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Introduction: Accurately predicting patient outcomes is crucial for improving
healthcare delivery, but large-scale risk prediction models are often developed
and tested on specific datasets where clinical parameters and outcomes may
not fully reflect local clinical settings. Where this is the case, whether to opt for
de-novo training of prediction models on local datasets, direct porting of
externally trained models, or a transfer learning approach is not well studied,
and constitutes the focus of this study. Using the clinical challenge of predicting
mortality and hospital length of stay on a Danish trauma dataset, we
hypothesized that a transfer learning approach of models trained on large
external datasets would provide optimal prediction results compared to de-novo
training on sparse but local datasets or directly porting externally trained models.
Methods: Using an external dataset of trauma patients from the US Trauma Quality
Improvement Program (TQIP) and a local dataset aggregated from the Danish
Trauma Database (DTD) enriched with Electronic Health Record data, we tested
a range of model-level approaches focused on predicting trauma mortality and
hospital length of stay on DTD data. Modeling approaches included de-novo
training of models on DTD data, direct porting of models trained on TQIP data
to the DTD, and a transfer learning approach by training a model on TQIP data
with subsequent transfer and retraining on DTD data. Furthermore, data-level
approaches, including mixed dataset training and methods countering
imbalanced outcomes (e.g., low mortality rates), were also tested.
Results: Using a neural network trained on a mixed dataset consisting of a subset
of TQIP and DTD, with class weighting and transfer learning (retraining on DTD),
we achieved excellent results in predicting mortality, with a ROC-AUC of 0.988
and an F2-score of 0.866. The best-performing models for predicting long-
term hospitalization were trained only on local data, achieving an ROC-AUC of
0.890 and an F1-score of 0.897, although only marginally better than alternative
approaches.
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Conclusion: Our results suggest that when assessing the optimal modeling
approach, it is important to have domain knowledge of how incidence rates and
workflows compare between hospital systems and datasets where models are
trained. Including data from other health-care systems is particularly beneficial
when outcomes are suffering from class imbalance and low incidence.
Scenarios where outcomes are not directly comparable are best addressed
through either de-novo local training or a transfer learning approach.

KEYWORDS

artificial intelligence, surgery, trauma, healthcare system, prediction model, transfer

learning, mortality, length of stay
Introduction

While clinical prediction models are used in a multitude of

settings, determining the optimal approach for using these in

healthcare systems where models were not trained is challenging

(1). As such, in the situation where local datasets may be of a

size potentially limiting the value of de-novo model training,

whether to opt for this approach, direct porting of models

trained on large non-local datasets or use other more recent

approaches such as transfer learning, is not well explored.

An example of this clinical setting is traumatic injury due to

violence and traffic accidents, where trauma volumes and

outcomes differ substantially between different countries and

healthcare systems (2). Trauma patients pose a dynamical,

heterogenous population, often with complicated clinical

trajectories where an abundance of biomedical data is generated

in a short timeframe. While many prediction models have been

fielded for providing clinicians with risk assessments of adverse

outcomes in trauma patients (3–6) as well as other surgical

cohorts (7), these are often developed on single-institution or

national datasets with data only partly comparable to the local

clinical setting where the model is used. As such, studies have

indicated that such models often do not transfer well to other

national or international hospital settings (8–11), presumably

owing to the heterogeneous nature of the underlying patient

population and treatment standard operating procedures (SOPs).

In contrast to legacy approaches, novel machine learning

methods such as deep learning approaches have shown superior

predictive performance in different surgical cohorts (12), but the

choice of an optimal training strategy remains unsolved. This

problem becomes especially pressing when models are deployed

on datasets characterized by imbalanced data with low-

probability outcomes (e.g., mortality in the trauma setting).

In a machine learning context, medical events such as trauma

mortality are considered low probability outcomes with a prevalence

of −4% of trauma cases (13), thus introducing class imbalance in the

dataset. This can be addressed by using data-level methods to

modify the training distribution and by model-level methods such as

modifying class weighting in the learning process (14).

Using the clinical challenge of accurately predicting trauma

mortality and hospital length-of-stay on a Danish trauma dataset

characterized by class imbalance and limited data size, we

investigated whether methods such as direct porting of an
02
externally validated model trained on a large US trauma dataset,

transfer learning or de-novo model training on local data would

provide optimal risk prediction. In some cohorts, transfer

learning has shown superiority to other strategies (15), and there

are suggestions that site-specific customization is, in general, a

key driver of predictive model performance (1, 16).

We hypothesized that a transfer learning approach would results

in optimal performance. We furthermore hypothesized that using

data-level approaches such as mixing training data between

healthcare systems and implementing methods addressing class

imbalance when relevant, could further improve performance.
Methods

The study was approved by the regional data protection agency

(approval #P-2020-180) the Danish Patient Safety Board (approval

#31-1521-182), and the Danish Regions Quality Program (approval

#DTDB-2021-09-23). Access to TQIP data was approved by the

TQIP board of regents. In accordance with Danish law, informed

consent is not required for retrospective observational studies

without the need for interaction with patients, and this was thus

not obtained.

The study was prepared in accordance with the Transparent

Reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) (17, 18).
Data sources

In Denmark, healthcare is publicly funded and managed by five

regions (19). All regions report clinical contact and outcome data

to national clinical databases such as the Danish Trauma Registry

(DTR). For this study we gained access to DTR and electronic

health records (EHR) from two regions (Capital and Zealand

regions) through the Danish Patient Authority for data registered

from 2019 to 2021. Both regions employ the EPIC EHR system.

DTR partially covers pre-hospital and in-hospital trajectories.

The EHR data was used to enrich the dataset with in-hospital

trajectory information (including outcomes) and provides

comorbid conditions. The DTR and EHR was merged based on

the Danish Central Person Registry (CPR) number, a unique

identifier of every Danish citizen usable to identify individuals
frontiersin.org
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across EHR systems and clinical databases. The combined dataset

will be referred to as the Danish Trauma Dataset (DTD).

