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Abstract: Currently, two-level Mokken scale analysis for clustered test data is being developed. This
paper contributes to this development by providing model-fit procedures for two-level Mokken scale
analysis. New theoretical insights suggested that the existing model-fit procedure from traditional
(one-level) Mokken scale analyses can be used for investigating model fit at both level 1 (respondent
level) and level 2 (cluster level) of two-level Mokken scale analysis. However, the traditional model-
fit procedure requires some modifications before it can be used at level 2. In this paper, we made
these modifications and investigated the resulting model-fit procedure. For two model assumptions,
monotonicity and invariant item ordering, we investigated the false-positive count and the sensitivity
count of the level 2 model-fit procedure, with respect to the number of model violations detected,
and the number of detected model violations deemed statistically significant. For monotonicity, the
detection of model violations was satisfactory, but the significance test lacked power. For invariant
item ordering, both aspects were satisfactory.

Keywords: conditional association; goodness of fit; manifest invariant item ordering; manifest
monotonicity; Mokken scale analysis; nonparametric item response theory

1. Introduction

Mokken scale analysis (MSA) is an item-scaling method for the construction, revision,
or inspection of tests and questionnaires. MSA was proposed by Mokken [1], and has been
further developed in the last 50 years (see, e.g., [2–5] for an introductory overview of MSA).
MSA can be divided into three parts: scalability coefficients, automated item selection
procedures, and procedures to investigate model fit. Scalability coefficients, also known as H
coefficients [6], provide a first impression of the degree to which a set of items forms a scale.
There are scalability coefficients for all item pairs (Hij), for all individual items (Hj), and
for the entire set of items (H). Popular benchmarks classify sets of items into weak scales,
medium scales, and strong scales, or leave the set of items unscalable. The developments in
the last 20 years include the derivation of standard errors [7], range-preserving confidence
intervals [8], and significance tests [8,9] for the scalability coefficients.

The automated item selection procedure [1] partitions a set of items into mutually exclusive
scales, leaving some items unscalable. It is an exploratory procedure that indicates which
items should be included and which items should not be included in a scale. Hemker et al.
([10]; see also [3]) described how the automated item selection procedure should be used,
Straat et al. ([11]; also see [12]) fine-tuned the search algorithm for optimal scaling, and
Koopman et al. [13] fine-tuned the testing procedure to decide whether an item should be
selected into a scale.

The model-fit procedures allow researchers to investigate whether the test data fit a
nonparametric item response theory (NIRT) model, in particular, the monotone homogeneity
model (MHM; [1]; also known as the univariate latent variable model, e.g., [14]; or the
nonparametric graded response model, e.g., [15]). There are two reasons why investigating
the fit of the MHM is important. First, if the MHM fits the test data, then the sum score
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of the test (i.e., the unweighted sum of all item scores) can be used to stochastically order
respondents on the latent trait that is assumed to trigger the item responses (for proofs,
see [16] for dichotomous items and [17] for polytomous items). For most tests, the sum
score, denoted Y+, is the test score. However, test constructors seldom explicitly investigate
whether the sum score is a valid measure. Investigating whether the MHM fits the test data
is the way to investigate whether the sum score can be used meaningfully as a test score.
Second, if the MHM does not fit the test data, then popular parametric item response theory
(IRT) models—such as the Rasch model [18], the two-parameter logistic model [19], the
graded response model [20], the partial credit model [21], or the sequential model [22]—do
not fit either, because these are all special cases of the MHM [23]. Hence, when a test
developer is interested in applying a parametric IRT model to the test data, MSA provides
an excellent preliminary analysis: On the one hand, if the MHM does not fit the data, then
one can be sure that parametric models do not fit either, and the MSA results can be used to
remove poorly fitting items. On the other hand, if the MHM fits the data, the test developer
can proceed to investigating whether the more restrictive parametric IRT models also fit
the test data.

Recently, MSA has been developed for two-level data. Two-level MSA is applicable in
situations where either level 1 or level 2 is of primary interest, and in situations where both
level 1 and level 2 are of interest. An example where level 1 is of primary interest would be
the norming of a children’s intelligence test (e.g., [24]) within their relevant norm group,
where the respondents (level 1) are nested in a number of primary schools that agreed to
participate (level 2). For constructing norms, one is only interested in the individual student
scores, and the school effects are a mere nuisance. An example where level 2 is of primary
interest is the measuring of classroom environment (level 2) using the students’ item scores
of the WIHIC questionnaire (level 1) [25]. Here, the average score of the students in a
classroom is of interest, and not the individual students’ scores. Often, both levels are of
interest. Suppose student performance in mathematical ability is measured. The level 1
scores will then be informative of students’ performance and can be related to both student-
level and school-level (level 2) covariates. At the same time, there may be school-level
aspects related to students’ average performance as well. Because different mechanisms
may be at play at different levels (see, e.g., [26,27]) examining relations at different levels
will often be of particular interest for researchers. In all three situations, two-level MSA
takes the dependencies in the data into account.

Two-level MSA can be divided into the same three parts as traditional MSA. Scalability
coefficients for two-level dichotomous item scores were proposed by Snijders [28], who
suggested using within-respondent scalability coefficients for level 1 and between-respondent
scalability coefficients for level 2. The two-level scalability coefficients were generalized to
polytomous item scores [29], and standard errors [30,31], confidence intervals [8], and test
procedures [8,13] were developed. Koopman et al. [13] devised a two-step test-guided
procedure for using the automated item selection procedure, which can be used both for
nested and non-nested data. Finally, Koopman et al. [32] showed that under the conditions
formulated by Snijders [28], the procedures used to investigate model fit in traditional MSA
can also be used to test two-level model fit at level 1.

At this moment, we believe the development of two-level MSA is almost complete, and
most features of two-level MSA have been implemented in the R package mokken [33,34].
However, one of the remaining issues is the implementation of model-fit procedures for
two-level MSA. An attractive option is to copy the model-fit procedures from traditional
MSA to both level 1 and level 2 of two-level MSA. This approach fits recent theoretical
results on model fit in two-level MSA [32], and it would leave the structure of the R
package mokken unchanged. However, direct implementation of model-fit procedures from
traditional MSA could also cause problems because the sample size at level 2 is smaller than
at level 1, and procedures at level 2 may not have sufficient power. Using simulated data,
under different conditions, we computed the detected number of violations and detected
number of significant violations of level 1 and level 2 model-fit statistics, to investigate
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whether model-fit procedures from traditional MSA can be used (after some adaptions) in
two-level MSA.

