).
A one-tier application, commonly referred to as a standalone application, unifies all of the
software’s levels, including the display, business, and data access layers. Client applications
(client tier), often referred to as client-server applications, and databases are separated
into separate components of application design by two-tier architecture (data tier). The
presentation layer (sometimes referred to as the client tier), the application layer (often
referred to as the business tier), and a database layer make up three-tier architecture, or
web-based application architecture (data tier). A three-tier design is similar to an N-tier
architecture, but the number of application servers is increased and distributed over more
levels to better accommodate business logic. Client-Server system are divided into various
components (Kumar, 2019):

• Client is process or program known as a ”client application” delivers a job request to
a server across a communication network.

• Server is a group of programs and watches for client requests that are sent through
the communication network.

• Application Server is a component-based product found in the middle tier of a
server-client architecture.

2.5. Client-Server 17

• Database Server is a particular kind of server that offers access and retrieval of data
from databases.

Figure 6: Different categories of client-server architectures one-tier, two-tier, three-tier and N-tier.

2.5.2 Server

A Server with multiple applications to run independently and to not overcharge a server,
normally are deployed inside Docker containers Merkel (2014).

2.5. Client-Server 18

Docker

When applications are deployed inside containers an additional layer of deployment is
added on top of the container environment where the programs are virtualized and run.
Docker is made to provide a speedy, light environment where code can run effectively, and
it also offers the additional capability of a professional work procedure to remove the code
from the computer for testing before to production. Docker enables you to test your code
and deploy it into the production environment as quickly as feasible. To be able to manage,
scale and automate deployment into containerized applications is necessary the use of a
complex tool called Kubernetes Tesliuk et al. (2019).

Kubernetes

The open-source orchestrator Kubernetes is utilized to develop, maintain, and deploy
containerized applications (microservices). It offers scaling with decoupled design and
container APIs with rapid shipping. It serves as a self-service platform that gives the
developer team access to a hardware abstraction layer. Developer can immediately access the
resources and manage the increased workload as a result. Fig.7 shows the principal concept
of a kubernetes architecture containing nodes with a service and pods, a pod is a virtual
server and a service is responsible for the interaction with pods, the CTRL plane shows the
Kubernetes API containing backing store data about pods and respective services.

2.5. Client-Server 19

Figure 7: Kubernetes architectures concept, divided into nods containing an instance to run, a Load
Balancer to connect the users outside of the cluster to the respective nodes, and a control
API that stores information from the nodes and services.

2.5.3 Database Management System

A Database Management System (dbms) is software to construct and manage databases by
running queries on the data performing CRUD (Create, Read, Update and Delete) (CRUD)
operations, Create operation is used to create new records to a database, Read operation is
used to retrieve information from the database, Update operation is used to modify a record
inside the database and Delete operation is used to remove a record from a database. A
database is a structure built with related lists. It serves to store information. Without a dbms,
it is impossible to retrieve information from the database. Databases can be categorized
into different types: Hierarchical Databases that use a parent-child model to store data
allowing the data to appear to be in a tree format with one object on the top; Object-
oriented databases, which are based on object programming, being the data tied to a unique
object, these databases are managed by oriented programming languages; and Relational

2.6. Web Service 20

databases, the data is stored in tables that are related, and using a dbms is possible to
perform CRUD operations to them. Python frameworks support Object-oriented databases,
e.g., MongoDB (Membrey et al., 2010), Relational databases, e.g., My SQL (Svehring, 2021),
and relational-object-oriented databases e.g., PostgreSQL (Obe and Hsu, 2017).

2.6 web service

Web services are a software that uses defined messaging protocols and is made accessible
for usage by a client or other web-based programs through an application service provider’s
web server. To interface with diverse applications, web services are constructed utilizing
open standards and protocols (Ankolekar et al., 2002). Web services employ the following
protocols:

• Extensible Markup Language (XML) - This is used for data tagging, coding, and
decoding (Bray et al., 1997).

• Simple Object Access Protocol (SOAP) - The data is transferred through this. The
SOAP protocol was created to make it simple and quick for various computer languages
to communicate with one another (Box et al., 2000).

• Web Services Description Language (WSDL) - This is used to inform the client
application about the web service’s contents and connection details (Christensen et al.,
2001).

• Universal Description, Discovery and Integration (UDDI) - This is used to list the
services that are offered by a certain application. Additionally, it enables other services
to find web services (Richards, 2006).

• Representational State Transfer (REST) - Although not all web services use the REST
protocol, programs created with RESTful APIs are lighter, easier to control, and more
scalable (Ong et al., 2015).

2.6.1 Types of Application program interface

An API is a way for two computer applications to trade information over a network using a
common language that they both understand. An API can provide a hook for colleagues,
partners, or third-party developers to access data and services. Some APIs are open to
any developer, while others are open only to partners or are used internally to help run a
business better and facilitate collaboration between teams. APIs can be private, partner, or
public (Nordic, n.d.):

2.6. Web Service 21

• Private APIs pair two processes directly. These APIs usually provide access to data
and can also provide integration components.

• Partner APIs represent business relationships APIs for trading information between
different private or public entities.

• Public APIs, also often referred to as open APIs, are publicly available and there is no
limitation in accessing them.

Public means that the API is available to almost anyone with little or no contractual arrange-
ment with the API provider. Private APIs and Partner are used in a variety of ways, whether
to support internal API efforts or a partner’s use of the API.

RESTfull API definition

For an API to be considered a RESTful API, it needs to follow some architectural constraints:

• Needs to have a uniform interface. Interface uniformization consists of having an
identification of constraints, meaning the use of Uniform Resource Identifier (URI) that
is a Uniform Resource Locator (URL) plus a name of the resource, Manipulation of
resources using HTTP requests with GET to retrieve information from the respective
resource, Self-descriptive messages, using MIME types, description in code of a file
type e.g., txt (test/plain), image(image/gif) in the HTTP request so the client can find
data and last Hypermedia as the engine of application state creating URI templates,
this URI is common, only changing a few characters in the respective URI from case to
case.