For non-local data we acquired the 2017 version of the Trauma

Quality Improvement Program (TQIP) by the American College of

Surgeons (ACS). TQIP is available on request through the ACS

website. This dataset will be referred to as the TQIP dataset (TQIPD).
Inclusion

The Danish study population was identified by DTR inclusion

criteria: Trauma patients who were received and initially treated

through a trauma call (Danish procedure code BWST1F) in the

National Patient Register (20) from 1st of January 2019 to 31st

December 2021. Registrations missing datetime, registrations

required for calculating length of stay, or missing either

abbreviated injury severity score (AIS) or AIS derived injury

severity score (ISS) were excluded.

The US population is defined by TQIP inclusion criteria (21).
Outcomes

Primary outcome was all-cause in-hospital mortality.

Secondary outcome was long-term hospitalization, defined as a

length of stay (LOS) longer than 2 days. This cut-off was chosen

based on LOS distributions from both DTD and TQIPD,

indicating that the majority of patients had shorter LOS. LOS

was defined as the number of commenced calendar days from

reception in the trauma care center till hospital discharge.
Dataset construction

With tabular data, a machine learning model trained on a

specific tabular dataset will only work on another dataset with

the exact same features (22). In this study, we chose the largest

possible intersection between the DTD and TQIPD based on

availability and data quality.

Initially, we included variables from TQIPD available from the

pre-hospital scene and within the first hour in-hospital. These

included comorbid conditions, which can be obtained through

health records registered prior to the trauma. After temporal

filtering, we included variables that were obtainable in Danish data

by similar data definitions as TQIPD. A complete list of included

variables and value ranges is available in Supplementary Table S1.
Overview of experimentation setup

For this study we chose to assess both model-level as well as

data-level approaches.

In terms of model approaches, we assessed three different

training strategies:

• De-novo training, meaning training and testing models on local

(DTD) only.
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• Porting, meaning training models on a non-local (TQIPD)

dataset and directly exporting the models for testing on the

local DTD test dataset without any altercations. For neural

networks this means using unaltered weights and parameters

from the TQIPD-based models.

• Transfer learning, meaning pre-training the neural network

model on the non-local (TQIPD) dataset, subsequently fine-

tuning the model with the Danish DTD dataset, and finally

testing performance on the DTD test dataset.

Note, for comparability between approaches we used the exact

same DTD test dataset with the structure and features from

derived from TQIPD for all performance evaluation.

In terms of data-level approaches, we assessed three different

strategies. These included:

• Training the models on a single training dataset (DTD or

TQIPD where applicable)

• Training the models on a mixed training dataset (creating a

training dataset including patients from both the DTD and

TQIPD)

• Training models on a dataset created by implementing methods

for countering class imbalance. When not using class weighting

in the training process, we used resampling techniques. These

included Synthetic Minority-Oversampling (SMOTE) and

SMOTE in combination with under-sampling by removing

Tomek links. Resampling was only performed on training data

to avoid validating or testing on resampled data.

The first data-level scenario characterizes the setting where only local

data is available, the second scenario where access to an external

dataset is available, and the third scenario assesses the effects of

implementingmethods for countering class imbalance in a local dataset.

An overview of included models, dataset and resampling

combinations for mortality models is available in Table 1. An

overview of included models and datasets for long-term

hospitalization is available in Table 2.
Machine learning methods

We chose to include machine learning methods that do not heavily

rely on assumptions of Gaussian distribution, allow adequate

complexity and traditionally yield good performance on tabular data.

To establish a validated baseline for predicting mortality, we

included the Trauma Score and Injury Severity Score (TRISS),

which is commonly used for predicting mortality in trauma care

(4). As a machine learning baseline model, we trained a random

forest classifier [using the Scitkit-learn implementation (23)] per

outcome being the simplest model selected. Random forest

models served as base estimator for AdaBoost (24) classifiers. We

also selected XGBoost (25) for testing a gradient boosting

framework, which is less sensitive to noisy data and outliers than

Adaboost and typically also less prone to overfitting (26). We

included InterpretMLs Explainable Boosting Machine (EBM) (27)

for the frameworks built-in focus on explainable model decision

making. EBM is a tree-based, cyclic gradient boosting

Generalized Additive Model which comparatively is slow due to
frontiersin.org
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TABLE 1 Combinations of mortality prediction models and training
datasets, which can be either Danish Trauma Dataset (DTD), the
American Trauma Quality Improvement Program dataset (TQIPD) or a
mixed traning dataset consisting of a random forest-selected subset of
TQIPD and DTD training data (Mixed).

Model Training data
(retraining data)

Class imbalance
methods

Trauma score and injury
severity score (TRISS)

None None

Random forest Danish trauma dataset Balanced mode

Trauma quality
improvement program
dataset

SMOTE

Mixed SMOTETomek

AdaBoost Danish trauma dataset Balanced mode

Trauma quality
improvement program
dataset

SMOTE

Mixed SMOTETomek

XGBoost Danish trauma dataset SMOTE

Trauma quality
improvement program
dataset

SMOTETomek

Mixed

Explainable boosting
machine

Danish trauma dataset SMOTE

Trauma quality
improvement program
dataset

SMOTETomek

Mixed

Neural network Danish trauma dataset Balanced weighting
loss function

Trauma quality
improvement program
dataset

SMOTE

Mixed SMOTETomek

Neural network (Transfer
learning)

TQIPD/DTD Balanced weighting
loss function

Mixed/DTD SMOTE

SMOTETomek

When a resampling method was applied on training data either Synthetic Minority

Over-Sampling Technique (SMOTE) or SMOTE with down-sampling removing

Tomek links was used (SMOTETomek).

TABLE 2 Combinations of long-term hospitalization models and training
datasets, which can be either the Danish Trauma Dataset (DTD), the
American Trauma Quality Improvement Program dataset (TQIPD) or a
mixed training dataset consisting of a random forest-selected subset of
TQIPD and DTD training data (Mixed).