The remainder of the paper is organized as follows. First, we discuss the investigation
of model fit in traditional MSA and two-level MSA. Second, we discuss a simulation study
investigating the proposed implementation of model-fit procedures in the software package
mokken. Finally, we provide a brief discussion of the findings of the paper, and provide
guidelines for future research.

2. Model-Fit Investigation
2.1. Single-Level NIRT Models

For one-level NIRT models, we use notation similar to the notation for two-level NIRT
models used by Koopman et al. [32], who derived the theoretical results on model fit in
two-level MSA. Hence, our notation slightly differs from the conventional notation for
NIRT models. Suppose a test with I items, indexed by i (i = 1, . . . , I), is administered
to R respondents, indexed by r (r = 1, . . . , R), who were selected by simple random
sampling. Suppose that each item has m + 1 ordinal answer categories, yielding item scores
0, 1, . . . , m. Let Xri be a random variable that denotes the score of respondent r on item i,
with realization x, (x ∈ {0, 1, . . . , m}). Note that if m = 1 the items are dichotomous, and
if m > 1 the items are polytomous. As for all popular IRT models, the MHM assumes
that a latent random variable Θ, with realization θ, fully explains the item responses. In
the MHM, the relation between latent trait Θ and Xri is expressed by the item step response
functions (ISRFs), P(Xri ≥ x|θ), and the item response function (IRF), E(Xri|θ). Each item
has one IRF and m ISRFs (for x = 1, . . . , m). The ISRF for x = 0 is not considered because,
by definition, it equals 1 for all values of Θ and contains no information. Note that for
dichotomous items the ISRF and the IRF coincide.

The MHM puts the following restrictions on the item scores and Θ. It is first assumed
that Θ is univariate. This assumption, called unidimensionality, is an assumption of all
popular IRT models. However, parametric IRT models with multiple latent variables have
been proposed (e.g., [35]). Second, it is assumed that the item scores are independent given
θ; that is,

P(Xr1 ≥ xr1, Xr2 = xr2, . . . XrI = xrI |θ) = ∏
i

P(Xri = xri|θ). (1)

This assumption, called local independence, is also an assumption of all popular IRT models.
It may be argued that unidimensionality implies local independence because any residual
dependencies between item scores given θ can be explained by additional latent traits
(e.g., [36]). Finally, the MHM assumes that the ISRFs are nondecreasing in θ; that is,

P(Xri ≥ x|θ) is nondecreasing in θ, for i = 1, . . . , I, and x = 1, . . . , m, (2)

which is called monotonicity. Monotonicity means that if respondent p has a higher Θ value
than respondent r, then respondent p has an equal or higher probability to have at least a
score x on item i, compared to respondent r. All popular IRT models imply monotonicity.

Sometimes, a fourth assumption is added to the MHM, known as invariant item ordering
(IIO), which means that the IRFs of different items are non-intersecting. Without loss of
generality, assume that the items are ordered by the magnitude of the expected item score
and numbered accordingly; that is, if E(Xri) < E(Xrj) then i < j, for all i 6= j. Then, an
IIO means

E(Xr1|θ) ≤ E(Xr2|θ) ≤ · · · ≤ E(XrI |θ) for all θ. (3)

The MHM plus the assumption of IIO is called the double monotonicity model (DMM). Few
IRT models imply an IIO; exceptions include the Rasch model for dichotomous items, and
the rating scale model [37] for polytomous items (see [38]). Two stronger item-ordering
properties, denoted manifest scale of the cumulative probability model [39] and increasingness in
transposition [40] are not considered here. As an illustration, Figure 1 shows examples of
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ISRFs (left) and IRFs (right) of I = 2 items with m + 1 = 3 ordered answer categories under
the MHM (top), the DMM (center), and the graded response model (bottom).
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Figure 1. Examples of ISRFs (left) and IRFs (right) of I = 2 items (indicated by solid and dashed
curve) with m + 1 = 3 ordered answer categories under the MHM (top), the DMM (center), and the
graded response model (bottom). Only the DMM has an IIO as the IRFs do not intersect (center right).

2.2. Two-Level NIRT Models

Snijders [28] proposed a two-level version of the MHM. Suppose a test with I items,
indexed by i (i = 1, . . . , I), is administered to R respondents who are nested in S clusters,
indexed by s (s = 1, . . . , S). Cluster s has Rs respondents, and ∑s Rs = R. Suppose that
each item has m + 1 ordinal answer categories, yielding item scores 0, 1, . . . , m. Let Xsri
be a random variable that denotes the score of respondent r in cluster s on item i, with
realization x, (x ∈ {0, 1, . . . , m}). As for the single-level NIRT models, if m = 1 the items
are dichotomous, and if m > 1 the items are polytomous. The latent variable Θ is divided
into a cluster component Γ and a respondent component ∆; that is, θsr = γs + δsr, where
θsr is the value of the latent variable for respondent r in cluster s, γs is the value of the
latent variable of cluster s on the θsr scale, and δsr is the deviation from the cluster value of
respondent r. A crucial assumption of the two-level MHM is that the respondent values
δsr are independent and identically distributed, so respondent component ∆ is unrelated
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to cluster component Γ. This assumption may be problematic for samples in which each
respondent within a cluster has a specific role, such as a teacher, a parent, or a child. For
example, the assumption may not hold for the administration of the revised Conners’
Parent Rating Scale (CPRS-R) [41], which is completed by both the mother and the father
(level 1) of a child (level 2) to measure the child’s level of attention deficit hyper activity
disorder (ADHD).

