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Introduction: Data-driven simulation allows the discovery of process simulation

models from event logs. The generated model can be used to simulate changes

in the process configuration and to evaluate the expected performance of the

processes before they are executed. Currently, these what-if scenarios are defined

and assessedmanually by the analysts. Besides the complexity of finding a suitable

scenario for a desired performance, existing approaches simulate scenarios based

on flow and data patterns leaving aside a resource-based analysis. Resources are

critical on the process performance since they carry out costs, time, and quality.

Methods: This paper proposes a method to automate the discovery of optimal

resource allocations to improve the performance of simulated what-if scenarios.

We describe a model for individual resource allocation only to activities they fit.

Then, we present how what-if scenarios are generated based on preference and

collaboration allocation policies. The optimal resource allocations are discovered

based on a user-defined multi-objective optimization function.

Results and discussion: This method is integrated with a simulation environment

to compare the trade-o� in the performance of what-if scenarios when changing

allocation policies. An experimental evaluation of multiple real-life and synthetic

event logs shows that optimal resource allocations improve the simulation

performance.

KEYWORDS

data-driven simulation, what-if analysis, resource allocation, optimization, NSGA-II

1. Introduction

Understanding the behavior of the resources who execute the tasks is a critical factor
for the performance of a business process (Thevendran and Mawdesley, 2004). Evaluating
the impact on process performance due to changes on the allocation of resources is a
valuable and challenging task. The impact analysis on resource allocation changes can be
evaluated through various approaches. Modeling approaches (Russell et al., 2005; Wolter
and Schaad, 2007; Cabanillas et al., 2011; Vasilecas et al., 2014; Bocciarelli et al., 2016)
enhance existingmodeling languages like BPMN by incorporating resource assignment tools
for task execution. This type of analysis is descriptive and static, hindering the assessment
of resource impact on the process execution success. Process Mining (PM) approaches use
historical data to analyze resource performance in task execution (Song and van der Aalst,
2008; Huang et al., 2012; Pika et al., 2014). These approaches identify resource patterns,
such as preferences for executing certain activities, which is beneficial for measuring process
performance resulting from the actual resource allocation. Finally, process simulation
approaches assist us in specifying resource allocation changes for specific tasks, enabling
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a proactive assessment of their potential impact on process
performance (Si et al., 2018; Durán et al., 2019). However, creating
and refining what-if scenarios remains a highly time-consuming
and cumbersome manual task with yet margins to improve. In
particular, what-if scenarios rely on the analyst’s discretion, which
is prone to yielding less than optimal process configurations and
failing to leverage data knowledge on resource patterns.

We address this gap by enhancing a data-driven simulation
method (Camargo et al., 2020) by adding the capability to automate
the discovery of optimal resource allocations, thereby improving
the performance of simulated what-if scenarios. This new method
and tool are named SimodR, which allows for:

C1 Discovering a model for individual resource allocation only to
activities they fit. This constraints the allocations to resources
that are enabled to execute an activity.

C2 Generating multiple what-if scenarios by changing the
allocation of resources of the PSM model based on allocation
policies. We present the implementation of preference and
collaboration policies to allocate resources. Each change
generates a potential process configuration to be implemented.

C3 Discovering the optimal configuration of what-if scenarios
based on a user defined multi-objective optimization function
on performance metrics (waiting time, flow time, workload,
cost). We adapted the NSGA-II evolutionary algorithm to
tackle the MultiObjective Resource Allocation Problem.

This paper is structured as follows. Section 2 introduces the
core concepts, related work on data-driven simulation, and the
challenges for analyzing process improvements based on resource
changes. Section 3 details the proposed method. Section 4 discusses
the experiments performed to evaluate how optimizing what-
if scenarios based on resources allocation changes improves the
estimation in process performance while analyzing their trade-offs.
We used three event logs to discover the PSM models and their
configuration parameters, especially regarding resources. Section 5
concludes and outlines directions for future work.

2. Motivation and problem statement

2.1. Core concepts

A business process is a collection of activities and decision
gates logically related to creating products or services that provide
value to the client or user (Dumas et al., 2018). Each process
execution corresponds to an instance or case, grouping a set of
events performed by a resource (e.g., a customer). The events
executed for a process instance can be extracted and pre-processed
from Process-Aware Information Systems (PAIS) to produce an
event log representing the set of traces. A trace represents the
sequence of events (activities) that were executed by specific
resources for a particular case. An event log must contain at least
a case identifier, the activity name, timestamps (start and end), and
optionally categorical, numerical, or textual attributes that might
be of interest according to the analysis performed (resources, data
objects, costs, etc.).

Process Mining (PM) encompasses techniques that use event
logs as input to reflect on the causal relationship between

the observed activities (Rozinat et al., 2009). For instance, to
discover process models, to compare process variants, to check
conformance among events and process models, and to analyze
process performance. The latter capability involves measuring
process performance metrics associated with cases and traces such
as processing time, cycle time, execution cost, and workload.

Process simulation is a technique for quantitative analysis of
business processes, which allows the detection of bottlenecks and
performance estimation based on a PSM (Dumas et al., 2018). A
PSM comprises various parameters (arrival rate, inter-arrival times,
time constraints on activities, resources allocation, timetables)
configured for a process model. These PSMs facilitate the
creation of alternative process configurations (what-if scenarios) by
adjusting parameters to compare their performance. Data-driven
simulation uses PM to discover automatically PSMs that mirror the
actual process execution. Using data as a starting point enables the
analysis of all executed paths (not just designed ones), reducing
the effort and complexity to build the baseline PSM necessary for
defining what-if scenarios.

