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Background: Ankle function impairment is a critical factor impairing normal 
walking in survivors of stroke. The soft robotic exoskeleton (SRE) is a novel, 
portable, lightweight assistive device with promising therapeutic potential for gait 
recovery during post-stroke rehabilitation. However, whether long-term SRE-
assisted walking training influences walking function and gait quality in patients 
following subacute stroke is unknown. Therefore, the primary objective of this 
study was to assess the therapeutic effects of SRE-assisted walking training on 
clinical and biomechanical gait outcomes in the rehabilitation of patients with 
subacute stroke.

Methods: A group patients who had experienced subacute stroke received 
conventional rehabilitation (CR) training combined with 10-session SRE-assisted 
overground walking training (30  min per session, 5 sessions/week, 2  weeks) (SRE 
group, n  =  15) compared with the control group that received CR training only 
(CR group, n  =  15). Clinical assessments and biomechanical gait quality measures 
were performed pre-and post-10-session intervention, with the 10-Minute 
Walk Test (10MWT) and 6-Minute Walk Test (6MWT) used to define the primary 
clinical outcome measures and the Functional Ambulation Category, Fugl-Meyer 
Assessment for Lower Extremity (FMA-LE) subscale, and Berg Balance Scale 
defined the secondary outcome measures. The gait quality outcome measures 
included spatiotemporal and symmetrical parameters during walking.

Results: After the 10-session intervention, the SRE and CR groups exhibited 
significant within-group improvements in all clinical outcome measures 
(p  <  0.05). Between-comparison using covariance analyses demonstrated 
that the SRE group showed greater improvement in walking speed during the 
10MWT (p  <  0.01), distance walked during the 6MWT (p  <  0.05), and FMA-LE 
scores (p  <  0.05). Gait analyses showed that the SRE group exhibited significantly 
improved spatiotemporal symmetry (p  <  0.001) after 10-session training, with no 
significant changes observed in the CR group.

Conclusion: Compared with CR training, SRE-assisted walking training led to 
greater improvements in walking speed, endurance, and motor recovery. Our 
findings provide preliminary evidence that SRE may be considered for inclusion in 
intensive gait training clinical rehabilitation programs to further improve walking 
function in patients who have experienced stroke.
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1. Introduction

Stroke is the leading factor of severe disability, and frequently 
leads to impaired walking function (1–3). Approximately 60% of 
patients with stroke experience improvement in gait function within 
the initial months after stroke; however, over one-third of patients 
continue to experience difficulties with independent ambulation (4, 
5). Therefore, improving gait function is vital for patients who have 
experienced stroke and is the primary goal of rehabilitation 
protocols (6).

Hemiparetic ankle deficits are a major cause of impaired gait 
function after stroke (7–9). In patients with healthy gait, both lower 
extremities generate ankle dorsiflexion torque to promote foot 
clearance and ankle plantarflexion torque required for the propulsion 
for body movements (10). However, in patients with a stroke episode, 
impaired ankle dorsiflexion and plantarflexion caused by hemiparesis 
impairs both ground clearance and propulsion (11–13). Therefore, 
individuals with hemiparesis often adopt compensatory gait patterns, 
like vaulting gait and circumduction, to overcome the insufficiency in 
foot clearance and propulsion (14–16). These asymmetrical gait 
patterns impair walking ability, resulting in reduced walking speed 
(17) and endurance (18) and increased energy consumption (19).

The soft robotic exoskeleton (SRE) is a portable, lightweight, and 
wearable walking-assistive device that improves gait function and 
mobility in patients with stroke by facilitating normal movement in 
the paretic ankle during walking (20, 21). Previous studies have shown 
that the use of SRE immediately and positively improves gait function 
in patients with stroke. For example, initial proof-of-concept studies 
reported that assistance from the SRE may contribute to immediate 
enhancements in kinematics, kinetics, walking speed, and endurance 
of post-stroke walking (20–22). In addition, recent clinical exploratory 
studies have shown that the promising effects of SRE on ambulation 
function could be extended to unassisted gait after the patient has 
removed the devices (the therapeutic effects) (23, 24). A recent multi-
center clinical study evaluated the effects of a commercially available 
SRE in survivors of stroke and demonstrated that SRE-augmented gait 
rehabilitation could improve the maximum walking velocity after five 
training sessions (24). Another recent SRE-augmented locomotion 
study conducted a high-intensity walking training with SRE and 
reported enhancements in clinical and biomechanical outcomes in 
five survivors of chronic stroke after 18 training sessions (23). These 
studies have provided preliminary evidence that SRE has immediate 

gait restorative effects and therapeutic potential for long-term gait 
recovery in survivors of chronic stroke.

