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Project failure is a persistent challenge in the construction industry, rendering it
one of the most demanding sectors. Many obstacles, including safety concerns,
quality management issues, environmental preservation challenges, economic
sustainability, privacy constraints, and legal regulations, weigh heavily on
construction projects. However, a beacon of hope emerges in AI-powered
drones capable of surmounting these challenges and paving the path to
resounding project success. This study employed diverse methodologies,
engaging subject-matter experts through interviews and conducting pilot and
primary surveys. Our analytical arsenal featured Exploratory Factor Analysis (EFA)
for the pilot survey and Structural EquationModelling (SEM) for the primary survey.
Our research revolves around a singular mission: elevating building project
success by dismantling the barriers that have impeded the widespread
adoption of AI-driven drones in construction. The study’s verdict is clear:
privacy and legal constraints, coupled with economic and sustainability
challenges, alongside human resource management dilemmas, constitute the
formidable triumvirate obstructing the ubiquitous embrace of drones in
construction. Yet, the impact of breaching these barriers reverberates far
beyond overcoming these hurdles. It cascades into public health and safety,
environmental conservation, quality management, and economic sustainability,
culminating in an amalgam of enhanced Building Project Success. The
implications of our findings are profound for the construction industry. They
beckon the sector to confront and surmount the legal and regulatory barriers to
adopting AI-based drones. A clarion call to invest in human resources to empower
technology integration resounds. And, perhaps most importantly, it beckons the
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industry to embrace the profound economic and sustainability advantages of
embracing these cutting-edge technologies. Furthermore, our study
underscores that adopting AI-powered drones in construction is not merely
about project success; it catalyzes fostering public health, safeguarding the
environment, ensuring top-tier quality management, and fortifying economic
sustainability. These interwoven facets illuminate the broader canvas of drone
technology’s transformative role in construction.

KEYWORDS

AI-based drone, construction industry, construction project success, sustainable
construction, modelling

1 Introduction

The drone, a crewless aerial vehicle, has attracted extensive
interest in the construction sector owing to its potential to
enhance safety, cut costs, and boost efficiency. According to a
survey by market analysts, the worldwide drone services market
size in construction was estimated at USD 4.4 billion in 2019 and is
predicted to rise at a CAGR of 20.6% to reach USD 11.2 billion by
2024 (Alsamarraie et al., 2022). The report finds many significant
drivers pushing the use of drones in construction, including their
capacity to conduct various jobs such as surveying, mapping,
inspections, and monitoring building progress (Yang et al., 2021).
Drones are especially valuable for surveying big or complicated
building sites, where they may swiftly and correctly record data that
would otherwise be difficult or time-consuming to acquire. In
addition, drones outfitted with thermal imaging cameras may be
used to discover possible risks, such as heat leaks or electrical issues,
that would not be apparent to the human eye. In light of global
sustainability concerns, there is an increasing need to transform
building practices to conform to ecological and social goals. In this
particular setting, incorporating drones that use artificial intelligence
(AI) into building procedures presents a potentially revolutionary
resolution. The drones have been specifically engineered to carry out
various duties independently, such as gathering data, conducting
analysis, and making decisions using artificial intelligence
algorithms and sensors (Feng et al., 2013; Goessens et al., 2018a).

The concept of sustainable construction entails a comprehensive
perspective on the construction and development of buildings and
infrastructure, considering various environmental, social, and
economic considerations. The construction industry significantly
contributes to global resource consumption and environmental
degradation, responsible for around 36% of worldwide energy
consumption and 39% of carbon emissions (Kubo and Okoso,
2019; Lahmeri et al., 2021; Kim et al., 2022). Using drones with
artificial intelligence presents a promising opportunity to tackle
these difficulties effectively (Ganesan et al., 2020; Gibbin et al., 2023).
The use of AI in uncrewed aerial vehicles holds promise for
substantial improvements in the efficiency of building projects.
Modern techniques enable them to efficiently carry out site
surveys, monitor project progress, and conduct inspections at a
significantly accelerated pace compared to conventional ways.

Even with these advantages, the deployment of drones in
construction is challenging, including regulatory and legal limits,
lack of knowledge and skills among construction professionals, and
budgetary constraints (Li and Liu, 2019). In the United States, for

instance, the Federal Aviation Agency (FAA) has established
restrictions for the use of drones, including commercial usage
guidelines and registration, pilot certification, and flight
operations criteria. In addition, many experts in the construction
industry may need more expertise and skills to operate drones and
evaluate the data they gather. Financial limitations may also prevent
construction companies from investing in drone technology (Pawar,
2020).

These drones can offer many benefits, including enhancing
safety and quality management, bolstering environmental
protection, and improving economic sustainability. Drones
equipped with AI capabilities have the potential to redefine the
landscape of construction project management (Yang et al., 2021;
Alsamarraie et al., 2022). They provide real-time data, conduct aerial
surveys, and offer precise monitoring capabilities, enabling
construction professionals to make informed decisions and
optimize project outcomes (Loveless, 2018; Li and Liu, 2019).
However, this promising trajectory has its challenges. The
construction industry grapples with multifarious obstacles,
including technical and functional constraints, privacy and legal
restrictions, economic sustainability considerations, and
organizational resistance to change (Ateya et al., 2022; Ichimura
et al., 2022). These challenges hinder the widespread adoption of
drones and impact critical facets like public health and safety,
environmental preservation, quality management, and economic
sustainability.

Despite the increased interest in using drones in the
construction sector, there still needs to be more knowledge on
overcoming the obstacles to their acceptance and ensuring their
success in the business. While there have been some studies on the
advantages and disadvantages of employing drones in construction,
only some have explored the correlation between the obstacles to
their adoption and the success of the technology in the sector
(Loveless, 2018). This information gap is a substantial challenge
for construction industry professionals, policymakers, and
academics interested in adopting innovative technology (Ateya
et al., 2022; Ichimura et al., 2022). Consequently, this expeditious
approach results in diminished project durations and cost
reductions. The potential advantages of using AI-based drones in
sustainable building are readily apparent (Greene and Myers, 2013;
Gupta et al., 2021). However, there needs to be a more in-depth
investigation into the extent to which these drones affect the overall
success of construction projects. Previous research often focuses on
specific elements of either AI implementation in the building
industry or the adoption of sustainable construction practices. A
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significant research gap needs to be addressed to establish a
connection between these two areas and explore the potential
synergistic effects that may arise from their integration.

In addition, extant research tends to emphasize individual
obstacles or success factors over their interrelation. A more
thorough knowledge of the link between barriers and success
factors is required to find the most effective techniques for
eliminating obstacles and guaranteeing the success of drones in
the industry (Alsamarraie et al., 2022). This is especially crucial since
the use of drones in buildings continues to increase, and
construction companies are under growing pressure to embrace
more sustainable and efficient techniques.

The present article seeks to fill this knowledge gap by realizing
the full potential of drones in the construction industry. It is essential
to comprehend the connection between overcoming these obstacles
and the success of drones in business (Wazid et al., 2020). This study
intended to provide an intelligent Partial Least Square (PLS)
regression model to investigate the link between drone adoption
hurdles and their industrial success. The approach is built on two
orders, with the first level consisting of adoption obstacles and the
second order consisting of success characteristics, including quality,
safety, and environmental effects. The data-driven approach enables
us to identify the most significant hurdles to the adoption of drones
in construction and the elements that contribute to their success,
offering a more excellent knowledge of how the barriers affect the
success of the technology in building (Lawani et al., 2022).

While facing substantial challenges, the construction industry
has shown a growing interest in adopting AI-powered drones.
However, the comprehensive examination of the interconnected
barriers hindering their widespread integration remains notably
limited in the existing literature. Moreover, the extent to which
addressing these barriers can significantly impact project success
and critical areas like public health and safety, environmental
conservation, quality management, and economic sustainability
requires deeper investigation. This research seeks to bridge this
notable gap by conducting an in-depth analysis that identifies these
challenges and elucidates their multifaceted impact on the
construction landscape. In doing so, we aim to contribute to a
more comprehensive understanding of the potential and challenges
associated with AI-based drones in construction while offering
practical insights for industry stakeholders and policymakers.

This is, to the best of our knowledge, the first study to develop an
intelligent structural equation model to explore the relationship
between the barriers to the adoption of drones in construction and
their success in the industry, utilizing a comprehensive set of success
factors that includes quality, safety, and environmental factors. The
model enables us to identify the most critical hurdles to adopting
drones in the construction industry and the characteristics
contributing to their success. It offers valuable information on
overcoming these barriers and guarantees the effective integration
of drones into the sector. This unique method for examining the link
between obstacles to adoption and the success characteristics of
drones in the building will interest construction professionals,
policymakers, and scholars. The intended audience for this article
consists of building industry specialists with extensive expertise.
This study’s results may be of considerable use to construction
industry experts, legislators, and scholars interested in adopting
developing technology. This research offers a significant road map

for enhancing the acceptance and integration of drone technology in
construction by identifying the hurdles to drone adoption and the
elements that contribute to their success. Using AI-based drones in
building projects may result in significant cost reductions, hence
offering considerable benefits at a time characterised by limited
financial resources and economic instability. The results of this
study will provide valuable insights to construction firms and
policymakers on the potential of AI-enabled drones, hence
facilitating their integration and utilisation within the sector. The
research aims to provide a strategic framework for harmonising
building practises with sustainability objectives, fostering
sustainable development and conscientious resource stewardship.