Model Training data (/retraining data)
Random forest Danish trauma dataset

Trauma quality improvement program dataset

Mixed

AdaBoost Danish trauma dataset

Trauma quality improvement program dataset

Mixed

XGBoost Danish trauma dataset

Trauma quality improvement program dataset

Mixed

Explainable boosting machine Danish trauma dataset

Trauma quality improvement program dataset

Mixed

Neural network Danish trauma dataset

Trauma quality improvement program dataset

Mixed

Neural network (Transfer
learning)

Trauma quality improvement program dataset/
DTD

Mixed/DTD
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round-robin fashion cycling through features but delivers

performance on parr with “black box” state of the art methods

(27). For neural networks we chose the FastAI library (28) which

provides a high-level framework of the PyTorch package (29)

with built-in support for tabular data.
Model configurations and hyper-parameters

Below the general model configuration of hyper-parameters

used across models are briefly described. Complete configurations

for all models are available in the referenced GitHub repository.
Random forest
The number of estimators was 100 using the Gini impurity

criterion for measuring the quality of a split. Max depth of the

trees was not set, requiring a minimum of 2 samples to split an

internal node and 5 samples to be a leaf node. When looking for

the best split, the model considered the square root of number of
Frontiers in Digital Health 04
features. To address class imbalance with mortality as outcome

we used balanced class weighting by adjusting weights inversely

proportional to class frequencies in the training data.

AdaBoost
Using the random forest model as base model AdaBoost (24)

inherited hyper-parameters using SAMME.R boosting algorithm

(30). The learning rate was at maximum 0.4.

XGBoost
The XGBoost models (25) used the GBTree boosting algorithm

with learning rate at 0.3 with a maximum depth of the tree of 10

using default regularization. The evaluation metric was area

under the receiver operator characteristics curve for long-term

hospitalization and area under precision recall curve for mortality.

Explainable boosting model (EBM)
The EBM classifier (27) was allowed a maximum of 64 bins per

feature for built-in pre-processing stage to reduce overfitting. A

maximum of 5 leaf nodes was used in a maximum of 5,000

boosting rounds with early stopping after 50 rounds without

improvement. Both inner and outer bags were set to 25 for

marginally higher accuracy at costs of slower training time.

When training models on full TQIPD inner bags was 8 and

outer bags 0 (default values) for reduced training time.

Neural network architecture
Categorical input variables were stacked in embedding matrixes

with a 4% dropout probability layer. Both categorical and

continuous input variables were passed through a batch

normalization layer to the first linear layer with 200 nodes and a

rectified linear unit layer with initial dropout probability of 1%.

Each following linear layer uses batch normalization and a
frontiersin.org
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dropout probability of 0.1% with reductive size from 100 to 20. The

final layer had no batch normalization ending with two nodes for

either positive or negative outcome.

The model used the Adam optimizer with a flattened binary

cross entropy loss function with class weighting calculated using

the inverse proportion of class frequencies in training data.

Weight decay was set to 0.2. When training on mixed or TQIPD

dataset batch size was 1,024 and training (or retraining) on DTD

batch size was 64. The learning rate was selected from the FastAI

package (28) built-in learning rate finder by using the mid-point

between slide and valley multiplied by a factor of 0.5 when

retraining during transfer learning. Models were allowed to train

for up to 5 epochs with early stopping callback based on either

recall score or validation loss depending on the model.
FIGURE 1

Population and dataset construction flow-chart.
Pre-processing

For both TQIPD and DTD we removed outliers (faulty

registrations) in continuous outputs by feature specific

boundaries (Supplementary Table S1). For height and weight

unit conversion was attempted before removing if still out of

bounds. Categorical features were technically categorified after

any non-valid categories were replaced with nulls. The primary

external cause of injury is ICD-10 coded in TQIPD. These were

mapped to match DTD where following categories are used:

Accident, assault, self-harm or other. In both datasets AIS-codes

were one-hot encoded by severity of each region.

For neural network models, missing values were replaced by

mode with an additive binary variable indicating missing value.

Continuous data were normalized by mean and standard

deviation. For categorical data we used entity embeddings stacked

into embedding matrices.

For non-neural network models missing values were replaced

with mode for both categorical and continuous inputs. No

pretraining normalization was done for continuous inputs.

We reserved 20 percent of DTD as test dataset after pre-

processing for all model performance evaluations (Figure 1). The

remainder of DTD was split into 80% training data and 20%

validation data when models were exclusively trained on DTD.

The proportion between training and validation datasets was 80%

training and 20% validation throughout all models.

Two subsets of TQIPD were selected for mixing with the DTD

training and validation subset Intending to select data from TQIPD

with the highest similarity to DTD, we trained a random forest

model per outcome to predict if a row originated from DTD or

TQIPD. The data-selection model was trained with a randomly

selected subset of TQIPD mixed with the entire DTD. The

model was used to predict for every case in the entire TQIPD, if

the case was Danish or not. TQIPD cases that were predicted to

be Danish were selected and mixed with DTD.
Metrics for performance evaluation

While receiver operating characteristic (ROC) curve and ROC

area under curve (AUC) are commonly applied as evaluation
Frontiers in Digital Health 05
metrics to summarize the performance of a binary classification

model, we chose to include precision and recall (PR) due to class

imbalance with mortality as outcome. In ROC-space the relation

between true positive rates and false positive rates is apparent but

with no representation of false negatives. The false positive rate

will be unfairly represented where true negatives considerably

outnumber true positives. In PR-space we compare false positives

to true positives and false negatives to true negatives (31). This

provides important insights into model behavior in problems with

rare occurrence of one class such as mortality in trauma.

For the clinical purpose of a mortality prediction model

specifically, we wanted to prioritize sensitivity (recall) over

precision. The consequence of inaction, in this case, is larger

than the cost of overreacting when the purpose for a clinician
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1249258
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Millarch et al. 10.3389/fdgth.2023.1249258
interpreting individualized mortality risk is to decide on resource

allocation, choosing adequately advanced treatment facilities and

administering prophylactic treatments. Precision and recall were

summarized as F-2 score for mortality due to class imbalance

and as F-1 score for long-term hospitalization.