To the best of our knowledge, no randomized controlled trial 
(RCT) has been conducted to evaluate the therapeutic effects of SRE 
when integrated with conventional rehabilitation (CR) protocols on 
the recovery of walking function in patients who have experienced 
stroke; furthermore, none have explicitly focused on individuals with 
hemiplegia during the subacute post-stroke phase. According to 
previous reviews of electromechanically assisted gait training, future 
research and clinical practice on robotics should focus on patients in 
the sub-acute post-stroke phase as the neurological recuperation 
typically occurs within the initial 6-week period after stroke (25).

The objective of this pilot study was to assess the therapeutic 
effects of SRE-assisted walking training on clinical and biomechanical 
gait outcomes in patients with subacute stroke. It was hypothesized 
that CR training combined with SRE-assisted walking training would 
be more effective in enhancing walking functional recovery in these 
patients than CR training alone.

2. Methods

2.1. Participants

This single-site, parallel-group, sham-controlled RCT was 
conducted in Beijing between May 2022 and April 2023. Survivors of 
subacute stroke with mild motor impairment in the paretic ankle were 
screened and recruited from the Beijing Tsinghua Changgunng 
Hospital (Beijing, China). Inclusion criteria were: (i) 18 years < 
age < 80 years, (ii) one-sided ischemic or hemorrhagic stroke, (iii) 
2 weeks < post-stoke <24 weeks, (iv) ability for ambulation with less or 
no assistance (Functional Ambulation Category [FAC] ≥ 3) for at least 
2 min, (v) ability to carry out a 3-step command and communicate 
basic needs, (vi) intact skin on which the device is connected to the 
participants, (vii) Modified Ashworth Scale score for muscle tone at 
≤2 in lower limbs, and (viii) sufficient passive joint range of motion 
for safe ambulation.

Exclusion criteria were: (i) significant musculoskeletal or other 
neurological conditions affecting mobility, (ii) severe comorbidities 
impairing ability to participate, (iii) severe aphasia, (iv) severe 
peripheral artery disease, (v) uncontrolled hypotension/hypertension, 
(vi) recruitment in other clinical trial, and (vii) open wounds or 
broken skin at the lower extremities.

2.2. Sample size and randomization

The sample size of the present study was estimated based on one 
previous study that investigated the effect of the robotic ankle 
exoskeleton on gait recovery of in stroke survivors, with a sample size 
was 19 for two groups (17). Considering the shedding and elimination 

Abbreviations: SRE, soft robotic exoskeleton; CR, conventional rehabilitation; 

10MWT, 10-Minute Walk Test; 6MWT, 6-Minute Walk Test; FAC, Functional 

Ambulation Category; BBS, Berg Balance Scale; FMA-LE, Fugl-Meyer Assessment 

for Lower Extremity; SSR, Spatial Symmetry Ratio; TSR, Temporal Symmetry Ratio; 

SD, Standard deviation; ANCOVA, analysis of covariance; MCID, minimal clinically 

important difference; RCT, randomized controlled trial.
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(30%), the estimated sample size for the current study was set as 30 for 
the two groups (n = 15 each).

After baseline testing, stroke survivors were randomly assigned 
in a 1:1 ratio into either the SRE or CR group using computer-
generated simple random tables. The sequence tables were stored 
using a closed envelope by an investigator who did not participate 
in the training and assessment. On registration of a newly eligible 
participant, an enveloped was randomly extracted, which then 
informed the therapist of the group allocation. Pre-and post-
intervention assessments were performed by the same certified 
therapists blinded to the group allocation. This research was 
approved by the ethics committee of Beijing Tsinghua Changgung 
Hospital. All participants signed an informed consent in accordance 
with the Declaration of Helsinki (Clinical Trial Registry: 
ChiCTR2300068869).

2.3. Soft robotic exoskeleton

This study utilized the Yrobot Relink™ (Yrobot Inc., Suzhou, 
China), a commercially available SRE for individuals diagnosed with 
stroke for overground walking. The Yrobot Relink™ was developed 
based on the soft-exosuit technique (26) and uses a carbon fiber shank 
and foot brackets instead of the original calf warp made of flexible 
fabric; this enhancement provides better mechanical support for the 
ankle and lower leg during loaded walking. This device comprises of 
garment-like soft textiles, a wearable actuator assembly with an 
integrated power supply, Bowden cables, two carbon fiber shank and 
foot brackets, and wearable sensors (Figure 1). The two Bowden cables 
span the left and right legs to transmit assistive forces generated by the 
actuator to the ankles; when the cable is retracted, an ankle 
plantarflexion torque is produced.