In the two-level MHM, the relation between latent trait Θ and Xsri is expressed by two
times m ISRFs and two IRFs. For level 1 (the respondent level), the ISRF is

P(Xsri ≥ x|θ) =
m

∑
y=x

P(Xsri = y|γ, δ), (4)

and the IRF is

E(Xsri|θ) =
m

∑
y=1

P(Xsri ≥ y|θ). (5)

For level 2 (the cluster level), the ISRF is

P(Xsri ≥ x|γ) = Eδ[P(Xsri ≥ y|θ)], (6)

and the IRF is
E(Xsri|γ) = Eδ[E(Xsri|θ)], (7)

where expectation Eδ refers to the distribution of ∆ (for details, see [32]). The ISRF and IRF
at level 1 are similar to the ISRF and IRF of single-level NIRT models. Due to the averaging
with respect to ∆, the level 2 ISRF and IRF are usually flatter compared to the level 1 ISRF
and IRF, respectively.

Koopman et al. [32] distinguished four two-level NIRT models, with assumptions at
level 1 or 2. For level 1, the assumptions are equivalent to the assumptions of the MHM:
unidimensionality, local independence, and monotonicity, applied to the latent variable Θ.
If the assumptions at level 1 are met, the MHM-1 holds. For level 2, the assumptions of the
MHM are also unidimensionality, local independence, and monotonicity, but applied to
the level 2 latent variable Γ and not to Θ. If the assumptions at level 2 are met, the MHM-2
holds. The assumption of IIO can be added to both levels of the two-level MHM. If the
MHM-1 holds and the items are invariantly ordered at level 1, we say that the DMM-1
holds. If the MHM-2 holds and the items are invariantly ordered at level 2, we say that the
DMM-2 holds. The MHM-1 implies the MHM-2, and the DMM-1 implies the DMM-2 [32].
Hence, if MHM-2 is violated, so is MHM-1. However, if MHM-1 is violated, MHM-2 may
still hold. Hence, investigating level 2 in two-level MSA is of particular interest either if
one is constructing a measurement instrument especially aimed at measuring at level 2,
or if one is constructing a more general two-level measurement instrument but the level 1
model assumptions are violated.

2.3. Model Fit of Single-Level NIRT Models

Testing model fit in MSA means testing the assumptions of the MHM and the DMM.
The assumptions cannot be tested directly, as all assumptions involve the latent, hence
unobservable, variable Θ. The first step in testing an assumption is finding observable
consequences of the MHM and DMM. Observable consequence are properties of the test
data that are true in the population and do not involve the latent variable. For example,
if the MHM holds, in the population all scalability coefficients must be non-negative ([2],
p. 58). A negative scalability coefficient in the population means that the MHM does
not hold. The second step is to test the observable consequence in the test data. Due to
sample fluctuations, estimates of observable consequences may deviate from the observable
consequences on a population level. For example, in test data, due to sampling fluctuation,
the estimate of a negative scalability coefficient may be positive, which may falsely suggest
support for the MHM. Alternatively, the estimate of a positive scalability coefficient may
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be negative, which may falsely suggest that the MHM does not hold. Hence, the model fit
should be tested.

One can choose between a liberal and a conservative approach to testing the model fit.
Suppose that Hij is the scalability coefficient of item i and item j, then the liberal approach
is testing the null hypothesis Hij = 0 against the one-sided alternative that Hij < 0. The
liberal approach supports the MHM even in the presence of non-significant negative Hij
values in the data. The conservative approach tests the null hypothesis Hij = 0 against
the one-sided alternative that Hij > 0, and supports the MHM only if all Hij values are
significantly greater than zero. MSA typically takes the conservative approach, to minimize
the probability of false support for the MHM.

Below we provide an overview of the observable consequences known in the literature,
and the testing procedures as implemented in the R package mokken. The testing procedures
are named after the commands in mokken, which is typically the word ‘check’ followed by
a dot and a term that relates to the observable consequence.

2.3.1. Testing Local Independence

An observable consequence of the MHM is conditional association [14]. Divide I∗

(I∗ ≤ I) items of the test into three different mutually exclusive subsets: X (requires at
least one item), Y (requires at least one item), and Z (can also be empty). Let f (X) , g(Y),
and h(Z) be monotone functions of the item scores in X , Y , and Z , respectively, then
conditional association means

σ( f (X), g(Y)|h(Z)) ≥ 0. (8)

Suppose that items i, j, and k are in the test. Let Yr,−ij = Yr+ −Xri −Xrj denote the rest
score of items i and j; that is, the sum score minus the score on items i and j, with realization
y. Straat et al. [42] selected three special cases of conditional association: the MHM can
only hold if

1. σ(Xri, Xrj) ≥ 0 for all i, j;
2. σ(Xri, Xrj|Xrk = x) ≥ 0 for all i, j and all values of k; and
3. σ(Xri, Xrj|Y−ij = y) ≥ 0 for all i, j, and all values of y.

Straat et al. found that violations of these special cases of conditional association were
mainly caused by violations of local independence. Based on simulation studies, Straat et al.
suggested three indices—W1, W2, and W3, each a weighted sum of negative (conditional)
covariances. If an item has high values of W1, W2, or W3, the item has an increased
likelihood to belong to a locally dependent item pair. Method check.ca computes these
indices, flags items for which the indices are suspiciously high, and suggests items that are
candidates for removal. Method check.ca has no formal test procedure, and it is up to the
researcher to decide whether any violation is serious enough to reject the MHM, or remove
an item.

Ellis [43] used conditional association to show that for dichotomous items under the
MHM, the inter-item correlation rij has both an upper bound, rij ≤ {min(rik/rjk, rjk/rik)|k 6=
{i, j}}, and a lower bound, rij ≥ {max(rik, rjk)|k 6= {i, j}}. Hence, if the value of any inter-
item correlation is either below its lower bound or above its upper bound, the MHM does
not hold. Preliminary simulations [44] indicated that inter-item correlations that are either
too large or too small are mainly related to violations of local independence. The method
check.bounds computes the bounds and indicates whether the inter-item correlations
are between the bounds. Currently, the software does not contain formal tests to decide
whether inter-item correlations violate the bounds, and it is up to the researcher to decide
whether violations are serious enough to reject the MHM.
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2.3.2. Testing Monotonicity

Let Yr,−i = Yr+ − Xri be the rest score of item i; that is, the sum score minus the score
on item i. The property of manifest monotonicity means that ([45], p. 1371).

