
S-Net: a multiple cross
aggregation convolutional
architecture for automatic
segmentation of small/thin
structures for cardiovascular
applications

Nan Mu1,2†, Zonghan Lyu1,2, Mostafa Rezaeitaleshmahalleh1,2,
Cassie Bonifas1,2, Jordan Gosnell3, Marcus Haw3,
Joseph Vettukattil1,3 and Jingfeng Jiang1,2*
1Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States,
2Center for Biocomputing and Digital Health, Health Research Institute, Institute of Computing and
Cybernetics, Michigan Technological University, Houghton, MI, United States, 3Betz Congenital Health
Center, Helen DeVos Children’s Hospital, Grand Rapids, MI, United States

With the success of U-Net or its variants in automatic medical image
segmentation, building a fully convolutional network (FCN) based on an
encoder-decoder structure has become an effective end-to-end learning
approach. However, the intrinsic property of FCNs is that as the encoder
deepens, higher-level features are learned, and the receptive field size of the
network increases, which results in unsatisfactory performance for detecting low-
level small/thin structures such as atrial walls and small arteries. To address this
issue, we propose to keep the different encoding layer features at their original
sizes to constrain the receptive field from increasing as the network goes deeper.
Accordingly, we develop a novel S-shaped multiple cross-aggregation
segmentation architecture named S-Net, which has two branches in the
encoding stage, i.e., a resampling branch to capture low-level fine-grained
details and thin/small structures and a downsampling branch to learn high-
level discriminative knowledge. In particular, these two branches learn
complementary features by residual cross-aggregation; the fusion of the
complementary features from different decoding layers can be effectively
accomplished through lateral connections. Meanwhile, we perform supervised
prediction at all decoding layers to incorporate coarse-level features with high
semantic meaning and fine-level features with high localization capability to
detect multi-scale structures, especially for small/thin volumes fully. To
validate the effectiveness of our S-Net, we conducted extensive experiments
on the segmentation of cardiac wall and intracranial aneurysm (IA) vasculature,
and quantitative and qualitative evaluations demonstrated the superior
performance of our method for predicting small/thin structures in medical
images.
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1 Introduction

Cardiovascular disease is one of the leading causes of death,
accounting for one death every 34 s in the United States1. A
comprehensive understanding of cardiac function and brain vessel
integrity is essential for preventing, diagnosing, and treating this life-
threatening disease. Automatic medical image segmentation of cardiac
imaging data plays a crucial role in medical 3D printing (Lindquist
et al., 2021), computer modeling (Jou et al., 2003; Cebral et al., 2005),
and computer-aided diagnosis of cardiovascular systems (Lindquist
Liljeqvist et al., 2021; Sunderland et al., 2021; Rezaeitaleshmahalleh
et al., 2023c), assisting cardiologists, radiologists, and surgeons in
making clinical decisions efficiently.

In the last 2 decades, considerable research efforts have been
devoted to computational hemodynamics (Jou et al., 2003; Cebral
et al., 2005). Accurate “patient-specific” vasculature segmentation
from 3D imaging data is critical for subsequent numerical
evaluations of each patient’s hemodynamic environment.
However, an automated workflow for model creation in
computational hemodynamics still requires considerable attention
(Mu et al., 2023a; Rezaeitaleshmahalleh et al., 2023b; Lyu et al.,
2023), particularly in delineating small brain arteries (approximately
0.5 mm in diameter). Similarly, although considerable research has
been devoted to segmenting cardiac imaging data (Suri, 2000;
Petitjean and Dacher, 2011), whole heart wall automatic
segmentation remains challenging because the thickness of the
atrial wall is particularly thin (approximately 1–4 mm, and down
to 0.5 mm in pediatric populations). Existing studies have only
focused on myocardial wall segmentation of the left and right
ventricles (Zhu et al., 2013; Yang et al., 2018). Those unmet
needs motivate the work presented in this study.

Early medical image segmentation methods include active
contours (Xu and Prince, 1998), template matching (Lalonde et al.,
2001), edge detection (Zhao et al., 2006), shape modeling (Tsai et al.,
2003), machine learning (Zhang et al., 2004), etc. More recently, deep-
learning-based methods have been developed to extract abundant and
powerful data-specific features from cardiac and brain imaging data.
Typically, most CNN models developed for medical image
segmentation are of the encoder-decoder type, which is one of the
most popular end-to-end architectures, e.g., fully convolutional
network (FCN) (Yuan et al., 2017), U-Net (Ronneberger et al.,
2015), and their variants (Bhalerao and Thakur, 2019; Isensee
et al., 2021). Among these structures, the encoder is usually
deployed to progressively extract higher-level medical image
features. At the same time, the decoder is generally employed for
recovering and integrating the extracted (multi-scale) features back to
the original image size. Eventually, this end-to-end configuration
generates the final segmentation result. Theoretically, as the
network goes deeper, more high-level features are extracted at the
expense of losing low-level detail information. Although skip
connections generally help propagate local features from the
encoder to the decoder, they still fail to adequately capture small/

thin anatomical structures in cardiovascular application. This
shortcoming is well noted in the literature (Mu et al., 2023a).

Currently, the U-shaped architecture in the classic U-Net model
(Ronneberger et al., 2015) achieves satisfactory performance in
segmenting large structures but suffers from significant limitations.
Recall that the U-shaped architecture contains both top-down and
bottom-up paths (see Figure 1A). First, a large amount of spatial detail
information is lost during the downsampling of the bottom-up path
and cannot be easily recovered. Second, the top-down path may
gradually weaken the global context information in high-level
features, resulting in incomplete segmentation results. Third,
making predictions only for high-resolution feature maps with
weaker semantics inevitably limits the expressiveness of small/thin
object recognition. Existing approaches address these problems by
introducing an attention mechanism (Mu et al., 2023a) or self-
attention (Valanarasu et al., 2021a) into the U-shaped structures,
refining the featuremap in a recursive (Alom et al., 2019) or cascading
(Mu et al., 2023b) manner, etc. However, the abovementioned newer
networks are configured to focus only on high-level features and
cannot detect some low-level detail structures.