Simulation approaches cannot optimize the configuration of
what-if scenarios (see Sections 2.2 and 2.3). Besides the complexity
of defining and finding the desired what-if scenario manually, most
approaches configure them based on flow and data patterns leaving
aside a resource-based analysis. Resources are critical to the process
performance since they carry out costs, time, and quality.

2.2. Related work

Existing works on resource allocation in business processes
analysis can be classified into those focusing on theModeling stage
and those focusing on the Execution stage.

Modeling-centered approaches propose the introduction of
new components in formal languages to represent the relationship
between resources and process tasks. Cabanillas et al. (2011)
suggest a Resource Assignment Language (RAL) that represents
the organizational structure of resources and their allocation in
process activities. Bocciarelli et al. (2016) define resources in
terms of non-functional properties such as workload, performance,
reliability, and resource management. Vasilecas et al. (2014)
describes resources based on attributes such as name, function,
duration, quantity, availability, and use cost. Wolter and Schaad
(2007) incorporate authorizations into the process model, enabling
the definition of resource allocation patterns such as Separation
of Duty, Role-Based Assignment, Case Management, or History-
Based Assignment in BPMN. While these works offer a static
view of process resources, the proposed characterizations can be
dynamically discovered and utilized to allocate resources based
on past executions and user preferences to enhance process
performance.

Execution-centered approaches employ process mining (PM)
techniques to discover patterns in the behavior of resources and
rely on historical information recorded in event logs as their
main source of analysis. They can be sub-classified into Static

and Dynamic approaches. Static analysis approaches help to
analyze the processes’ performance from the perspective of the
underlying organizational structures observed in the data. They
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take a descriptive approach by analyzing past events, leaving
aside the impact assessment on potential process performance
due to changes in the resource assignment. On the other
side, Dynamic analysis approaches are mainly based on Process
simulation, more specifically Data-Driven Simulation (DDS). They
analyze the relationship between the resources’ behavior and the
process performance, offering a new way to evaluate improvement
scenarios based on user optimization preferences.

Regarding Static analysis techniques, Martin et al. (2020)
present a method that automatically extracts resource availability
calendars from event logs containing information about process
execution. This method takes an event log as input and generates
resource availability calendars as output. The primary objective
of this research is to identify the availability restrictions followed
by resources during the execution of a process. Similarly,
Song and van der Aalst (2008) introduces clustering techniques
and mathematical analysis methods to uncover the underlying
organizational model by utilizing social network analysis and
information flow analysis between different organizational entities.
The authors aim to provide analysts with insights into how
tasks have been executed within the process compared to the
predefined organizational structure. Schonig et al. (2016) develop
a process mining framework to discover cross-perspective patterns
that establish relationships between resource behaviors and the
control flow of a process. This approach inputs an event log and
organizational background knowledge (such as roles, capabilities,
and resource membership in organizational units). The discovered
patterns aim to enhance the understanding of the dynamics within
the process.

Huang et al. (2012) proposes measuring resource behavior
from four perspectives to facilitate process improvements. The
“Preference” perspective estimates the resources’ inclination toward
frequently executed activities, indicating their high or low
preference for performing them. The “Availability” perspective
determines whether a resource can perform a task within a specific
time range. The “Competence” perspective assesses a resource’s
ability to carry out a particular type of activity. The “Cooperation”
perspective indicates the level of coordination between two
resources in a process. The authors develop mathematical models
to quantify these perspectives based on an event log and
propose a recommendation mechanism for resource allocation
that considers these behavior measurements. Pika et al. (2014)
introduce Resource Behavior Indicators (RBI) to extract knowledge
about resources from event logs, incorporating the Preference
and Collaboration perspectives described by Huang et al.
(2012). Additionally, they propose three additional perspectives:
the “Skills” perspective, which measures the capabilities of a
resource; the “Utilization” perspective, which assesses the activities
performed by a resource; and the “Productivity” perspective, which
evaluates the effectiveness of a resource in performing its tasks.

Regarding Dynamic analysis techniques, Durán et al. (2019)
propose using the Maude simulator to manually define different
scenarios for allocating resources in a process and evaluate its
performance impact looking to minimize the average execution
time. The monitored variables to propose the allocation scenarios
are the resource usage over time and the usage percentage for
each resource replica. Si et al. (2018) propose the use of process

simulation with Colored Petri Nets in combination with a Genetic
Algorithm for optimization of resource allocation. The target
is minimizing task execution times by considering restrictions
on the availability of resources. The work was validated using
two real event logs corresponding to Macau Historical Archives
and an insurance claim workflow, which reflected significant
improvements in execution times compared to the times measured
in the event logs. These approaches need to be improved in the
configuration ofWhat-if scenarios. In Durán et al. (2019), the what-
if scenarios are configuredmanually by the analysts, entailing a high
complexity and effort to analyze multiple scenarios. The authors in
Si et al. (2018) assume the knowledge of an AS-IS scenario, which
includes the size and composition of the resource pools, which is
only sometimes possible in a real setting.

López-Pintado et al. (2021) presents a study that optimizes
process performance through a multi-objective approach (NSGA-
II), balancing the conflicting goals of reducing cycle time and
resource costs using simulation techniques. This approach does
not consider the creation of possible resource allocation scenarios
that seek to benefit the specific needs of a business case, for
example, help the cooperation of particular resources at the time
of their allocation. Kuchař and Vondrák (2016) proposes a method
for specifying resource competencies using competency models.
This approach simulates the human capacity and productivity of
resources, offering a more realistic context for resource allocation.
However, the proposed approach only considers time for resource
allocation, which is unrealistic since changing resource allocation
affects other metrics such as cost, workload, and waiting time. Ihde
et al. (2019) propose a framework that introduces a new component
called the Resource Manager, aiming to optimize resource
allocation in processes. This framework enables the specification
of resource requirements, which the Resource Manager utilizes
to determine resource allocation for different activities within the
process. However, the authors assume that the execution of the
process strictly adheres to the resource allocation plan, which is
often not the case in real-world processes. Resource allocation
depends on resource availability and is usually done to optimize
process performance.

