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Natural killer (NK) cells kill mutant cells through death receptors and cytotoxic

granules, playing an essential role in controlling cancer progression. However, in the

tumor microenvironment (TME), NK cells frequently exhibit an exhausted status,

which impairs their immunosurveillance function and contributes to tumor immune

evasion. Emerging studies are ongoing to reveal the properties and mechanisms of

NK cell exhaustion in the TME. In this review,wewill briefly introduce thematuration,

localization, homeostasis, and cytotoxicity of NK cells. We will then summarize the

current understanding of themainmechanisms underlying NK cell exhaustion in the

TME in four aspects: dysregulation of inhibitory and activating signaling, tumor cell-

derived factors, immunosuppressive cells, and metabolism and exhaustion. We will

also discuss the therapeutic approaches currently being developed to reverse NK

cell exhaustion and enhance NK cell cytotoxicity in the TME.
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Introduction

Natural killer (NK) cells are an important component of the innate immune system

and play a critical role in controlling malignancies and viral infections (1). Unlike T cells,

NK cells kill tumor and virus-infected cells without antigen presentation, allowing NK cells

to elicit a rapid immune response (2). NK cell-based therapies are currently being

developed for the treatment of blood cancers as well as various solid tumors (3, 4).

However, in the tumor microenvironment (TME), NK cells always exhibit an exhausted

state, which facilitates the immune escape of tumor cells and reduces the efficacy of NK cell-

based therapies (5). The main features of NK cell exhaustion include impaired cytotoxicity,

decreased secretion of cytokines, upregulated expression of inhibitory receptors,

downregulated expression of activating receptors, dysregulation of proliferation, and

metabolic dysfunction (6, 7). In recent years, the mechanisms of NK cell exhaustion

have been intensively studied, although the exact mechanisms have not been fully

elucidated. In this review, we summarize the current understanding of the mechanisms

of NK cell exhaustion in the TME.
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NK cell maturation, localization,
homeostasis, and cytotoxicity

NK cells arise from hematopoietic stem cells in the bone

marrow. Mouse NK cells develop mainly in the bone marrow,

whereas human NK cells can develop in the bone marrow as well as

in other lymphoid tissues such as the thymus, spleen, lymph nodes,

and liver (8, 9). Mouse NK cells are defined as CD3− NK1.1+ cells

and can be classified into four types based on the presence of two

markers, CD27 and CD11b, to indicate their maturation stages.

CD27− CD11b− NK cells are immature NK cells with high

differentiation potential. These NK cells differentiate into CD27+

CD11b− NK cells and then further develop into CD27+ CD11b+ NK

cells that can migrate from bone marrow to peripheral tissues.

CD27− CD11b+ NK cells are the mature NK cells with high

cytotoxicity (10–15). Human NK cells are defined as CD3–

CD56+ cells and can be further divided into two types: CD56bright

CD16– and CD56dim CD16+ cells. CD56bright CD16– NK cells

account for only 5-10% of NK cells and are less mature and less

cytotoxic. They are thought to be the precursors of CD56dim CD16+

NK cells, i.e., mature NK cells. CD56dim CD16+ NK cells account for

90% of NK cells and have higher cytotoxicity (10, 12, 14).

NK cells are widely distributed in various tissues and organs of

mammals. In recent decades, studies have shown that NK cells are

mainly found in bone marrow, peripheral blood, liver, lung, spleen,

and uterus. In addition, there are also significant numbers of NK

cells in lymph nodes, thymus, mucosa-associated lymphoid tissues,

skin, and kidney (16–20). In peripheral blood, 5-20% of

lymphocytes are NK cells (9). In the liver, NK cells are enriched

in the hepatic sinusoids. In mice, NK cells account for 5-10% of liver

lymphocytes, whereas this proportion can reach 30-50% in humans

(16). In the lung, NK cells can account for approximately 10-20% of

total lymphocytes (21–23). Although NK cells account for only 2-

4% of splenic lymphocytes in mice, their absolute number is quite

high (21, 24). NK cells in utero are specialized NK cells that can

make up 70% of lymphocytes at the maternal-fetal interface

(25, 26).