In this paper, we investigate an alternative approach, i.e., controlling
the receptive field size of the convolutional filters in the encoder. Thus,
the new configuration can effectively guide a CNN model to capture
fine-grained details and small/thin structures even in deeper layers.
Specifically, we discard the traditional U-shaped framework and
propose constructing two resampling and downsampling branches
with an S-shaped cross aggregation to control receptive field size. As
a result, we name our new network configuration S-Net, which enables
learning of low-level detail information and high-level discriminative
knowledge in the encoding stage. As shown in Figure 1B, compared
with the bottom-up encoder (see Figure 1A), the proposed S-shaped
network adds resampling layers to the encoder to avoid spatial
information loss while ensuring a small receptive field for capturing
low-level details during convolution.

Furthermore, considering the characteristics and
complementarity of downsampling and resampling branches in
our S-Net, we design a simple multiple cross aggregation module
(MCAM) to efficiently integrate multilevel high-level and low-level
features efficiently, ensuring robust and comprehensive feature
representation. In particular, we also configure dilated convolutions
of different specifications in the encoder to extract rich global context
information and propagate it to the top-down decoder through lateral
connections to strengthen the global dependence of decoding features.
Last, we perform supervised prediction of features on all decoding
layers, which combines semantically strong, low-resolution features
with semantically weak, high-resolution features along the top-down
path. The new S-Net design is anticipated to enhance the
segmentation of large and small anatomical targets, and its
architecture is illustrated in Figure 2.

In this study, we perform segmentation experiments of the heart
wall and intracranial aneurysm (IA) vasculature to demonstrate the
merits of the proposed S-Net. The whole heart wall segmentation
requires dealing with thin structures, while segmenting brain
vasculature with IAs involves small vessel annotations. The
success of both applications is highly dependent on the ability of
CNNs to discriminate fine-grained structures. The performance of
the proposed S-Net is compared with five other state-of-the-art
medical segmentation models.

1 Centers for Disease Control and Prevention, National Center for Health
Statistics (NCHS). About Multiple Cause of Death, 1999–2020. CDC
WONDER Online Database website. Atlanta, GA: Centers for Disease
Control and Prevention; 2022. Accessed February 21, 2022.
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Overall, our contributions are summarized as follows. First, we
propose an efficient dual-branch encoder to explore spatial details
and global contextual information. Moreover, we design a multiple
cross-aggregation module to exploit the complementarity of these
two branches for improving the feature representation capability on
small structures. Second, we improve the learning effectiveness of
S-Net by optimizing semantic and localization knowledge based on
top-down multilevel supervision. Third, we experimentally explore
the proposed S-Net for image segmentation of the heart wall and IA
vasculature, demonstrating that our model achieves state-of-the-art
performance both quantitatively and qualitatively, especially for
small volume prediction.

2 Related works

This section briefly reviews U-Net-based medical image
segmentation architectures and cardiac wall segmentation models.

2.1 U-Net architecture

Since its proposal, U-Net (Ronneberger et al., 2015), with an
encoder-decoder structure, has inspired substantial further
developments. Its variants have become widely adopted tools for
medical image segmentation tasks. By extending the dimensionality

FIGURE 1
Schematic comparison of (A) the conventional U-shaped structure and (B) the proposed S-shaped structure.

FIGURE 2
An illustrative diagram showing the architecture of the proposed S-Net.
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of the basic U-Net framework, 3D U-Net (Çiçek et al., 2016) enables
3D volume segmentation, which has been of significant effect in
many biomedical applications. Some attention-based U-Nets (Oktay
et al., 2018; Mu et al., 2023a) emphasize local information by
employing attention units to allow the network to focus on
specific objects of importance while ignoring unnecessary regions.
To segment targets of various sizes and shapes, inception U-Nets
(Chen et al., 2018; Zhang et al., 2020) utilize convolutional filters of
multiple sizes in the same network layer to analyze images with
different salient regions efficiently. To overcome the training
difficulty of convergence caused by the degradation of deep CNN
features, residual U-Nets (Bhalerao and Thakur, 2019; Yu et al.,
2019) acquire feature maps from one network layer and add them to
a deeper layer to improve the performance. In addition, recurrent
U-Nets (Alom et al., 2019; Jiang et al., 2020) optimize the
expressiveness of the feature maps by merging recurrent feedback
loops into the convolutional layer to obtain the context of adjacent
units. To compensate for the information loss in the deeper layers of
CNNs, dense U-Nets (Li et al., 2018; Wang et al., 2019) construct
identity mappings for each layer, which depend not only on the
former layer but also on all previous layers.

In summary, those U-Net variants have been designed to
optimize the segmentation results by tuning the network
structure, introducing new modules, etc. However, those variants
largely follow the encoder-decoder design constructed by
downsampling and upsampling convolutional layers (See
Figure 1A). Recall that the existing U-shaped configuration is
prone to spatial information loss and insufficient knowledge
acquisition of small/thin targets. Thus, in this study, our work is
fundamentally different than that of prior publications.