F-1 score is the harmonic mean of precision and recall (32):

F1 ¼ 2
precision � recall
precision þ recall

Where F-2 score is Fβ using factor 2, where the β. factor considers

recall β times as important as precision (32):

Fb ¼ (1þ b2)
precision � recall

(b2 � precision)þ recall

The default probability threshold for assigning classes is 0.5;

however generally suboptimal for imbalanced datasets. We

therefore used F-beta optimization on validation data for

threshold-moving on test data probabilities.
Model behavior

For tree-based models, we used the default Scik-learn feature

importance module, which is based on mean decrease in

impurity. For neural networks, we used Shapley Additive

Explanations (SHAP) (33). The average of the marginal

contributions across all permutations (SHAP values) was
TABLE 3 Overview of demographic and difference in variables between outc
program dataset.

n
Sex (female, male), n (%)

Hospital teaching status, n (%)

Hospital count of beds, n (%)

Hospital ACS trauma center Verification level, n (%)

Comorbid condition: ADHD, n (%)

Comorbid condition: Alcoholism, n (%)
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calculated for the DTD test population presenting the 20 features

with the highest impact on model output magnitude.

For EBM models, we used the built-in features to display the 15

features with the highest overall importance based on predictions

for DTD test population.
Data presentations

Data are presented as medians [interquartile range] or

percentages, where appropriate.
Implementations

All models were implemented using Python version 3.8.5.

Scikit-learn (23) version 1.1.2 were used for Random Forest

models, AdaBoost, calculating metrics and feature importance.

XGBoost (25) was version 1.3.3 and InterpretML (27) version

0.2.7 for Explainable Boosting Classifier. For neural networks

we used FastAI (28) version 2.7.9 based on PyTorch (29)

version 1.10.2. Imbalanced-learn (34) version 0.7.0 was used

for resampling techniques and SHAP (33) 0.41.0 for Shapley

values.
Results

The complete Danish patient study population DTD consisted

of 1,534 cases with 121 deceased patients and 1,081 long-term

hospitalized patients (Figure 1). Demographic information is
ome groups for danish trauma dataset and trauma quality improvement

Danish trauma
dataset

Trauma quality
improvement

program dataset

Missing Overall Missing Overall
1,534 979,008

Female 0 424 (27.6) 140

Male 1,110 (72.4)

community 0 58 (3.8) 4,158 4,158

university 1,476 (96.2) 4,40,012 (45.1)

non-teaching 0 (0.0) 162,893 (16.7)

≤200 0 0 91,854 (9.4)

201−400 11 (0.7) 320,438 (32.7)

401–600 45 (2.9) 260,601 (26.6)

>600 1,478 (96.3) 306,115 (31.3)

I - Level I trauma
center

0 1,465 (95.5) 302,846 396,968 (58.7)

II - Level II trauma
center

69 (4.5) 217,169 (32.1)

III - Level III
trauma center

0 (0.0) 62,025 (9.2)

0 0 1,514 (98.7) 0 966,884 (98.8)

1 20 (1.3) 12,124 (1.2)

0 0 1,452 (94.7) 0 927,637 (94.8)

(Continued)
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TABLE 3 Continued

Danish trauma
dataset

Trauma quality
improvement

program dataset

Missing Overall Missing Overall
1 82 (5.3) 51,371 (5.2)

Comorbid condition: Angina pectoris, n (%) 0 0 1,528 (99.6) 0 977,966 (99.9)

1 6 (0.4) 1,042 (0.1)

Comorbid condition: Anticoagulant treatment, n (%) 0 0 1,531 (99.8) 0 906,648 (92.6)

1 3 (0.2) 72,360 (7.4)

Comorbid condition: Bleeding disorders, n (n (%) 0 0 1,533 (99.9) 0 963,933 (98.5)

1 1 (0.1) 15,075 (1.5)

Comorbid condition: Chemotherapy, n (%) 0 0 1,525 (99.4) 0 975,569 (99.6)

1 9 (0.6) 3,439 (0.4)

Comorbid condition: Cirrhosis, n (%) 0 0 1,529 (99.7) 0 969,537 (99.0)

1 5 (0.3) 9,471 (1.0)

Comorbid condition: Chronic obstructive pulmonary disease, n (%) 0 0 1,517 (98.9) 0 918,739 (93.8)

1 17 (1.1) 60,269 (6.2)

Comorbid condition: Cerebrovascular accident, n (%) 0 0 1,484 (96.7) 0 954,219 (97.5)

1 50 (3.3) 24,789 (2.5)

Comorbid condition: Dementia, n (%) 0 0 1,528 (99.6) 0 928,010 (94.8)

1 6 (0.4) 50,998 (5.2)

Comorbid condition: Diabetes (type 1 and 2), n (%) 0 0 1,494 (97.4) 0 858,863 (87.7)

1 40 (2.6) 120,145 (12.3)

Comorbid condition: Congestive heart failure, n (%) 0 0 1,525 (99.4) 0 942,578 (96.3)

1 9 (0.6) 36,430 (3.7)

Comorbid condition: Hypertension, n (%) 0 0 1,460 (95.2) 0 673,942 (68.8)

1 74 (4.8) 305,066 (31.2)

Comorbid condition: Myocardial infarction, n (%) 0 0 1,531 (99.8) 0 970,481 (99.1)

1 3 (0.2) 8,527 (0.9)

Comorbid condition: Peripheral arterial disease, n (%) 0 0 1,530 (99.7) 0 974,097 (99.5)

1 4 (0.3) 4,911 (0.5)

Comorbid condition: Mental disorders (schizophrenia, bipolar disorder, major depressive
disorder, social anxiety, PTSD, antisocial personality disorder), n (%)

0 0 1,457 (95.0) 0 886,995 (90.6)

1 77 (5.0) 92,013 (9.4)

Comorbid condition: Chronic renal failure, n (%) 0 0 1,532 (99.9) 0 964,037 (98.5)

1 2 (0.1) 14,971 (1.5)

Comorbid condition: Smoking tobacco every day or some days within past
12 months, n (%)

0 0 1,529 (99.7) 0 804,311 (82.2)

1 5 (0.3) 174,697 (17.8)

Comorbid condition: Documented substance abuse (cannabis, hallucinogens, inhalents,
opiods, sedatives, other), n (%)

0 0 1,532 (99.9) 0 928,955 (94.9)