2 Related works

Many studies have examined the challenges of using drones in
construction and the crucial success elements that may assist in
overcoming these barriers (Golpîra, 2021; Kim et al., 2022). For
instance, it was discovered that a lack of knowledge, legal
constraints, and data processing difficulties were the most
significant obstacles to drone adoption in the construction
business (Yi and Sutrisna, 2021). One study observed comparable
constraints, such as privacy and security concerns, lack of technical
competence, and investment return uncertainty (Lee and Kwon,
2020; Woo et al., 2021). Cost and a lack of industry standards were
also significant hurdles to adoption by one examination. One study
identified regulatory restrictions, restricted drone capabilities, and
expensive equipment and maintenance costs as the primary
obstacles to the deployment of drones in the construction
industry (Feder, 2020; To et al., 2021). It was revealed that
inadequate awareness and understanding of drone technology,
privacy and data security concerns, and drone durability were
significant obstacles. It is also identified that the availability of
experienced personnel, the price of drone technology, and the
aversion to change were significant hurdles to adoption. It is
realized that in India, a need for more awareness and expertise
regarding drone technology, high prices, and regulatory difficulties
were significant obstacles (Amicone et al., 2021; Mahajan, 2021).
Sawhney et al. (2020) did a thorough literature analysis. They found
that the primary hurdles were the absence of clear laws, high
expenses, and a lack of knowledge and awareness (Sawhney
et al., 2020).

The use of drones within the construction sector has seen
substantial expansion in recent years. It is important to
comprehend the many aspects that contribute to this acceptance,
with a particular focus on the level of maturity in terms of age (Lee
and Kwon, 2020; Wazid et al., 2020). The construction industry,
often seen as conservative, has experienced a growing acceptance of
drone technology due to its capacity to potentially transform several
facets of project management (Charlesraj and Rakshith, 2020; Kim
et al., 2022). Nevertheless, the pace of adoption often exhibits
variability across people and organizations, with age potentially
serving as a relevant element within this context. The available
research suggests that individuals belonging to younger professional
cohorts, especially those raised in digital advancements, have a
greater inclination towards embracing drone technology within
the construction industry (Charlesraj and Rakshith, 2020; Feder,
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2020). Frequently, individuals of this demographic have a higher
level of proficiency in assimilating new technical instruments and
are more inclined to see drones as beneficial resources for their
endeavours. On the other hand, it is worth noting that older
professionals may want further training and assistance to
effectively adopt and integrate these advancements (Li and Liu,
2019; Alsamarraie et al., 2022). Moreover, the extent of expertise
within the construction sector significantly influences the
impression of crewless aerial vehicles. Experienced individuals
who have seen the sector’s progression may possess a heightened
understanding of the capabilities of drones, whilst others who are
new to the field may need further persuasion (Loveless, 2018; Pawar,
2020). The occupation of people also has a significant influence in
shaping their perceptions and acceptance of drone technology
(Ateya et al., 2022; Ichimura et al., 2022). For example, project
managers may see drones as instruments for enhancing project
efficiency and ensuring quality control, while surveyors may
prioritize their capacity for precise data collection.

In a study in Pakistan, the high cost of drone technology and the
lack of training and experience were significant obstacles. Agapiou
(2020) cited the absence of a regulatory framework, increased
expenses, and opposition to change as significant barriers
(Agapiou, 2020). It is revealed that the absence of clear rules and
policies, the high cost of drones, and a lack of experienced workers
were significant impediments to adoption. Kubo and Okoso (2019)
researched the challenges and drivers of drone adoption in Saudi
Arabia and found that low awareness and understanding, the
absence of a regulatory framework, and high prices were the
most significant impediments to adoption (Kubo and Okoso,
2019). Kim et al. (2017) indicate similar challenges to using
drones in the construction industry, including high prices, a lack
of awareness and comprehension, regulatory impediments, and a
need for more knowledge and competence (Kim et al., 2017). It
highlights the absence of rules and norms, high equipment prices,
and technological constraints as the primary obstacles to
implementing drones in construction. In the Korean construction
business, it was discovered that a lack of competent workers and an
inadequate understanding of drone technology were major obstacles
(Goessens et al., 2018a; Rovira-Sugranes et al., 2022). Umar (2021)
cited legal hurdles, cost concerns, and a lack of integration with
existing processes as the main obstacles to drone adoption in the
United Arab Emirates construction sector (Umar, 2021). Mahajan
(2021) researched India and discovered that there needed to be a
legal framework, high prices, and low awareness and understanding
were the primary obstacles to using drones in the construction
industry (Mahajan, 2021).

It is also important that the absence of rules, privacy concerns,
and the restricted range of drones were themost significant obstacles
to adoption in the Middle East. A study in China found the lack of
laws, high prices, and lack of knowledge and comprehension of
drone technology as the primary impediments (Li 2019). Chung
et al. (2020) found that there needed to be a regulatory framework,
high prices, and a lack of training and education were the primary
obstacles to drone adoption in China (Chung et al., 2020). Research
done in the United Kingdom highlighted the lack of standards, the
difficulty of integrating drone data with BIM, and the lack of
appropriate software tools as the primary obstacles to adoption
(Golpîra, 2021; Gibbin et al., 2023). Following the research gap, this

study has two objectives. The first objective is to identify the barriers
to implementing drones in the construction industry. The second
objective is to identify the impact of overcoming obstacles of drone
implementation on Construction Project Success in the construction
industry.

The measurement of environmental advantages is a crucial
element in sustainable building. While several research studies
have recognised the potential of AI-driven crewless aerial vehicles
to mitigate energy consumption and carbon emissions, only a few
studies have presented quantifiable data. Nevertheless, this domain
needs to be more adequately investigated since a dearth of research
provides thorough quantitative evaluations of the environmental
consequences (Albeaino et al., 2022; Alsamarraie et al., 2022). There
is a need for research endeavours that include project-specific
variables, including geographical place, magnitude, and intricacy,
to provide a complete comprehension of enhancements in efficiency.
However, most studies conclude by highlighting these difficulties
without providing specific answers or techniques for their reduction
(Beiki and Mosavi, 2020; Bera et al., 2022). The potential of AI-
powered drones to gather extensive quantities of data in
construction presents a promising opportunity for decision-
making informed by data. Numerous studies have shown the
potential of this technology to better project management and
optimise resource allocation. One notable deficiency in the
existing body of literature is the lack of comprehensive
frameworks that guide the incorporation of AI-enabled drones
into sustainable building methodologies (Charlesraj and Rakshith,
2020; Chen et al., 2021). Most research endeavours concentrate on
sure facets, such as efficiency or environmental effect, without
presenting a holistic framework for sustainable building. Previous
research has put forward a conceptual framework aimed at the
seamless integration of drones often called drones, into construction
project management. Nevertheless, it is worth noting that this
framework needs to improve its emphasis on sustainability,
creating an avenue for more investigation in this specific domain
(Ciampa et al., 2019; Chung et al., 2020).

To assess their sustainability contributions, it is essential to
thoroughly understand these technologies’ life cycle effects on
building projects. The prevailing body of literature mainly
comprises research undertaken in developed areas characterised
by established regulatory frameworks and infrastructure. This bias
imposes constraints on how the results may be applied to places
characterised by distinct socio-economic situations and building
practices (Dillow, 2016; Entrop and Vasenev, 2017; Elghaish et al.,
2021). Future studies should include a wide range of scenarios to
enhance the comprehensiveness of our knowledge about the
worldwide application of AI-based drones in sustainable building.
The existing body of research recognises the potential impact of AI-
based drones in transforming sustainable building; nevertheless,
significant gaps still need to be addressed. The identified gaps
encompass various areas that require attention in the academic
realm (Feng et al., 2013; Firth, 2018; Feder, 2020). These gaps pertain
to the necessity for thorough quantitative evaluations of
environmental impact, a more extensive examination of efficiency
improvements and cost reductions, the formulation of feasible
strategies to address implementation obstacles, the incorporation
of data generated by drones into decision support systems, the
establishment of comprehensive sustainability frameworks, and the
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ongoing monitoring of project performance over an extended period
(Goessens et al., 2018a; Ganesan et al., 2020; Gibbin et al., 2023).
Rectifying these shortcomings will significantly expand existing
knowledge and enhance the seamless incorporation of artificial
intelligence-powered uncrewed aerial vehicles into sustainable
building methodologies.