Adequate numbers of NK cells in peripheral tissues are

important for normal immune surveillance function. NK cells are

continuously produced by development and differentiation from

hematopoietic stem cells in the bone marrow and are replenished to

peripheral tissues to replace dead NK cells (27, 28). Previously,

mature NK cells were thought to have low proliferation ability.

However, recent studies have shown that mature NK cells, similar to

T cells, can undergo homeostatic proliferation to contribute to

maintaining their numbers in peripheral tissues. This homeostatic

proliferation depends on stimulation by several cytokines, including

IL-2 and IL-15 (28–30). NK cells even have some memory

properties similar to those of long-lived CD8+ T cells, and this

immune memory can be maintained for several weeks to months.

After re-stimulation by antigens, these long-lived memory NK cells

rapidly proliferate and kill target cells (31–33).

Unlike CD8+ T cells, NK cell activation does not require antigen

presentation but depends on the dynamic balance of activating and

inhibitory signals from target cells, including cancer cells and
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infected cells (34). Cancer cells can escape the killing from

cytotoxic T cells by downregulating the expression of MHC I

molecules. However, this reduction of MHC I molecules on the

surface of cancer cells triggers the activation of NK cells (35, 36).

NK cells kill cancer cells mainly via four approaches. First, NK cells

express FasL and TRAIL on the cell surface, which can bind to the

corresponding receptors Fas and TRAILR on cancer cells,

respectively. This binding triggers the activation of caspase-8 and,

subsequently, caspase-3, leading to the apoptosis of target cells (37,

38). Second, NK cells release various cytotoxic granules such as

perforin and granzyme B to induce lysis and apoptosis of tumor

cells (37, 39–42). Third, the Fcg receptor III or CD16 on NK cells

can recognize the antibodies binding to cancer cells, which induces

NK cells to produce more cytotoxic granules to eliminate cancer

cells, an effect called antibody-dependent cell-mediated cytotoxicity

(ADCC) (43–45). Fourth, NK cells can also secrete IFNg to induce

cancer cell death and regulate other cancer-fighting immune cells

(46–48).
Mechanisms of NK cell exhaustion in
the tumor microenvironment

Dysregulation of inhibitory and
activating signaling

The control of NK cell activation is a balance between signals

from inhibitory receptors (such as KIR, PD-1, TIGIT, TIM-3, LAG-

3, NKG2A, CD96, IL-1R8, and KLRG1) and activating receptors

(such as NKG2D, CD16, CD226, NKp30, NKp44, and NKp46) (49–

53). In the TME, inhibitory receptors on NK cells and their ligands

on tumor cells are always upregulated, whereas activating receptors

and ligands are downregulated (Figure 1). For example, in ovarian

cancer patients, the percentage of PD-1+ NK cells in peripheral

blood was much higher than in healthy individuals (54). When PD-

L1 expressed on the surface of tumor cells bound to PD-1 on NK

cells, an exhausted phenotype and even apoptotic cell death were

induced in NK cells (55–57). TIGIT is a co-inhibitory receptor

expressed on NK cells, and the major ligand for TIGIT is CD155

(58). NK cells in intratumoral regions showed significantly higher

expression of TIGIT than the NK cells in peritumoral regions. The

binding of CD155, expressed on tumor cells, to TIGIT on the

surface of NK cells reduced the expression levels of IFNg and the

death ligand TRAIL by NK cells (59). TIM3 is a maturation marker

for NK cells, and upregulation of TIM-3 was found in several

cancers, including lung, colorectal, and gastric cancer (60–62). At

least four ligands for TIM-3 have been found, including galectin-9,

CD66a, phosphatidylserine, and HMGB1 (63). The interaction

between galectin-9 and TIM-3 was thought to suppress NK cell-

mediated cytotoxicity in tumor tissues (64). However, some other

studies suggested that galectin-9 might enhance NK cell activity (65,

66). NKG2D is a potent activating receptor expressed on the surface

of NK cells. In hepatocellular carcinoma patients, a much higher

DNA methylation frequency in the NKG2D promoter region was

detected (67). Downregulation of NKG2D on NK cells was found in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1303605
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2023.1303605
various cancers such as glioma, leukemia, head and neck cancer,