• Needs to be Stateless, this means the server-side of the software can’t store any user
information, needing that all the information needed must be passed in the URI.

• Needs to have a Cache system, that way the software can store frequently accessed
data in several places in the request-response path, that way the response of the system
can be faster if the request is present in the cache that way the request doesn’t need to
reach the service.

• Needs a Client-Server, a client-server is the interface of the page web, it doesn’t store
any information, only the user state.

• Needs to have a Layered System, which means having different parts of the current
software in different servers, database in a server, server-side in other and client-side
in other, that way a user never knows to which server he is connected, improving
security (Fielding, 2000).

If any of these constraints are not implemented, hypothetically an API or software can’t
be called RESTful.

2.6. Web Service 22

Python Frameworks to developed RESTful APIs

To facilitate the development of APIs, Python web Frameworks have been developed. A
web framework is a collection of packages and modules which allows developers to write
Web applications. Frameworks can be divided into two great groups, Micro Frameworks,
frameworks that lack functionality like authentication methods, a web template engine, being
less complex and easy to learn. E.g., Flask(Aslam et al., 2015) has a Modular architecture
meaning is a framework to provide structural support, does not contain any Authentication,
database and engine template modules in the out-of-the-box version, and per default is
only able to support HTTP requests and responses; Bottle(Hellkamp et al., 2016) has a
Modular architecture meaning is a framework to provide structural support, does not
contain any Authentication, database and engine template modules in the out-of-the-box
version, and per default is able to support HTTP, XML and JSON requests and responses;
and Pyramid(McDonough, 2021) has a Modular architecture meaning is a framework to
provide structural support, does contain Authentication module and a caching system, but
doesn’t contain a database and engine template modules in the out-of-the-box version, and
per default is only able to support HTTP and JSON requests and responses. The other group
is Full-stack frameworks. E.g., Django(Forcier et al., 2008) has a Monolithic architecture
meaning is a framework with a vast codebase and structure, does contain Authentication,
database and engine template modules and a caching system in the out-of-the-box version,
and per default is able to support HTTP, XML and JSON requests and responses; Tornado
(Dory et al., 2012) has a Monolithic architecture meaning is a framework with a vast codebase
and structure, does contain Authentication, database and engine template modules and a
caching system in the out-of-the-box version, and per default is able to support only HTTP
and XML requests and responses; and Web2py (Di Pierro, 2013) has a Monolithic architecture
meaning is a framework with a vast codebase and structure, does contain Authentication,
database and engine template modules and a caching system in the out-of-the-box version,
and per default is able to support HTTP, XML and JSON requests and responses, these
frameworks are able to use a combination of a database module, authentication module, and
a web template engine. The next table compares the different frameworks. (Table. 2)

2.6.2 Authentications Methods for web Services

Usually a Web Service is present with authentication process. The authentication process is
divided into three interrelated concepts: ’Identification’ corresponds to the communication
of user identity with an Information system, ’authentication’ corresponds to an acceptance
that the user identity is correct, this authentication can be used with email or other personal
information, ’authorization’ corresponds to the privileges of the user and the respective
use of their information. Exist different types of API authentication methods, being the

2.6. Web Service 23

Table 2: Comparison of different python frameworks to develop RESTful APIs. Comparing framework
architecture, modular or monolithic; Authentication Method, if the out-of-the-box framework
contains it; It shows if the out-of-the-box framework contains an Authentication Method,
a caching system, a database module, and a web template engine; It shows the principal
communication protocols the framework support, for the requested and receiving messages.

most used HTTP Authentication Schemes Franks et al. (1999), API Keys(Farrell, 2009),
OAuth(Hardt et al., 2012) and OpenID Connect(Sakimura et al., 2014).

• HTTP Authentication Schemes - HTTP authentication Schemes are divided into basic
authentication and bearer authentication. The simplest and most direct way is basic
authentication. The sender adds a username and password using this method to the
request header. In order to ensure secure transmission, the login and password are
encoded using Base64, a method of encoding that reduces the two pieces of information
to a string of 64 characters. Bearer Authentication can be understood as “give access to
the bearer of this token.” The bearer token allows access to a certain resource or URL
and most likely is a cryptic string, usually generated by the server in response to a
login request.

• API Keys - In an attempt to address the early authentication problems with systems
like HTTP Basic Authentication, API Keys were developed. Each first-time user
in this procedure is given a special generated value, indicating that the person is
recognized. The user’s unique key, which is sometimes produced based on their
hardware configuration and IP information and other times randomly generated by
the server that knows them, is used to verify that they are the same user as before
when they try to re-enter the system.

2.6. Web Service 24

• Oauth - OAuth consists of using third-party applications to Identify the user, this
method uses the third-party application to retrieve user authentication and authoriza-
tion without the need to interact with user credentials.

• OpenID Connect - On top of the OAuth protocol, OpenID Connect adds a straight-
forward identity layer that enables computer clients to access a user’s basic profile
information and confirm their identity based on the authorization server’s authentica-
tion. A client application can authenticate a user and acquire information (or ”claims”)
about that user, such as the user name, email address, and other details, using the
sign-in procedure defined by OpenID Connect. A secure JSON Web Token (JWT)
called ID token contains user identify information that has been encoded. JWT is an
open, accepted mechanism for securely representing claims between two parties that
is defined by RFC 7519. You can generate, decode, and verify JWT. Although JWT is a
standard, it was created by Auth0, a firm that manages identities and authentication
through APIs.