In this paper, we propose a Dynamic analysis approach
that joins the power of DDS, Multi-objective optimization, and
an adaptation of the preference and cooperation perspectives
presented by Huang et al. (2012) to create allocation policies to
simulate changes in the allocation of resources.

Among the baseline studies considered, the work authored by
López-Pintado et al. (2021) stands out as a more direct point of
reference for our research. This is primarily due to its utilization
of simulation techniques and the NSGA II optimization algorithm
within the optimization loop. However, we have opted not to adopt
this work as a baseline for our research. The rationale behind
this decision is rooted in the fact that López-Pintado et al.’s work
relies on the BIMP simulator as its foundation, and this simulator
operates with resource pools rather than individual resources.
Such a distinction impedes the application of resource allocation
policies at the granularity we aim to achieve, which is at the
individual resource level. Additionally, variations in the simulation
mechanisms between their simulator (BIMP) and ours (Sylla) could
significantly impact the generation of event logs, potentially leading
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TABLE 1 Extract of the manufacturing process event log.

CaseID Activity Start timestamp Complete timestamp Resource

1 Turning & Milling 2012-01-30T06:24:00 2012-01-30T12:43:00 ID4932

1 Turning & Milling Q.C. 2012-01-31T20:20:00 2012-01-31T21:50:00 ID4163

1 Lapping 2012-02-14T07:00:00 2012-02-14T08:15:00 ID4882

1 Lapping 2012-02-14T16:05:00 2012-02-14T16:38:00 ID4882

101 Setup 2012-03-14T01:47:00 2012-03-14T03:03:00 ID4219

101 Turning & Milling 2012-03-14T03:38:00 2012-03-14T06:03:00 ID4219

101 Turning & Milling 2012-03-14T06:04:00 2012-03-14T06:49:00 ID4219

FIGURE 1

Extract of the discovered BPMN model of the manufacturing process.

to an inequitable comparison of the two approaches. Assessing and
contrasting the disparities in simulation mechanisms lies beyond
the scope of our research.

Looking forward to performing a fair comparison, we choose
to employ Simod (Camargo et al., 2020) as our baseline for
comparison because it provides a fully automated method for
identifying and optimizing business process simulation models
using event logs. This selection eliminates potential biases
introduced by manually tuning simulation parameters and model
calibration, ensuring a fair and objective comparison. This
approach allows us to evaluate our method on an even footing with
approaches like the one presented by López-Pintado, which centers
on resource allocation based on resource pools.

2.3. Challenges on data-driven simulation:
a case study

We selected a manufacturing production (MP) process log
as a case study to illustrate the capabilities of data-driven
simulation approaches to generate PSMs and their shortcomings
for configuring optimal what-if scenarios based on resource
patterns. The MP event log, exported from an Enterprise Resource
Planning (ERP) system (Levy, 2014), contains the activities (e.g.,
Turning and Milling, Turning Q.C, Laser Marking, etc.) that need
to occur within a company before delivering the item to a client.
Table 1 presents an extract of this log and its main execution
features: case ID, activity name, start and end timestamps, and
the resource. The process discovered from the log consists of 24

TABLE 2 Discovered decision gates configuration.

Node 1 Prob 1 (%) Node 2 Prob 2 (%)

Turning 97 Setup Turning & Milling 3

Packing 53 Decision gate 47

Change version 67 Rework Milling 33

Flat grinding 26 Decision gate 74

activities, 46 resources, 4,953 events related to 225 cases, and 217
different execution paths (process variants).

We used Simod (Camargo et al., 2020) to generate the complete
PSM (the process model and its corresponding parameters)
associated with this log. The BPMN process model was generated
by using SplitMiner (Augusto et al., 2017), which allows to analyze
models with different levels of sensitivity. Figure 1 illustrates the
resulting process model abstracted by case frequency to show only
the 60% of the most frequent activities and the 25% of the most
frequent arcs from the complete process execution.

Simod calculates the gateway’s probabilities (see some
parameters in Table 2), and generates a PSM configured with a
resources pool that assumes a fixed similarity rate of 50%, and with
the time and allocation parameters (see Table 3). The generated
resource model contains 11 role groups with a different number
of resources each. The performance metrics of this process (see
Table 4 in Section 4) are used as a reference when evaluating the
process with the proposed resource allocation policies.

A PSM that is automatically generated by using data-
driven simulation methods (e.g., Simod), can be executed

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1279800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bejarano et al. 10.3389/fcomp.2023.1279800

TABLE 3 Extract of PSM parameters discovered by Simod.

Activity Distribution Distribution variables (s) Resource role

Arrival rate Exponential 28,230 -

Start Constant 0 Role 0

Nitration Q.C. Constant 0 Role 0

Turning Rework Constant 0 Role 0

Final Inspection Q.C. Triangular L: 60 P: 3,600 U: 22,200 Role 2

Turn & Mill. & Screw Assem Constant 0 Role 0

in existing process simulators (e.g., Bimp, Scylla). However,
the following challenges still remain as gaps for defining
what-if scenarios.