Overall, these studies highlight the need for a holistic approach to
addressing the barriers to drone adoption in the construction industry,
which includes not only addressing regulatory and financial issues but
also increasing awareness and knowledge about drone technology and
developing the infrastructure and resources required to support its
integration into construction workflows. The central hypothesis for the
study is H1: Overcoming barriers to implementing AI-based drones
has a positive effect on construction project success. This study
concentrates on building more precise frameworks and suggestions
for overcoming the unique challengesmentioned in different situations
and examining the potential advantages of drone adoption in
construction beyond cost savings and productivity increases.

3 Identification of model barriers

In the research, 16 semi-structured interviews were used to
determine the obstacles to using drones and the success criteria for
AI technology in the construction industry. The interviews were
conducted to get a more excellent knowledge of the problems and
possibilities related to deploying drones and AI technology in the
construction sector, as assessed by industry experts.

The semi-structured interview method was selected because it
permitted freedom of questions and allowed for prompts and
probes. The interviews with construction businesses and
stakeholders aimed to get insight into their perspectives and
experiences regarding employing drones and AI technologies (Lee
et al., 2019; Gupta et al., 2021).

The interview data were examined to discover common themes
on the obstacles to using drones and the success criteria for AI
technology in the construction industry. The data were then utilized
to design a Smart PLS model to investigate the association between
overcoming obstacles to drone adoption and the effectiveness of
drones in construction.

Overall, semi-structured interviews offered a wealth of data that
enabled a detailed examination of the obstacles and success factors
associated with deploying drones and AI technologies in the
construction industry (Lee et al., 2020). This information may be
used to guide future industry research and policy choices.

The respondents in the study’s semi-structured interviews noted
that environmental protection, public health, and quality
management are three crucial elements that must be addressed to
guarantee the success of AI technology in buildings (Mishra, 2019;
Ullo and Sinha, 2021).

By maximizing resource utilization, decreasing waste and
emissions, and encouraging green building materials and processes,
applying AI technology in construction may facilitate more
environmentally friendly and sustainable building practices (Irizarry
et al., 2012; Kitjacharoenchai et al., 2020). Furthermore, AI technology
may improve public health and safety by allowing higher precision and
accuracy in project management and delivery, minimizing the
likelihood of accidents and injuries on construction sites.

Furthermore, using AI technology may enhance the overall quality
of construction projects by allowing higher efficiency and accuracy,
minimizing mistakes and delays, and improving project results (Lee
et al., 2021; Albeaino et al., 2022). Table 1 presents the identified model
barriers and Table 2 indicates the factors of project success along with
their identified constructs. These success elements are crucial to
guaranteeing the broad acceptance and deployment of AI
technology in the construction sector, and industry experts and
policymakers should prioritize their consideration.

4 Methodology

Based on the studied literature, 18 hurdles to implementing
drones were identified along with nine success factors under
three constructs and judged relevant. Figure 1 further
demonstrates it. Subsequently, a questionnaire survey was
undertaken by distributing a list of obstacles to implementing
drones to building industry professionals with relevant
construction experience. It was conducted to assess the
appropriateness and clarity of drone innovation hurdles that
inhibit its adoption and to analyze these barriers and their kinds
using exploratory analysis of factors (EFA).

4.1 Data collection

Using a questionnaire, Malaysian stakeholders in the prospective
construction sector were contacted during data collection to analyze
the hurdles to drones and associated success factors with their
implementation (Feng et al., 2013; Duda et al., 2019; Beiki and
Mosavi, 2020). The survey instrument was separated into four
primary components: 1) the respondents’ demographic profile, 2)
the drone adoption hurdles, 3) success factors for overcoming the
drone implementation barriers, and 4) open-ended questions that
allowed experts to add any relevant barriers identified by stakeholders.
There were three primary groups questioned. They include customers,
consultants, and independent contractors.

They are classified further depending on occupation:
mechanical, electrical, structural engineers, architects, and
quantity surveyors. Using a five-point Linkert scale, the study
population assessed the drone’s adoption hurdles and success
based on their experience and knowledge (5 = very high, 4 =
high, 3 = average, 2 = low, and 1 = very low). This metric has
been widely used in the literature. The drone is a recent development
in Malaysia. Hence, a stratified sampling strategy of a particular
subgroup has been evaluated [85]. In addition, the sample size
selection for this investigation was based on examining the
procedural goal [86,87]. Figure 1 presents the stages of the
research. According to Kline [88], a multidimensional route
model requires at least 200 samples.

In contrast, Yin [89] asserts that at least 100 examples are
sufficient for SEM. Due to the use of SEM in this research,
248 respondents were obtained from 335 found initially. The
257 individuals were reached through a self-administered
questionnaire with a response rate of 71.81%. It was
determined that the rate of return was appropriate for this
sort of study [90,91].
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4.2 Data analysis

SEM-PLS (Structural Equation Modeling-Partial Least Square)
has attracted interest from several fields, particularly the social and
economic sciences [59]. Popular SSCI Publications [60–62] have
published more studies using the SEM-PLS methodology. The
most current edition of the SMART-PLS 4 version was utilized to
analyze the collected data and estimate the importance of
implementation hurdles and success factors for drones using
SEM. The SEM-PLS was initially recognized for its solid
predictive capabilities when compared to covariance-based
CB(SEM)-structural equation modelling (Yıldız et al., 2021),
even though the discrepancy between the two techniques is
relatively tiny (Duda et al., 2019). This research’s mathematical

analysis comprises analytical and structural modelling evaluation
techniques.

4.2.1 Common method variance
CommonMethod Bias (CMB) results from the standardmethod

variance (CMV). The CMB assists in explaining the mistake (or
variance) in the outcomes of an analysis, which is associated with the
analytical approach as opposed to the ideas represented by the
methodologies [65]. It may be defined as the overlap in variance
across ideas (Yang et al., 2021; Alsamarraie et al., 2022). Similarly,
the CMV is complex whenever data from a specific source, such
as self-collected data via a questionnaire, are available [66,67]. In
some circumstances, self-collected data might overestimate or
misrepresent the number of perceived associations, causing issues

TABLE 1 Identified barriers to drone implementation.

Code Barriers Method References

C1 Drones’ technology may need to be more scalable for significant construction projects or require substantial
modification in larger applications, making its widespread adoption challenging

Literature Elghaish et al. (2021), Islam et al.
(2021)

C2 Integrating with current drone technology systems may require more work with existing construction systems,
posing a hurdle for businesses seeking to embrace this technology

Interview -

C3 Concerns remain over the safety and privacy of drones on building sites, mainly when operating near humans Literature Höche et al. (2021), Bera et al. (2022)

C4 The availability of drone technology may be restricted in some countries or for specific applications, posing a
substantial obstacle for businesses operating in those regions or seeking to employ the technology for those

purposes

Literature Firth, (2018); Rohan et al. (2019)

C5 To maintain dependability, drone technology may be delicate and require regular maintenance. This may be a
substantial obstacle for certain businesses, especially those with minimal resources

Literature Ganesan et al. (2020), Umar (2021)

C6 Some in the construction sector may believe that drone technology is not suited to the specific problems and
requirements of construction operations. This impression might make it challenging for certain businesses to

implement this technology

Literature Anunciado, (2016); Lin (2017)

C7 Some construction projects may need more drone technology usage due to environmental limitations, such as
noise or pollution

Interview -

C8 There may be regulatory and legal obstacles to employing drone technology in the construction industry,
notably with safety and liability concerns

Literature Ganesan et al. (2020), Umar (2021)

C9 The high initial cost of drone technology might be an impediment, especially for smaller construction firms Interview -

C10 Using drone technology in construction may be met with opposition from human employees who fear being
inspected by drones or are uncomfortable working alongside AI technology

Literature Lin (2017), Yigitcanlar et al. (2020)

C11 The absence of standardization in drone technology might make it difficult for businesses to analyze and
compare various technologies and choose the best solution for their specific requirements

Interview -

C12 The present variety of uses for drone technology in the construction industry still needs to be expanded,
making it difficult for certain businesses to justify the investment

Literature Anunciado (2016)

C13 Some businesses may resist change and slowly accept new technology, primarily if they have long relied on
conventional building techniques

Literature Lahmeri et al. (2021)

C14 Drone technology operation and maintenance drone technology operation and maintenance may be complex
and need specialist skills. Building businesses need to be more confident with this intricacy

Literature Ciampa et al. (2019), Zhang et al.
(2021)

C15 Some firms may be reluctant to invest in drone technology if they lack the specialized staff to operate and
maintain drones

Literature Zaychenko et al. (2018)

C16 The existing spectrum of drone technology in construction may need to be sufficiently adaptable to satisfy the
unique requirements of certain businesses or projects, which may be a substantial obstacle to adoption

Interview -

C17 Some businesses may need to be made aware of drone technology’s advantages or comprehend how it may be
used in the construction industry

Interview -

C18 For certain businesses, the return on investment for drone technology in construction may take time to justify
the cost

Interview -
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[67,68]. That may be crucial, especially for this study, since all data
sets are self-collected, unique, and drawn from a single source. Thus,
it is vital to address these problems to detect any potential CMV. A
valid single-factor test was conducted following the studies
undertaken by Harman et al. [69] [70]. Factor analysis yields a

single factor that explains most of the variance (Duda et al., 2019;
Lewandowski, 2021; Yıldız et al., 2021).