P(Xri ≥ x|Yr,−i = y) is a nondecreasing function of y, (y ∈ {0, 1, . . . , (I − 1)m}) (9)

Note that the manifest-monotonicity property resembles the monotonicity assumption, but
the latent trait has been replaced by the rest score. Junker and Sijtsma [46] showed that
under the MHM, for dichotomous items manifest monotonicity is an observable conse-
quence of monotonicity. Method check.monotonicity investigates manifest monotonicity
in the data. For item i, the testing procedure is as follows. First, the sample is divided into
(I − 1)m + 1 groups based on the rest score, so within each group all respondents have
the same rest score. These rest-score groups are used to estimate P(Xri ≥ x|Yr,−i = y). To
ensure that the estimates are stable, rest-score groups may be joined to obtain sufficient
sample sizes. Molenaar and Sijtsma ([47], p. 72) suggested a rest-score group should contain
at least minsize respondents. In check.monotonicity, the default value of minsize is

minsize =


R/10 for R ≥ 500.
R/5 for 250 ≤ R < 500.
min(50, R/3) for R < 250.

(10)

Let Gi (Gi ≤ m(I − 1) + 1) be the number of rest-score groups for item i, indexed by g,
g = 1, . . . , Gi. Note that under the default values for minsize in the software (Equation (10)),
Gi ≤ 10, by definition.

Probabilities P(Xri ≥ x|Gri = g) are consistent with the MHM if for g < h, P(Xri ≥
x|Gri = g) ≤ P(Xri ≥ x|Gri = h). For all rest-score pairs g and h (g < h), method
check.monotonicity checks whether the pair is consistent or inconsistent with the MHM.
An inconsistency is considered a violation if the difference is larger than minvi, where the
default value of minvi is set at 0.03 ([47], pp. 67–70). minvi was implemented to avoid
taking very small violations too seriously [48]. If a violation is statistically significant
using a one-sided Z-test on a normal approximation of a hypergeometric distribution
without correction for multiple testing ([47], p. 72), the violation is a significant violation.
The rationale behind not correcting for multiple testing is that each significant violation in
itself provides evidence against the model assumption [47].

Method check.monotonicity provides numerous outputs (see [33] for details). We
discuss the summary output only. By default, check.monotonicity provides the summary
illustrated in Figure 2, where itemH is the item’s scalability coefficient, #ac is the number
of active pairs that have been investigated in an item, #vi is the number of active pairs
that resulted in a violation, #vi/#ac is the number of violations per active pair, maxvi is the
largest violation, sum is the sum of the violations, sum/#ac is the sum of the violations per
active pair, zmax is the largest value of the test statistic, #zsig is the number of statistically
significant violations, and crit is an overall statistic, for which higher values indicate a
worse fit (for details, see [47,49], p. 74). Arguably, #vi/#ac and #zsig are the most interest-
ing statistics for a researcher to decide whether an item violates manifest monotonicity and
should be removed.
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R> library(mokken)
R> data(acl, package = "mokken")
R> acl <- acl[, 1:10]
R> summary(mokken::check.monotonicity(acl))

ItemH #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig crit
reliable 0.30 15 0 0.00 0.00 0.00 0.0000 0.00 0 0
honest 0.27 16 0 0.00 0.00 0.00 0.0000 0.00 0 0
unscrupulous* 0.24 20 0 0.00 0.00 0.00 0.0000 0.00 0 0
deceitful* 0.32 22 0 0.00 0.00 0.00 0.0000 0.00 0 0
unintelligent* 0.12 20 1 0.05 0.07 0.07 0.0036 0.85 0 32
obnoxious* 0.29 19 0 0.00 0.00 0.00 0.0000 0.00 0 0
thankless* 0.25 17 0 0.00 0.00 0.00 0.0000 0.00 0 0
unfriendly* 0.31 19 0 0.00 0.00 0.00 0.0000 0.00 0 0
dependable 0.30 17 0 0.00 0.00 0.00 0.0000 0.00 0 0
cruel* 0.25 19 0 0.00 0.00 0.00 0.0000 0.00 0 0

Figure 2. Summaryoutput of check.monotonicity of the R package mokken for the first 10 items of
the internal data set acl. Note that only the item unintelligent* shows a (non-significant) violation
of manifest monotonicity. ‘R>’ denotes the R prompt.

2.3.3. Testing Invariant Item Ordering

Let Yr,−ij = Yr+ − Xri − Xrj be the rest score of items i and j. Assume that the items are
ordered and numbered accordingly, so that if E(Xri) < E(Xrj) then i < j. The property of
manifest IIO [48] means that if E(Xri) < E(Xrj) then

E(Xri|Yr,−ij = y) ≤ E(Xrj|Yr,−ij = y) for all values of y. (11)

Manifest IIO (Equation (11)) resembles IIO, but the latent trait has been replaced by the rest
score. Ligtvoet et al. [39] showed that under unidimensionality and local independence,
IIO implies manifest IIO, so manifest IIO is an observable consequence of the DMM.

Method check.iio investigates manifest IIO in the data for all item pairs. For item
pair (i, j), the testing procedure is as follows. First, the sample is dived into (I − 2)m + 1
groups based on the values of rest score Yr,−ij. As for check.monotonicity, within each
group all respondents have the same rest score y. These rest-score groups are used to
estimate E(Xri|Yr,−ij = y) and E(Xrj|Yr,−ij = y). These estimates are the conditional item
means Xri|y and Xrj|y, respectively. As for check.monotonicity, rest-score groups may be
joined to ensure sufficient sample sizes.

Let Gij (Gij ≤ m(I − 2)) be the number of rest-score groups for item pair (i, j), indexed
by g, g = 1, . . . , Gij. Conditional mean item scores Xri|g and Xrj|g are consistent with
manifest IIO if they do not intersect; that is, if i < j, then Xi|g ≤ X j|g, for all g. For all item
pairs (i, j), method check.iio checks whether the pair is consistent or inconsistent with
IIO. An inconsistency is considered a violation if the difference is larger than minvi, where
the default value of minvi is set at m × .03 [48]. If a violation is statistically significant
using a one-sided T-test without correction for multiple testing, the violation is a significant
violation. Several procedures for testing non-intersection of ISRFs have been proposed
(including check.pmatrix and check.restscore, see [47]). However, as the ordering of
items is currently done by IRFs (expected item scores) rather than ISRFs, these methods
have become obsolete.