3

M AT E R I A L S A N D M E T H O D S

MOSGUITO was developed as a web service application with a client server architecture
joining MOSCA and MOSGUITO in one application. It was built as a three-tier application
having a server, a corresponding client, and a Database to store files and user related data.
Flask was used as the main framework to develop the corresponding APIs because is a
Modular framework being able to provide structural support to the server MOSCA and
is easier to learn and build APIs without the need of an extensive understanding of the
respective libraries and vast code like monolithic frameworks.

3.1 server

In order to communicate with the Snakemake scripts containing the workflow of MOSCA
which work as a unit starting at one rule and terminating in another, a API was built
using Flask. The main goal of the server is to make each rule in the workflow of MOSCA
independent. To achieve this, we built input functions for each rule of Snakemake to check if
the corresponding input files of the rules exist in a folder where only files from outside the
server are inserted. If those files exist, the rule can run independently if necessary, keeping
the workflow intact and independent.

3.2 mother api

Mother API serves as an intermediary between the client and the server. The Mother API
responsible for connecting to the server can interact with the Database API to insert, delete
and retrieve files from the respective user and can send them to the server to start the
analyses, by storing and building temporary files from physic files and send them to the
respective requester. Cause every input in the MOSCA is defined by a constant name, the
Mother API is responsible to rewrite the name of the temporary files that are sent to the
server, avoiding server errors. Every function in the Mother API requires a cookie that exists
when a user successfully logs in, every time the user makes a request the cookie is sent to

25

3.3. Database 26

the Mother API. If no cookie is sent from the browser to the Mother API containing the
user information, the Mother API will respond with an error, and will redirect the user
to the Login Page, we will talk more about the cookie in a next section. The Mother API
uses Requests Requests lib (n.d.) a library that makes it incredibly simple to send HTTP/1.1
requests.

3.3 database

The database was built using PostgreSQL because is a relational object-oriented database
being a combination of an Object-oriented database model and a Relational database model,
and in order to create the various tables, columns, and unique sequences, it was built using
conventional programming in Python using SQLAlchemy (Myers and Copeland, 2015).
SQLAlchemy is a Python library that bridges the gap between conventional programming
and real-world databases by providing an Objective-relational mapping. If a cookie is sent
from the client-side containing user information, the API of the database is always able to
retrieve information from the database. If a cookie is not sent from the client-side containing
user information, there is no user to retrieve information from the database, and it is not
allowed to pick any information from the Database. The database API can upload files from
the output directory’s, convert them to temporary files, and send them to the Mother API,
which can then send them to the server or to the client-side, allowing the user to analyze or
download the required files.

3.4 client-side

MOSGUITO was transformed to be able to adapt to all the requirements from the servers and
from the mother API. Two new pages were added to MOSGUITO related to file management,
one that let users upload input files into the database each input file must be categorized by
a type, the other let end users consult their inputs files already inputted into the database,
and let them delete or download their inputs files. To begin analyses on the server, another
page was developed the page is divided in three major steps: the first is selecting the
analyses to perform, the second is selecting the input files that will be used in the respective
analyses, and the third is the overall name the end user provides to the individual analyses.
Previously, results of MOSCA could be uploaded to MOSGUITO; now, users will be able to
download all of the files created by the analyses, or display the results in the browser. For
the client-side to send information to our Mother APIs using HTTP protocol it has used
axios Axios (n.d.) , Axios is a nodeJS and browser-based promise-based HTTP client. It is
isomorphic (meaning it can run in both the browser and nodeJS using the same codebase).

3.5. Authentication 27

It uses the native nodeJS HTTP module on the server, and XMLHttpRequests on the client
(browser).

3.5 authentication

User oriented web applications usually include a Login authentication, and for the privacy
of analyses and results we decided to build an OpenID authentication by utilizing cookies
as the main login method. The Authentication is done by the database API, verifying if
the credentials coming from the client-side match the user credentials. If credentials are
valid the server will send an encoded cookie to the client-side. The presence of the cookie in
browser lets user access other URLs from MOSGUITO. The cookie contains user logged in
information and the date the cookie was created with an expiration time of one hour, which
means after one hour the cookie will expire and send the end user to Login page again, to
encode all the information stored in the cookies is used JWT to do the encoding. With the
insertion of authentication some adjustments have been done to the APIs, a user every time
it requests something to the Mother API a function runs checking if the cookie exists.

4

R E S U LT S

MOSGUITO as a web service can interact with MOSCA as a server and a database to create
and store information from results of MOSCA.

Fig.8 shows the full architecture design of MOSGUITO divided into four main components,
the server that uses MOSCA pipeline; the Database using PostgreSQL; the Web Services
APIs the ones responsible to connect the MOSGUITO client application to the database
and the corresponding server; and the Client-side transformation with the integration of
authentication methods using OpenID Connect.

28

29

Figure 8: MOSGUITO as a web service implemented architecture, with the construction of the server
utilizing MOSCA, the interconnection using APIs and the respective MOSGUITO as the
client-side.

MOSCA as a server was transformed, Fig.9 showcase a comparison between the past and
current versions of MOSCA workflow and the different inputs each rule is able to receive.

30

Figure 9: Comparison of the snakemake workflow, in the first version of MOSCA and in the actual
version of MOSCA. The first one only receive inputs for the preprocess step, while in the
new version is able to receive inputs in all rules, making every rule independent or not
from others depending on the presence of their inputs.