2.2 Cardiac wall segmentation

Cardiac wall segmentation faces two main challenges. First, the
mixture of contrast, blood, and dynamic myocardial structures
causes blurred boundaries of the heart wall, making them
difficult to be distinguished. Second, the atrial wall, interatrial
septum, and cardiac valves are thin and irregularly shaped, which
makes them highly unrecognizable. Although there have been a
wealth of studies addressing segmentation of the whole heart
(Zhuang et al., 2010; Xu et al., 2019), four chambers (Zheng
et al., 2008), left and/or right ventricle (Ringenberg et al., 2014;
Lu et al., 2019), and left and/or right atrium (Tobon-Gomez et al.,
2013; Tobon-Gomez et al., 2015), there appear to be no studies of
whole heart wall segmentation.

Notably, Zhu et al. proposed an automated method based on
variational region growth to segment themyocardial walls of right and
left ventricles using cardiac computed tomography (CT) images (Zhu
et al., 2013). Yang et al. presented a multi-component deformable
model combined with 2D-3D U-Net for segmenting the ventricular
walls from cardiac magnetic resonance imaging (MRI) (Yang et al.,
2018). Ye et al. applied a PC-UNet to segment the left ventricle
myocardium wall in conjunction with CT data (Ye et al., 2021).
However, none of the early research involved segmenting the whole
heart wall. This is because the segmentation of the whole heart wall is
challenging for the following reasons. First, the heart organ has
multiple chambers and large vessels with complex geometry. The

shape of the heart wall varies considerably between different subjects
or in the same subject with different cardiac conditions, and this
variation in shape is particularly pronounced when pathological
conditions are involved. Therefore, it is difficult to accurately
capture the complex shape of the whole heart wall using priori
models trained from a limited training dataset. Second, depending
on the intensity distribution (i.e., texture pattern) of the medical
images, some boundaries between anatomical substructures are
visually indistinct, e.g., the valve planes that separate the atria and
great vessels from the ventricles, the boundaries between the left
atrium and the pulmonary veins and between the right atrium and the
superior/inferior vena cava, and the thin walls of the atria and vessels.
These ill-defined boundaries make fully automated whole heart wall
segmentation challenging to achieve. Segmenting thin cardiac
structures like atrial walls is also a technically challenging problem.
Third, the intensity distribution between some adjacent tissues or
substructures is highly similar; e.g., the intensity of the myocardium is
analogous to the neighboring papillary muscles, liver, and body
muscles. Therefore, segmentation models relying only on image
intensities have difficulty separating the heart wall from similar
tissues. Finally, due to the complex motion within the heart, the
imaging data may contain severe motion artifacts, interference noise,
and intensity inhomogeneities, leading to unsmooth and undesirable
delineation of the heart wall.

3 Proposed method

The overall pipeline of our S-Net is depicted in Figure 2. It
consists of eight coding blocks, four decoding blocks, and four
supervision layers, where every two coding blocks form a densely
connected MCAM. In this section, we first describe the structure of
our S-Net model. Later, we elaborate on the proposed MCAM, and
finally, we present the specific implementation details.

3.1 S-Net architecture

The essence of the proposed S-Net is a fully convolutional network
similar to the classic U-Net (Ronneberger et al., 2015), consisting of
encoding and decoding, but unlike the symmetricU-shaped structure of
U-Net, the information propagation path of our S-Net in the encoding
stage is interleaved, approximately following an S shape. Specifically,
two strategies are used at the encoding stage to encode CT scans’ small/
thin structures. First, we use convolution and downsampling to acquire
four-layer features by gradually halving 3D sizes and increasing the
number of channels. Second, we construct four-layer features with
increasing channel numbers, but the 3D sizes remain the same as the
input image patch for perceiving small targets. At the decode stage, we
perform multiple cross-aggregation on these encoded features: Long-
skip connections are used to fuse them to complement the four-layer
upsampled convolutional features. Hence, abundant structural
information is decoded for considerable performance gains in
delineating small/thin objects.

Furthermore, we leverage the Sigmoid activation function to
implement layer-by-layer prediction on the multi-scale features
generated by different decoding layers and calculate the errors
between the predicted results and the ground truths. Errors are
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then back-propagated to update the model training parameters. The
encoding and decoding structures of the proposed S-Net are
illustrated in Figure 3.

3.1.1 Rationale
Regarding the conventional U-Net and its variants, the feature size

in the encoding stage is gradually decreasing. For an input 3D image
of sizeD × W × H, after 3D convolution and 3D pooling operations,
the size of the ith layer featuremap is reduced to D

2i ×
W
2i ×

H
2i ; thus, for a

3D convolution with a kernel size of 33, its relative receptive field with
respect to the features of the ith layer becomes (2i × 3)3. As a result,
the receptive field of the convolutional layers in the encoder increases
as the network deepens, making the deeper layers focus on high-level
(semantic) features and, therefore, it cannot extract the knowledge for
segmenting small/thin objects, fine details, etc. In light of this finding,
we added a series of non-downsampled convolutional layers to the
decoder, attempting to maintain a similar resolution to the input
image at each layer, and interacting with the original downsampled

convolutional layers to encode objects of different scales. Since the
dimensions of the added convolutional layers are all kept as
D × W × H, the 33 convolution operations maintain the same
small 33 receptive field for each layer, enabling the network to
perceive tiny structures.

3.1.2 Encoder and decoder
Encoder. Dedicated to fine-grained 3D segmentation, the encoder

of the proposed S-Net contains two main branches, i.e., a
downsampled branch of four convolutional blocks with decreasing
resolution and a resampled branch of four convolutional blocks
preserving the original resolution. In particular, each convolution
block includes two or three 3D convolutions followed by a
parametric rectification linear unit (PReLU) activation function.
Similarly, the channel numbers in the convolutional blocks of both
branches increase as the network goes deeper. In addition, the first two
convolution blocks have a kernel size of 33, with a stride of 1 and a
padding of 1. The last two convolution blocks are mainly based on four

FIGURE 3
Encoding and decoding configurations of the proposed S-Net.