Method check.iio provides numerous output (see, [34], for details). We discuss the
summary output only. The summary output of check.iio (Figure 3) has a structure similar
to the summary output of check.monotonicity (Figure 2). As IIO is a rather restrictive
assumption, the relative number of violations (#vi/ac) and the number of significant
violations (#tsig) is typically larger for check.iio than for check.monotonicity.

Figure 2. Summary output of check.monotonicity of the R package mokken for the first 10 items of
the internal data set acl, where an asterisk indicates a negatively worded item. Note that only the
item unintelligent* shows a (non-significant) violation of manifest monotonicity. ‘R>’ denotes the
R prompt.

2.3.3. Testing Invariant Item Ordering

Let Yr,−ij = Yr+ − Xri − Xrj be the rest score of items i and j. Assume that the items are
ordered and numbered accordingly, so that if E(Xri) < E(Xrj), then i < j. The property of
manifest IIO [48] means that if E(Xri) < E(Xrj), then

E(Xri|Yr,−ij = y) ≤ E(Xrj|Yr,−ij = y) for all values of y. (11)

Manifest IIO (Equation (11)) resembles IIO, but the latent trait has been replaced by the rest
score. Ligtvoet et al. [39] showed that under unidimensionality and local independence,
IIO implies manifest IIO, so manifest IIO is an observable consequence of the DMM.

Method check.iio investigates manifest IIO in the data for all item pairs. For item
pair (i, j), the testing procedure is as follows. First, the sample is divided into (I − 2)m + 1
groups based on the values of rest score Yr,−ij. As for check.monotonicity, within each
group all respondents have the same rest score y. These rest-score groups are used to
estimate E(Xri|Yr,−ij = y) and E(Xrj|Yr,−ij = y). These estimates are the conditional item
means Xri|y and Xrj|y, respectively. As for check.monotonicity, rest-score groups may be
joined to ensure sufficient sample sizes.

Let Gij (Gij ≤ m(I − 2)) be the number of rest-score groups for item pair (i, j), indexed
by g, g = 1, . . . , Gij. Conditional mean item scores Xri|g and Xrj|g are consistent with
manifest IIO if they do not intersect; that is, if i < j, then Xi|g ≤ X j|g for all g. For all item
pairs (i, j), method check.iio checks whether the pair is consistent or inconsistent with
IIO. An inconsistency is considered a violation if the difference is larger than minvi, where
the default value of minvi is set at m× 0.03 [48]. If a violation is statistically significant
using a one-sided T-test without correction for multiple testing, the violation is a significant
violation. Several procedures for testing the non-intersection of ISRFs have been proposed
(including check.pmatrix and check.restscore, see [47]). However, as the ordering of
items is currently achieved using IRFs (expected item scores) rather than ISRFs, these
methods have become obsolete.

Method check.iio provides numerous outputs (see [34] for details). We discuss the
summary output only. The summary output of check.iio (Figure 3) has a structure similar
to the summary output of check.monotonicity (Figure 2). As IIO is a rather restrictive
assumption, the relative number of violations (#vi/ac) and the number of significant
violations (#tsig) is typically larger for check.iio than for check.monotonicity.
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R> library(mokken)
R> data(acl, package = "mokken")
R> acl <- acl[, 1:10]
R> summary(mokken::check.iio(acl))

ItemH #ac #vi #vi/#ac maxvi sum sum/#ac tmax #tsig crit
cruel* 0.25 27 0 0.00 0.00 0.00 0.0000 0.00 0 0
unintelligent* 0.12 26 2 0.08 0.15 0.29 0.0112 2.16 1 74
unscrupulous* 0.24 26 1 0.04 0.14 0.14 0.0054 1.35 0 37
unfriendly* 0.31 27 1 0.04 0.15 0.15 0.0057 2.16 1 53
thankless* 0.24 27 1 0.04 0.12 0.12 0.0045 1.58 0 35
dependable 0.30 27 0 0.00 0.00 0.00 0.0000 0.00 0 0
obnoxious* 0.29 27 1 0.04 0.12 0.12 0.0045 1.58 0 33
reliable 0.30 27 0 0.00 0.00 0.00 0.0000 0.00 0 0
honest 0.26 27 2 0.07 0.18 0.31 0.0114 2.06 1 69
deceitful* 0.32 25 2 0.08 0.18 0.31 0.0124 2.06 1 69

Figure 3. Summary output of check.iio of the R package mokken for the first 10 items of the
internal data set acl. The structure of the output is similar to the structure of the output of
check.monotonicity (Figure 2). Note that 4 items belong to an item pair that shows a signifi-
cant violation of manifest IIO (column #tsig). In addition, In addition, the software generates a list
of items such that if they are removed, the resulting item set satisfies manifest IIO (not shown). ‘R>’
denotes the R prompt.

2.4. Model Fit of Two-Level NIRT Models

Our approach to evaluating model fit of two-level NIRT models is to copy the model-
fit procedures from traditional MSA to Level 1 and Level 2 in two-level MSA. Hence,
evaluating model fit of two-level NIRT models follows similar procedures as evaluating
model fit of single-Level NIRT models. However, these procedures are applied to both
levels, and for each level, appropriate level-specific item scores are required. Following
Koopman et al. [32], Xsri (the score of respondent r in cluster s on item i) is the item score
at Level 1, and Xsi = R−1

s ∑Rs
r=1 Xsri (the average score on item i across all respondents of

cluster s) is the item score at Level 2. Using a mean score rather than a sum score as a
Level-2 item score has two advantages: It ensures that the items scores at Level 1 and Level
2 are on the same scale and it allows cluster size Rs to vary across clusters without affecting
the scale of the scores. These choices imply the following sum scores: The Level-1 sum
score equals Ysr+ = ∑i Xsri (the sum score of respondent r in cluster s), and the Level-2
sum score equals Ys+ = ∑I

i=1 Xsi (the sum of the average item scores in cluster s). Note,
that due to the aggregation, the level-2 item scores Xsi and the level-2 sum scores Ys+ are
not integers, unlike their counterparts at Level 1. However, like their counterparts at Level
1, Xsi and Ys+ can be used to order respondents.