31

For the Database we build the table hierarchy Fig.10 using Python and defined three
separate tables one main table and two child ones. As the main table the User Table
containing information from end users, is formed by several columns, ”id” as a primary key;
”google id” as a primary key to be populated if the account is logged in from OAuth using
Google; ”User id” and ”email” containing the end user’s email; ”Password” containing the
password for the corresponding user, the password in the database is stored as an hashcode,
the hashcode is building by hashing the password, hashing uses an encryption algorithm
to convert your password (or any other piece of data) into a short string of letters and/or
numbers, the hashing of the password is done using werkzeug.security (werkzeug, n.d.). As a
child table the Input Files containing information about all Input Files, is formed by several
columns, the ”parent User Id” from the user table; ”id” as a primary key to give each input
file a unique key; ”data” containing the date when the file was stored in the database; ”Type”
containing the type of the file, each type is essential for different rules in the server; The
physical files are not stored in the Database, they are stored inside different directory’s of
the server, the directory’s are separated by end user Id. As other child table the Output Files
containing information about all the results obtained from the server, is formed by different
columns, ”Analyses Name” that end user gave to their analyses; ”Rules run” containing
all rules run in the analyses, ”parent User id” coming from the User table, both ”Analyses
Name” and ”user id” are primary Key and Foreign Key respectively, each user can only
have one analyse with a respective name; ”hashcode output” generated to be attached to
each directory containing the results from the analyses, ”hashcode output” is a unique key,
when MOSCA finishes the analyses, a ZIP containing all the results from the analyses are
unzipped inside a directory containing ”Output hashcode output” storing all files inside.

32

Figure 10: Database Schema with all fields and respective father and child relationships tables,
containing the information about primary and foreign keys.

MOSGUITO was tested using a generic user. As a first step it is necessary to Login in the
MOSGUITO application using the interface displayed in Fig.11. The interface also allows for
new users registration.

33

Figure 11: ”Login page” from MOSGUITO

After the authentication authorization, a Home Page Fig.12 appears containing information
about MOSCA and MOSGUITO,

34

Figure 12: ”Home page” from MOSGUITO containing information about the project.

there is another page containing information about the developers and intervention of both
applications. The configuration is tweaked in five pages: “General configuration”, “UniProt
columns”, “UniProt databases”, “KEGG metabolic maps” and “Proteomics configuration”
(Table.3).

35

Table 3: Parameters of the configuration file and the respective page of MOSGUITO and type of input
available for changing its value on the client-side.

36

Parameters in text fields take as input short text, which should correspond to the right
values; number fields take as input a positive number, with buttons on the side to increase
and decrease the value by 1; checkbox fields can be ticked and unticked for values of true
and false, respectively; multiple selection fields allow to pick an option from a limited
number of choices. Fig.13 shows a snapshot of the “config” page of MOSGUITO.

Figure 13: ”General configuration” page of MOSGUITO, with the side bar on the left, showing the
main sections of MOSGUITO and the pages of the “Configuration” section.

The experiments table is set in the “Experiments” page, inside MOSGUITO (Fig.14). The
buttons provide the following functionalities: “ADD ROW” adds a new line for inputting a
new dataset, “REMOVE LAST ROW” removes the last line of the table, “DOWNLOAD TSV”
downloads the data in TSV format. In each row, the “Files”, “Sample”, “Condition” and
“Name” take a short text as input, and “Data type” allow for a selection between “DNA”,
“mRNA” and “protein”. “Files” are read only and are populated with the name of the files
that served as input. Datasets with the same “Sample” value are assembled together, so it
should be set for datasets coming from the same communities. Data type determines the
type of analysis MOSCA will perform: “DNA”, “mRNA” and “protein” will be analyzed
through the MG, MT and MP workflows, respectively.

37

Figure 14: “Experiments” page of MOSGUITO. Blue buttons add or remove one line at the end
of the table, pink button downloads the data in the table in TSV format, and for each
line, information concerning each dataset can be inputted: the files paths, the “sample”
category, the type of data, the “condition” category, and a name to be associated in the
outputs.

The end user must upload files in order for them to be used in server analyses. The Input
page allows users to upload their files and categorize them by type; each type is required
for specific analyses. The user is only able to input one file at a time Fig.15.

Figure 15: “Upload Inputs” page of MOSGUITO. Red buttons to upload the file, and a dropdown list
to select the type of file associated with the input.

A user can also download and delete files from the database using information about their
uploaded files obtained in ”My inputs” page from MOSGUITO; each user has a memory
size of 20GB for files saved on the server Fig.16.

38

Figure 16: “My Inputs” page of MOSGUITO. Red buttons to download and delete files selected in
the table, and a blue one to clear select files.

A user can start an analyses in MOSCA using ”Analyses” page. The page is divided into
three major components, in the first one users can select the analyses to run, in the second
the experiments table needs to be populated, using the information from the experiment
files, for every row a input button will appear representing different inputs necessary’s for
each analyses, clicking in the buttons files categorized by the type necessary for the analyses
appear and the end user matches them to each of the rows, in the third step is to give a
Name to the analyses, and send the analyses to the server by clicking the button send to
analyses Fig.17.

39

Figure 17: “Analyses” page of MOSGUITO is divided into three major steps one to select the analyses
to realize, another to match the inputs files to the experiments dataset and another to give
a name to the corresponding analyses.

If the user needs to see the results from their analyses, going to the ”Results” page they
can see in a table format all the Analyses they submit in the server, sorted by date and
containing ”Analyses Name” and to other columns containing a button to download all the
results produced by the server the file comes in ZIP format, and another column with a
button to let users watch the results in the client-side, only a few files are displayed in the
client-side, notably “FastQC Reports”, “AssemblyQC”, “Annotation Results”, “Differential
Analysis”, “KEGGMaps”, “EntryReports”, “General Reports” and “Protein Reports”. In the
FastQC reports page and Annotation Results page for each different results you will have
an “Accordion” with the names of the respective FastQC/Krona Plot of annotation Result,
and if you click on them, you will see the FastQC with all the interactions the HTML of
the FastQC/Krona Plot offer. Fig.18 shows a snapshot of the “Accordion” and the FastQC
report/Krona Plot pages.