1 2 (0.1) 50,053 (5.1)

Primary cause of injury, n (%) accident 0 1,043 (68.0) 0 834,733 (85.3)

assault 167 (10.9) 91,661 (9.4)

other 271 (17.7) 39,308 (4.0)

self_harm 53 (3.5) 13,306 (1.4)

Age in years, median [Q1,Q3] 0 38.5 [22.0,58.0] 59,884 49.0 [26.0,69.0]

Weight in kg, median [Q1,Q3] 316 75.6 [63.0,87.9] 500,242 75.0 [61.0,90.0]

Height in cm, median [Q1,Q3] 477 175.0
[168.0,182.0]

521,164 170.0
[160.0,178.0]

Pre-hospital systolic blood pressure, median [Q1,Q3] 357 125.0
[104.0,144.0]

445,831 138.0
[120.0,156.0]

Pre-hospital Glasgow coma score (total), median [Q1,Q3] 214 15.0 [12.0,15.0] 442,619 15.0 [15.0,15.0]

In-hospital Glasgow coma score (total), median [Q1,Q3] 65 15.0 [14.0,15.0] 51,607 15.0 [15.0,15.0]

In-hospital systolic blood pressure, median [Q1,Q3] 15 129.0
[110.0,142.5]

33,156 136.0
[120.0,154.0]

In-hospital pulserate (BPM), median [Q1,Q3] 18 88.0
[77.0,102.0]

22,293 87.0
[74.0,101.0]

In-hospital temperature in celsius, median [Q1,Q3] 337 36.9 [36.4,37.2] 99,890 36.7 [36.4,36.9]

In-hospital pulseoximetry, median [Q1,Q3] 15 99.0
[97.0,100.0]

43,408 98.0
[96.0,100.0]

In-hospital respiratory rate (BPM), median [Q1,Q3] 105 16.0 [14.0,20.0] 34,246 18.0 [16.0,20.0]

Injury severity score derived from AIS, median [Q1,Q3] 88 10.0 [4.0,20.0] 3,204 8.0 [4.0,10.0]

(Continued)
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TABLE 3 Continued

Danish trauma
dataset

Trauma quality
improvement

program dataset

Missing Overall Missing Overall
Absolute difference between pre- and in-hospital Glasgow coma score, median [Q1,Q3] 214 0.0 [0.0,0.0] 462,814 0.0 [0.0,0.0]

Absolute difference between pre- and in-hospital systolic blood pressure measurement, median [Q1,Q3] 366 −4.0
[−20.0,10.0]

455,628 0.0 [−15.0,14.0]

Long-term hospitalization (%) 0 1,081 (0.7) 0 623,345 (0.64)

In-hospital mortality (%) 0 121 (0.08) 0 32,400 (0.03)

Millarch et al. 10.3389/fdgth.2023.1249258
presented in Table 3. The median age was 38.5 years with 72.4%

males. The primary cause of injury was in 68% of DTD cases

accidental (such as vehicular accidents), 10.9% assault, 3.5% self-

harm and 17.7% other (poisoning, drowning etc.). The median

Injury Severity Score (ISS) was 10 [4–20]. Detailed characteristics

and incidences are available in Table 3.

In total, 1,227 DTD cases were used for training and validation

and 307 cases reserved for test data. In training and validation data

99 patients were deceased and 866 patients long-term hospitalized,

leaving 22 deceased in test data and 215 long-term hospitalizations.

An overview of LOS distribution in commenced days for DTD is

available in Supplementary Figure S1A.

The total TQIPD population consisted of 979,008 cases with

32,400 deceased patients and 623,345 long-term hospitalizations.

An overview of LOS distribution in commenced days for TQIPD

is available in Supplementary Figure S1B. A total of 50,000
FIGURE 2

Area under the receiver operator characteristics curve (ROC-AUC) with confide
trauma score and injury severity score (TRISS) as baseline. Comparing Rand
Machine (EBM) and neural networks trained on either Danish Trauma Data
(TQIPD), a mixed traning dataset consisting of a RF-selected subset of TQ
TQIPD mixed with DTD training data (Mixed randomly). When a resampling
Sampling Technique (SMOTE) or SMOTE with down-sampling removing Tom
a neural network loss function, weights are denoted first by the negative clas
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TQIPD cases were selected randomly for a secondary mixed

dataset. A total of 49,117 cases for mortality models and another

50,398 cases for long-term hospitalization models were selected

from TQIPD using a random forest model and mixed with the

DTD train-validation dataset (referred to as “mixed dataset” in

the following).
Performance—mortality models

Performance metrics for all mortality models are presented as

ROC-AUC and F2-scores in Figure 2 and as precision-recall in

Figure 3. A table of all performance metrics for mortality

models are presented in Table 4.

The highest ROC-AUC was 0.988 by using class weighting and

transfer learning in a neural network pretrained with the mixed
nce interval (grey vertical line) and F2-scores for all mortality models using
om Forrest model (RF), AdaBoost, XGBoost (XGB), Explainable Boosting
set (DTD), the American Trauma Quality Improvement Program dataset
IPD and DTD training data (Mixed) or a randomly selected subset from

method was applied on training data either Synthetic Minority Over-
ek links was used (SMOTETomek). When class weighting was applied on
s and secondly for the postive class.
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FIGURE 3

Precision and recall -scores for mortality models comparing random forrest model (RF), adaBoost, XGBoost (XGB), explainable boosting machine (EBM)
and neural networks trained on either danish trauma dataset (DTD), the American trauma quality improvement program dataset (TQIPD) or a mixed
traning dataset consisting of a RF-selected subset of TQIPD and DTD training data (mixed). When a resampling method was applied on training data
either Synthetic Minority Over-Sampling Technique (SMOTE) or SMOTE with down-sampling removing Tomek links was used (SMOTETomek). When
class weighting was applied on a neural network loss function, weights are denoted first by the negative class and secondly for the postive class.

Millarch et al. 10.3389/fdgth.2023.1249258
dataset. However, several other models achieved −0.98 ROC-AUC

as well (Table 4). Based on ROC-AUC all models performed well

and superior to TRISS (ROC-AUC: 0.853).