and cervical cancer and contributed to the decreased activity of NK

cells (68–71).
Tumor cell-derived factors

Tumor cells can secrete various factors that inhibit NK cell

activity (Figure 1). The binding of MICA/B on tumor cells and

NKG2D on NK cells activates NK cells. However, several studies

showed that tumor cells also produced and shed soluble MICA/B

proteins that could bind to NKG2D and inhibit NK cell activation

and cytotoxicity by mechanisms that are still not fully elucidated

(72–74). Tumor cells secreted PGE2 to inhibit the killing effects of

NK cells by decreasing the levels of NK receptors such as NKp30,

NKp44, and NKG2D (75). In addition, PGE2 also reduced the

killing effects of NK cells by suppressing IFNg production (76, 77).

TGF-b is an important immunosuppressive factor in balancing the

immune response. Not surprisingly, tumor cells can secrete TGF-b
to inhibit NK cell activation and cytotoxicity (78, 79). Some studies

revealed that extracellular adenosine levels were increased in the

TME, which could inhibit degranulation and cytokine production

by NK cells (80–82). IL-10 is an important immunoregulatory

cytokine with both protumoral and antitumoral effects. In its

immunosuppressive role, IL-10 suppresses the expression of

NKG2D ligands and increases the expression of inhibitory ligands

on tumor cells to inhibit the activation and killing effects of NK cells
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(83, 84). Some studies showed that IL-10 could also enhance the

activities of NK cells (85, 86). CD155 is a ligand for both activating

and inhibitory receptors expressed on NK cells. The soluble form of

CD155 secreted by melanoma cells was found to inhibit NK cell

degranulation and cytotoxicity (87). Tumor cell-derived

extracellular vesicles or exosomes can both activate and inhibit

NK cell function, depending on the properties of the exosomes.

Several studies have shown that tumor cells produce exosomes

containing NKG2D ligands and TGF-b, which can impair NK cell

proliferation and cytotoxicity (88–90). Tumor cells can also

generate exosomes containing noncoding RNAs such as miR-92b,

SNHG10, and circUHRF1 to inhibit NK cell activity in the TME

(91, 92).
Immunosuppressive cells

In the TME, there are a number of cells in addition to tumor

cells and NK cells (Figure 1) (93). CD4+CD25+ regulatory T cells

(Tregs), as immunosuppressive cells, impaired the proliferation and

IFNg production of NK cells through TGF-b signaling (94, 95).

Myeloid-derived suppressor cells (MDSCs) in the TME could also

inhibit NK cell activity through membrane-bound TGF-b, which
decreased the expression levels of NKG2D and IFNg in NK cells

(96). MDSCs increased the level of arginase-1, which reduced IFNg
production but did not affect granzyme B release or NK cell viability

(97). In clinical patients with hepatocellular carcinoma, MDSCs
FIGURE 1

This figure summarizes the main mechanisms of NK cell exhaustion in the TME in four aspects: dysregulation of inhibitory and activating signaling,
tumor cell-derived factors, immunosuppressive cells, and metabolic exhaustion.
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mediated the suppression of NK cells through NKp30 (98). Nitric