40

Figure 18: In the section a) shows a snapshot of “FastQC reports” page of MOSGUITO. For each
result will be a “Accordion” with the name of the report, and inside that “Accordion”, the
FastQC Report with all the interactions possible a FastQC have. In the section b) shows
a snapshot of “Annotation Results” page, for each annotation result it will present an
“Accordion” with the respective Krona Plot and all the interactions associated with it.

41

In the ”AssemblyQC” page a report on the quality of contigs obtained is presented,
showing the results in a table, for each different quality contigs in the results an accordion
with assembly table name will appear, selecting them will display the respective table on the
page. Fig.19 shows a snapshot of the AssemblyQC page.

Figure 19: “AssemblyQC” page of MOSGUITO. For each assembly table will be an “Accordion” with
the name of the table, the table can be sorted by clicking in the column names. And in the
rows for page, you can select how many rows per page you want to show.

In the ”Differential Analysis” page heatmaps on the differential analyses obtained is
present, showing every Heatmap produced by the analyses, being displayed in the browser
with their names. Fig.20 shows a snapshot of the Differential Analysis page.

42

Figure 20: “Differential Analysis” page of MOSGUITO. For each Heatmap in the differential analysis
of MOSCA, you will get the label and the corresponding heatmap, when you click on the
image, it will stand out from the webpage.

In the ”KEGGmaps” page a KEGGmap on the keggcharter obtained is present, showing
every KEGGmap requested in presented in the configuration. MOSCA can produce more
that 300 KEGGmaps, so to not overload the browser, the client-side is able only to show 6

KEGGmaps at a time, to do that in an initial state of page you have a accordion with all the
KEGGmaps produced by your analyses with a checkbox. By selecting the checkbox and the
button the selected KEGGmaps are displayed in the ”page”. Fig.21 shows a snapshot of
KEGGmaps page.

43

Figure 21: “KEGGmaps” page of MOSGUITO. In the a) section a snapshot of an Accordion with all
the KEGGmaps possible to visualize, you can choose a max of 6, other way it will show
a warning message, click on the blue bottom to show the selected KEGGMaps. In the b)
section a snapshot of the KEGGmaps results, the selected one, clicking on the image will
have the image stand out from the website, the blue button will make the KEGGmaps
page return to the a) section.

44

In the ”EntryReports”, ”GeneralReports”, ”ProteinReports” pages tables on entry report
and protein report respectively obtained is present, showing the respectable tables, containing
the report information. Fig.22 shows a snapshot of all this pages.

45

Figure 22: In the section a) shows a snapshot of the “EntryReport” page, the page presents a search
bar in the right top, the search bar presents a button (“x”) to clear the search bar faster,
and in the bottom a red button to download the current state of the data in the table. In
section b) shows a snapshot of the “GeneralReport” page, the page presents the table and
the search bar. In section c) shows a snapshot of “ProteinReport” page, the pagent presents
a search bar in the right top with a button (“x”) to clear the search bar, and in the bottom
a red button to download the current state of data in the table.

46

Cause MOSCA/MOSGUITO is not yet implement in a physical server so to work with the
current version of the web service, the suggested installation method for MOSCA is:

1. Install Python version 3.10 going to https://www.python.org, and all dependencies by
typing:

pip install Flask

pip install flask-sqlalchemy

pip install psycopg2

pip install Flask-Cors

pip install flask-restful

pip install pyOpenSSL

pip install PyJWT

pip install Flask-JWT-Extended

pip install requests

pip install python-magic-bin

2. Install PostGresSQL using guide in https://www.postgresqltutorial.com/postgresql-getting-started/

install-postgresql/, Open SQl shell, and type:

CREATE DATABASE Teses

3. Download APIs and scripts from github using command-line:

svn checkout https://github.com/JosePereira97/Tese/trunk/Full Job/Back end

4. Build DataBase inside PostgresSQL using:

from app BD import db

python

db create all()

5. Downloading and installing MOSCA to a linux environment. Installation of MOSCA
requires mamba, which can be installed with conda install -c conda-forge mamba. To
install MOSCA from source code, run:

svn checkout https://github.com/JosePereira97/MOSCA

bash MOSCA/workflow/envs/install.bash

conda activate mosca

In Snakemake.main() we need to subtitute sys.exit() with return to be able to get
responses from Snakemake.

https://www.python.org
https://www.postgresqltutorial.com/postgresql-getting-started/install-postgresql/
https://www.postgresqltutorial.com/postgresql-getting-started/install-postgresql/

47

6. Downloading client-side MOSGUITO by:

svn checkout https://github.com/JosePereira97/MOSGUITO

7. Last Step consists in running all different application using different command line
instances by:

python app BD.py

python app.py

mosca.py

npm start

Start testing the Web service using MOSGUITO. Because MOSGUITO only works
remotely because the lack of a server, the application is only able to do one analysis at
a time. With the implementation in a server using kubernetes, the server is able to do
more analysis in the same time, using the replication of docker servers.

5

D I S C U S S I O N O F T H E R E S U LT S

MOSGUITO as a web service is divided four different components. Initially, the server
MOSCA divided each step into different containers, all linked together, but using the
Snakemake workflow, that was already implemented in MOSCA, it was possible to turn
each step of MOSCA independent, without dividing them in different docker containers.
MOSCA was constructed to be stored in docker containers inside a Kubernetes cluster,
which is not yet implemented. Usually this kind of applications servers are stored inside
physical servers, but is not yet the case for MOSCA. That way it was not possible to compare
speed performances between different applications servers. To build APIs it was decided
to use Flask cause it was easy to learn and utilize, but in complex APIs is harder cause it
needs supplement packages to be able interact with other application like a Database. Our
APIs use HTTP protocol to trade information between client and server, but usually this
kind of applications use HTTPS protocol, because it’s safer. But to use HTTPS protocol it is
necessary to have credential servers, and because MOSCA is not implemented in a server
there is no credential HTTPS protocol.