4.2.2 Analytical model
The analytical model reveals the existing link and underlying

structure between variables [71]. The next part evaluated the
analytical model’s discriminant and convergent validity.

4.2.2.1 Convergent validity
CV exemplifies the degree of agreement between two or more

binary variables (or obstacles) of the same notion or constructs. It is
considered a subset of the validity of the concept. The CV of the
calculated constructs in PLS may be determined using three tests. I
composite reliability ratings (Pc), Cronbach’s alpha, and estimated
average variance (AVE). There is a suitable mixed reliability level of
0.70 (Pc). For any research, scores above 0.60 and 0.70 for exploratory
studies are considered acceptable. The last test is the AVE, which is
regarded as a typical calculation used to assess the CV of the model’s
structures. My results are more than 0.50, suggesting an excellent CV.

The following calculations were used for concurrent validity
exploration:

AverageVariance Extracted � AVE � ∑λ2∑λ2 +∑ε
(1)

Composite Reliability � CR � ∑λ( )2∑λ( )2 + ∑ε (2)

CronbachAlpha � CA � α � k

k − 1( ) × 1 − ∑ε∑x2
( )[ ] (3)

where: λ = the factor loading of each indicator on its corresponding
construct.ε = the indicator’s unique error variance.where: k = the
number of indicators in the construct.&epsi; = the indicator’s unique

TABLE 2 Construction project success factors with their constructs.

Environmental
protection

E1 It regularly scans the building site to discover and monitor environmental
hazards, such as soil erosion, water runoff, and other pollution sources

Entrop and Vasenev (2017), Goessens et al. (2018b), MT Hardjo et al.
(2020), Ikeda et al. (2021), Pereira da Silva and Eloy (2021)

E2 Providing thermal imaging and other forms of non-destructive testing to
identify possible environmental dangers, such as chemical spills, that

might negatively impact the health of local people

E3 I monitor the construction process to guarantee compliance with
environmental requirements, such as waste disposal and environmentally

friendly building materials

Public Health and
Safety

H1 Real-time monitoring of the construction site to guarantee compliance
with safety rules and processes and rapid identification and mitigation of

any safety concerns or events

Greene and Myers (2013), Urgessa and Esfandiari (2018), Li et al.
(2019), Liu et al. (2021)

H2 Providing precise 3D models and maps of the building site may aid
personnel’s rapid location and evacuation in an emergency

H3 Improving communication and cooperation between project
stakeholders may aid in identifying and resolving any possible safety

concerns or problems before they become a problem

Quality
Management

Q1 For building projects, drones may offer aerial surveys, site management,
and progress monitoring, ensuring quality management

Dillow (2016), Scher et al. (2019), Chung et al. (2020), Khalid et al.
(2021)

Q2 Drones may assist in uncovering possible potential concerns and design
defects, assuring compliance with construction norms and codes

Q3 Drones may gather data about building supplies and equipment, such as
measurements, weight, and dimensions, to ensure that the proper

materials are utilized in the right proportions

FIGURE 1
Flow chart of the work.
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error variance.ΣX2 = the total variance of the construct, equal to the
sum of the squared factor loadings and error variances of the
indicators.

4.2.2.2 Discriminant validity
Discriminant validity (DV) stipulates that the concerns under

study are experientially unique and proposes that no dimensions
define the construct under investigation in SEM. If the DV is to be
determined, the degree of similarity across dispersed measurements
must not be excessive. The Fornell-Larcker criteria compare the
square root of the AVE for each construct to the construct’s
correlations with other constructs in the model (Feng et al.,
2013). When the square root of the AVE for a particular
construct is more prominent than its correlation with other
constructs in the model, it is argued that the construct has
discriminant validity (Makadsi, 2019; Kisi et al., 2020; Chen
et al., 2021). The AVE for each structure is computed as follows:

AVEfor each structure � ∑λ2∑θ
(4)

where λ2 is the factor loading squared, θ is the construct’s error
variance.

The correlation between two constructs, i and j, is calculated as:

Correlation i, j( ) � ∑λi × λj				∑λi2
√

×
					∑λj2√ (5)

The square root of the AVE for each construct is then compared
to the construct’s correlation with other model constructs. The
discriminant validity is established if the square root of the AVE
is larger than the correlation with any different concept (Urgessa and
Esfandiari, 2018; Beiki and Mosavi, 2020). The Heterotrait-
Monotrait (HTMT) ratio of correlations is determined by
dividing the correlation between two constructs (hetero-trait) by
the average correlation of each construct with itself (monotrait).
Following is the algorithm for calculating HTMT:

HTMT �
										

rij2

AVE ri, rj( )
√

(6)

Where r_ij is the correlation between constructs i and j, and ave (r_
i,r_j) is the average of the correlations of constructs i and j with
themselves. The HTMT threshold value is generally set at 0.9 or less,
suggesting that the constructs are sufficiently dissimilar from one
another to have discriminant validity (Li et al., 2019; Liu et al., 2021).
The cross-loading of an item on a structure may be described
mathematically as follows: For construct j, the loading of item λ_
ij gives me, and the residual variance of item ξ_i gives me. Then, the
cross-loading of article i on construct k (k ≠ j) is provided by:

λik � COV i, k( )					
var i( )√ (7)

Where cov (i, k) is the covariance between item I and construct
k.Var(i) is the variance of item i.

4.2.3 Structural model analysis
This research attempted to demonstrate, using the SEM, the

main hurdles to drone implementation in construction projects and
its success factors. It may be accomplished by first determining the

route coefficients. Hence, a one-way causal link or route relation has
been postulated between the concepts of drone’s obstacles (£) and
drone’s success adoption barriers (µ) (Kardasz and Doskocz, 2016;
Oudjehane et al., 2019; Hatfield et al., 2020). Thus, the functional
relationship between £, µ, and ∈ 1 principle in the structural
equation model has been identified as an inner connection that a
linear model may represent:

µ � β£ + ∈ 1 (8)
When the route coefficient linking drone, conceptions is β, and it is

believed that ∈1 represents the residual correction at the operational
level. Hence, the standardized regression load would be identical to the
weight of the multiple regressionmodel. Its signals must correspond to
the model’s predictions and be statistically significant (Makadsi, 2019;
Kisi et al., 2020; Chen et al., 2021). The issue arises in determining the
significance (β) of the route coefficients. For the CFA, the bootstrap
approach available in the SmartPLS 4 programwas used to estimate the
standard errors of the route coefficients. Five thousand subsamples
were used for this. Hence, the t-statistics of testing the hypothesis have
been defined. Three functional formulas for drone ideas were created
using the PLS model. It illustrates the underlying connections between
ideas and Eq. 8

Using the SmartPLS 4.0 software, a structural equation
modelling (SEM) study was undertaken to explore the links
between the research model’s components. The bootstrap
approach was used to assess the relevance and robustness of the
parameter estimations of the model. Bootstrapping entails obtaining
random subsamples from the data set and creating a distribution of
parameter estimates for each model route (Greene and Myers, 2013;
Duda et al., 2019). The t-value and p-value show the significance and
strength of the association between the constructs for each path
coefficient, provided as the results of the bootstrap analysis (Kardasz
and Doskocz, 2016; Oudjehane et al., 2019; Hatfield et al., 2020). A
p-value of less than 0.05 was statistically significant. In addition, the
coefficient of determination (R-squared) was used to assess how
much variation the model explained. R-squared values over 0.3 were
regarded as acceptable.

4.2.4 Predictive relevance analysis
After determining the relevance of the route variables, the

structural model’s prediction ability was evaluated. The model’s
predictive power was assessed using the cross-validated R-squared
(Q2) value. The Q2 value represents the amount of predicted variation
in the dependent variable. A Q2 value over 0.25 suggests excellent
predictive ability, while a Q2 value below 0.1 shows poor predictive
power. SmartPLS 4.0’s structural model analysis comprehensively
examines the model’s element connections. The structural model is
reliable and valid owing to the use of advanced statistical techniques,
such as bootstrapping, and the evaluation of its predictive capability.

5 Results

5.1 EFA analysis

The exploratory factor analysis (EFA) findings suggest that the
18 obstacles to using drones with AI in the construction sector may
be broken down into three constructs or components that account
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for 59.259% of the total variation. Table 3 presents the rotated
component matrix from EFA, along with Cronbach Alpha values for
each construct.

The first part, “Technical and Functional Barriers,” is made up of
5 barriers with high factor loadings, meaning they are highly
correlated with each other and can be thought of as obstacles
relating to the integration and compatibility of AI-based drone
technology with existing construction systems, safety and privacy
concerns, regulatory and legal barriers, and a lack of standardization
in the technology (Yıldızel and Calış, 2019; Khalid et al., 2021).

The second part, titled “Privacy and Legal Barriers,” is
comprised of six barriers with high factor loadings; this means
that they are highly correlated with each other and can be thought of
as barriers relating to the high price of the technology, the need for
routine maintenance and specialized skills, the resistance to change,
and the lack of technical staff to operate and maintain the drones.