oxide produced by MDSCs inhibited NK cell cytotoxicity by

impairing the ADCC response (99). Tumor-associated

macrophages (TAMs) play an important role in tumor immune

evasion. Several studies showed that TAMs induced NK cell

dysfunction through secretion of TGF-b (100, 101). TAMs also

inhibited NK cell activity by expressing CD80 and CD86, which

bound to CTLA-4 on NK cells. In addition, immunosuppressive

chemokine ligands such as CCL5 and CCL22 secreted by TAMs

could recruit Tregs to the TME, further suppressing the killing

effects of NK cells (102). There are sufficient numbers of neutrophils

in the TME to interfere with NK cell activity. For example,

neutrophils reduced the expression of CCR1 on NK cells, which

could reduce the infiltration of NK cells into tumor tissues. The PD-

L1 molecules on neutrophils bound to PD-1 receptors on the

surface of NK cells, reducing the amount of IFNg expressed by

NK cells (103). Neutrophils could also release ROS and cathepsin G

to inhibit NK cell cytotoxicity (104, 105). In addition to immune

cells, tumor stromal cells have been suggested to inhibit the

proliferation of NK cells and suppress the expression of NKp44

and NKp46 on NK cells (106). While mesenchymal stromal cells

(MSCs) initially promoted NK cell function by releasing type I

interferon, they later induced NK cell dysfunction by secreting

TGF-b and IL-6, ultimately leading to NK cell senescence (107).
Metabolism and exhaustion

Because of their unique metabolic properties, solid tumor cells

generate various metabolic stresses such as nutrient depletion, low

oxygen, low pH, and accumulation of waste products in the TME.

These stresses not only affect the tumor cells but also severely

impair the activity of NK cells in the TME (Figure 1) (108, 109).

Adequate energy supply is important for proliferation, survival, and

cytotoxicity of NK cells. Some studies suggested that steady-state

NK cells preferred oxidative phosphorylation (OXPHOS) for ATP

production, whereas activated NK cells relied more on glycolysis

(109, 110). Disruption of either glycolysis or OXPHOS may impair

NK cell function. Lung tumor cells secreted TGF-b in the TME,

which upregulated the expression of fructose-1,6-bisphosphatase in

NK cells, resulting in inhibition of glycolysis and decreased

cytotoxicity and viability of NK cells (111). In melanoma,

inhibition of Srebp activity led to a decrease in cytokine-enhanced

glycolysis and OXPHOS in NK cells, which impaired the effector

function of NK cells (112). Inhibition of glycolysis and OXPHOS

could decrease the secretion of IFNg by NK cells and attenuate their

cytotoxicity to leukemia cells (113).

Hypoxia in the TME contributes to cancer cells escaping NK

cells’ killing and developing into advanced tumors. Hypoxia

inhibited the expression of heat shock protein 70 and MICA/B of

tumor cells, which helped tumor cells escape recognition by NK

cells (114). In multiple myeloma, hypoxia inhibited the expression

of perforin and granzyme B by NK cells, impairing NK cell

cytotoxicity (115). Hypoxia led to the upregulation of HIF-1ɑ and

downregulation of NK cell activating receptors such as NKG2D and

natural cytotoxicity receptors (116). In addition to NK cells,
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hypoxia-induced HIF-1ɑ could also increase the expression of

PD-L1 on MDSCs, leading to the suppression of T cells (117). A

liver cancer study showed that hypoxia induced activation of

mTOR-Drp1 proteins in the tumor-infiltrating NK cells, leading

to increased mitochondrial fragmentation in these NK cells. As a

result, tumor-infiltrating NK cells exhibited lower cytotoxicity and

were more prone to cell death compared with NK cells in tumor-

adjacent tissues (118).

Most tumor cells rely on aerobic glycolysis for energy

production, which is known as the “Warburg effect,” producing a

large amount of lactate as a waste product (119). Several studies

have found that lactate can lead to the acidification of the TME and

impair NK cell activity. For example, melanoma cells highly

expressed lactate dehydrogenase, an enzyme that catalyzes lactate

synthesis from pyruvate, and the accumulation of lactate in

melanomas decreased the number of NK cells and inhibited

cytokine production by NK cells (120). To form liver metastases,

colorectal cancer cells inhibited the function of liver-resident NK

cells by secreting lactate, which lowered pH and damaged

mitochondria inside NK cells (121).

Lipid metabolism is critical to the effector function of NK cells.