MOSGUITO/MOSCA is a unique application, being a web tool doing all meta-omics
analysis, i.e., MG, MT and MP. Tab.4 shows a comparison of different features and usability
in different meta-omics web tools. MG-RAST contains authentication methods, is able to
store input and output files from users into a Database, end users can make their results
public, users can download or visualize their results in the browser, it’s an easy to use
application with a lot of help in each step to start an analysis, and end users are able to
configure their analysis. SLIDE contains authentication method cause is publicly available
under BSD license, users can download and visualize their information, more information is
unavailable about the interface cause is private, expensive and there is no more information
available. In MetaOmics and RAMONA web services end users can visualize their results,
only MetaOmics users can configure the Workflow, users are unable to Authenticate, store
files in server cause the web service is a local one, users can only access client side by
installing the application, unable to configure the steps of the pipeline, and client side
does not contain any Usage guide. In MOSCA users can visualize outputs, store input
and output files in server database, configure MOSCA workflow and steps, but lack in

48

49

a User guide in the Client side for easy understanding. In MetaGOmics users can only
download their results, only output files are stored and shared with end user by an URL
scented to a specific email, users can Configure the workflow and client-side contains every
information needed to help end users. In iMetaLab users can visualize outputs, store input
and output files in server database, configure iMetaLab workflow and steps, but lack in a
User guide in the Client side for easy understanding. In Unipept web services end users
can visualize their results and configure their analysis, users are unable to Authenticate,
store files in server cause the web service is a local one, users can only access client side by
installing the application, unable to configure the steps of the pipeline, and client side does
not contain any Usage guide. In COMAN web services end users can visualize their results
and configure their analysis, users are unable to Authenticate, and configure the steps, and
there in no information about the feature of storing files and client usage guide, COMAN
client side is down in the time being so some information is unknown. In WebCARMA
users can only download their results, client side does not contain authentication module,
end users are unable to configure workflow and analysis steps, and there in no information
about the feature of storing files and client usage guide, WebCARMA client side is down
in the time being so some information is unknown. In the end, every web tool except
MetaGOmics and WebCARMA let users visualize and interact with their results on the web.
Only MG-RAST, SLIDE, MOSCA, and iMetaLab offers an Authentication module to end
users. Only iMetaLab, MOSCA, and MG-RAST can store input and output files from end
users, being MetaGOmics the only one able to store only Output files. Every web tool except
RAMONA and WebCARMA let users configure the pipeline workflow. Only MG-RAST,
MOSCA, and iMetaLab let end users select and configure the pipeline steps. Only MG-RAST
and MetaGOmics web tools contain a guide built into the client side.

50

Table 4: Comparison of different web services for meta-omics analysis. Comparing features in
the client-side of the application. Each column represents a different feature: Graphical
visualization/interaction, if client-side of meta-omics tools can display results; Authentication,
if client-side contains authentication module or not to protect end user data; Storing Files, if
web service can store input and output files, 1º signal for inputs 2º signal for outputs, i.e.,
in MetaGOmics doesn’t store input files, but stores output files; Configuration Workflow,
if end-user are able to configure the workflow of meta-omics pipeline from the web; Step
Configuration, if end-users can select each rule to run without previous rules; Client Usage
Guide, if in the respective Client-Side exist hints to help end users work with the application.
”?” represents tools that do not have the feature reported in the applications or that the
client-sides are difficult to access.

6

C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

MOSGUITO was developed as a web service, to automate the use of MOSCA. It uses
Python Flask for the APIs and ReactJS for the client-side. Major improvements from the first
implementation of MOSGUITO is that end users don’t need to download MOSCA; because
of that end users don’t need to interact to command line interfaces to be able to customize
and work with MOSCA. MOSCA can run any step without the need to run previous rules.
Yet, there is space for other improvements. MOSCA as a server is not installed in a deploy
server, and is not yet available to be used by the public in general. Also, MOSGUITO does
not contain any online version connected with the Mother API. An important next step will
be to host the web service in a physical server to be able to test and open the application to
MOSGUITO. Implementation to reset passwords and retrieve their accounts is something
that can be done. A queue system needs to be implemented if MOSCA is stored in a physical
server, because of the time MOSCA needs to do a complete a run.

51

B I B L I O G R A P H Y

Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D., McDermott, D., McIlraith,
S. A., Narayanan, S., Paolucci, M., Payne, T. et al. (2002), Daml-s: Web service description
for the semantic web, in ‘International semantic web conference’, Springer, pp. 348–363.

Aslam, F. A., Mohammed, H. N., Mohd, J. M., Gulamgaus, M. A. and Lok, P. (2015), ‘Efficient
way of web development using python and flask’, International Journal of Advanced Research
in Computer Science 6(2), 54–57.

Axios (n.d.).
URL: https://axios-http.com/docs/api intro

Béja, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B.,
Gates, C. M., Feldman, R. A., Spudich, J. L. et al. (2000), ‘Bacterial rhodopsin: evidence for
a new type of phototrophy in the sea’, Science 289(5486), 1902–1906.

Bolger, A. M., Lohse, M. and Usadel, B. (2014), ‘Trimmomatic: a flexible trimmer for illumina
sequence data’, Bioinformatics 30(15), 2114–2120.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte, S.
and Winer, D. (2000), ‘Simple object access protocol (soap) 1.1’.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. and Yergeau, F. (1997), ‘Extensible
markup language (xml)’, World Wide Web Journal 2(4), 27–66.

Brown, J., Pirrung, M. and McCue, L. A. (2017), ‘Fqc dashboard: integrates fastqc results
into a web-based, interactive, and extensible fastq quality control tool’, Bioinformatics
33(19), 3137–3139.