Thirdly, the “Economic and Sustainability” factor includes six
obstacles that have high factor loadings, indicating that they are
highly correlated with each other and can be thought of as obstacles
related to the environmental limitations of using drone technology
in construction, employee opposition, and discomfort with AI
technology, the difficulty and complexity of operating and
maintaining the drones, and the limited variety of uses and
awareness of the tec. The strong Cronbach’s alpha values for all
three subscales suggest that the individual barriers used to evaluate
each subscale are valid and trustworthy indicators of the construct
they are meant to assess.

The findings as a whole indicate that there are several obstacles
to the successful use of drones powered by artificial intelligence in
the construction business. These barriers may be broken down into
three categories. The findings of this EFA may guide future studies
and practitioners in overcoming obstacles to the widespread use of
intelligent drones in the building sector.

The final categorized barriers to AI-based drones in
construction are according to EFA results. Businesses may face
technical and functional hurdles when trying to embrace and
integrate drone technology into their operations, which is what
the Technical and Functional Barriers category is all about (Dillow,
2016; Scher et al., 2019; Chung et al., 2020). Difficulties in integrating
drone technology with existing systems, a shortage of specialized
staff to operate and maintain the technology, aversion to change and
new technology, a lack of standardization in drone technology, and
the misconception that drone technology is not suited to the unique
demands of construction projects are all obstacles to overcome.
Concerns about personal privacy, workplace safety, and legal
implications are all factors that might slow down the widespread
use of drones in the building. These include the belief that drone
technology is not suited for construction operations, the dedication
that drones cannot be adapted to meet the unique requirements of
certain businesses or projects, opposition from human employees
who fear being replaced by drones or working alongside AI
technology, and regulatory and legal obstacles. Economic and
sustainability concern the potential financial and environmental
costs companies may incur using drone technology (Yıldızel and
Calış, 2019; Khalid et al., 2021). Drone technology has several
obstacles, including its high upfront cost, restricted range of
applications in construction, its fragile nature and the need for
routine maintenance, its inability to scale to more significant
building projects, and environmental constraints like noise or
pollution. These three frameworks illustrate the many potential
challenges companies may face while embracing and using drone
technology within the building sector (Kardasz and Doskocz, 2016;
Oudjehane et al., 2019; Hatfield et al., 2020). The EFA findings imply
that these obstacles may be broken down into three broad groups,
which can guide the development of specific treatments and
methods to overcome them.

The components that emerged from the EFA were technological
and functional limitations, privacy and legal restrictions, and
economic and sustainability concerns. Possible roadblocks to the
widespread use of drones powered by artificial intelligence in the
building sector include the structures mentioned earlier. Using this
data, hypotheses “H2: Technical and functional Barriers have a
positive impact on Implementation of AI-Based Drones in the
construction industry,” “H3: Privacy and legal barriers have a
positive impact on Implementation of AI-Based Drones in the
construction industry,” and “H4: Economic and sustainability
barriers have a positive impact on Implementation of AI-Based
Drones in the construction industry,” were developed. All these
show that removing these roadblocks to using AI-powered drones
might benefit the construction sector. Figure 2 presents the
hypothesized framework of formative constructs and reflective
constructs. In particular, organizations looking to embrace this
technology may need help combining drone technology with
current construction processes. Similar privacy and legal
constraints, including safety and liability worries, may slow down

TABLE 3 Exploratory factor analysis output.

Variables 1 2 3 Cronbach alpha

C2 .735 0.810

C15 .705

C14 .703

C13 .645

C11 .644

C16 .791 0.811

C10 .768

C8 .683

C4 .676

C3 .650

C6 .643

C9 .762 0.876

C12 .753

C5 .704

C1 .682

C7 .641

Eigenvalue 4.126 4.041 3.921

% Variance 27.112 20.131 12.116

Extracted Factors B2 and B6 were extracted due to loading less than 0.6
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the widespread use of drones. Lastly, firms may find the high initial
cost and maintenance needs of AI-based drones to hinder their use
in construction. After reviewing the available literature and
conducting interviews, the authors developed three further
hypotheses about the usefulness of drones powered by artificial
intelligence in the building industry. The hypotheses were, “H5:
Implementation of AI-based drones in construction industry
positively impact Construction Project Success by Quality
Management,” “H6: Implementation of AI-based drones in
construction industry positively impact Construction Project
Success by environment protection” and “H7: Implementation of
AI-based drones in construction industry positively impact
Construction Project Success by public health and safety.” Using
AI-powered drones in the construction industry might improve
quality control, safeguard the environment, and boost public health
and safety. In sum, we utilized the EFA findings to create the six
hypotheses about the adoption and effect of AI-based drones in the
construction sector, considering the possible challenges and
opportunities presented by this emerging technology.

5.1.1 Demographics
The results of the demographics of the primary questionnaire

survey are indicated in Figure 3. Most have a Master’s degree (43%),
whereas just 32% have a Bachelor’s degree. The proportion of those
with a Ph.D. is lower (14%), while the “Others” group includes 10%.
The largest demographic of responders (43%) is comprised of those
aged 31–35, followed by those aged 26–30 (22%) and those aged
36–40 (15%). Just 7 per cent of those who answered the survey were
40 or older. In terms of years of experience, the largest share of
respondents had worked in the field between 11 and 15 years (44%),

followed by those with 5–10 years of experience (21%) and those
with 16–20 years of experience (15%). Just seven percent of those
polled hadmore than 20 years of experience. Most responders (74%)
are civil engineers; the subsequent most common occupation is the
project manager (18%) and safety manager (4%). Architects and
those who answered “Other” comprise a smaller sample fraction (3%
and 1%, respectively). When taken as a whole, the survey’s
respondent pool represents a cross-section of the construction
industry’s age, education, experience, and occupational spectrum.

5.2 Structure equation modelling (SEM) and
analysis

Cronbach’s alpha is often used to quantify ameasure’s reliability,
which is the extent to which it maintains consistent and stable results
over time. Internal consistency of items inside a concept is measured
by the composite reliability (rho-a and rho-c), with rho-c being the
more robust measure of reliability. Figure 4 presents the trend of
composite reliability in formative and reflective constructs. With a
more considerable value representing more convergent validity, the
average variance extracted (AVE) quantifies how well the items in a
construct capture the latent variable.

Cronbach’s alpha coefficients for each construct range from
0.701 to 0.902, indicating excellent reliability. The rho-a and rho-c
values, which comprise the composite reliability, are relatively high,
ranging from 0.805% to 0.936% and 0.852%–0.932%, respectively.
Figure 5 presents the trend of composite reliability in formative and
reflective constructs. It shows that the components inside each
construct are very consistent and trustworthy.

FIGURE 2
Formative constructs with their hypotheses.
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In addition, the AVE values range from 0.558 to 0.817, much
over the minimally acceptable criterion of 0.5. Hence, it can be
concluded that the items within each construct have strong
convergent validity and are substantially linked with the
underlying concept (Hatfield et al., 2020). Figure 6 presents the
trend of composite reliability in formative and reflective constructs.

This suggests that the constructs used in the study are reliable
and valid, which means they can be used to measure the intended
constructs of economic and sustainability barriers, environmental
protection, privacy and legal barriers, public health and safety,
quality management, and technical and functional barriers. The
relationship significance is indicated between constructs and latent
variables. Figure 7 demonstrates the path coefficients.

5.2.1 Second order analysis
Table 4 presents the evaluation results for six fundamental

constructs (Economic and sustainability Barriers, Privacy and
legal Barriers, Public Health and safety, and Technological and

functional Barriers) using the Fornell-Larcker criteria. These
criteria are essential for assessing the discriminative capability of
these constructs effectively. Examining the table’s diagonal reveals
each construct’s square roots of the AVE. The AVE quantifies how
much a particular concept can account for variance within its
indicators. Generally, an AVE value of 0.5 or greater signifies
robust convergent validity, indicating the construct adeptly
captures the shared variance among its indicators (Loveless, 2018;
Li and Liu, 2019). Moving on to the off-diagonal values in the table,
they depict correlations between different constructs. According to
the Fornell-Larcker criteria, for constructs to demonstrate high
discriminant validity, the sum of squared correlations between
any two constructs should be smaller than the AVE of each
concept. This signifies that the constructs should remain distinct,
and the shared variance between them should be less than what each
construct can explain independently. The findings in Table 4
confirm that all constructs meet the criteria for convergent
validity, with AVE values greater than 0.5. Additionally, the AVE

FIGURE 4
Item loadings with composite reliability for formative and reflective constructs items.

FIGURE 3
Demographic details.
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values off-diagonal are consistently lower than the AVE values on-
diagonal for each concept, indicating robust discriminant validity.
This provides strong evidence that the constructs effectively measure
separate dimensions of the phenomena under investigation and
substantiates the credibility of our study’s construct usage.