FIGURE 1

(A) Yrobot Relink™ soft robotic exoskeleton, (B) SRE-assisted overground walking training.
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Inertial sensors attached to the shank and foot brackets can collect 
kinematic data of the wearer’s leg and foot (e.g., displacement and 
orientation of shank and foot, ankle angle, and spatio-temporal gait 
parameters). Load cell sensors are strategically positioned at the end 
of each cable to monitor the user-exoskeleton interaction, ensuring 
attainment of the desired assisstance level. The amalgamation of 
inertial sensor and load cell data allow for the accurate identification 
of gait events and the timing of active ankle plantarflexion assistance, 
and the assistance force profile of the exoskeleton is adaptively 
adjusted to match the voluntary movement of the wearer. The force 
profile of plantarflexion assistance was close to the first half-time 
period of a sinusoid wave across the terminal stance and pre-swing 
phases. The sinusoidal motion initiates posterior to mid-stance, with 
maximum assistance occurring near (usually posterior to) the heel-off 
moment. The maximum assistance level was controlled by a trained 
physical therapist. Additionally, the Yrobot Relink™ exoskeleton 
possesses the capability to adapt and tailor its assistance by learning 
and accommodating the unique gait characteristics of each user, 
aligning its assistance with their natural gait.

The total weight of the device is about 3.3 kg, with most of its 
weight situated closely within the waist-worn backpack. Revolute 
joints that restrict ankle inversion without limiting dorsiflexion and 
plantarflexion could be utilized for users requiring mediolateral ankle 
support in addition to ankle plantarflexion and dorsiflexion assistance. 
The built-in spiral torsion spring of the revolute joints prevented foot 
drops during the swing phase. Inertial sensors attached to the shank 
and foot brackets measured gait events and automated the timing of 
active ankle plantarflexion assistance. Load cell sensors placed at the 
extremity of each cable were employed to monitor the user-
exoskeleton interaction and to ensure the attainment of the desired 
assistance level. Therapists were able to monitor the users’ performance 
and to choose and advance the level of aid in real-time by utilizing a 
handheld device featuring a graphical interface.

2.4. Interventions

All recruited participants underwent CR training (physiotherapy 
and occupational therapy) in an inpatient rehabilitation center, 
including standard upper and lower extremity training for strength, 
transfer, balance, stepping, and activity of daily living. Each session 
was 60 min and was conducted 5 times weekly for 2 weeks, totaling 10 
training sessions.

For participants assigned to the SRE group, 30-min SRE-assisted 
training (5 sessions/week, 10 sessions) was integrated into their CR 
protocol (60 min/session, 5 sessions/week) without time compensation. 
In each training session, participants completed 30-min SRE-assisted 
overground walking along a 20-m circular walkway at a comfortable, 
self-selected speed. In the first session, an additional 10 min of 
pretraining was provided to the participants for fitting and 
familiarization with the SRE. Notably, 25% of the user’s body weight 
was used as the target level for bilateral plantarflexion assistance 
during walking training (20, 22). Participants were allowed rest breaks 
as needed; however, the resting time was also counted as training time. 
All physiotherapy sessions were conducted by two licensed 
physiotherapists with >10 years of clinical practice in stroke 
rehabilitation. Physiotherapists were trained in intervention protocols 
in advance. During each training session, the physiotherapists walked 

beside the paretic sides of the participants to ensure safety. They 
evaluated vital signs and skin integrity at the beginning and end of 
each session. Walking distance and steps were covered, and adverse 
events were documented in each session.

2.5. Outcome measures

The primary outcomes in the present study included the self-
selected walking speed during the 10MWT and the distance walked 
during the 6MWT. In the 10MWT, participants were directed to walk 
at a self-selected speed on a 10-metre path, and the total walking time 
was recorded. In the 6MWT, participants were instructed to walk back 
and forth along a 30-meter path at a self-selected, comfortable speed, 
with the aim of covering as much distance as possible within a fixed 
6 min-time frame; the walking distance was subsequently measured. 
A 6-h rest period was incorporated between the 6MWT and the 
10MWT to mitigate the potential impact of fatigue on the test results.

Previous studies have shown that walking speed and endurance 
are closely associated with the level of functional independence (27, 
28) and are the primary goals of rehabilitation intervention after 
stroke (29, 30). Secondary outcome measures included the FAC, Berg 
Balance Scale (BBS), and Fugl-Meyer Assessment for lower limb 
subscale (FAM-LE). All clinical outcomes were assessed by blinded 
assessors at two timepoints: before training (pre-intervention) and 
after 10 training sessions (post-intervention). The same assessor 
conducted both pre-and post-assessments for each participant. All 
clinical outcomes were assessed in participants who did not wear SRE 
or orthotics.

To further explain the changes in gait performance, gait quality 
was measured to supplement the clinical assessment outcomes. 
Spatiotemporal and symmetry parameters during walking without 
assistance were collected at two timepoints (pre-and post-
intervention) using an instrumented walkway (ProtoKinetics, 
Havertown, PA, United States).