Carvalho, B. S. and Irizarry, R. A. (2010), ‘A framework for oligonucleotide microarray
preprocessing’, Bioinformatics 26(19), 2363–2367.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. et al. (2001), ‘Web services
description language (wsdl) 1.1’.

Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N. and Mann, M. (2014), ‘Accurate
proteome-wide label-free quantification by delayed normalization and maximal peptide
ratio extraction, termed maxlfq’, Molecular & cellular proteomics 13(9), 2513–2526.

52

bibliography 53

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V. and Mann, M. (2011),
‘Andromeda: a peptide search engine integrated into the maxquant environment’, Journal
of proteome research 10(4), 1794–1805.

Di Pierro, M. (2013), web2py, Lulu. com.

Dory, M., Parrish, A. and Berg, B. (2012), Introduction to Tornado: Modern Web Applications
with Python, ” O’Reilly Media, Inc.”.

Farrell, S. (2009), ‘Api keys to the kingdom’, IEEE Internet Computing 13(5), 91–93.

Fielding, R. T. (2000), Architectural styles and the design of network-based software architectures,
University of California, Irvine.

Forcier, J., Bissex, P. and Chun, W. J. (2008), Python web development with Django, Addison-
Wesley Professional.

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A. and Stewart,
L. (1999), Http authentication: Basic and digest access authentication, Technical report.

Gerlach, W., Jünemann, S., Tille, F., Goesmann, A. and Stoye, J. (2009), ‘Webcarma: a web
application for the functional and taxonomic classification of unassembled metagenomic
reads’, BMC bioinformatics 10(1), 1–10.

Ghosh, S., Datta, A., Tan, K. and Choi, H. (2018), ‘SLIDE – a web-based tool for interactive
visualization of large-scale – omics data’, Bioinformatics 35(2), 346–348.
URL: https://doi.org/10.1093/bioinformatics/bty534

Gilbert, J. A., Field, D., Huang, Y., Edwards, R., Li, W., Gilna, P. and Joint, I. (2008),
‘Detection of large numbers of novel sequences in the metatranscriptomes of complex
marine microbial communities’, PloS one 3(8), e3042.

Hardt, D. et al. (2012), ‘The oauth 2.0 authorization framework’.

Hellkamp, M. et al. (2016), ‘Bottle: Python web framework’, URL: https://bottlepy. org .

Kopylova, E., Noé, L. and Touzet, H. (2012), ‘Sortmerna: fast and accurate filtering of
ribosomal rnas in metatranscriptomic data’, Bioinformatics 28(24), 3211–3217.

Kumar, S. (2019), ‘A review on client-server based applications and research opportunity’,
International Journal of Scientific Research 10, 33857–33862.

Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009), ‘Ultrafast and memory-efficient
alignment of short dna sequences to the human genome’, Genome biology 10(3), 1–10.

bibliography 54

Li, D., Luo, R., Liu, C.-M., Leung, C.-M., Ting, H.-F., Sadakane, K., Yamashita, H. and Lam,
T.-W. (2016), ‘Megahit v1. 0: a fast and scalable metagenome assembler driven by advanced
methodologies and community practices’, Methods 102, 3–11.

Liao, B., Ning, Z., Cheng, K., Zhang, X., Li, L., Mayne, J. and Figeys, D. (2018), ‘iMetaLab
1.0: a web platform for metaproteomics data analysis’, Bioinformatics 34(22), 3954–3956.
URL: https://doi.org/10.1093/bioinformatics/bty466

Lin, S. M., Du, P., Huber, W. and Kibbe, W. A. (2008), ‘Model-based variance-stabilizing
transformation for illumina microarray data’, Nucleic acids research 36(2), e11–e11.

Love, M., Anders, S. and Huber, W. (2014), ‘Differential analysis of count data–the deseq2

package’, Genome Biol 15(550), 10–1186.

Ma, T., Huo, Z., Kuo, A., Zhu, L., Fang, Z., Zeng, X., Lin, C.-W., Liu, S., Wang, L., Liu, P.,
Rahman, T., Chang, L.-C., Kim, S., Li, J., Park, Y., Song, C., Oesterreich, S., Sibille, E. and
Tseng, G. C. (2018), ‘MetaOmics: analysis pipeline and browser-based software suite for
transcriptomic meta-analysis’, Bioinformatics 35(9), 1597–1599.
URL: https://doi.org/10.1093/bioinformatics/bty825

Maza, E. (2016), ‘In papyro comparison of tmm (edger), rle (deseq2), and mrn normalization
methods for a simple two-conditions-without-replicates rna-seq experimental design’,
Frontiers in genetics 7, 164.

McDonough, C. (2021), ‘The pyramid web framework’.

Membrey, P., Plugge, E., Hawkins, T. and Hawkins, D. (2010), The definitive guide to MongoDB:
the noSQL database for cloud and desktop computing, Springer.

Merkel, D. (2014), ‘Docker: lightweight linux containers for consistent development and
deployment’, Linux journal 2014(239), 2.

Mesuere, B., Willems, T., Van der Jeugt, F., Devreese, B., Vandamme, P. and Dawyndt, P.
(2016), ‘Unipept web services for metaproteomics analysis’, Bioinformatics 32(11), 1746–
1748.
URL: https://doi.org/10.1093/bioinformatics/btw039

Mikheenko, A., Saveliev, V. and Gurevich, A. (2016), ‘Metaquast: evaluation of metagenome
assemblies’, Bioinformatics 32(7), 1088–1090.

Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-tinch, C. H., Sochat, V., Forster,
J., Lee, S., Twardziok, S. O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S.
and Köster, J. (2021), ‘Sustainable data analysis with Snakemake [version 1 ; peer review :
1 approved , 1 approved with reservations]’, F1000Research (May), 1–25.

bibliography 55

Myers, J. and Copeland, R. (2015), Essential SQLAlchemy: Mapping Python to Databases, ”
O’Reilly Media, Inc.”.