Frontiers in Physiology frontiersin.org05

Mu et al. 10.3389/fphys.2023.1209659

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1209659


different dilated convolutions with kernel size 33 and stride 1, but with
padding and dilation of {2, 2}, {3, 3}, {4, 4}, and {5, 5}, respectively, and
their corresponding receptive fields are 33, 73, 93, and 113. Such a
convolution setting undoubtedly allows the encoder to have a diverse
range of receptive fields, which helps capture multi-scale targets.

Moreover, it is important to mention that for the two encoding
branches, the downsampling relies on a 3D convolution with a
kernel size of 23 and a stride of 2 for halving the 3D feature size,
while the resampling is based on a 3D convolution with a kernel size
of 33, a stride of 1, and a padding of 1 to retain the original 3D size.
More importantly, the two encoding branches interact with
information through MCAM to learn multi-scale objective
knowledge and propagate discriminative information from the
encoding layer to the decoding layer of the identical resolution
through long-skip connections, contributing to recovering the lost
spatial information from downsampling encoding.

Decoder. As shown in Figure 3, the decoder comprises four
convolution blocks with doubled resolution and halved channel
numbers, each containing two to three 3D convolutions, followed by
PReLU. Specifically, all the 3D convolutions have a kernel size of 33,
a stride of 1, and a padding of 1. Also, all four 3D transposed
convolution operators have a kernel size of 23 and a stride of 2 to
progressively recover the full spatial resolution of the network
output. Subsequently, the feature maps generated by
transposition convolution are 1) concatenated with the feature
maps in the encoding path by long-skip connections to integrate
more accurate pixel localization information and 2) provided with
high-level semantic information for the next layer through short-
skip connections (He et al., 2016). In the last layer, a 3D convolution
with a kernel size of 1 × 1 × 1 is added to reduce the channel number
of the output image to the label number, and the result is forwarded
to the Sigmoid activation function to obtain the predicted voxels.

3.1.3 Loss function
Typically, the semantic information of higher-level features in the

decoder is gradually diluted along the top-down path; thus, there are
significant semantic gaps in the feature maps generated by multiple
convolutional layers of different depths. Generally, global contextual
information is gradually ignored as the feature resolution of additional
decoding layers increases. Therefore, the traditional U-Net structure
using only high-resolution features with weak semantics for prediction
will inevitably omit small/thin targets. Given this, the proposed S-Net
enriches the semantic and location information by predicting the
features of different decoding layers separately, thus enhancing the
representation ability for small/thin object segmentation.

Specifically, as shown in Figure 3, for the features generated by
the four decoding blocks, a 1 × 1 × 1 3 D convolution is first applied
to reduce the channel number of these features to 1. The feature size
is adjusted to the original image size by trilinear upsampling. Finally,
the prediction results are obtained by the Sigmoid activation
function, which will be utilized to calculate the back-propagation
errors for updating the model parameters.

Let P0
i and P1

i denote the predicted background and foreground
voxels, respectively, where i ∈ 1, 2, 3, 4{ } indicates the predictions of
the four decoding layers. Meanwhile, G0 and G1 denote the voxels of
the two labels corresponding to the ground truth (GT), respectively.
Correspondingly, the proposed loss function between the
predictions and the ground truth is defined as follows:

L � ∑
4

i�1

G1 ∩ P1
i

∣∣∣∣
∣∣∣∣

G1 ∩ P1
i

∣∣∣∣
∣∣∣∣ + α G0 ∩ P1

i

∣∣∣∣
∣∣∣∣ + β G1 ∩ P0

i

∣∣∣∣
∣∣∣∣

� ∑
4

i�1

TP
TP + α × FP + β × FN

where |G1 ∩ P1
i |, |G0 ∩ P1

i |, and |G1 ∩ P0
i | indicate the True Positive

(TP), False Positive (FP), and False Negative (FN), respectively. The
hyperparameters α and β are exploited to control the trade-off
between FPs and FNs. It is worth noting that in this paper, we set α to
0.3 and β to 0.7 to emphasize FN over FP, i.e., giving more weight to
Recall ( TP

TP+FN) than to Precision ( TP
TP+FP). Focusing more on Recall

than Precision increases the probability of false detection of non-
heart walls as heart walls to some extent but avoids the probability of
missing detection of true heart walls. We experimentally verified
that the weighting configurations of 0.3 and 0.7 for FP and FN are
most effective for trading off the miss detection and false detection
rates. Such a setup avoids the missed detection of small targets to a
certain extent and improves the generalization ability to imbalanced
data during training.

3.2 Multiple cross aggregation module

To fully exploit the feature representation capability of the
down-sampling and resampling branches in the encoder, we
propose a multiple cross-aggregation module to integrate the
features of both branches on each encoding layer. Since the
feature scales of the two branches are different and the encoded
discriminative information also differs, we attempt to capture
complementary features from the two branches to further
improve the quality of the features learned by the deep network.
The structural details of the proposed multiple cross-aggregation
module can be seen in Figure 4.