Koopman et al. [32] showed that the MHM-1 and DMM-1 imply the same observable
properties as the MHM and DMM, respectively, and model fit procedures from traditional
MSA, using Xsri as item scores and Ysr+ as sum scores can be safely used to investigate
model fit at Level 1 [50]. Below, we provide an overview of the observable consequences
of two-level NIRT models at Level 2, and how we implemented their evaluations in the R
package mokken.

2.4.1. Testing Local Independence at Level 2

Koopman et al. [32] showed that all two-level NIRT models imply conditional asso-
ciation at Level 2. Hence, the three special cases proposed by Straat et al. [42] may also
be computed using the Level-2 item scores, as well as the three W-indices. However, the
lack of formal testing procedure at Level 1 prevented us from establishing a formal testing
procedure at Level 2. In addition, the lower and upper bounds of the inter-item correlations

Figure 3. Summary output of check.iio of the R package mokken for the first 10 items of the
internal data set acl. The structure of the output is similar to the structure of the output of
check.monotonicity (Figure 2). Note that 4 items belong to an item pair that shows a signifi-
cant violation of manifest IIO (column #tsig). In addition, an asterisk indicates a negatively worded
item, the software generates a list of items such that if they are removed, the resulting item set satisfies
manifest IIO (not shown). ‘R>’ denotes the R prompt.

2.4. Model Fit of Two-Level NIRT Models

Our approach to evaluating model fit of two-level NIRT models is to copy the model-fit
procedures from traditional MSA to level 1 and level 2 in two-level MSA. Hence, evaluating
model fit of two-level NIRT models follows similar procedures as evaluating model fit
of single-level NIRT models. However, these procedures are applied to both levels, and
for each level, appropriate level-specific item scores are required. Following Koopman et
al. [32], Xsri (the score of respondent r in cluster s on item i) is the item score at level 1,
and Xsi = R−1

s ∑Rs
r=1 Xsri (the average score on item i across all respondents of cluster s) is

the item score at level 2. Using a mean score rather than a sum score as the level 2 item
score has two advantages: it ensures that the items scores at level 1 and level 2 are on the
same scale and it allows the cluster size Rs to vary across clusters without affecting the
scale of the scores. These choices imply the following sum scores: The level 1 sum score
equals Ysr+ = ∑i Xsri (the sum score of respondent r in cluster s), and the level 2 sum score
equals Ys+ = ∑i Xsi (the sum of the average item scores in cluster s). Note that due to the
aggregation, the level 2 item scores Xsi and the level 2 sum scores Ys+ are not integers,
unlike their counterparts at level 1. However, like their counterparts at level 1, Xsi and Ys+
can be used to order respondents.

Koopman et al. [32] showed that the MHM-1 and DMM-1 imply the same observable
properties as the MHM and DMM, respectively, and model fit procedures from traditional
MSA, using Xsri as item scores and Ysr+ as sum scores can be safely used to investigate
model fit at level 1 [50]. Below, we provide an overview of the observable consequences
of two-level NIRT models at level 2, and how we implemented their evaluation in the R
package mokken.

2.4.1. Testing Local Independence at Level 2

Koopman et al. [32] showed that all two-level NIRT models imply conditional associ-
ation at level 2. Hence, the three special cases proposed by Straat et al. [42] may also be
computed using the level 2 item scores, as well as the three W indices. However, the lack
of a formal testing procedure at level 1 prevented us from establishing a formal testing
procedure at level 2. In addition, the lower and upper bounds of the inter-item correlations
presented by Ellis [43] have not formally been derived at level 2. As it is a special result
of conditional association for dichotomous items, we suspect that the result may also hold
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at level 2, but as the level 2 scores are non-integers, we avoid further exploration of this
method before the bounds are formally established.

2.4.2. Testing Monotonicity at Level 2

Let Ys,−i = Ys+−Xsi denote the level 2 rest score for item i of cluster s, with realization
y (0 ≤ y ≤ (I − 1)m; note that y need not be an integer). The property of manifest
monotonicity at level 2 means that

P(Xsi ≥ x|Ys,−i = y) is a nondecreasing function of y. (12)

For dichotomous items, all two-level NIRT models imply manifest monotonicity at level 2
(even though level 2 item scores are generally not dichotomous [32]). Hence, a violation of
manifest monotonicity at level 2 is evidence against all two-level NIRT models.

As for the rest score in traditional MSA (Equation (9)), the level 2 rest score in
Equation (12) (i.e., Ys,−i) typically has too few observations with realization y to accu-
rately estimate P(Xsi ≥ x|Ys,−i = y), and rest-score groups should be created. However,
the construction of rest-score groups from traditional MSA using minsize (Equation (10))
cannot be copied directly to level 2. There are usually substantially fewer clusters than
respondents (i.e., S < R). As a result, when using the same values of minsize, the number
of rest-score groups at level 2 is smaller than at level 1. For comparability between level 1
and level 2 results, it is desirable to have the same number of rest-score groups at level 1
and level 2, which is achieved by modifying minsize for level 2. Let G1i be the number of
rest-score groups at level 1, which is determined by Equation (10). In the ideal case, with
all S clusters having a different value on the level 2 rest-score Ys,−i and with G1i being a
multiple of S, level 2 would have G2i = G1i rest-score groups, each with sample size S/G1i.
However, setting minsize equal to S/G1i for level 2 results in too few rest-score groups in
non-ideal cases. Based on trial-and error calculations, we found that using

minsize∗ = S
G1i + 1.75

, (13)

as a modified minsize for level 2 gives good results for obtaining approximately the same
number of rest-score groups at level 1 and level 2. For unequally sized clusters, S is replaced
by R in Equation (13), and each level 2 rest score Ys,−i is counted Rs times to join rest-score
groups until minsize* is satisfied. It may be noted that if G2i ≈ G1i, the level 2 rest-score
groups have smaller sample sizes than the level 1 rest-score groups because the number of
clusters is smaller than the number of respondents. On the one hand, the smaller sample
reduces the power in level 2 model-fit investigations. On the other hand, the level 2 rest
scores become more precise as Rs increases, which might mitigate the power reduction for
larger clusters.