A study showed that obesity-induced accumulation of lipids in NK

cells decreased their anti-tumor activity by inhibiting cytotoxic

machinery trafficking (122). In B-cell lymphomas, rich fatty acids

in the TME impaired IFNg secretion by NK cells (123). The

formation of immunological synapses is critical for recognizing

and killing cancer cells by NK cells. In liver cancer, inhibition of

sphingomyelin biosynthesis in intratumoral NK cells severely

dampened the membrane topology and synapse formation, which

reduced NK cell cytotoxicity (124). Amino acid metabolism also

regulates NK cell activity. Several works showed that tryptophan-

derived kynurenine catalyzed by indoleamine 2,3-dioxygenase

(IDO) inhibited NK cell proliferation and decreased activating

receptors, including NKp46 and NKG2D, on the surface of NK

cells (125, 126). IDO could also catalyze tryptophan to kynurenine

in cancer cells, decreasing the expression of NKG2D ligands on the

surface of cancer cells by ADAM10, and this reduced expression of

NKG2D ligands inhibited degranulation and IFNg release by NK

cells (127).
Therapeutic approaches to overcome
NK cell exhaustion

Recombinant cytokine drugs are being developed to boost NK

cell activation. IL-2 is a potent stimulator of NK cell and cytotoxic T

cell survival and increases their killing activity. Several recombinant

IL-2 drugs are currently under investigation or approved for the

treatment of various cancers, such as lung, bladder, ovarian, and

renal cell cancers (128–131). IL-12 is secreted mainly by antigen-

presenting cells and enhances the proliferation, survival,

and cytotoxicity of NK cells. Recombinant IL-12 is currently

being tested in clinical trials for the treatment of head and neck

cancer in combination with cetuximab, an EGFR inhibitor (132,

133). IL-15 has similar functions to IL-2 but does not have the

activation-induced cell death effect (134). An IL-15 superagonist
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ALT-803 is being used in clinical trials to treat various types of

cancers, including non-small-cell lung cancer, head and neck

cancer, renal cell cancer, and melanoma (135, 136).

Immune checkpoint inhibitors have been used to block

immunosuppressive signals on NK cells to enhance their anti-

tumor activity. Blocking the PD-1/PD-L1 inhibitory axis has

become a popular therapeutic strategy (137). PD-1/PD-L1

immune checkpoint inhibitors have been approved for the clinical

treatment of various cancers (138, 139). Recently, a monoclonal

antibody targeting LAG-3 has also been approved by the FDA for

the treatment of melanoma (140). Dozens of monoclonal antibodies

targeting other immune checkpoints, such as KIR, TIGIT, TIM-3,

and NKG2A, are currently being developed and clinically tested

(141–143). In addition to immune checkpoint inhibitors, agonistic

antibodies are also being developed to activate costimulatory

receptors on NK cells to enhance their anti-tumor activity. For

example, monoclonal antibodies targeting 4-1BB are being tested in

clinical trials for the treatment of lymphoma, melanoma, and non-

small-cell lung cancer (144, 145).

Adoptive transfer of NK cells represents another strategy for

cancer treatment. Therapeutic NK cells can be purified from

peripheral blood or umbilical cord blood or derived from induced

pluripotent stem cells. Some NK cell lines, such as NK-92, can also

be used for transfusion (146, 147). Prior to transfusion, several

cytokines such as IL-2, IL-12, IL-15, and IL-21 and feeder cells are

used to promote NK cell activation and proliferation (148, 149).

Genetically engineered NK cells such as chimeric antigen receptor

(CAR)-NK cells and TCR-NK cells are generated to improve the

killing ability and specificity of NK cells (150, 151). For example,

anti-CD19 CAR-NK cells have been used in clinical trials to treat

lymphoid tumors (152). Synthetic biology methods are also being

investigated to help NK cells overcome immunosuppressive TME

(153). The development of novel therapies based on NK cells and

the combination of existing strategies will contribute greatly to

cancer research and treatment.
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