As shown in Figure 4, let the feature maps from the
downsampling and resampling branches be denoted as FD

i and
FR
i , respectively, where i ∈ 1, 2, 3, 4{ } represents the ith encoding

layer. For the features FD
i and FR

i generated from the previous (i-1)th

layer, three 3D convolutions followed by PReLUs are first performed
to extract deeper features. Next, the features before and after
convolution are combined based on short-skip connections for
facilitating network convergence. Then, trilinear interpolation is
employed to upsample/downsample the convolutional features to a
specific size (i.e., the feature size of the other branch) to obtain the
cross-aggregated features. Those cross-aggregated features are
finally added to features of the other branches through the
residual short-skip connections to generate new complementary
features FR

i+1 and FD
i+1 that are forwarded to the next layer.

Formally, the processing of multiple cross-aggregation can be
expressed as:

FR
i+1 � FR

i + Interp FD
i + PReLU Conv FD

i( )( )( ),
FD
i+1 � FD

i + Interp FR
i + PReLU Conv FR

i( )( )( ),

where Conv, PReLU, and Interp denote the 3D convolution, PReLU,
and trilinear interpolation operations, respectively. By extracting the
complementary features from two branches of different scales, it will
be beneficial to improve the network’s segmentation performance,
making it capable of capturing fine-grained targets.
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3.3 Implementation details

In this study, the proposed S-Net model is implemented by
PyTorch framework (Version 2.1). To train and test the S-Net, we
deploy patch-based learning by randomly cropping the original image
along its vertical axis into a series of 48 × 512 × 512 voxel patches as
the input to the network. In particular, the feature maps generated by
the resampling branch in the encoder maintain the original size to
cross-aggregate with the features whose size is gradually halved in the
downsampling branch. Both training and testing tasks are accelerated
by dual Tesla V100 PCIe GPUs with 32 GB memory. It is worth
noting that when out-of-memory occurs during training, the feature
size in the resampling branch will be appropriately scaled to fit the
limited GPU RAM. For the specific setup, our model is trained for

1,000 epochs utilizing the Adam optimizer with a batch size of 2 and
an initial learning rate of 1 × 10−4. In addition, during training, a
dropout operation is performed after each encoding and decoding
layer to reduce overfitting; i.e., some elements of the output features
are randomly zeroed with a probability of 0.3 using samples from the
Bernoulli distribution.

4 Experiments

In this section, we first describe the experimental datasets and
evaluation metrics used and then validate the superiority of the
proposed S-Net through comparative experiments and ablation
studies.

FIGURE 4
An Illustration of the proposed multiple cross-aggregation module.

FIGURE 5
Qualitative comparison of six differentmodels for segmenting thewhole heart wall. Sagittal and 3D views are provided for each case. Arrows point to
holes in the arterial wall. Images in column (A) are the Ground Truth and columns (B–G) represent the prediction results of 3DUNet, SegNet, 3DResUNet,
KiU-Net, nnUNet, and our S-Net, respectively.
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4.1 Experimental datasets

We have fully demonstrated the application of our S-Net in two
different segmentation tasks. The first task was to segment the whole
heart wall in the cardiac CT data (Zhuang and Shen, 2016) provided
by the Multi-Modality Whole Heart Segmentation (MM-WHS)
challenge2. We selected 40 CT images in NIFTI format having
512 × 512 pixels with 177–363 slices, and two experienced
operators manually annotated the heart walls to obtain the GT
labels. Specifically, we divided the data into 30 training images and
ten testing images. The second task was to segment the IA and its
vasculature in the IA dataset (Mu et al., 2023a), containing 23 3D
rotational angiography (3DRA) images with a resolution of
256 × 256 × 256. We used 15 cases for training and 8 cases for
testing.

4.2 Evaluation metrics

We employed six widely used metrics to assess the performance
of our S-Net and five other state-of-the-art deep-learning
segmentation methods, including four volume measures, i.e., dice

similarity coefficient (DICE), relative volume error (RVE),
sensitivity, and specificity, and two surface measures in mm,
i.e., 95% Hausdorff distance (HD95) and average symmetric
surface distance (ASSD). A more detailed description of these
evaluation metrics can be found in our previous publication (Mu
et al., 2023a). All metrics were computed by comparing the predicted
segmentation maps of all test data with their corresponding GTs.
The mean and 95% confidence level of the calculated metrics are
provided in the later experimental section.

4.3 Comparison results

To verify the effectiveness of the proposed S-Net, we compared it
with five state-of-the-art 3D medical image segmentation models,
including 3DUNet (Çiçek et al., 2016), SegNet (Badrinarayanan
et al., 2017), 3DResUNet (Bhalerao and Thakur, 2019), KiU-Net
(Valanarasu et al., 2021b), and nnUNet (Isensee et al., 2021). All
algorithms are provided by respective authors of methods
mentioned above, and for a fair comparison, we utilized the
same experimental setup for training and testing. The average
training time for our S-Net to complete each epoch was
1.227 min, while the other five comparison models consumed
0.697, 0.689, 0.855, 0.796, and 3.717 min, respectively.

Qualitative Comparison. To subjectively demonstrate the
advantages of our S-Net, we provide some visual examples of the
various models for heart wall and IA vasculature segmentation, as

FIGURE 6
Qualitative comparison of six different models for segmenting the IA vasculature. Sagittal and 3D views are provided for each case. Arrows point to
long segments of small vessels. Images in column (A) are the Ground Truth and columns (B–G) represent the prediction results of 3DUNet, SegNet,
3DResUNet, KiU-Net, nnUNet, and our S-Net, respectively.