In the trial session, the patients were required to walk at a self-
selected speed on an instrumented walkway repeatedly until sample 
data from six walking cycles were successfully collected. 
Spatiotemporal parameters included step length, swing time, and 
stance time of both unaffected and affected sides. The Temporal 
Symmetry Ratio (TSR) and Spatial Symmetry Ratio (SSR) metrics 
were used to evaluate gait symmetry:

 

Temporal swing stance 

symmetry TSSS stepswing time step( ) = ( ) /   stance time( )  (1)

 
TSR

affected TSSS,unaffected TSSS

affected TSSS,una
=

( )max

min fffected TSSS( )









 

(2)

 
SSR

affected step length,unaffected step length

aff
=

( )max

min eected step length,unaffected step length( )









 

(3)

where the step swing time, stance time, and length of each limb 
were presented as the mean of six gait cycles (31). To improve the 
accuracy of the statistical analyses, the numerators of Eqs 1, 2 used the 
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maximum value from either the affected or unaffected side data, 
whereas the denominators used the minimum value. This approach 
ensured that the results were not skewed by values <1.0 (32). TSR and 
SSR of 1 were defined as having perfect symmetry between the 
limbs (32).

In addition, exploratory correlation analyses between SRE-induced 
changes in spatiotemporal symmetry ratios and changes in primary 
clinical outcomes (gait speed and walking distance) were performed 
to investigate any potential mechanisms underlying SRE-induced 
changes in walking performance.

2.6. Statistical and minimal important 
difference analyses

Data were analyzed using IBM SPSS v. 25 (SPSS Inc., Chicago, IL, 
United States). Continuous variables are presented as mean [standard 
deviation, (SD)], ordinal variables as median [interquartile range 
(IQR)], and categorical variables as counts (percentages). All 
outcomes were analyzed according to the intention-to-treat principle 
and addressed missing data for participant dropouts using the 
baseline-observation-carried-forward method to address missing 
data for participant dropouts. The Shapiro–Wilk test was used to 
examine the normality of the data. Analysis of covariance (ANCOVA) 
was employed to compare the improvement (post-intervention 
compared with pre-intervention) in clinical assessment scores and 
spatiotemporal symmetry ratios between the groups, with baseline 
values used as covariates. If significant effects were observed in the 
ANCOVA analysis, post hoc comparisons were conducted between 
the groups using the Wilcoxon signed-rank test for ordinal variables 
and the independent samples t-test for continuous variables. 
Furthermore, paired t-test was used to compare varies between 
pre-and post-intervention.

Additional simple linear regression analyses were performed to 
explore the correlation between the SRE-induced changes in 
spatiotemporal symmetry ratios and those in primary clinical 
outcomes (i.e., self-selected speed during the 10MWT and distance 
walked during the 6MWT) at post-intervention compared with 
pre-intervention.

In addition to statistical analyses, comparisons between changes 
in clinical outcomes and minimal clinically important differences 
(MCID) were performed to assess the clinical significance of changes 
in primary clinical outcomes. Based on previous acute-stroke studies, 
the MCID in 10MWT and 6MWT from pre-to post-intervention was 
determined to be 0.14 m/s (33) and 34.4 m (34), respectively. In all 
statistical analyses, significance was set at α = 0.05.

3. Results

3.1. Patient characteristics and clinical 
outcome measures

Overall, 72 patients with subacute stroke were screened for 
enrollment. Of these, 42 were excluded based on the exclusion 
criteria. Then, the 30 eligible individuals were randomized to the 
SRE group (n = 15) or CR group (n = 15). One participant dropped 
out of the SRE group after baseline testing because of anxiety and 

fear during SRE use. No significant between-group differences in the 
demographic characteristics (Table 1) or baseline clinical assessment 
scores (Table  2) were observed. Neither group had any serious 
adverse events while receiving intervention. The patient flowchart is 
shown in Figure 2.

In the intention-to-treat analysis of primary clinical outcomes, 
both groups showed significantly increased self-selected 1walking 
speed as measured by the 10MWT, and walking distances as measured 
by the 6MWT, across 10 training sessions (p < 0.001). However, after 
adjusting for baseline (pre-intervention) scores as covariates, 
ANCOVA results revealed that the SRE group achieved significantly 
greater improvement in the self-selected walking speed (adjusted 
group difference: +0.05 m/s, 95% confidence interval [CI] [0.02–0.09]; 
F = 8.675, p = 0.007) and walking distance (adjusted group difference: 
+10.07 m, 95% CI [1.98–18.15]; F = 6.525, p = 0.017) than those of the 
CR group at post-intervention compared with pre-intervention 
(Table 3).

The secondary clinical outcomes, measures using the FAC, 
FMA-LE, and BBS scores, are presented in Table 2. Both groups 
exhibited significant within-group differences (all p < 0.05) in the 
FAC, FMA-LE, and BBS scores across the 10-session training 
periods, indicating that both groups showed significant 
improvements in walking independence, motor recovery, and 
balance at post-intervention compared with pre-intervention. 
However, there were no significant between-group differences in 
these clinical scores (Table 3), except for the FMA-LE scores. The 
SRE group showed significant increases in the FMA-LE scores 
[adjusted group difference: +1.68, 95% CI (0.07–3.29); F = 7.555, 
p = 0.011] than the CR group at post-intervention compared with 
pre-intervention.