The highest F2-score was of 0.866 also using class weighting

and transfer learning in a neural network pretrained with the

mixed dataset. Porting a TQIPD-based random forest model

achieved 0.861 F2-score. Using a DTD-based de-novo

AdaBoost model applying Synthetic Minority-Oversampling

Technique (SMOTE) and under-sampling by removing Tomek
Frontiers in Digital Health 09
links the F2-score was 0.826. In comparison, TRISS had a F2-

score of 0.581.

Inspecting these three models by precision and recall, the

transfer learning neural network model achieved perfect recall

and 0.564 precision. The ported random forest model also scored

near perfect recall (0.955) with high precision (0.618). The de-

novo AdaBoost scored 0.864 recall and favored precision with a

score of 0.704. Comparably TRISS scored 0.867 recall and 0.251

precision.
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TABLE 4 Performance metrics, including confidence intervals for area under the receiver operater characteristics curve (ROC-AUC), for all mortality
models using trauma score and injury severity score (TRISS) as baseline, comparing models trained on either danish trauma dataset (DTD), the
American trauma quality Improvement program dataset (TQIPD) or a mixed traning dataset consisting of a random forest-selected subset of TQIPD
and DTD training data (mixed). Neural network with transfer learning was retrained on DTD. When a resampling method was applied on training data
either Synthetic Minority Over-Sampling Technique (SMOTE) or SMOTE with down-sampling removing Tomek links was used (SMOTETomek). When
class weighting was applied on a neural network loss function, weights are denoted first by the negative class and secondly for the postive class.

Model Training data
source

Resampling
method

Weights ROC-
AUC

Lower CI
ROC-AUC

Upper CI
ROC-AUC

F2
score

Precision Recall

TRISS DTD None None 0.853 0.751 0.955 0.581 0.251 0.867

RF DTD None None 0.971 0.922 1.0 0.746 0.654 0.773

SMOTE None 0.971 0.922 1.0 0.752 0.680 0.773

SMOTETomek None 0.966 0.913 1.0 0.783 0.667 0.818

Mixed None None 0.986 0.951 1.0 0.756 0.581 0.818

SMOTE None 0.973 0.926 1.0 0.721 0.696 0.727

SMOTETomek None 0.977 0.933 1.0 0.763 0.600 0.818

TQIPD None None 0.985 0.949 1.0 0.861 0.618 0.955

SMOTE None 0.967 0.915 1.0 0.734 0.382 0.955

SMOTETomek None 0.964 0.909 1.0 0.732 0.514 0.818

AdaBoost DTD None None 0.969 0.918 1.0 0.642 0.667 0.636

SMOTE None 0.968 0.916 1.0 0.746 0.654 0.773

SMOTETomek None 0.963 0.908 1.0 0.826 0.704 0.864

Mixed None None 0.982 0.943 1.0 0.734 0.762 0.727

SMOTE None 0.977 0.933 1.0 0.746 0.654 0.773

SMOTETomek None 0.977 0.932 1.0 0.738 0.529 0.818

TQIPD None None 0.983 0.944 1.0 0.766 0.739 0.773

SMOTE None 0.970 0.921 1.0 0.692 0.429 0.818

SMOTETomek None 0.971 0.922 1.0 0.736 0.463 0.864

XGB DTD None None 0.937 0.866 1.0 0.642 0.667 0.636

SMOTE None 0.960 0.903 1.0 0.697 0.500 0.773

SMOTETomek None 0.952 0.889 1.0 0.759 0.708 0.773

Mixed None None 0.979 0.937 1.0 0.776 0.643 0.818

SMOTE None 0.985 0.950 1.0 0.812 0.655 0.864

SMOTETomek None 0.981 0.940 1.0 0.750 0.562 0.818

TQIPD None None 0.975 0.929 1.0 0.769 0.621 0.818

SMOTE None 0.978 0.934 1.0 0.784 0.457 0.955

SMOTETomek None 0.975 0.928 1.0 0.748 0.487 0.864

EBM DTD None None 0.951 0.887 1.0 0.733 0.607 0.773

SMOTE None 0.933 0.859 1.0 0.690 0.571 0.727

SMOTETomek None 0.952 0.890 1.0 0.750 0.562 0.818

Mixed None None 0.980 0.938 1.0 0.739 0.630 0.773

SMOTE None 0.984 0.946 1.0 0.800 0.541 0.909

SMOTETomek None 0.984 0.946 1.0 0.756 0.581 0.818

TQIPD None None 0.982 0.942 1.0 0.812 0.655 0.864

SMOTE None 0.964 0.910 1.0 0.664 0.425 0.773

SMOTETomek None 0.960 0.902 1.0 0.714 0.422 0.864

Neural network DTD None 0.5439,
6.1970

0.974 0.928 1.0 0.745 0.396 0.955

SMOTE None 0.906 0.821 0.991 0.732 0.514 0.818

SMOTETomek None 0.867 0.769 0.964 0.678 0.533 0.727

Mixed None 0.5503,
5.4705

0.986 0.951 1.0 0.821 0.478 1.0

SMOTE None 0.930 0.855 1.0 0.709 0.462 0.818

SMOTETomek None 0.930 0.855 1.0 0.714 0.422 0.864

TQIPD None None 0.974 0.928 1.0 0.775 0.488 0.909

SMOTE None 0.979 0.936 1.0 0.753 0.379 1.0

SMOTETomek None 0.967 0.914 1.0 0.697 0.500 0.773

Neural network
(Transfer learning)

Mixed None 0.5503,
5.4705

0.988 0.955 1.0 0.866 0.564 1.000

SMOTE None 0.963 0.908 1.0 0.720 0.432 0.864

SMOTETomek None 0.972 0.923 1.0 0.755 0.412 0.955

TQIPD None None 0.981 0.940 1.0 0.814 0.512 0.955

SMOTE None 0.976 0.931 1.0 0.787 0.513 0.909

SMOTETomek None 0.978 0.935 1.0 0.789 0.467 0.955
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Model behavior—mortality

For the well-performing transfer learning model, we calculated

mean SHAP values for predictions on DTD test data as in

Supplementary Figure S2. Age, ISS and GCS were of highest

global impact.