2 For details of the MM-WHS dataset, please refer to https://zmiclab.github.
io/zxh/0/mmwhs/data.html

Frontiers in Physiology frontiersin.org08

Mu et al. 10.3389/fphys.2023.1209659

https://zmiclab.github.io/zxh/0/mmwhs/data.html
https://zmiclab.github.io/zxh/0/mmwhs/data.html
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1209659


shown in Figure 5 and Figure 6. It can be easily seen that our model
can generate more accurate and complete segmentation results than
other compared methods. As observed in Figure 5, the surfaces of
the heart walls segmented by the other five methods have large or
small holes (indicated by the yellow arrows). Since quantitative
assessment of cardiac function is primarily achieved by analyzing
the shape attributes like heart wall thickness, enclosed area, or shape
variation of the heart wall boundaries, it is crucial to completely and
accurately determine the heart wall’s internal (endocardial) and
external (epicardial) boundaries. Although other existing models
have the ability to segment the heart wall, holes on the surface and
internal mis-segmentation greatly affect the evaluation of cardiac
function.

In contrast, our S-Net can segment the intact heart wall. These
results (see Figure 5G) indicate that our model has a more robust
characterization capability to capture the structural content and
surface details, which greatly contribute to the subsequent analysis
of cardiac function. The comparison example illustrated in Figure 6
shows that the othermodels performwell for segmenting large arteries
(e.g., internal carotid artery) but are prone to miss some small vessels.
This observation suggests that our S-Net is more effective in modeling
long-range dependencies and small structures than other CNN
models, achieving segmentation maps closest to the ground truth
masks. Meanwhile, the multilayer supervision also drives the network
to efficiently integrate semantic and localization knowledge, which is
crucial for generating high-quality prediction results.

Quantitative Comparison. Table 1 and Table 2 list the
quantitative results of the cardiac wall and IA vasculature
segmentation in terms of six quantitative metrics. From Table 1,
we can observe that the average scores of our S-Net for almost all
metrics on the testing set outperform all state-of-the-art

comparative models. In terms of DICE and Sensitivity scores, our
S-Net achieved gains of 0.0631 and 0.0848 compared with the
second-ranked nnUNet and 3DUNet, respectively. For HD95 and
ASSD scores, the surface errors between our results and GT are
reduced by 4.4573 mm and 0.7106 mm, respectively, compared with
the suboptimal nnUNet. For the RVE and Specificity scores, we have
only 0.0003 and 0.0005 differences compared with the first-ranked
SegNet and nnUNet, respectively. However, as seen in Figures 5C,E,
there are conspicuous holes in the heart wall segmented by SegNet
and nnUNet. Those results demonstrate that our S-Net can capture
richer global context and local detail information than its
counterparts (i.e., the other five CNN-based models). To verify
that our S-Net can perform prediction more effectively with the
Sigmoid activation function, we compared the results of training and
testing using five other activation functions, namely LeakyReLU,
Softmax, ReLU, PReLu, and Hyperbolic Tangent (Tanh). The results
show that when the LeakyReLU, Softmax, and Tanh activation
functions are used, the loss function (see Section 3.1.3) struggles
to converge. The average DICE of the whole heart wall segmentation
results are only 0.1348 and 0.2398, respectively, when ReLU and
PReLU activation functions are used. In addition, it can be viewed
from Table 2 that our S-Net is optimal for the segmentation of IA
vasculature, except for the Specificity score, which is also attributed
to the dual-branch cross-aggregation structure that effectively
detects more complete small vessels.

4.4 Ablation studies

In this subsection, we perform a series of ablation experiments
based on four variants of the proposed S-Net to validate the potential

TABLE 1 Quantitative comparison (mean ±95% confidence level) of different models for the whole heart wall segmentation regarding six evaluation metrics. The
smaller the RVE, HD95, and ASSD values, the better the segmentation effect. The best results are highlighted in bold.

Models DICE Sensitivity Specificity RVE HD95 ASSD

3DUNet 0.8018 ± 0.0271 0.8099 ± 0.0442 0.9918 ± 0.0024 0.0806 ± 0.0373 8.8262 ± 1.5267 2.4516 ± 0.3366

SegNet 0.7856 ± 0.0251 0.7914 ± 0.0400 0.9914 ± 0.0023 0.0759 ± 0.0385 9.1680 ± 1.4390 2.6365 ± 0.3613

3DResUNet 0.8297 ± 0.0253 0.8234 ± 0.0461 0.9935 ± 0.0026 0.0832 ± 0.0378 7.8312 ± 1.8458 2.1058 ± 0.3469

KiU-Net 0.8126 ± 0.0252 0.7899 ± 0.0416 0.9943 ± 0.0015 0.0905 ± 0.0442 7.7801 ± 0.9845 2.1789 ± 0.2700

nnUNet 0.8381 ± 0.0270 0.7770 ± 0.0426 0.9971 ± 0.0010 0.1485 ± 0.0497 9.1379 ± 2.0217 1.9339 ± 0.2751

S-Net 0.9012 ± 0.0145 0.8947 ± 0.0388 0.9966 ± 0.0010 0.0762 ± 0.0280 4.6806 ± 1.7503 1.2233 ± 0.2146

TABLE 2 Quantitative comparison of different models for IA vasculature segmentation.