The clinical significance of the intervention was then investigated 
by comparing the primary clinical outcome measures (10MWT and 
6MWT) with the MCIDs. The average improvements in 10MWT self-
selected walking speed and 6MWT walking distance in the SRE group 
at post-intervention compared with pre-intervention were 
0.15 ± 0.08 m/s and 35.70 ± 17.47 m, respectively, which were greater 
than the established MCIDs of the 10MWT (0.14 m/s) and 6MWT 
(34.4 m), respectively. In contrast, the average improvements in these 
clinical scores in the CR group at post-intervention compared with 
pre-intervention were 0.09 ± 0.05 m/s and 24.26 ± 16.85 m, respectively, 
and did not exceed the determined MCIDs of the 10MWT and 
6MWT, respectively (Table 2).

TABLE 1 Demographic characteristics.

Characteristics SRE group 
(n =  15)

CR group 
(n =  15)

p-value

Age, year, mean (SD) 59.00 (8.13) 63.30 (6.87) 0.056

Sex, male, n (%) 12 (80%) 9 (60%) 0.473

Body mass index, mean (SD) 25.07 (1.95) 24.59 (2.84) 0.646

Time since stroke, weeks, 

mean (SD)
8.27 (4.51) 8.53 (4.19) 0.764

Side of paresis, right, n (%) 10 (67%) 10 (67%) 0.400

Type of stroke, ischemic/

hemorrhagic, n
10/5 13/2 0.294

SD, standard deviation; SRE, Soft Robotic Exoskeleton device; CR, conventional 
rehabilitation.
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3.2. Gait quality outcome measures

To investigate the mechanism through which interventions 
influenced gait performance, spatiotemporal and symmetry 
parameters during walking at two points (pre-and post-intervention) 
were collected and analyzed. Regarding spatiotemporal 
characteristics, the SRE group showed significant increases in step 
length on both the affected and unaffected sides (all p < 0.01) at post-
intervention compared with pre-intervention, with no significant 
changes in other spatiotemporal parameters in either group 
(Table 4).

Changes in the symmetry ratios of the spatiotemporal 
parameters at two points were also examined. Table 5 presents the 
changes in TSR and SSR at two points. The SRE group showed 
significant reductions in both the TSR and SSR by-0.40 (t = −6.952, 
p < 0.001) from 1.66 ± 0.09 (pre-intervention) to 1.11 ± 0.29 (post-
intervention) and by −0.08 (t = −3.664, p < 0.01) from 1.07 ± 0.07 
(pre-intervention) to 1.02 ± 0.02 (post-intervention), respectively, 
whereas no significant changes were observed in the CR group. In 
addition, the ANCOVA results, using baseline values as covariates, 
revealed that the SRE group had significantly greater reductions in 
the SSR (adjusted group difference: -0.26, 95% CI [−0.42 to 0.11]; 
F = 12.136, p = 0.002) and TSR (adjusted group difference: -0.06, 95% 
CI [−0.09 to 0.03]; F = 20.955, p < 0.001) than the CR group at post-
intervention compared with pre-intervention. Overall, the SRE 
group exhibited significantly greater reductions in both temporal 

and spatial symmetry ratios (indicating better gait symmetry) 
during walking than the CR group.

To further investigate the potential mechanisms underlying the 
SRE-induced changes in walking performance, additional correlation 
analyses using linear regression were performed to compare 
SRE-induced changes in spatiotemporal symmetry ratios and those in 
primary clinical outcomes (self-selected walking speed during the 
10MWT and distance walked during the 6MWT). The results revealed 
a significant correlation between changes in the temporal symmetry 
ratio and those in walking speed (R2 = 0.475, p = 0.009), with no 
significant correlations between other variables (Figure 3). Notably, 
SRE-induced changes in both temporal and spatial symmetry ratios 
showed a negative correlation trend with changes in primary 
clinical outcomes.

4. Discussion

To the best of our knowledge, the present pilot study is the first 
RCT to explore the therapeutic effects of SRE when integrated 
within the CR protocol for patients who have experienced subacute 
stroke. The major findings were as follows. First, after a 10-session 
training, both groups demonstrated significant within-group 
improvements in all clinical outcome measures. Second, the SRE 
group showed greater improvements in walking speed (10MWT), 
walking endurance (6MWT), and motor recovery (FMA-LE) than 

TABLE 2 Clinical outcome measures at baseline (pre) and within-group differences after intervention (post–pre).