For testing whether violations are statistically significant at level 2, we suggest using
the Z-test and the criterion minvi = 0.03 from traditional MSA. This testing procedure can
easily handle the continuous level 2 item scores and level 2 rest scores. We acknowledge
that this test may be too conservative, as this procedure does not take into account that
the level 2 item scores are an aggregate of Rs scores rather than single scores, which may
reduce the power. Whether this approach is too conservative is part of this study.

In the summary output of the method check.monotonicity (Figure 2), the item-
scalability coefficient Hj is both reported (column ItemH) and used to compute the crit
statistic (column crit). For level 2, the between-respondent item-scalability coefficient [28–30]
should be reported as itemH and used in the computation of the crit statistic. Hence, the
resulting level 2 summary output follows the same format as the level 1 summary output
in Figure 2, but based on the level 2 item scores.
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2.4.3. Testing Invariant Item Ordering

Let Ys(−ij) = Ys+ − Xsi − Xsj denote the level 2 rest score of item pair i, j of cluster s.
The property of manifest IIO at level 2 means that for E(Xsi) < E(Xsj), [30].

E(Xsi|Ys,−ij) = y) ≤ E(Xsj|Ys,−ij = y) for all y and all i < j (14)

Both the DMM-1 and the DMM-2 model imply manifest IIO at level 2. Hence, a violation
of manifest IIO at level 2 is evidence against both these models.

To evaluate manifest IIO at level 2 we suggest adapting method check.iio simi-
larly as method check.monotonicity. Hence, minsize is modified for level 2 to ensure
a comparable number of rest-score groups (Equation (13)), and the between-respondent
scalability coefficient is computed for ItemH and used in crit. We suggest using the default
minvi = m× 0.03 and T-test at level 2 to evaluate violations. The reduced sample size at
level 2 may also result here in a too conservative testing procedure.

3. Method

A Monte Carlo simulation study (see, e.g., [51]) was performed to investigate for
the assumptions monotonicity and IIO how the level 2 model-fit procedure compares to
the level 1 model-fit procedure with respect to the number of violations detected when
violations are absent (false-positive count) and when violations are present (sensitivity count).
To keep the study manageable, we fixed variables that were not directly related to the
multilevel structure, such as text length and number of response categories.

3.1. Data Generation Strategy

For each respondent, dichotomous item scores for J = 10 items were generated using
an adapted two-parameter logistic model to allow for violations of monotonicity and IIO.
Let αi and βi denote the discrimination and difficulty parameter, respectively, of item i. Let
θsr = γs + δsr denote the latent variable for respondent r in cluster s. Let ξsri be a weight
function (see Appendix A for details): ξsri weighs the discrimination parameter αi for each
level of θ, enabling θ-specific values for item discrimination. If for a certain range of θ
ξsri < 0, item discrimination is negative, and monotonicity is violated. The conditional
probability of obtaining the score 1 on item i is

P(Xri = 1|θsr) =
exp[ξsriαi(θsr − βi)]

1 + exp[ξsriαi(θsr − βi)]
. (15)

If ξsri = 1 for all θ, Equation (15) reduces to a two-parameter logistic model, which is a
parametric special case of the MHM-1 [23]. If in addition αi = α for all i, Equation (15)
reduces to a one-parameter logistic model, which is a special case of the DMM-1.

3.2. Study Design

Data were simulated across Q = 1000 replications. The total sample size was fixed
at R = 1000, which should be adequate for MSA in the simulated conditions [52–54]. The
variance of θsr, σ2

θ , was fixed at 1.

3.2.1. Independent Variables

Model Assumptions . We investigated two model assumptions: monotonicity and IIO.
Number of clusters S had two conditions: S = 50 and S = 200. As sample size R was

fixed to 1000, the cluster size in the first condition (S = 50) was Rs = 20 for all clusters and
the cluster size in the second condition (S = 200) was Rs = 5 for all clusters.

Variance of ∆, σ2
δ , had four conditions: σ2

δ = 0, σ2
δ = 0.2, σ2

δ = 0.5, and σ2
δ = 0.8.

Because the variance of Θ was fixed at 1, the variance of Γ, σ2
γ, equaled 1− σ2

δ . A large
value of σ2

γ results in a small value of σ2
δ , which means that there is a large cluster effect
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and a small individual respondent effect on the item scores. Note that for σ2
δ = 0, the IRFs

are identical for level 1 and level 2.
Violation of assumptions had three conditions: ‘none’, ‘small’, and ‘large’. Condition

‘none’ had no violations of assumptions. In the data-generating model (Equation (15)),
αi = 1 for all i, βi had equidistant values between -2 and 2 for all i, and ξsri = 1 for all
s, r, i. The conditions ‘small’ and ‘large’ refer to a small and a large violation of a model
assumption, respectively, and were constructed differently for monotonicity and IIO. For
monotonicity, in the condition ‘small’ , the level 1 IRF of item 5 decreased from 0.60 to
0.33 between θ = −0.89 and θ = 0.75 (Figure 4, left panel, solid line; for details, see
Appendix A), whereas in the condition ‘large’, the level 1 IRF of item 5 decreased from
0.72 to 0.17 between θ = −1.02 and θ = 0.87 (Figure 4, right panel, solid line; for details,
see Appendix A). For IIO, in the condition ‘small’ β5 = β6 = 0, and α5 = 0.6 (Figure 5,
left panel), whereas in the condition ‘large’ β5 = β6 = 0, α5 = 0.3, and α6 = 2 (Figure 5,
right panel).
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Figure 4. MO = monotonicity. Level 1 item response functions (solid curves) and level 2 item response
functions for σ2

δ = 0.2 (dashed curves), 0.5 (dash-dotted curves), 0.8 (dotted curves), for the small
(left panel) and large (right panel) violation condition of monotonicity. The item response function
of level 2 for σ2

δ = 0 is identical to the item response function of level 1.
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Figure 5. IIO = invariant item ordering. Level 1 item response functions (solid curves) and level
2 item response functions for values of σ2

δ = 0.2 (dashed curves), 0.5 (dash-dotted curves), 0.8
(dotted curves), for the small (left panel) and large (right panel) violation conditions of IIO. The item
response function of level 2 for σ2

δ = 0 is identical to the item response function of level 1.