We extracted feature importance for the de-novo AdaBoost

model displayed in Supplementary Figure S3. Glasgow Coma

Score (both from EMS and in-hospital), injury severity score (ISS),

systolic blood pressure (SBP) and age was of most importance.

Similar for the ported random forest model the highest-ranking

features were GCS, ISS, in-hospital SBP, critical head injury, in-

hospital pulse rate and age (Supplementary Figure S4).

For comparison, we included the overall importance summary

of mean absolute scores from the Explainable Boosting Machine

model trained on mixed SMOTE and Tomek links resampled

data (Supplementary Figure S5). This showed the overlap in

features ranked as most important with GCS, ISS, age, SBP but

also pulse oximetry and pulse rate.
Performance—long-term hospitalization
models

Performance metrics for all long-term hospitalization models

are presented as ROC-AUC and F1-scores in Figure 4 and as
FIGURE 4

Area under the receiver operator characteristics curve (ROC-AUC) with c
hospitalization models. Comparing Random Forrest model (RF), AdaBoost, X
trained on either Danish Trauma Dataset (DTD), the American Trauma Qua
consisting of a RF-selected subset of TQIPD and DTD training data (Mixed). N
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precision-recall in Figure 5. A table of all metrics is presented in

Table 5.

All models had at least one configuration resulting in at least

0.870 ROC-AUC. AdaBoost, XGBoost, Neural network (transfer

learning) and EBM all scored −0.89 F1-score. All models scored

higher than 0.800 precision and higher than 0.890 recall. The

DTD-based de-novo EBM model reached the highest precision of

0.885 and the highest recall was the de-novo DTD-based random

forest model with 0.958.
Model behavior—long-term hospitalization
models

We extracted feature importance from the de-novo

random forest model as displayed in Supplementary Figure S6.

ISS was dominantly important followed by age, weight, in-

hospital temperature measurement, head injury (derived from

AIS), thoracic injury, and in-hospital SBP measurement.

For the mixed dataset-based transfer learning neural network,

the highest SHAP values were also dominantly ISS, followed by

moderate and serious injury to lower extremities, age, moderate

spine and upper extremity injury, and GCS (Supplementary

Figure S7).

Lastly, the DTD-based de-novo EBM model had the highest

mean absolute score for ISS, followed by in-hospital temperature
onfidence interval (grey vertical line) and F1-scores for all long-term
GBoost (XGB), Explainable Boosting Machine (EBM) and neural networks
lity Improvement Program dataset (TQIPD) or a mixed traning dataset
eural networks with transfer learning are always retrained on DTD.
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FIGURE 5

Precision and recall -scores for all mortality models comparing random forrest model (RF), adaBoost, XGBoost (XGB), explainable boosting machine (EBM)
and neural networks trained trained on either danish trauma dataset (DTD), the American trauma quality improvement program dataset (TQIPD) or a
mixed traning dataset consisting of a RF-selected subset of TQIPD and DTD training data (mixed). Neural networks with transfer learning are always
retrained on DTD.

TABLE 5 Performance metrics, including confidence intervals for area under the receiver operater characteristics curve (ROC-AUC), for all long-term
hospitalization models comparing models trained on either danish trauma dataset (DTD), the American trauma quality Improvement program dataset
(TQIPD) or a mixed traning dataset consisting of a random forest-selected subset of TQIPD and DTD training data (mixed). Neural network with
transfer learning was retrained on DTD.

Model Training data set ROC-AUC Lower CI ROC-AUC Upper CI ROC-AUC Precision Recall F1 score
Random forest DTD 0.885 0.849 0.921 0.817 0.958 0.882

TQIPD 0.860 0.820 0.900 0.840 0.930 0.883

Mixed 0.884 0.848 0.920 0.858 0.898 0.877

AdaBoost DTD 0.890 0.855 0.925 0.863 0.935 0.897

TQIPD 0.885 0.849 0.921 0.834 0.935 0.822

Mixed 0.884 0.848 0.920 0.858 0.898 0.877

XGBoost DTD 0.865 0.825 0.904 0.820 0.953 0.882

TQIPD 0.866 0.826 0.905 0.801 0.935 0.863

Mixed 0.865 0.826 0.905 0.855 0.930 0.891

Explainable boosting machine DTD 0.883 0.847 0.919 0.885 0.898 0.891

TQIPD 0.880 0.843 0.917 0.869 0.893 0.881

Mixed 0.877 0.839 0.914 0.844 0.907 0.874

Neural network DTD 0.857 0.817 0.898 0.853 0.916 0.883

TQIPD 0.888 0.852 0.923 0.810 0.953 0.876

Mixed 0.875 0.837 0.913 0.831 0.935 0.88

Neural network (Transfer learning) TQIPD/DTD 0.879 0.842 0.916 0.813 0.949 0.876

Mixed/DTD 0.874 0.836 0.912 0.830 0.930 0.877
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measurement, weight, in-hospital respiratory rate, moderate thorax

injury, and age (Supplementary Figure S8).
Discussion

In this study, we aimed to identify optimal machine learning

approaches for predicting clinical outcomes on local low-volume

and imbalanced tabular datasets, using the clinical scenario of

predicting outcomes for Danish trauma patients as a practical

use case. Predicting both mortality and long-term hospitalization

was achievable with good performance on DTD test dataset by

training models on both a limited local dataset, a dataset from
Frontiers in Digital Health 12
another healthcare system and by mixing a dataset of both local

and non-local data.

We hypothesized that a transfer learning approach would

result in optimal performance while addressing class

imbalance. When predicting mortality, including non-local

(TQIPD) data in the training process, regardless of methods

e.g., mixing training sets or subsequent fine-tuning, showed

better performance compared to similar model architectures

trained only on local DTD data. Addressing class imbalance on

algorithm level (class weighting) showed similar or marginally

better performance, while being computationally more efficient

that data resampling. Assessing long-term hospitalization

prediction models our results indicated no benefit from
frontiersin.org
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including non-local data with very similar performance between

model architectures.