Models DICE Sensitivity Specificity RVE HD95 ASSD

3DUNet 0.8294 ± 0.0292 0.7437 ± 0.0477 0.9998 ± 0.0001 0.2098 ± 0.0566 48.3566 ± 15.4985 4.9263 ± 1.9197

SegNet 0.7081 ± 0.0345 0.5998 ± 0.0477 0.9995 ± 0.0001 0.3103 ± 0.0557 36.6319 ± 12.5793 4.8530 ± 1.1163

3DResUNet 0.8050 ± 0.1050 0.8173 ± 0.0655 0.9983 ± 0.0025 0.3467 ± 0.4517 48.2625 ± 14.2790 6.1627 ± 3.9610

KiU-Net 0.8213 ± 0.0273 0.7233 ± 0.0420 0.9998 ± 0.0001 0.2413 ± 0.0459 45.7190 ± 13.7946 4.7272 ± 1.2201

nnUNet 0.8342 ± 0.0501 0.7920 ± 0.0725 0.9995 ± 0.0003 0.1542 ± 0.0765 56.1059 ± 18.9685 6.6677 ± 2.9604

S-Net 0.8735 ± 0.0288 0.9329 ± 0.0390 0.9990 ± 0.0003 0.1363 ± 0.0664 24.7471 ± 17.5222 2.2070 ± 1.0808

The best results are shown in bold fonts.
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of our network architecture, including 1) a backbone network based
on residual U-Net, which only uses the loss of a single decoding layer
as supervision (denoted as BN + SL); 2) a backbone network with
multiple decoding layer losses as supervision (denoted as BN +ML);
3) a dual-branch S-Net based on the loss of a single decoding layer
(denoted as SNet + SL); 3) a dual branch S-Net utilizing multiple
decoding layer loss (denoted as SNet + ML). All experiments were
performed on the heart wall and IA vasculature datasets. Figures 7, 8
depict the subjective quality improvement of the configuration with
a dual-branch encoder and a multi-supervised decoder. Tables 3 and
4 illustrate the objective results of these ablation experiments. We
found that the performance improves as dual branch encoding and
multi-supervised decoding are added to the network.

Effectiveness of the dual-branch encoder. From the results
shown in Figures 7, 8, the two S-shaped structures (see d) and e)) are
able to produce significant segmentation improvement compared to
the two U-shaped baselines (see b) and c)). This implies that the
crossed dual-stream encoding structure formed by adding the
proposed resampling branch, attributed to the effective
aggregation of global and local information, can remarkably
optimize the overall segmentation performance. Specifically, the
configuration of the dual-branch encoding effectively reduces the
holes caused by inadequate heart wall segmentation (see b) vs. d)
and c) vs. e) in Figure 7). Also, the dual-branch encoding avoids the
noise (indicated by yellow arrows in Figure 8) generated by IA
vasculature segmentation and achieves delineating more complete
small vessels (see b) vs. d) and c) vs. e) in Figure 8). In addition, the
performance of the objective evaluation metrics is also improved by
introducing the dual-branch encoding; see 1) vs. 3) and 2) vs. 4) in

Table 3, where the DICE scores are increased by 0.0533 and 0.0516,
respectively, and similarly, see 1) vs. 3) and 2) vs. 4) in Table 4, where
the DICE scores achieve gains of 0.0476 and 0.0632, respectively.
These experimental results validate the necessity of the proposed
dual-branch encoder.

Effectiveness of multi-supervised decoder. As shown in b) vs. c)
and d) vs. e) of Figures 7, 8, replacing the single supervision (i.e., BN +
SL or SNet + SL) in the decoder with multiple supervision (i.e., BN +
ML or SNet + ML) also helps to improve the quality of heart wall and
IA vasculature segmentation results. The improved results stem from
the fact that the multi-supervision effectively integrates the high-level
semantic and low-level localization knowledge, allowing the network
to focus on the integrity of the target and the exactness of the details.
This stipulation can also be confirmed by 1) vs. 2) and 3) vs. 4) in
Table 3, where the DICE scores are improved by 0.0193 and 0.0176,
respectively, and also, similarly, for 1) vs. 2) and 3) vs. 4) in Table 4,
where the DICE scores gain 0.0078 and 0.0234, respectively. The
results of these evaluation metrics presented in Tables 3 and 4
objectively demonstrate that the performance of the predictions is
improved with the adoption of multi-supervision. Clearly, our
comparison results show that the multi-supervised decoder
optimizes the segmentation results to some extent.

5 Discussions

This study investigates the segmentation performance of the
proposed network structure based on S-shaped multiple cross-
aggregation for the whole heart wall and IA vasculature. The

FIGURE 7
Visualization of the heart wall segmentation results generated by the four variants of the proposed S-Net. Images in column (A) are the Ground Truth
and columns (B–E) represent the prediction results for baseline BN+SL, BN+ML, SNet+SL, and SNet+ML, respectively.

Frontiers in Physiology frontiersin.org10

Mu et al. 10.3389/fphys.2023.1209659

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1209659


FIGURE 8
Visualization of the IA vasculature segmentation results generated by the four variants of the proposed S-Net. Images in column (A) are the Ground
Truth and columns (B–E) represent the prediction results for baseline BN+SL, BN+ML, SNet+SL, and SNet+ML, respectively.

TABLE 3 Objective evaluation metric results of the four variants of the proposed S-Net for heart wall segmentation. The best results are highlighted by bold fonts.

Models DICE Sensitivity Specificity RVE HD95 ASSD

1) BN + SL 0.8303 ± 0.0129 0.9286 ± 0.0208 0.9880 ± 0.0028 0.2381 ± 0.0594 6.8191 ± 0.5995 2.2405 ± 0.1257

2) BN + ML 0.8496 ± 0.0274 0.9147 ± 0.0262 0.9906 ± 0.0032 0.1586 ± 0.0956 25.7313 ± 18.5340 3.4594 ± 1.8512

3) SNet + SL 0.8836 ± 0.0121 0.9008 ± 0.0336 0.9947 ± 0.0013 0.0858 ± 0.0206 5.3262 ± 1.3749 1.4512 ± 0.1763

4) SNet + ML 0.9012 ± 0.0145 0.8947 ± 0.0388 0.9966 ± 0.0010 0.0762 ± 0.0280 4.6806 ± 1.7503 1.2233 ± 0.2146

The best results are shown in bold fonts.