Variables SRE group (n =  15) CR group (n =  15)

10MWT, m/s

Pre 0.47 (0.17) 0.49 (0.18)

Post–pre 0.15 (0.11–0.19)*** 0.09 (0.06–0.12)***

% Post-pre>MCID (0.05 m/s) 60% 33%

6MWT, m

Pre 155.02 (48.66) 160.36 (55.38)

Post–pre 35.70 (26.02–45.38)*** 24.26 (14.93–33.59)***

% Post-pre>MCID (34.3 m) 47% 20%

FAC

Pre 3.47 (0.52) 3.40 (0.63)

Post–pre 0.33 (0.06–0.6)* 0.27 (0.01–0.52)*

% FAC ≥ 4 (independent walker) 73% 53%

FMA-LE

Pre 20.47 (1.92) 20.73 (2.12)

Post–pre 4.13(2.66–5.61)*** 2.27 (0.94–3.60)**

BBS

Pre 40.40 (7.97) 40.53 (7.48)

Post–pre 2.60 (1.09–4.11)** 2.67 (0.82–4.51)**

Assistive level (N)

Mean across 10 sessions 145.55 (14.6)

For the SRE-assisted training, the assistive torque level and training intensity in terms of the mean step covered across 10 sessions are presented as mean (SD). The clinical outcomes of FAC 
scores are presented as medians (interquartile ranges). Pre values are presented as mean (SD), whereas post–pre values are presented as mean/median difference (95% CI). 10MWT, 10-Meter 
Walk Test; 6MWT, 6-Minute Walk Test; FAC, Functional ambulation category; FMA-LE, Fugl-Meyer Assessment for Lower Extremity subscale; BBS, Berg Balance Scale. *p < 0.05, **p < 0.01, 
***p < 0.001, significant within-group difference.
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the CR group. Third, gait analyses showed that the SRE group 
demonstrated a significant improvement in spatiotemporal gait 
symmetry after 10 training sessions, whereas no significant changes 
were observed in the CR group. This suggests that the recovery of 
walking function could be achieved by reducing gait asymmetry. The 
present suggests that the SRE can serve as a therapeutic tool to 
improve walking function during the subacute phase of 
stroke rehabilitation.

After 10 training sessions, the SRE and CR groups exhibited 
significant improvements in all clinical tests, including the 10MWT, 

6MWT, FMA-LE, FAC, and BBS. Notably, we observed that walking 
speed (10MWT) and endurance (6MWT) were significantly improved 
in both groups after ten 30-min training sessions. The SRE and CR 
groups showed mean improvements of 0.15 ± 0.08 m/s and 
0.09 ± 0.05 m/s in the 10MWT, and 35.70 ± 17.48 m and 24.26 ± 16.85 m 
in the 6MWT, respectively. However, between-group comparisons 
revealed that the SRE group outperformed the CR group in all the 
above clinical scores, and both 10MWT and 6MWT values were better 
than their MCIDs. This finding is consistent with that of a previous 
exploratory clinical study that included eight patients with chronic 
stroke who performed 18 SRE-assisted walk-training sessions for 
520 h. Their result indicated a mean improvement of 0.22 ± 0.1 m/s in 
the 10MWT and 71.5 ± 43.9 m in the 6MWT (23). The previous study 
reported approximately 2-fold superior improvement in the 10MWT 
and 6MWT, compared with that of the present study; however, the 
reliability of the results of the previous was challenged by the self-
repair effect of patients with stroke because no control group was 
included (35). The present study compensated for these shortcomings 
by including a control group, thereby providing more reliable results. 
The positive effects of SRE on walking speed and endurance may 
be attributed to the ability of the device to help patients to complete 
task-oriented, high-intensity, high-repetition early walking training 
by providing walking assistance. Previous studies have demonstrated 
that early task-oriented, high-intensity, high-repetition rehabilitation 
induces greater neuroplastic changes and functional recovery (36–38). 
In contrast, traditional rehabilitation training programs are limited by 

FIGURE 2

CONSORT flowchart of enrollment of participants into the study.

TABLE 3 Adjusted between-group differences in clinical and symmetrical 
outcome improvements (post–pre), using baseline values as covariates.

Outcome measures SRE group vs. CR group

10MWT, m/s +0.05 (0.02–0.09) ** [0.243]

6MWT, m +10.07 (1.98–18.15) * [0.195]

FAC −0.10 (−0.33 to 0.13) [0.003]

FMA-LE +1.68 (0.07–3.29) * [0.145]

BBS −0.10 (−2.00 to 1.81) [0.011]

TSR −0.26 (−0.42 to −0.11) ** [0.310]

SSR −0.06 (−0.09 to −0.03) *** [0.437]

All analyses of covariance between-group differences were presented as mean difference 
(95% CI) [effect size: η2]; *p < 0.05, ** p < 0.01, ***p < 0.001, significant between-group 
differences.
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human and environmental constraints to achieve the training 
parameters advocated in appellate neuroplasticity theory (39).