Table 5 provides the HTMT (Heterotrait-Monotrait) ratio data,
a commonly used method for assessing the discriminant validity of a
measurement model. This analysis is vital to ensure that the
constructs within the model are distinct. The table’s diagonal
displays the square root of the AVE for each construct, while the
numbers below the diagonal represent the HTMT ratios. The
HTMT ratio is a crucial metric that must be below 0.90 to
confirm discriminant validity. In essence, this metric assesses
whether constructs are sufficiently different. In our analysis, all
HTMT values are well below the 0.90 threshold, indicating
discriminant validity among the constructs (Wazid et al., 2020;
Ateya et al., 2022). Each construct effectively captures unique aspects
of the phenomena under investigation. To further confirm
discriminant validity, we compare the square roots of the AVEs

with the HTMT values in the relevant rows and columns. The fact
that the AVEs are consistently more significant than the HTMT
values reinforces that our model accurately distinguishes between
various latent variables (Lee and Kwon, 2020; Lawani et al., 2022).
The HTMT analysis supports the notion that the model’s
components are distinct and effectively measure different aspects
of the constructs. This demonstrates the model’s accuracy in
discerning between various groups and confirms the discriminant
validity of our measurement model.

Table 6 illustrates the relationships between individual items and
their respective constructs, which are essential for assessing
construct validity within our measurement model. It offers
insights into the alignment of each item with its intended
construct and the potential for capturing unintended aspects. The
goal is for items to exhibit strong loadings on their designated
constructs and minimal loadings on others (Li and Liu, 2019;
Charlesraj and Rakshith, 2020). Reviewing the table, it becomes
clear that most items demonstrate substantial loadings on their
intended constructs. For instance, items associated with the

FIGURE 5
Item loadings vs. Cronbach alpha for formative and reflective construct items.

FIGURE 6
Item loadings vs. AVE for formative and reflective constructs items.
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Economic and Sustainability Barriers construct show loadings of
0.811, 0.871, 0.812, and 0.738 for C1, C7, C5, and C12, respectively.

Similarly, items E1, E2, and E3 display loadings of 0.773, 0.748, and
0.806 on the Environmental Protection Barriers construct precisely as
intended. However, some exceptions exist where items exhibit
significant loadings on additional constructs. For instance, item
C2 from the Quality Management construct displays a loading of
0.951 on the Technical and Functional Barriers construct, suggesting it

may inadvertently capture aspects of that construct as well.
Additionally, item C11 exhibits strong loadings on both the Privacy
and legal Barriers and Technical and functional Barriers despite its
intended placement in the Quality Management construct. The cross-
loadings analysis indicates that, with some notable exceptions, the items
effectively measure the targeted constructs rather than unintended
ones. These findings inform potential refinements to the measurement
scale, ensuring accurate capture of the intended characteristics.

FIGURE 7
Model with items, item loadings, and path coefficients.

TABLE 4 Fornell Larker criteria results.

Constructs ESB EPB PLB PHS QM TFB

Economic and Sustainability Barriers = ESB

Environment Protection Barriers = EPB 0.298

Privacy and Legal Barriers = PLB 0.245 0.14

Public Health and Safety = PHS 0.23 0.335 0.256

Quality Management = QM 0.22 0.436 0.477 0.27

Technical and Functional Barriers = TFB 0.221 0.435 0.476 0.265 0.097

TABLE 5 HTMT analysis results.

Constructs ESB EPB PLB PHS QM TFB

Economic and Sustainability Barriers = ESB 0.81

Environment Protection Barriers = EPB 0.189 0.776

Privacy and Legal Barriers = PLB 0.162 0.234 0.747

Public Health and Safety = PHS 0.188 0.208 0.191 0.812

Management = QM 0.18 0.332 0.398 0.225 0.904

Technical and Functional Barriers = TFB 0.173 0.335 0.4 0.221 0.284 0.88
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In this scenario, the dependent variable is the frequency with which
intelligent drones are used in building projects; hence, the group impact
ranking indicates the relative relevance of each construct in making this
prediction. Quality Management was shown to have the most
significant collective influence, with a grade of 1 (Oudjehane et al.,
2019; Hatfield et al., 2020). Quality Management is the most influential
factor in using drones with artificial intelligence in the building business.
Q1 and Q3 have enormous outer weights in the Quality Management
construct, suggesting a stronger connection to the construct. With a
group effect value of 1, the Technological and Functional Barriers
construct similarly significant in foreseeing the use of AI-based drones
in the building sector. C2, C15, and C14 are the heaviest outside
elements in this framework. With a group effect value of 2, the
Economic and Sustainability construct is relatively significant in
foreseeing the widespread use of AI-powered drones in the building
sector. Items C7 and C5 have the most ideal outside weights in this
structure. With a group effect value of 3, the Privacy and Legal Barriers
construct is the least relevant in forecasting the adoption of AI-based

drones in the construction business. Also, C16 has been eliminated from
this construct, suggesting that it did not play a role in the measurement
and may need to be included in future studies (Khalid et al., 2021).
Lastly, the group impact score of 3 for Environmental Protection and
Public Health and Safety indicates that these concepts are relatively
relevant in forecasting the use of AI-based drones in the construction
business. Itemswith outer weights ofH1 andH2 are themost important
to public health and safety, whereas things with outside consequences of
E1 and E2 are the most important to the environment.

5.2.2 Path analysis
The results of the route analysis for the formative constructs are

listed in Table 7. Each path’s t-value, p-value, VIF (variance inflation
factor), and SE (standard error) are included in the table. Economic and
sustainability Barriers, Privacy and legal Barriers, and Technical and
functional Barriers all reveal favourable outcomes for deploying AI-
based Drones in the Construction Sector. In particular, the p-values for
the route coefficients between these three constructs are all less than

TABLE 6 Cross loadings of items.

Variables Economic and
sustainability

barriers (formative
group impact

rank 2)

Environment
protection barriers
(reflective group
impact rank 3)

Privacy and
legal barriers
(formative

group impact
rank 3)

Public health
and safety
(reflective

group impact
rank 2)

Quality
management

(reflective group
impact rank 1)

Technical and
functional
barriers

(formative
group impact

rank 1)

C1 0.811 0.194 0.232 0.256 0.301 0.307

C7 0.871 0.235 0.15 0.343 0.121 0.112

C5 0.812 0.135 0.027 0.348 −0.057 −0.073

C12 0.738 −0.023 0.048 0.234 0.147 0.136

E1 0.18 0.773 0.194 0.203 0.343 0.34

E2 0.232 0.748 0.235 0.255 0.256 0.255

E3 0.064 0.806 0.473 0.068 0.198 0.205

C10 −0.055 0.417 0.687 −0.029 0.327 0.332

C4 0.232 0.307 0.827 0.255 0.256 0.255

C8 0.18 0.136 0.725 0.203 0.343 0.34

C6 −0.014 0.39 0.671 0.011 0.348 0.353

C3 0.196 0.02 0.812 0.21 0.234 0.235

H1 0.271 0.235 0.15 0.884 0.121 0.112

H2 0.111 0.194 0.232 0.849 0.301 0.307

H3 0.038 −0.023 0.048 0.69 0.147 0.136

Q1 0.229 0.318 0.369 0.27 0.251 0.933

Q2 0.09 0.259 0.307 0.13 0.107 0.813

Q3 0.144 0.319 0.399 0.186 0.046 0.921

C2 0.229 0.318 0.369 0.27 0.951 0.933

C14 0.09 0.259 0.307 0.13 0.807 0.813

C15 0.144 0.319 0.399 0.186 0.946 0.921

C11 0.127 0.276 0.326 0.172 0.74 0.847

Bold values are showing significant loadings.
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0.001, coming in at 0.430, 0.364, and 0.578, respectively. These three
elements are crucial to effectively using drones powered by artificial
intelligence in the building sector. It is also important to note that the
VIF values for all three constructions are less than 1.5, which is the
cutoff number for finding multicollinearity (Feng et al., 2013; Duda
et al., 2019; Beiki and Mosavi, 2020). This indicates little correlation
between the formative components, suggesting that each adds
something novel to the model. Results from the route analysis show
that removing economic, sustainability, privacy, legal, technological,
and functional hurdles is crucial to expanding the use of drones
powered by artificial intelligence in the building sector.

As seen by the high beta coefficient (β = 0.93) and the low
p-value (0.001), the findings suggest a positive and significant link
between the two variables. This indicates that companies are likely to
build projects more successfully as they overcome the obstacles of
deploying AI-based drones (Urgessa and Esfandiari, 2018; Li et al.,
2019; Liu et al., 2021). Taken as a whole, these findings underline the
significance of addressing and removing the many barriers that
stand in the way of the widespread use of drones powered by
artificial intelligence in the building sector. The reflecting
constructions’ route analysis findings illustrate the connection
between environmental preservation, public health and safety,
and quality management in successful building projects. Path
coefficients reveal the nature and direction of the association
between the variables. All three route coefficients are positive and
statistically significant (p 0.001), demonstrating that a successful
building project significantly improves all three reflective constructs.
Success in a building project is most strongly correlated to quality
management (β = 0.734), environmental protection (β = 0.621), and
public health and safety (β = 0.593). These findings point to a
beneficial relationship between environmental protection, public
health and safety, quality management, and the success of
building projects. The significance of this result in ensuring these
goals are attained in the construction sector cannot be overstated.
The model with bootstrapping results indicating p-values is
presented in Figure 8.