TABLE 4 Objective evaluation metric results of the four variants of the proposed S-Net for IA vasculature segmentation. The best results are highlighted by bold
fonts.

Models DICE Sensitivity Specificity RVE HD95 ASSD

1) BN + SL 0.8025 ± 0.0575 0.9217 ± 0.0493 0.9979 ± 0.0012 0.3212 ± 0.2349 38.5696 ± 19.6079 4.9117 ± 3.4622

2) BN + ML 0.8103 ± 0.0319 0.9330 ± 0.0378 0.9981 ± 0.0005 0.3067 ± 0.1055 27.0335 ± 15.5266 2.8468 ± 0.9589

3) SNet + SL 0.8501 ± 0.0380 0.9363 ± 0.0343 0.9986 ± 0.0003 0.2055 ± 0.0569 21.8773 ± 13.7142 2.2607 ± 0.9994

4) SNet + ML 0.8735 ± 0.0288 0.9329 ± 0.0390 0.9990 ± 0.0003 0.1363 ± 0.0664 24.7471 ± 17.5222 2.2070 ± 1.0808

The best results are shown in bold fonts.
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superior predictive ability of the proposed S-Net model is validated
by comparison and ablation experiments, mostly outperforming the
five compared state-of-the-art models in six evaluation metrics,
where the DICE measured on two datasets (whole heart wall and
IA) are 0.9012 and 0.8735, respectively. More importantly, qualitative
experimental comparisons adequately demonstrate that our S-Net is
capable of segmenting small/tiny structures, i.e., thin heart walls, e.g.,
the holes revealed by other segmentation models (indicated by the
arrows in Figures 5B–F), and tiny arteries (indicated by the arrows in
a) and g) of Figure 6).

It is clear from the experimental results that the proposed S-Net is a
good backbone architecture for small-volume segmentation. Three key
strategies attributed to our success. First, we design an efficient two-
branch encoder, i.e., a regular downsampling encoding branch with
progressively halved resolution network layers and a resampling
encoding branch with fixed resolution network layers, to explore
spatial details and global contextual information. This configuration
allows the encoder to consider large and small receptive fields, which
can efficiently guide the CNN model to capture small/thin structures
and fine-grained details. Our intuitive explanation of the
abovementioned dual-branch encoder can be seen in Figures 7, 8.
Second, our multiple cross-aggregationmodule also plays a vital role in
guaranteeing the comprehensiveness and robustness of encoded
features. In other words, the module effectively integrates multilayer
high-level and low-level features. Since high-level features contain rich
semantic and global context knowledge, while low-level features have
plenty of details and localization information, the propagation of the
fused features to the decoder through the hierarchical horizontal
connection strengthens the global dependency and local details of
the decoded features, facilitating the detection of small volumes. Third,
we perform multilevel supervised prediction for all decoding layers,
effectively combining high-level and low-level features with different
semantics and resolutions along a top-down path, optimizing the
network’s learning efficiency for targets of various sizes and thus
improving the completeness of prediction for tiny structures. The
improvement in segmentation performance by the multi-supervised
decoder can be seen in Tables 3 and 4. Collectively, the three proposed
strategies allow our model to achieve state-of-the-art performance and
have the ability to segment small volumes effectively.

Besides cardiovascular applications, the proposed S-Net could also
be applied to segment vasculature in other organs, e.g., hepatic veins/
arteries and retinal vessels. We also stipulate that the proposed S-Net
could also be used in oncological applications (e.g., brain tumors, colon
cancer, breast cancer, lung nodules). For instance, the improved
detection of small targets allows us to identify small, hard-to-detect
tumors and complex tumor compositions. As a result, the proposed
S-Net can be integrated into an artificial intelligence (AI) system to
enhance the prediction and detection of disease progression, thereby
elevating the clinical management of cancer patients. It is worth noting
successes of such predictive modeling have been achieved in predicting
the growth of abdominal aortic aneurysms (Rezaeitaleshmahalleh et al.,
2023a; Rezaeitaleshmahalleh et al., 2023c) and the rupture status of
intracranial aneurysms (Sunderland et al., 2021; Jiang et al., 2023). In
the future, we will expand the application of the proposed S-Net to
oncological applications.

Although our two-branch coding structure facilitates the
extraction of detailed features, it has the drawbacks of high
computational complexity and long training time, and its

training process requires high-performance hardware with large
amounts of memory and is time-consuming. Our future work will
optimize the training model by reducing the parameters through
regularization and model pruning. Furthermore, the training time
will be reduced by performing batch normalization and adding
pooling layers to allow fast convergence.

6 Conclusion

In this paper, motivated to overcome the drawbacks of existing
U-shaped segmentation architectures, we propose an S-Net framework
for small/thin structure segmentation of medical images. Our novelty
lies in exploring a dual-branch encoder consisting of resampling and
downsampling convolutional layers to capture the information from
large and small receptive fields for more accurate learning of small
targets and finer details. These two branches are efficiently integrated
by leveraging a novel S-shaped multiple cross-aggregation approach
for effective training. Meanwhile, we enhance the global context and
local detail knowledge in the decoding stage by propagating
complementary features from the encoding layers through lateral
connections. We also supervise features from all decoding layers in
the top-down path to fully optimize the semantics and localization of
the prediction results. To verify the superiority of the proposed S-Net
for small/thin structure predictions, we performed segmentation
experiments on the heart wall and IA vasculature, and the results
demonstrated that the proposed model outperforms state-of-the-art
CNN methods, significantly improving the structural accuracy and
surface quality of segmented volumes and having the ability to
adequately capture small structures, which possesses the potential to
facilitate clinical applications.
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