G1 Discover resource changes. Defining what-if scenarios is often
constrained to a predefined resources model representing roles
rather than individual resources. Discovering PSM changes
in terms of the resource’s behavior (e.g., group resources
by efficiency) is desired to simulate scenarios based on
business preferences. Moreover, redistributing the resource
pools manually is very expensive and highly dependent on the
analyst’s criteria. This could create a big gap from the reality
of the process execution and generate unrealistic simulation
scenarios.

G2 Prescribe optimal configurations. Configuring what-if scenarios
is a complex and highly time-consuming task, given the
exponential amount of possible PSM changes (resources
allocation, resources pool composition, activities order).
Furthermore, each defined what-if scenario may yield
uncertain results in terms of optimal performance (minimize
execution times and/or maximize workload). This complexity
makes it challenging to compare scenarios effectively.
Consequently, finding the best configuration of simulation
parameters is not always guaranteed, leading to suboptimal
performance results.

3. SimodR: a method to create what-if
scenarios based on optimal resource
allocations

The goal of the research is to come up with optimal resource
allocations to improve the performance of simulated what-if
scenarios. To achieve this goal, we developed a method and
tool called SimodR. SimodR extends a data-driven simulation
system with capabilities to generate process simulationmodels with
individual resources allocated to activities. It also allows defining
how resources-related simulation parameters are discovered based
on allocation policies. A resource allocation policy is the guideline
for resources distribution within a PSM.

SimodR introduces three allocation policies and implements
an algorithm to optimize resource allocation based on specific
optimization goals defined by process analysts. These goals
can connect to one or multiple performance metrics such as

waiting time, flow time, workload, and cost. SimodR performs
resource allocations within PSMs and then evaluates them
through simulations. Figure 2 illustrates the activities we defined
to automate the configuration of what-if scenarios based
on optimal resource allocation changes. The scope of these
activities and the adaptation of an evolutionary algorithm to
tackle the MultiObjective Resource Allocation Problem are
detailed below.

3.1. A model for individual resource
allocation

Generating simulation models that allocate individual
resources to activities, rather than relying on traditional
role-based allocation, requires analyzing which resources are
enabled to perform each activity. This analysis is achieved
by identifying the resources that have previously executed
each activity.

SimodR analyzes the event log and generates an enabling

matrix (see Equation 1). In this matrix, the rows represent the
resources found in various traces, and the columns represent the
process activities. Each matrix entry indicates how many times
a particular resource has executed a corresponding activity. The
enabling matrix prevents a resource from performing an activity
for which it is not qualified (e.g., a nurse should not be allocated to
a surgery activity).

EnablingMatrix (i, j) =
∑

e∈Events

Xi,j,e

∀i|i ∈ Resources

∀j|j ∈ Activities

(1)

3.2. Allocation policies to configure what-if
scenarios

Simod identifies available resources, their timetables, and the
relationships between activities and resources from an event log.
SimodR utilizes the resources previously discovered by Simod as
input. A resource indicates what or who performs a specific activity
(a participant, a software system, or a mechanical element that
performs a job).
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FIGURE 2

Steps of SimodR for optimal resource allocations.

We defined two algorithms to allocate resources to activities
within the PSM: the preference and collaboration policies. These
policies scope the rules for resource allocation, as long as they
match the enabling matrix. In scenarios where neither of these
policies is applied, SimodR uses a no-policy strategy, allowing
all enabled resources to be associated with activities in the
PSM.

3.2.1. Resource allocation by preference
The preference policy uses a score which is a measure

of how well a given resource allocation solution adheres to
the most common allocations on an activity. In essence, the
preference score measures how evenly and likely the activities
are allocated to the available resources, taking into account
the number of repetitions of each pair activity-resource from
historical executions.

Let nij be the number of repetitions of activity i allocated
to resource j, Ti be the total number of repetitions of activity
i, and Rj be the total number of repetitions of resource j.
Then, the preference score Pij for a given solution can be
defined as:

Pij =
nij

Ti
∗
nij

Rj
(2)

The preference score considers both the proportion of times
resource j has performed activity i and the overall involvement
of resource j in performing all activities. The policy iterates over
each activity in the process model and it calculates the degree to
which the allocated resources are likely to perform each activity.
The number of times a resource j has performed an activity i is
retrieved from the enabling matrix (see Section 3.1). The ratio of
the allocated resources is then calculated, and this ratio is squared
and added to a running total. The preference score is the sum of the
squared ratios calculated for each activity-resource pair. The higher

the preference score is, the most likely (preferred) their resources
are to perform each activity.

We hypothesize that using this policy, the user is implicitly
selecting those resources that have a certain preference or ability
to carry out a specific activity. Therefore, the flow time is expected
to improve.

3.2.2. Resource allocation by cooperation
We implemented a metric based on resource cooperation,

as described by Huang et al. (2012), to enhance the model of
allocating individual resources. This metric measures the degree
to which two resources in a process tend to follow each other
in sequence. In essence, it quantifies the relative frequency with
which two resources appear consecutively when carrying out their
corresponding activities.

Our hypothesis is that by using this policy, the execution
of activities is well-coordinated, and they are likely to
complete the process instance with less delay and less idle
time. A high cooperation score also indicates that there is
a high level of communication and collaboration between
the resources that execute the activities, which can lead to
better problem-solving, fewer errors, and improved overall
process result.

The correlation between two resources (r1 and r2) for a
pair of successive activities (a1 and a2) is defined in Equation
(3) as proposed in Huang et al. (2012). It calculates the
probability of activity a1 being assigned to resource r1 and
activity a2 being assigned to resource r2, divided by the product
of their individual probabilities. The value of this correlation
will be 1 if the assignments of the activities to the resources
are independent, less than 1 if they are negatively correlated
(one tends to happen if the other does not), and more than 1
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if they are positively correlated (both tend to happen together).