The total squares for the Construction Project Success construct
are shown in the SS0 column. The sum of squares the model cannot
explain is demonstrated in the SSE column. The predicted
Construction Project Success value is shown in the Predict-Q2

column. With an SS0 of 849.000, the model adequately explains a
significant fraction of the observed variation in Construction Project
Success. With an SSE of 529.479, there is some mystery around the
success rate of building projects. Success on a Construction Project is
anticipated to be 0.376, as seen in the Predict-Q2 column. This
means the model forecasts a modest degree of Construction Project
Success based on the facts. Table 4 shows that the model is a good
match for the data and that the other constructs in the model can
provide a fair prediction of Construction Project Success (Greene
and Myers, 2013). The unaccounted-for variation in Construction
Project Success may call for additional research to determine what
elements contribute to this concept.

Endogenous latent variable Continous Project Success( ) SSO
� 894.000

Endogenous latent variable Continous Project Success( ) SSE
� 529.479

Endogenous latent variable Continous Project Success( )Predict Q2

� 0.376

AnR2 of 0.881 shows that themodel explains 88.1%of the variation
in Construction Project Success. Because the model can present a
considerable amount of the observed variation in the dependent
variable, it increases its predictive power. Adjusted R2 = 0.881 is
near the R2 value; hence, the model is probably not overfitting the
data. Model fit is supported by an “excellent” explained size and a
“highly predictive” prediction of Construction Project Success using the
model’s predictors.

Endogenous latent variable Continous Project Success( )R2

� 0.881

TABLE 7 Path analysis results of formative constructs.

Path β SE t-values p-values VIF

Economic and Sustainability Barriers 0.430 0.067 7.532 <0.001 1.042

- > Implementation of AI-based Drones in
the Construction Industry

Privacy and Legal Barriers 0.364 0.044 4.516 <0.001 1.203

- > Implementation of AI-based Drones in
the Construction Industry

Technical and Functional Barriers 0.578 0.056 11.394 <0.001 1.208

- > Implementation of AI-based Drones in the Construction Industry

Overcoming the Barriers to Implementation of Drones in the Construction
Industry - > Construction Project Success

0.93 0.004 54.4 <0.001 -

Construction Project Success - > Environment Protection 0.621 0.062 9.885 <0.001 -

Construction Project success - > Public Health and Safety 0.593 0.071 8.552 <0.001 -

Construction Project Success - > Quality Management 0.734 0.034 21.663 <0.001 -
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Endogenous latent variable Continous Project Success( )AdjustedR2

� 0.881

Endogenous latent variable Continous Project Success( )Explained Size
� HighlyPredictive

The Importance and Performance Index (IPI) of the predictor
variable “Overcoming the Barriers to Deployment of AI-based
Drones in Construction Industry” is determined from SEM.
Respondents placed a high value on this predictor, as
demonstrated by its Importance score of 1.810. Respondents
with a Performance score of 53.23 think this predictor performs
adequately but might need work. The IPI rating is helpful for
pinpointing problem spots. With such a high relevance rating, it is
clear that removing the obstacles to using drones with artificial
intelligence in the building business is crucial. As shown by the
score of “moderate,” more effort is required to enhance the
performance of this predictor, which might be accomplished by
more efficient techniques to overcome the obstacles.

Predictor Overcoming the Barriers to the Implementation of AI(
−basedDrones in the Construction Industry) Importance � 1.810

Predictor Overcoming the Barriers to the Implementation of AI(
−basedDrones in the Construction Industry) Performance Index

� 53.23

6 Discussion

Technical and Functional Barriers to formative construction
include C2 “Integration with current systems drones technology
may be difficult to integrate with existing construction systems,
posing a hurdle for businesses seeking to embrace this technology,”

C15 “Some firms may be reluctant to invest in drones technology if
they lack the specialized staff required to operate and maintain the
drones. C14 “Drone technology operation and maintenance may be
difficult and need specialist skills. Some building businesses may be
intimidated by this degree of intricacy,” and C11, “The absence of
standardization in drone technology might make it difficult for
businesses to analyze and compare various technologies and choose
the best solution for their specific requirements.” Four things make
up the Technological and Functional Barriers to formative
construct, each describing a possible difficulty construction
companies may have while attempting to use drones powered by
artificial intelligence. Difficulty integrating the technology with
preexisting systems, a shortage of qualified personnel to run and
maintain the drones, complicated operation and maintenance, and a
lack of standardization are all obstacles. The findings support the
acceptance of H2: The Deployment of AI-Based Drones in the
Construction Industry is Favored by Technological and Functional
Barriers. A positive correlation of β = 0.578 (p 0.001) was found
between the constructs of Technical and Functional Barriers and the
Implementation of AI-Based Drones in the Construction Industry
(Anunciado, 2016; Zaychenko et al., 2018; Ciampa et al., 2019). This
suggests that organizations with more technical and functional
hurdles to overcome will have difficulty integrating drones
powered by artificial intelligence.

Privacy and Legal Barriers formative construct includes C10
“The use of drones technology in construction may be met with
opposition from human employees who fear being inspected by
drones or who are uncomfortable working alongside AI technology,”
C8 “There may be regulatory and legal obstacles to the employment
of drones technology in the construction industry, notably with
safety and liability concerns,” C4 “The availability of drones
technology may be restricted in some countries or for certain
applications, posing a substantial obstacle for businesses

FIGURE 8
Path significance results after bootstrapping analysis.
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operating in those regions or seeking to employ the technology for
those purposes,”C3 “Concerns remain over the safety and privacy of
drones on building sites, especially when operating near humans,”
and C6 “Some in the construction sector may believe that drones
technology is not suited to the specific problems and requirements of
construction operations. This impression might make it challenging
for certain businesses to implement this technology. The Privacy and
Legal Barriers framework highlights potential difficulties for
construction companies utilizing AI-based drones. Items in this
framework indicate worries about legal and regulatory hurdles,
safety and privacy issues, and human workers” reluctance to use
this technology. These issues may discourage companies from
making the first financial investment necessary to use drones in
the building sector. According to the data collected and analyzed for
this pathway, the Privacy and Legal Barriers construct positively
affects the adoption of AI-Based Drones in the Building Sector. This
data shows that companies are more likely to adopt drone
technology for construction activities in jurisdictions with lower
privacy and regulatory restrictions. Politicians and business leaders
must thus address these concerns and lay forth precise rules and
regulations for the use of drone technology in the building industry.
The empirical findings show that the privacy and Legal Barriers
construct a favourable influence on the deployment process of AI-
based drones in the construction business (Latteur et al., 2016;
Charlesraj and Rakshith, 2020; Çetin et al., 2020). Because of this, we
can confidently accept H3, which states that privacy and regulatory
restrictions contribute to using AI-based drones in the building
business.

Economic and sustainability formative construct include C12:
“The present variety of uses for drone technology in the construction
industry is still restricted, making it difficult for certain businesses to
justify the investment,” C5 “To maintain dependability, drone
technology may be delicate and requires regular maintenance.
This may be a substantial obstacle for certain businesses,
especially those with minimal resources,” C1 “Drones technology
may not be scalable for major construction projects or may need
substantial modification to be employed in larger applications,
making its widespread adoption challenging,” and C7 “Some
construction projects may be limited in their usage of drones”
technology due to environmental limitations, such as noise or
pollution.” Information supplied suggests that constraints on
usage, maintenance sensitivity, scalability, and environmental
issues all figure into the Economic and Sustainability formative
construct. These considerations raise concerns about the widespread
use of artificial intelligence (AI) drones in the building sector.
Economic and sustainability hurdles substantially influence the
adoption of AI-based drones in the construction sector, as the
path analysis findings show. As a result, we can confidently
believe H4, which claims that the Economic and Sustainability
hurdles have a beneficial influence on the application of AI-based
drones in the construction business (Agapiou, 2020; Sawhney et al.,
2020). This indicates that to overcome the constraints and
effectively use AI-based drone technology, organizations must
consider the economic and sustainability factors, such as the
cost-benefit analysis, maintenance needs, scalability, and
environmental consequences.