The results of the present study were also comparable with those 
of another study evaluating a power-assisted ankle robot, which 
showed a significant improvement in clinical scores after 20 sessions 
(540 h) of robot-assisted walking training (40). In the present study, 
the SRE group showed improved 10MWT and FAC values after 10 
training sessions, with improvements of 32% (0.15 m/s) and 10% (0.33 
points), respectively. Similarly, using a power-assisted ankle robot, the 
patients exhibited 240% (0.32 m/s) and 74% (1.4 points) improvements 
in 10MWT and FAC, respectively, after 20 training sessions. The 
favorable improvements in 10MWT and FAC in this study were likely 
attributed to the presence of a ceiling effect from the included 
variables, as the baseline scores in the present study (0.47 m/s and 3.47 
points for 10MWT and FAC, respectively) were significantly higher 
than those in the ankle robotic exoskeleton study (0.13 m/s and 1.9 
points for 10MWT and FAC, respectively). Notably, the present study’s 
results showed no significant difference in the FAC score between the 
SRE and CR groups before and after the test; however, the SRE group 
had a higher proportion of patients who achieved the limited 
community independent walking (FAC ≥ 4) after 10 sessions of 
training than the CR group (73% vs. 53%) (27). This finding is 
consistent with that of the ankle robotic exoskeleton study, wherein 

approximately 57.1 and 29.4% of the ankle robotic exoskeleton and 
control groups, respectively, achieved limited community independent 
walking. These results suggest that ankle robotic exoskeleton-assisted 
walking training can improve patients’ walking independence. 
Nonetheless, the reliability of the results of the present study should 
be validated in larger populations for a more reasonable comparison 
given the limited sample size of the present study.

In addition to clinical scores, we  measured the effects of the 
intervention on the spatiotemporal and symmetry parameters of the 
patients while walking. The results showed no significant changes in 
most spatiotemporal parameters between the SRE and CR groups after 
10 training sessions; however, there were significant differences in the 
temporal and spatial symmetry ratios before and after training 
between the two groups. After 10 training sessions, the SRE group 
showed a significant decrease in both temporal and spatial symmetry 
ratios from a mean of 1.66 ± 0.09 and 1.10 ± 0.09, respectively, at 
baseline to a mean of 1.27 ± 0.17 and 1.02 ± 0.02, respectively, at the 
endpoint. In contrast, the CR group showed no significant changes in 
spatial and temporal symmetry ratios. These results suggest that 
compared with CR, SRE-assisted walking training effectively improves 
spatiotemporal symmetry during walking in patients with stroke, as a 
symmetry ratio closer to 1 indicates better motion symmetry between 
the limbs (32). This finding is similar to that of a previous lower-limb 
exoskeleton study, which found that four sessions of lower-limb 
exoskeleton robot-assisted flat-floor walking training significantly 
improved the spatial symmetry ratio of walking in patients with 
chronic stroke by approximately 13% (41). Another study on the 
energetics of SRE-assisted walking yielded consistent results, showing 
that SRE effectively improved the symmetry of the center of mass 
power of the body while walking in patients with hemiplegia, leading 
to a healthier and more efficient gait (21). According to the present 
study’s results, it is reasonable to suggest that SRE achieves a 
therapeutic effect on gait symmetry, which may also explain its 
potential mechanisms for improving walking performance and 
indirectly supports the conclusion that the positive effect of SRE on 
clinical scores is not achieved by reinforcing compensatory movement 
patterns. SRE-assisted walking training can induce plastic changes in 
the motor cortex through repetitive high-intensity proprioceptive 

TABLE 4 Gait spatiotemporal characteristics at baseline (pre) and within-group differences after intervention (post–pre).

Gait parameters Affected side Unaffected side

SRE group CR group SRE group CR group

(n =  14) (n =  15) (n =  14) (n =  15)

Step length, m

Pre 0.70 (0.16) 0.70 (0.15) 0.73 (0.20) 0.74 (0.15)

Post–pre 0.08 (0.03–0.12)** 0.02 (−0.01 to 0.04) 0.04 (0.01–0.07)** 0.01 (0–0.02)

Step stance time, s

Pre 1.14 (0.12) 1.18 (0.14) 1.35 (0.21) 1.29 (0.24)

Post–pre 0.09 (−0.04 to 0.21) 0.01 (−0.20 to 0.19) −0.05 (−0.17 to 0.07) −0.02 (−0.19 to 0.17)

Step swing time, s

Pre 0.53 (0.10) 0.52 (0.09) 0.42 (0.10) 0.43 (0.10)

Post–pre −0.02 (−0.05 to 0.00) −0.01 (−0.05 to 0.02) 0.03 (−0.01 to 0.08) 0.01 (−0.01 to 0.03)

Pre values are presented as mean (SD), whereas post–pre values are presented as mean differences (95% CI). *p < 0.05, **p < 0.01, ***p < 0.001, significant within-group difference.