Correlation(π(a1) = r1,π(a2) = r2) =
P(π(a1) = r1,π(a2) = r2)

P(π(a1) = r1) ∗ P(π(a2) = r2)
(3)

Based on this correlation, the cooperation between two
resources (r1 and r2) performing two activities (a1 and a2) is
defined in Equation (4) as proposed in Huang et al. (2012).
A correlation greater than 1 might indicate a high level of
synchronization or mutual interplay between the two resources. In
this case, the cooperation measure is the joint probability of both
activities being assigned to their respective resources, subtracted
by the product of the individual probabilities of the activities
being assigned to their resources, and then divided by the product
of the individual probability of the first activity being assigned
to its resource and the complement of the second activity being
assigned to its resource. A correlation fewer than 1 indicates that
the activities and resources are not strongly linked so they will not
be taken into account to calculate the cooperation for the whole
process. In this case, the cooperation measure is defined as zero.

Coopa1 ,a2 (r1, r2) =

{

P(π(a1)=r1 ,π(a2)=r2)−P(π(a1)=r1)P(π(a2)=r2)
P(π(a1)=r1)(1−P(π(a2)=r2))

ifCorrelation(π(a1) = r1,π(a2) = r2) > 1

0 otherwise
(4)

For every pair of activities (ai, aj), the cooperation measure
between resources r1 and r2 is calculated summing up the
cooperation value of every combination of activities (over the A
activities of the process). Then, all of these individual measures are
summed up to get the overall measure of cooperation between r1
and r2 (see Equation 5 as proposed in Huang et al., 2012). SimodR
then generates a cooperation matrix by calculating the defined
metric and, from that matrix, calculates the cooperation metric
according to the assignments generated by the algorithm. To obtain
the process cooperation metric, the average of the cooperation
values of the different resources is calculated.

Coop(r1, r2) =
A

∑

i=1

A
∑

j=1

Coopai ,aj (r1, r2) (5)

3.3. Multiobjective resource allocation

We decided to adapt the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) to tackle the Multiobjective resource
allocation problem associated to changing the allocation
parameters to generated simulation models. This algorithm
assumes that the individuals of a species improve as
generations pass because the characteristics that are best
adapted to the environment are those that are transmitted
through generations (Deb et al., 2002). Likewise, there are
mutations that are random and atypical events where new
characteristics appear in the population to favor its adaptation
to the environment. In this context, the following terms can
be scoped:

• An Individual represents a particular solution with the
allocation of activities to resources in the BPS model. Each
individual can be represented as a list of integers, where

each integer corresponds to the resource allocated and the

position in the array represents the corresponding activity.
The allocation of resources is done by creating permutations
of the available resources and assigning them to the tasks in
the BPS model. The NSGA-II algorithm is used to optimize
these permutations based on multiple objectives such as
cost, waiting time, flow time, workload, preference, and
cooperation. The granularity of permutations in SimodR is at
the activity level. This means that each activity in the BPMN
model is a decision variable in the optimization problem,
and the algorithm generates permutations of activities and

resources to find the optimal allocation.
• The Population represents a group of individuals or solutions

that are evaluated and updated in each generation of the

NSGA-II algorithm. The size of the population is a parameter
defined by the user.

• A Generation represents a single iteration of the NSGA-II
algorithm, where a new population of solutions is created from
the previous population by applying crossover and mutation
genetic operators.

• The crossover operator generates new individuals from
the parent individuals. SimodR uses the Simulated Binary
Crossover (SBX) operator, which creates offspring solutions
by exchanging information from two parent solutions selected
from the current population. The SBX operator uses a
probability distribution that determines the probability of the
offspring being near to the parents or far away from them.
This allows the algorithm to explore different regions of the
solution space.

• Themutation operator is applied to individuals in a population
to introduce diversity and explore the solution space.
Mutations within a BPS model can be either swapping
resources between the activities or just changing the resource
that performs one activity. The mutation to use is defined by
a uniform distribution. SimodR uses a Polynomial Mutation
(PM) operator, which modifies the decision variable of a
solution by adding or subtracting a polynomial perturbation.
The PM operator is used to provide new solutions to the
algorithm when it is stuck in local optima. SimodR uses the
mutation operator with a probability rate of 1/number of
activities, which ensures that every decision variable in the
solution is mutated at least once in each generation. The
algorithm also uses a parameter called the mutation index to
determine the magnitude of the mutation perturbation. The
mutation index is a variable that increases over generations to
reduce the search space as the algorithm progresses.

• The stopping criteria for the algorithm is defined as the point at
which convergence is achieved. Convergence is often achieved
when the average distance between adjacent solutions in the
Pareto-optimal front is below a certain threshold. In this case
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inputs: A mutation rate m, An event log L, The

number of generations #g, An AllocationPolicy,

An ObjectiveFunction

output: Pareto optimal solutions

output: Process performance metrics’ values

GENERATE EnablingMatrix based on L

if AllocationPolicy = Cooperation then
GENERATE CooperationMatrix based on L

end

else if AllocationPolicy = Preference then
GENERATE PreferenceMatrix based on L

end

CALCULATE Simulation baseline metrics STORE

baseline metrics

EXTRACT Activities and Resources from L PERFORM

codification on activity and resources positions

GENERATE initial population of solutions

(uniformly random) FORCE solutions to be

feasible

for g = 1 to #g with step 1 do
MUTATE a subset m of the population randomly

// Exchange one resource to a different

activity or assign randomly

SCORE the population based on AllocationPolicy and

ObjectiveFunction // process performance metrics

to optimize

STORE scores

BUILD pareto population

BREED the population

SELECT two parents

PERFORM crossover based on parents’

resources allocations

MAKE any unfeasible solution feasible (forced)

end

SCORE the final population STORE scores

IDENTIFY Pareto optimal solutions in the final

population

return Pareto optimal solutions AND Process

performance metrics’ values

Algorithm 1. Pseudocode of the algorithm to generate optimal what-

if scenarios.

when the incumbent solution (best solution found) does not
change at all in a defined number of generations.