Quality Management reflective construct includes Q1 “For
building projects, and drones may offer aerial surveys, site

management, and progress monitoring, ensuring quality
management,” Q2 “Drones may assist in uncovering possible
potential concerns and design defects, assuring compliance with
construction norms and codes” and Q3 “Drones may be used to
gather data about building supplies and equipment, such as
measurements, weight, and dimensions, to ensure that the proper
materials are utilized in the proper proportions.” Three indicators
make up the Quality Management reflection construct and show
how using AI-based drones in the construction sector may improve
the overall quality of projects. The first indication, Q1, describes how
quality management may be ensured using drones by conducting
aerial inspections, managing the site, and monitoring progress
(Goessens et al., 2018a; Rovira-Sugranes et al., 2022). The second
indication, Q2, highlights the value of drones in detecting issues and
flaws in the design, which is essential for maintaining adherence to
building standards and regulations. Q3 demonstrates how drones
may collect information on materials and tools in the construction
industry, which can then be used to guarantee that the proper
resources are utilized. The findings of path analysis support the
hypothesis that H5 (Construction Project Success as Influenced by
Quality Management) is true when AI-based drones are used in the
construction sector. With a beta value of 0.734, the three Quality
Management indicators positively and substantially affect the
success of construction projects. This indicates that drones
equipped with artificial intelligence may be used to enhance
quality control and boost the overall success of building projects.

Environmental Protection reflective construct includes E1,
“Regularly scanning the building site to discover and monitor
any environmental hazards, such as soil erosion, water runoff,
and other pollution sources,” E2, “Providing thermal imaging
and other forms of non-destructive testing to identify possible
environmental dangers, such as chemical spills, that might
negatively impact the health of local people,” and E3
“Monitoring the construction process to guarantee compliance
with environmental requirements, such as waste disposal and the
use of environmentally friendly building materials.” According to
the examination of causal relationships, environmental protection is
critical in completing construction projects that use reflective
constructs. Mainly, it has been established that the three
ecological protection indicators of frequent scanning of the
construction site, non-destructive testing, and monitoring
compliance with environmental regulations all contribute to the
success of construction projects (DeYoung, 2018; Li 2019). Using
drones powered by artificial intelligence in the construction sector
might assist in guaranteeing that projects are carried out in an
ecologically friendly way, which in turn can lead to better project
outcomes. The research results strongly support hypothesis H6,
which states that using AI-powered drones improves the likelihood
of a building project’s success due to better environmental
safeguards.

Public Health and Safety reflective construct include H1, “Real-
time monitoring of the construction site to guarantee compliance
with safety rules and processes, as well as rapid identification and
mitigation of any safety concerns or events,” H2, “Providing precise
3D models and maps of the building site, which may aid in the rapid
location and evacuation of personnel in the event of an emergency”
and H3 “Improving communication and cooperation between
project stakeholders may aid in identifying and resolving any
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possible safety concerns or problems before they become a
problem.” Three indicators are included in the Public Health and
Safety reflective construct to show how intelligent drones in the
building have contributed to improved public health and safety. The
first indication, H1, emphasizes continuous work site monitoring to
check for adherence to safety protocols and prompt detection and
resolution of potential problems. H2 is the second indication, and its
primary goal is to facilitate the speedy location and evacuation of
workers in an emergency by giving accurate 3D models and maps of
the construction site. The third indication, H3, stresses increased
coordination and communication among project participants to
foresee and address potential safety issues. The study’s findings
support H7, which hypothesizes that using drones equipped with
artificial intelligence would improve the success of building projects
from the perspective of public health and safety (Kubo and Okoso,
2019; Sawhney et al., 2020). Real-time monitoring of the
construction site, accurate 3D models and maps of the building
site, and enhanced communication and cooperation between project
stakeholders are just some of how the study found that using AI-
based drones in construction positively affects public health and
safety. These elements work together to make for a better
construction site in terms of health and safety, making for a
more successful project overall.

Technical and functional constraints, privacy and legal barriers,
economic and sustainability barriers, and organizational barriers were
all noted in the research as obstacles to the widespread use of AI-based
drones in the construction sector. According to the findings, clearing
these hurdles is beneficial for introducing intelligent drones into the
building sector. The research also concluded that public health and
safety, environmental protection, quality control, and economic and
sustainability benefit from using AI-based drones in the construction
sector, contributing to the success of building projects. Consequently,
if obstacles to using drones with artificial intelligence were removed,
building projects would be more likely to be successful. Thus, it is
reasonable to accept H1 as a whole, which asserts that the success of a
building project improves when obstacles to the use of AI-based
drones are removed.

6.1 Implications

Two basic types of ramifications may be drawn from the findings
of this study: practical and theoretical. With the study’s findings in
hand, construction companies may better plan for the successful
introduction of AI-based drones into their operations. The
research’s results may be used to inform the development of
policies that promote and enable the usage of drones in the
construction sector. The study offers a framework for
construction companies to evaluate the costs and advantages of
using drones equipped with artificial intelligence. The research
emphasizes the need to tackle the numerous challenges of
implementing AI-based drone deployment to boost public safety,
environmental protection, and project quality and efficiency. By
examining the effects of AI-based drone deployment across several
facets of construction project management, the research gives a
holistic knowledge of the influence of such implementation on
project success. This research adds to our understanding of the
challenges inherent in introducing drones powered by artificial

intelligence to the building sector. The study shows the
significance of thinking about technological, functional, legal,
economic, environmental, and public safety considerations that
may affect the success of AI-based drone applications in the
construction business (DeYoung, 2018; Li 2019; Rovira-Sugranes
et al., 2022). The research offers complex data on how removing
roadblocks to using AI-based drones may improve the success rate
of building projects. In sum, this research sheds light on the possible
upsides and downsides of using drones equipped with AI in the
building business. Construction companies and politicians may use
the results of this research to develop more efficient strategies for
using AI-based drones, which can increase project efficiency,
quality, safety, and environmental sustainability.

6.2 Managerial recommendations

This research provides evidence that using drones equipped with
artificial intelligence may improve the outcome of building projects.
Managers in the construction business should consider investing in
this technology to enhance the quality of their projects. Legal and
privacy issues, economic and sustainability problems, and
scepticism about the technology are all highlighted in the
research as potential roadblocks to adoption. Managers must
endeavour to remove these obstacles using education and
training, communication with stakeholders, and collaboration
with technology vendors. The research concludes that drones
powered by artificial intelligence may aid in quality control by
doing airborne inspections, spotting possible issues and design
faults, and compiling information about construction materials
and machinery. While looking for ways to improve the quality of
their projects, managers should consider deploying drones equipped
with artificial intelligence for these tasks. The research concludes
that drones powered by artificial intelligence may help ensure the
public’s wellbeing by keeping tabs on building sites in real time,
creating accurate 3D models and maps, and facilitating better
communication and collaboration among the project’s many
parties. Management should prioritize public health and safety by
implementing safety rules and deploying AI-based drones for these
tasks. The research concludes that drones powered by artificial
intelligence may help safeguard the environment by looking for
dangers on construction sites, taking thermal images, doing non-
destructive tests, and checking for regulatory compliance. While
planning a project, managers should think about how it will affect
the environment and how they may deploy intelligent drones to
lessen the damage. In conclusion, this research provides strong
evidence that drones powered by artificial intelligence may
significantly improve the outcome of building projects. Managers
in the construction sector may set their businesses up for future
success by investing in this technology, removing roadblocks to its
adoption, and placing a premium on quality management, public
health and safety, and environmental impact.

6.3 Limitations and future direction

Although the results are significant, it is essential to note the
study’s limitations. First, this research is limited to discussing the
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challenges and opportunities of using drones powered by artificial
intelligence in the building sector. More attention should be paid to
other aspects that, including company culture and preparation,
might impact the success of drone adoption. Second, the research
was limited in scope since it only polled construction workers in a
single nation; thus, its results cannot be extrapolated to the broader
construction sector or other countries. Finally, the survey only
looked at how experts felt about using drones with AI, and it did
not look at how actual technology users felt about incorporating it
into their projects.

Even with the earlier constructs, this work points toward some
exciting avenues for further investigation. The construction sector
might benefit from more studies into how company culture and
preparedness affect the use of artificial intelligence-based drones.
Second, the implications of AI-based drones in industries other than
military and police operations, such as agriculture and shipping,
might be the subject of future research. Finally, comparison research
comparing construction industry experts with people who have used
drones with artificial intelligence in building projects will illuminate
the perception gap. Fourth, the impact of rules and laws on
intelligent drones in a building might be studied. Lastly, further
study might be done on the ethical and legal ramifications of using
AI-powered drones in the building sector.

7 Conclusion

This research aimed to determine what was holding back the
construction sector from adopting drones powered by artificial
intelligence and what effect doing so would have on the success
of building projects. The study’s goals were realized using a mixed-
methods approach, which included a literature review, in-depth
interviews, a pilot survey, and a substantial questionnaire. Barriers to
the use of AI drones in construction were highlighted in the
research. These included technical and functional hurdles,
privacy and legal barriers, and economic and sustainability
constraints. The analysis also indicated that construction projects
are more likely to be successful if these obstacles can be removed.
The study’s findings provide a complete model showing how the
success of construction projects may be improved by eliminating
barriers to using artificial intelligence-based drones in the industry.
Public health and safety, quality management, environmental
preservation, and the overall effectiveness of building projects
were all shown to benefit from removing these obstacles. The
research emphasizes the need to resolve the impediments to
using AI-based drones in construction and the potential
advantages that may be realized. Construction firms may boost
their operations, productivity, and the likelihood of a successful
project by identifying and eliminating these obstacles.
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