Ni, Y., Li, J. and Panagiotou, G. (2016), ‘Coman: a web server for comprehensive metatran-
scriptomics analysis’, BMC genomics 17(1), 1–7.

Nordic, A. (n.d.), ‘Developing the api mindset: a guide to using private, partner, & public
apis (2015)’.

Nurk, S., Meleshko, D., Korobeynikov, A. and Pevzner, P. A. (2017), ‘metaspades: a new
versatile metagenomic assembler’, Genome research 27(5), 824–834.

Obe, R. O. and Hsu, L. S. (2017), PostgreSQL: Up and Running: a Practical Guide to the Advanced
Open Source Database, ” O’Reilly Media, Inc.”.

Ong, S. P., Cholia, S., Jain, A., Brafman, M., Gunter, D., Ceder, G. and Persson, K. A. (2015),
‘The materials application programming interface (api): A simple, flexible and efficient api
for materials data based on representational state transfer (rest) principles’, Computational
Materials Science 97, 209–215.

ReactJS.org, ’ ReactJS official’. [Online] (2022).
URL: https://reactjs.org

Requests lib (n.d.), https://docs.python-requests.org/en/latest/. Accessed: 2022-01-21.

Rho, M., Tang, H. and Ye, Y. (2010), ‘Fraggenescan: predicting genes in short and error-prone
reads’, Nucleic acids research 38(20), e191–e191.

Richards, R. (2006), Universal description, discovery, and integration (uddi), in ‘Pro PHP
XML and Web Services’, Springer, pp. 751–780.

Riffle, M., May, D. H., Timmins-Schiffman, E., Mikan, M. P., Jaschob, D., Noble, W. S. and
Nunn, B. L. (2018), ‘Metagomics: A web-based tool for peptide-centric functional and
taxonomic analysis of metaproteomics data’, Proteomes 6(1).
URL: https://www.mdpi.com/2227-7382/6/1/2

Sakimura, N., Bradley, J., Jones, M., De Medeiros, B. and Mortimore, C. (2014), ‘Openid
connect core 1.0’, The OpenID Foundation p. S3.

Sass, S., Buettner, F., Mueller, N. S. and Theis, F. J. (2015), ‘Ramona: a web application for
gene set analysis on multilevel omics data’, Bioinformatics 31(1), 128–130.

Sleator, R. D., Shortall, C. and Hill, C. (2008), ‘Metagenomics’, Letters in applied microbiology
47(5), 361–366.

https://docs.python-requests.org/en/latest/

bibliography 56

Software Architecture: One-tier, Two-tier, Three Tier, N Tier (n.d.).
URL: https://www.softwaretestingmaterial.com/software-architecture/

Svehring, S. (2021), ‘My sql bible’.

Tesliuk, A., Bobkov, S., Ilyin, V., Novikov, A., Poyda, A. and Velikhov, V. (2019), Kubernetes
container orchestration as a framework for flexible and effective scientific data analysis, in
‘2019 Ivannikov Ispras Open Conference (ISPRAS)’, pp. 67–71.

Truong, D. T., Franzosa, E. A., Tickle, T. L., Scholz, M., Weingart, G., Pasolli, E., Tett, A.,
Huttenhower, C. and Segata, N. (2015), ‘Metaphlan2 for enhanced metagenomic taxonomic
profiling’, Nature methods 12(10), 902–903.

Wang, Q., Shrestha, D. L., Robertson, D. and Pokhrel, P. (2012), ‘A log-sinh transformation
for data normalization and variance stabilization’, Water Resources Research 48(5).

werkzeug (n.d.).
URL: https://werkzeug.palletsprojects.com/en/2.2.x/utils/

Wilke, A., Bischof, J., Harrison, T., Brettin, T., D’Souza, M., Gerlach, W., Matthews, H.,
Paczian, T., Wilkening, J., Glass, E. M., Desai, N. and Meyer, F. (2015), ‘A restful api for ac-
cessing microbial community data for mg-rast’, PLoS computational biology 11(1), e1004008.
URL: https://europepmc.org/articles/PMC4287624

Wilmes, P., Heintz-Buschart, A. and Bond, P. L. (2015), ‘A decade of metaproteomics: where
we stand and what the future holds’, Proteomics 15(20), 3409–3417.

Wu, Y.-W., Simmons, B. A. and Singer, S. W. (2016), ‘Maxbin 2.0: an automated bin-
ning algorithm to recover genomes from multiple metagenomic datasets’, Bioinformatics
32(4), 605–607.

Zhang, X., Song, X., Wang, H. and Zhang, H. (2008), ‘Sequential local least squares im-
putation estimating missing value of microarray data’, Computers in biology and medicine
38(10), 1112–1120.

	1 Introduction
	1.1 Context and motivation
	1.2 Objectives
	1.3 Thesis organization

	2 State of the Art
	2.1 Meta-Omics Analysis
	2.1.1 Metagenomics
	2.1.2 Metatranscriptomics
	2.1.3 Metaproteomics

	2.2 Automation of MOSCA pipeline
	2.3 MOSGUITO: Interactive Web-based application for MOSCA pipeline
	2.4 Overview of web services performing analysis of omics data
	2.5 Client-Server
	2.5.1 Client-Server architecture
	2.5.2 Server
	2.5.3 Database Management System

	2.6 Web Service
	2.6.1 Types of Application program interface
	2.6.2 Authentications Methods for web Services

	3 Materials and Methods
	3.1 Server
	3.2 Mother API
	3.3 Database
	3.4 Client-Side
	3.5 Authentication

	4 Results
	5 Discussion of the Results
	6 Conclusions and Future Perspectives