Algorithm 1 illustrates a pseudocode that summarizes how the
NSGA-II algorithmwas adapted to a BPSmodel to generate optimal
what-if scenarios.

The NSGA-II algorithm starts with a population of randomly
generated solutions (allocation of resources) and uses crossover and
mutation operations to create new solutions in each generation.
The algorithm evaluates each solution based onmultiple objectives.
In SimodR, these correspond to cost, waiting time, flow time,
workload, preference, and cooperation. Then, it sorts the solutions
into a hierarchy of non-dominated fronts based on their dominance
relationships. In general, each generation of the NSGA-II algorithm
performs the following steps.

1. Create a random population of solutions with the size defined by
the parameter.

2. Generate a new population from crossovers between individuals
of the original population and mutations on them.

3. Join the original population with the generated population and
calculate the corresponding objective-corresponding functions
for each individual of the population.

4. Identify Pareto fronts (solutions that are not dominated by
each other) until the number of selected individuals exceeds
the population size received per parameter. Solutions that do
not fall within any of the selected Pareto fronts are discarded.
The algorithm continues until a stopping criteria (such as
convergence) is met, and the best solution(s) are returned as the
optimized allocation of resources.

5. If it happens that the defined population limit is exceeded, the
solutions are filtered using the Crowding distance method.

We adapted the NSGA-II algorithm by implementing as set
of principles to generate what-if scenarios that change their
configuration in terms of resource allocation.

The Diversity principle in SimodR guarantees that the search
space to generate optimal solutions is as diverse as possible so
that the solutions correspond to a representative sample of all
possible solutions. This is in order to increase the possibility that
the calculated solution corresponds to a global optimum of the
optimization function. SimodR uses a uniform distribution to
reproduce a set of candidate solutions, which are subsequently
modified to ensure their feasibility. In particular, resources that are
not enabled to execute a given activity are swapped for resources
that are enabled. The selection of enabled resources is carried out
randomly between the list given by the enabling matrix. Diversity is
fundamental in genetic algorithms, therefore it is common to find

mutation mechanisms that provide diversity and help to avoid that
the search space is reduced. Traditionally, a uniform distribution

approach has been adopted for initial population generation

to extensively explore the solution space without introducing

premature biases toward particular regions of the solution space.

We acknowledge the potential for the advantageous application of

the Monte Carlo method or similar stochastic sampling techniques
in NSGA-II population initialization as presented in Rullo et al.
(2017). Future work could explore this avenue, particularly in
contexts where a clear trend has been identified or empirical

evidence has accumulated indicating the solution space structure
and the likely location of non-dominated solutions. In the absence
of insights indicating a specific statistical distribution associated
with the location of non-dominated solutions, the application of
the Monte Carlo technique could introduce an undesired bias into
the algorithm, deterring the exploration of potentially promising
regions of the solution space.

The Elitism principle in SimodR guarantees that non-
dominated solutions are reproduced, which represent the trade-off
between the objectives. In the implementation, the best solutions
from the current generation are directly copied to the next
generation, without any modification. This ensures that the best
solutions are not lost over time and can be further improved
by the algorithm. During the selection process, the algorithm
uses a concept called Pareto dominance, which allows it to
select the best non-dominated solutions for the next generation.
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The NSGA-II algorithm sorts the population based on Pareto
dominance, and selects solutions from the non-dominated fronts
until the population is filled. The non-dominated front refers to
a set of non-dominated solutions, where each solution has the
same level of dominance, and the first front is the set of all
non-dominated solutions.

TheMutation principle in SimodR defines a dynamic mutation
probability based on the diversity of the images of the solutions in
the population. This is done to avoid having a constant value for the
mutation probability (proportion of individuals in the population
that will be mutated), This is because it was observed in practice
that the solutions can converge easily. Therefore, the mutation
probability increases when the population becomes uniform and
decreases when the population is diverse. The proportion of
individuals to mutate is defined in Equation (6), where s are the
population scores, different(s) is the number of distinct solutions
and size(s) is the number of solutions.

Pmutation = 0.25 ·

(

1−
different(s)

size(s)

)

(6)

In a hypothetical scenario in which all solutions are equivalent,
the algorithm will mutate 25% of them at last. In general, solutions
mutate between 1 and 5%. Each gene in the chromosome represents
an activity and the respective allele represents the resource allocated
for this activity. This coding makes it possible to ensure that all
activities have an assigned resource and that an activity cannot have
more than one assigned resource.

Two transition mechanisms were implemented instead of one
as in the original version of the algorithm. When a solution is
chosen to be mutated randomly and with the same probability, one
of the two defined mechanisms is applied:

• Exchange of resources between activities: Two different
activities are randomly chosen. Subsequently, the resource
assigned to one of the activities is assigned to the other and
vice versa.

• Change of resource in an activity: An activity is randomly
selected and the resource assigned to that activity is changed
to another randomly selected resource.

3.4. Selection of the what-if scenario that
performs better

The NSGA-II algorithm aims to provide a set of Pareto optimal
solutions rather than a single solution. Pareto optimalitymeans that
no solution can be improved in one objective without worsening at
least one other objective. Thus, the final solution should be taken
as a set of non-dominated solutions. The set of non-dominated
solutions is referred to as the Pareto front or the Pareto set.