Assessing mortality prediction models primarily by sensitivity

and specificity, the best-performing model seemed to vary

between all three model-level approaches. For de-novo training

on DTD data, optimal performance was achieved using an

AdaBoost model with data resampling. For porting, a random

forest model trained on the TQIPD without resampling was best

performing. For mixed dataset-based models, a neural network

using transfer learning with class weighting resulted in the best

performance, and the best performance between all models in

general.

However, it is important to note that ROC-AUC confidence

intervals were overlapping between our models indicating no

statistically significant difference.

Danish Trauma patients represent a heterogeneous patient

cohort from a well-developed but small healthcare system. Due

to these constraints, Danish trauma patient datasets will naturally

be of limited size but characterized by patients suffering from

infrequent yet high-impact complications (e.g., mortality rates).

In a real-world clinical scope, our results suggest that when

prediction models are fielded in a setting such as Danish Trauma

care, targeting outcomes that have comparable incidence rates

between healthcare systems (e.g., trauma mortality, which is

comparable between the TQIPD and DTD), the best modeling

performance is achieved by porting models trained on large

external datasets directly to the local setting. When deployed on

tabular data, approaches such as random forest models seem to

offer optimal prediction performance if proper pre-processing is

deployed.

If a larger non-local dataset is readily available, our findings

suggest an improvement in performance predicting such

imbalanced outcomes using both non-local and local datasets for

training a neural network with class weighting. In some cases,

there could however be barriers against gaining access to a

similar but larger dataset due to ethical or legal constraints.

Predicting outcomes where differences in clinical standard

operating procedures, patient demographics or hospital resources

creates a setting where outcomes are not directly comparable

between hospital systems (e.g., hospital length of stay and long-

term hospitalization), the best performing models evaluated by

both ROC-AUC and F-score were trained only on local data,

however marginally and with overlapping confidence intervals.

While not suffering from high class imbalance this particular

outcome most likely is heavily influenced by local workflows,

policies and best practices. This again suggests that when

assessing the optimal modeling approach, it is important to have

domain knowledge of how incidence rates and workflows

compare between hospital systems and datasets where models are

trained. As such, scenarios where outcomes are not directly

comparable, are best addressed through either de-novo local

training or a transfer learning approach.

Care should be taken when comparing results directly between

studies of this nature owing to the differences between methods,

data, and selection of metrics for performance evaluation. Based

on ROC-AUC, the primarily used metric amongst comparable
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studies, our best-performing mortality model (ROC-AUC 0.988)

achieve excellent performance compared to other studies as

evaluated by de Munter et al. covering 90 studies and 258

models (including TRISS) with ROC-AUC ranging between 0.59

and 0.98 (5) An advantage of a machine learning model over a

conventional algorithm approaches such as TRISS worth noting,

is the innate ability to still create a meaningful output despite of

some missing information.

Comparing our results to the Norwegian survival prediction

model in trauma (NORMIT) Jones et al. reported a ROC-AUC

predicting mortality in Norwegian trauma population of 0.95 (6).

Comparably, our best performing DTD-based de-novo mortality

neural network model achieved 0.974 ROC-AUC.

A porting of NORMIT to a Finish trauma population

showed a ROC-AUC of 0.83 (8) and ROC-AUC ranging 0.93–

0.98 porting NORMIT 1 and 2 to a Swedish trauma

population (35). Our TQIPID-based model achieved 0.971

ROC-AUC when porting, thus indicating similar performance.

Our transfer learning approach achieved a higher ROC-AUC

than the referred studies porting approaches and our own

porting models with a ROC-AUC of 0.988. This indicates

superiority in transfer learning compared to porting models

directly. This finding is in adherence with a study on

generalizability in multi-site COVID-19 screening, which

demonstrated that site-specific customization comparatively

improves performance (15).

We did not identify any directly comparable studies predicting

hospitalization in days as a binary outcome (where length of stay

longer than 2 commenced days) for entire trauma populations

evaluated with ROC-AUC.

This study has several limitations. First, as is the case for any

retrospective study, the underlying data quality is important and

factors such as missing data could impact results. Secondly, the

choice of model comparison methods is crucial. We chose to

include threshold dependent metrics for evaluation with

emphasis on the importance of sensitivity, or recall, when

predicting mortality. This does, however, create another layer of

complication in interpreting and comparing results with

threshold moving by optimizing F-score from the DTD

validation dataset. While viable in a process of comparing

models, in an actual clinical application we would suggest

probability calibration and sharing that probability with the

clinician instead of a binary outcome. With calibrations, we still

expect the models to rank similarly to the approach used for this

study.

Third, optimally performing models could still fail in the

clinical setting if there is a lack of explainable decision making

by the model. Particularly neural networks have generally

received criticism for “black boxing” how the model acts

internally (36). While not being highest ranked in performance

evaluation but still achieving good performance, Explainable

Boosting Machine is worth highlighting for the conscious design

based on interpretability (27).

In line with this, it should be noted that calculating feature

importance is done by a variety of techniques which differ among

models. As such, comparing feature importance between models
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should be done while inspecting each model with several

explanation techniques (37). The variation in features and their

ranking between models may thus be explained by the difference

in explanation technique applied to the model rather than actual

difference in the model decision making. Ultimately, such features

as well as the model’s performance should be benchmarked

against seasoned clinical judgement.

Finally, results could be sensitive to hyper-parameters and

training data, and it should furthermore be noted that changing

the underlying data foundation (e.g., from tabular to

unstructured data such as clinical chart note text) would likely

result in alternative findings.

In conclusion, including data in the process of training

machine learning models from the same domain but other

healthcare systems, while implementing methods addressing

class imbalance when relevant, likely improves performance

when predicting infrequent clinical outcomes such as trauma

mortality. When targeting balanced end-points not directly

comparable between healthcare systems (e.g., hospital length of

stay and long-term hospitalization), our results suggest that

local de-novo training or transfer learning may be superior to

porting models trained on external datasets. Collectively, the

results thus suggest that optimal performance is critically

dependent on domain knowledge and insight into the

distributions of target variables in the dataset compared to

external datasets.
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