TABLE 5 Spatiotemporal symmetry parameters at baseline (pre) and 
within-group differences after intervention (post–pre).

Variables SRE group (n =  15) CR group (n =  15)

TSR, mean (SD)

Pre 1.66 (0.09) 1.60 (0.12)

Post–pre −0.40 (−0.52 to −0.27) *** −0.11 (−0.28 to 0.06)

SSR, mean (SD)

Pre 1.10 (0.09) 1.08 (0.05)

Post–pre −0.08 (−0.13 to −0.03) ** −0.01 (−0.02 to −0.01)

Pre values are presented as mean (SD), whereas post-pre values are presented as mean/
median difference (95% CI). * p < 0.05, **p < 0.01, ***p < 0.001, significant within-group 
difference.
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stimulation and significant plantar pressure feedback, generating 
positive changes in gait patterns (17, 42, 43). In addition, neuroscience 
studies have shown that robotic gait training with voluntary drive and 
afferent feedback might lead to changes in the excitability of the motor 
cortex (27, 44). However, future studies are needed to further enhance 
our understanding of the role of soft robotic exoskeleton in 
neuroplasticity during walking recovery in patients with stroke.

To explore the underlying mechanisms of SRE in improving gait 
patterns, we examined the potential relationship between SRE-induced 
changes in the primary clinical scores (10MWT walking speed and 
6MWT walking distance) and changes in gait symmetry (TSR and 
SSR) using simple linear regression analysis. The results showed a 
significant negative correlation between changes in the TSR and those 
in 10MWT walking speed, whereas no significant correlations were 
observed for the remaining data. Notably, both TSR and SSR showed 
a similar trend of negative correlation with walking speed and 

distance. This result implied that the greater the SRE-induced decrease 
in TSR and SSR (the closer to 1), the more optimal the 10MWT 
walking speed and 6MWT walking distance. This negative correlation 
trend was also validated by previous studies in which the degree of 
improvement in walking symmetry in patients with stroke had a linear 
relationship with improvements in walking propulsion, speed, and 
efficiency (32, 45, 46). Based on these findings, it is reasonable to 
speculate that the significant improvement in walking performance 
(indicated by clinical assessment scores) induced by the SRE resulted 
from improved gait symmetry. However, because this is only a 
preliminary conjecture based on the limited available data, additional 
high-quality research is required for further testing.

This study has several limitations. First, the sample size was small 
for an RCT, which reduced the generalizability of the findings and 
raised the possibility of type II errors. Because of the limited sample 
size, we  could not account for data stratification or temporal 

FIGURE 3

Correlations in SRE-induced changes in symmetry ratios and primary clinical outcomes, (A) Correlation of SRE-induced changes (Post-Pre) in TSR 
(horizontal axis, X) and SRE-induced changes in primary clinical outcomes (gait speed and walking distance) (horizontal axis, Y); (B) Correlation of SRE-
induced changes in the SSR (horizontal axis, X) and the SRE-induced changes in primary clinical outcomes (gait speed and walking distance) (horizontal 
axis, Y). A simple linear regression analysis was performed after removing outliers of the X and Y axis parameters, and outliers were identified as greater 
than the mean  ±  3 times the SD.
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correlation in the statistical analysis, which also raised the possibility 
of type II errors. However, this pilot study was designed to support 
subsequent large-scale RCT. Therefore, we will compensate for this 
limitation by conducting a subsequent RCT with a larger sample size. 
Second, there was no follow-up in this study; therefore, whether the 
therapeutic effects of SRE are long-lasting needs to be  verified in 
further trials with long-term follow-up. Third, other than the robot-
assisted walking training, the training intensity and content of the CR 
training sessions was not standardized in the research design, which 
may have resulted in bias in the CR group that underwent conventional 
training. Finally, data on lower-extremity joint kinematics and walking 
dynamics before and after training were not collected in this study. 
Therefore, the biomechanical effects of the SRE in patients with stroke 
need to be verified in future studies.

5. Conclusion

This RCT demonstrated the therapeutic efficacy of a 10-session 
SRE-assisted walking training for functional walking recovery in 
survivors of subacute stroke. SRE-assisted walking training led to 
greater improvements in walking speed, walking endurance, and 
motor recovery than did CR training. In addition, gait quality analyses 
showed that SRE-assisted walking training could improve 
spatiotemporal symmetry during walking, which may be a potential 
mechanism underlying SRE-induced improvement in walking 
performance. This study provides preliminary evidence that SRE may 
be  considered for inclusion in intensive gait training clinical 
rehabilitation programs to further improve walking function in 
patients who have experienced stroke. These promising results 
required validation in future RCTs with larger sample sizes and long-
term follow-up.
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