The Pareto front is obtained by evaluating the fitness of
each individual in the final population and selecting those that
are non-dominated. These non-dominated individuals form the
Pareto front, which represents the trade-off between the different
objectives. The user can then choose the solution that best suits
their needs based on the trade-off between the objectives.

4. Validation

The proposed method to configure optimal what-if scenarios
was implemented into a tool named SimodR. SimodR takes a PSM
as input, which can be generated by any data-driven simulation
approach, and automates the generation of PSMs that comply with
multi-objective business optimization preferences. We conducted
two experiments to address the following research questions:

RQ1 To what extent the resource allocation optimization
improves the performance of what-if scenarios?

RQ2 What is the trade-off in performance measures of what-if
scenarios when changing allocation policies?

4.1. Datasets

We validated the proposed approach using one synthetic event
log and two real-life event logs. The first log used for validation
belongs to a manufacturing process (MP) which corresponds
to the process described in the case study. The second log
corresponds to a purchase-to-pay process (PP) available from the
process mining tool Disco1. The process includes 21 activities, 27
resources, and 9,119 events related to 608 cases. The third log
corresponds to an Academic Credentials Recognition (ACR) process
of a Colombian University and it was obtained from its Business
Process Management (BPM) system (Bizagi). This log contains
approximately 13,700 events.

These three logs satisfy the requirement of having both a start
and end timestamp. The costs associated with each resource for the
first two logs were included manually with random values. Table 4
characterizes the logs that were used for validation.

4.2. Experiment 1: optimization in resource
allocation

4.2.1. Setup
This experiment compares the impact of utilizing NSGA-II

(see Section 3.3) in conjunction with a Single-Objective (SO)
optimization function vs. a NSGA-II with a Multi-Objective (MO)
optimization function for resource allocation optimization in
business processes. The evaluation considers factors such as total
cost, flow time, and workload. To assess the effects of resource
allocations on these metrics, we utilize the Scylla simulator, which
enables individual resource allocation to activities and resource
pooling.

For the SO function, we perform three independent runs,
each focused on minimizing either flow time, process cost, or
waiting time. In contrast, for evaluating the MO function, we
execute the tool with a configuration that aims to balance all three
objectives simultaneously. As a baseline, we employ the resource
pool-based distribution obtained from the unmodified Simod tool.
Table 5 summarizes the parameters used to execute SimodR. These
parameters were carefully selected to balance processing time while

1 Available at: http://fluxicon.com/academic/material/.
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TABLE 4 Event logs characterization.

Metric Manufacturing Purchase-to-pay ACR

Events 4,953 9,119 13,700

Cases 225 608 954

Activities 24 21 16

Median case duration 13.9 days 11.9 days 5.31 days

Mean case duration 20.6 days 21.5 days 14.9 days

Start date 02.01.2012 00:00:00 01.01.2011 00:00:00 01.02.2016 13:23:00

End date 31.03.2012 05:45:00 14.10.2011 15:31:00 01.07.2016 01:13:00

TABLE 5 Parameters used to execute the experiments.

Parameter Value

generations 100

initial_population 20

min_population 20

max_population 40,000

aiming to achieve high-performance solutions across the various
metrics. Notably, a maximum processing time of 1 day was set for
optimizing each metric within each event log.

4.2.2. Results
The results of Experiment 1 are depicted in Figure 3. For the

Figure 3 ACR event log, it is evident that the MO optimization
produces the most favorable outcomes for the Cost, Flow time,
and Waiting time metrics. It also demonstrates comparable results
in the Workload metric compared to the SO optimization. It is
essential to emphasize that the Workload metric provides insights
into the extent of resource utilization, and its interpretation should
be contextually linked to the other performance metrics. Elevated
resource occupancy is not inherently beneficial if it does not
coincide with reductions in cost, flow time, and waiting time.
For this reason, although for this log, the workload results of
MO optimization are lower than those of SO-Waiting, the overall
performance is superior due to the lower cost and comparable flow
and waiting times. These findings suggest that resources operate
with a somewhat more relaxed disposition while concurrently
achieving improved results.

For the Figure 3 MP event log, the MO optimization does
not achieve the best results compared to the SO optimization.
Nevertheless, MO optimization exhibits a more balanced
performance across various metrics. Specifically, the SO-Cost
optimization outperforms the Cost metric, the SO-Flow time
optimization excels in the Flow time metric, and the SO-Waiting
time optimization obtains the least waiting time. The Baseline
method, while producing results on par with the SO-optimization
methods, notably attains the highest scores in the Workload
metric.

In the case of MO optimization, the results portray a trade-
off scenario: process cost ranks as the second-best outcome, flow
time experiences a slight increase, and waiting time is lower than
most other policies. The selection of the most suitable policy in
this particular scenario depends on the priority attribute desired by

the process owner. For instance, if the emphasis is on minimizing
flow time, even at the expense of waiting time, the optimal choice
might be SO-Cost, as it achieves these results at a lower cost and
maintains a competitive workload. In this context, the Baseline
approach achieves similar performance but incurs higher costs and
significantly greater resource occupancy.

Conversely, if the goal is to minimize waiting time for the user
while keeping costs low, MO optimization emerges as the preferred
option, even though it entails a slight increase in flow time. Under
these conditions, SO-Waiting, despite delivering the lowest waiting
time, is not the best choice, as it sacrifices other key performance
indicators. Notably, there appears to be a correlation between
waiting time and workload in this log. For MO and SO-Waiting,
this correlation suggests that resources may be allocated among
activities in a manner that minimizes workload across the activities,
consequently reducing waiting times throughout the entire process.
Despite the potential for workforce inefficiency, MO optimization
maintains a competitive process cost.

Regarding the Figure 3, P2P event log illustrates that the MO
optimization performs best in the Cost and Flow timemetrics while
also exhibiting similar results to the SO optimization in theWaiting
time metric. Conversely, the SO Cost optimization maximizes the
workload metric. Overall, the analysis of the event logs reveals
that the MO optimization yields balanced, highly comparable,
and sometimes even superior results when juxtaposed with SO
optimization.

In this context, it is noteworthy that the SO-Cost optimization
yields the highest Workload metric and generally ranks as the
second-worst performer across all other metrics. This phenomenon
may be attributed to the exclusive focus on cost minimization,
leading to allocating numerous “cheap” resources to tasks that do
not alleviate process congestion. Consequently, a bottleneck ensues
in certain parts of the process, resulting in an increased workload
for some resources. These bottleneck-afflicted resources, in turn,
adversely affect both waiting and flow times, ultimately failing to
achieve any of the optimization objectives.

4.3. Experiment 2: trade-o� analysis of
allocation policies

4.3.1. Setup
This experiment investigates the influence of employing

different resource allocation strategies on the equilibrium of
process metrics. To achieve this objective, we implement three
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FIGURE 3

Performance metrics when applying di�erent optimization strategies to di�erent process event logs.

allocation policies: the Cooperation Policy (CP), Preference Policy
(PP), and No Policy (NP). These policies are detailed in Section 3.2.
The resource allocation strategies are applied to theMulti-Objective
(MO) optimization function, which was identified as the best-
performing function in the previous experiment.

In this experimental setup, the parameters outlined in the
Table 5 were employed. To optimize resource allocation, the initial
population was iteratively evolved across multiple generations,
resulting in a collection of solutions aligned with the Pareto front.
For the different solutions derived from the Pareto front, metrics
encompassing cost, flow time, waiting time, and workload were
computed. To determine the overall metric associated with each
event log, the average of the metrics for each solution within the
Pareto front was utilized. Likewise, for each metric within each
event log, the values were subjected to normalization, enhancing
their visual clarity and facilitating the identification of the optimal
trade-off between distinct metrics for each applied policy.

4.3.2. Results
The results associated with Experiment 2 are depicted in

Figure 4. This figure compares performance metrics when different

policies are employed using MO optimization. Figure 4 (ACR)
displays the results related to the ACR event log. It is observed
that the No-Policy (NP) achieves the best configuration of results,
outperforming the Cost, Waiting time, and Workload metrics.
Moreover, it demonstrates close results in the Flow time metric
compared to the other policies. Figure 4 (MP) illustrates the results
associated with theManufacturing event log. The NP policy obtains
the best results in most metrics, excelling in Cost, Flow time,
and Workload, although it performs poorly in the Waiting time
metric. Additionally, the Cooperation Policy (CP) shows promising
results across the analyzedmetrics, providing a good trade-offwhen
considering the overall set of metrics. Figure 4 (P2P) presents the
metrics associated with the P2P event log. The NP policy generates
the best results for the Cost, Flow time, and Waiting time metrics,
albeit achieving the worst result in the Workload metric.

Across the different graphs, it is evident that the NP policy
consistently yields better results. However, during the execution
of the various experiments, it was observed that the execution
time was significantly longer. This is attributed to the larger
search space for resource optimization when using the NP policy
compared to the other policies. Nevertheless, this issue could
potentially be addressed by employing a more efficient optimizer,
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FIGURE 4

Trade-o� of multi-objective optimization by allocation policy for the di�erent event logs.

as the simulation of each configuration contributes to the extended
execution time. On the other hand, the graphs illustrate that
employing the CP policy leads to more balanced results across the
various metrics. This alternative proves to be an interesting option
as the trade-off generated by this policy is favorable compared to
the NP policy.

4.4. Threats to validity

The experimental evaluation is restricted to two synthetic
and one real-life event logs. As such, the generalization of the
results is limited. In particular, for all the event logs the costs
were incorporated manually, so there is synthetic data that was
adapted for testing. The efficacy of the policies suggested in this
paper is contingent upon the specific circumstances in which
they are enacted. Nevertheless, the policies outlined herein offer
a complementary route for investigation that incorporates a more
practical and true-to-life setting than those found in previous
research.

5. Conclusion

This paper presents a data-driven simulation approach to
automatically generating optimal what-if simulation scenarios
based on resource behavior patterns from event logs. The method
clusters the resources found in the log using three different
perspectives related to similarity, preference, and availability of
tasks execution. Four allocation policies were defined from these
clusters to enable changes in the resource model associated
with a PSM and thus to execute resource-based simulations.
The generated resource-based PSMs are executed in the Scylla
simulator. Moreover, the proposed method finds the optimal
simulation scenarios based on PSM configuration that allocates
resources from a user-defined optimization function. The target
optimization functions seek to reduce the flow times, waiting times,
or costs.

The validation of the method using three event logs
demonstrates its viability by finding an optimal possible scenario

for each proposed objective variable. Likewise, the results presented
allow the evaluation of trade-offs of possible scenarios, providing
essential support for decision-making on process changes.

The first line of action for future work is to evaluate
different algorithms to support multi-objective optimization when
creating what-if scenarios. We also plan to adapt and incorporate
allocation policies based on Competence, Cooperation, Skills, and
Productivity perspectives used in PM (see Section 2.2) into our
simulation approach for automating the discovery of optimal what-
if scenarios.
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