The simulation study was fully crossed, resulting in 2× 4× 3 = 24 conditions per
assumption. Figure 4 shows the level 1 and level 2 item response functions for the conditions
with violations of monotonicity, for the different factors of σ2

δ . The level 2 item response
functions are flatter for larger values of σ2

δ , so the respondent effects increase. Figure 5
shows the level 1 and level 2 item response functions for the conditions with violations
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of IIO, for the different conditions of σ2
δ . The flattening effect of large σ2

δ on the level 2
item response functions is much smaller in these conditions compared to the violated
monotonicity conditions. Hence, while the monotonicity violation diminishes as a result of
a large σδ, the IIO violation remains.

3.2.2. Dependent Variables

We performed method check.monotonicity and check.iio on level 1 and level 2.
For method check.monotonicity we inspected the results of item 5, which violated the
monotonicity assumption in the violated assumption conditions. For method check.iio
we inspected the results of item pair (5, 6), which violated the IIO assumption in the violated
assumption conditions.

Relative number of violations. The relative number of violations (#vi/#ac) was used
to evaluate the number of violations that were detected in the estimated IRF. The relative
number was used rather than the actual number of violations (#vi) for better comparability
across levels and across replications, as the number of rest-score groups may differ across
replications and across levels, and, therefore, the possible ranges for #vi may also differ.
For example, for check.monotonicity, five rest-score groups yield #ac=10, whereas six
rest-score groups yield #ac=15.

Number of significant violations. The number of significant violations (i.e., #zsig for
check.monotonicity and #tsig for check.iio) was used to evaluate whether the observed
violations were statistically significant. Note that the ranges of #zsig and #tsig depend
on both #vi and #ac. However, as we ensured the number of rest-score groups to be
approximately similar, this should not pose too much of a problem in this study. In the
condition ‘none’ (no model violations), both dependent variables serve as indicators of the
false-positive count, and in the conditions ‘small’ and ‘large’, both dependent variables
serve as indicators of the sensitivity count. The combination of the two dependent variables
yields three typical outcomes: (1) violations not detected, (2) violations detected but not
deemed significant, and (3) violations detected and deemed significant. For the false-
positive count, outcome (1) is preferred, and for the sensitivity count, outcome (3) is
preferred. For both the false-positive count and the sensitivity count, outcome (2) is the
next best result.

3.3. Hypotheses

Theoretically, the IRFs of level 1 and level 2 were identical for conditions in which
σ2

δ = 0. Hence, for these conditions, we expected both the false-positive count and the
sensitivity count to be comparable across level 1 and level 2. For both methods, in the
conditions without violations, we expected the false-positive count to be close to zero. For
the conditions with violations at level 2, for method check.monotonicity we expected a
decreasing sensitivity count as σ2

δ increased; especially for the condition ‘small’, where the
monotonicity violation almost vanished at level 2 for σ2

δ = 0.8. For method check.iio,
we expected this effect to be smaller because the violation for level 1 and level 2 is similar
across the various values of σ2

δ . Based on previous results by Koopman et al. [50], we expect
σ2

δ to have no effect on the level 1 outcome variables.

3.4. Statistical Analyses

First, we estimated the intraclass correlation (ρ1 ([27], p. 18)) on the respondents’ sum
scores to evaluate the similarity of respondents within clusters, as a check of manipulation
by σ2

δ [13,55]. Then, using the default value minvi=0.03 and nominal type-I error rate
alpha = 0.05 for detecting and testing violations, the dependent variables were computed
at level 1 and level 2, and the numerical values at level 1 and level 2 were compared. The
expected false-positive count or sensitivity count for a given condition depends on alpha,
minvi, and the number of rest-score groups (e.g., [47,48]). Therefore, rather than taking a
nominal value like α, the level 1 results were considered the benchmark to which the level 2
results were compared as follows. Both for the indicators of the false-positive count, and the
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indicators of the sensitivity count, we first evaluated the values of the dependent variable
at level 1 (the benchmark). Second, we compared the values of the dependent variable
between the level 1 and the level 2 condition with σ2

δ = 0, the condition comparable to level
1, except for the smaller sample size. Finally, we compared the values of the dependent
variable at level 2 as a function of an increasing respondent effect (σ2

δ ).
The intraclass correlation was estimated using the function ICC() in the R package

mokken. The dependent variables #vi/#ac, #zsig, and #tsig were computed using the
functions check.monotonicity() and check.iio() with the following arguments:

check.monotonicity(X, level.two.var = clusters)

check.iio(X, level.two.var = clusters)

Argument X (the data) is a matrix containing the numeric responses of R respondents to
I items (missing values are not allowed), and argument clusters is a vector of length
R denoting cluster membership for each respondent. Both functions are available from
mokken as of version 3.1.0. Syntax files of the simulation study are available to download
from the Open Science Framework via https://osf.io/jq69u.

4. Results

In general, the estimated intraclass correlation of respondents’ sum scores across the
I items was 0.60 for σ2

δ = 0, 0.48 for σ2
δ = 0.2, 0.30 for σ2

δ = 0.5, and 0.12 for σ2
δ = 0.8.

This showed the intended decrease in cluster effect (and increase in respondent effect) as a
function of σ2

δ . As expected, the level 1 results were very similar across different conditions
of σ2

δ for both check.monotonicity and check.iio, hence, we summarized the results of
level 1 across these conditions.

4.1. Manifest Monotonicity

The average number of active comparisons across conditions and replications was
#ac = 15 at level 1 and #ac = 16 at level 2. As expected, both indicators of the false-positive
count (#vi/#ac and #zsig) were close to zero, both at level 1 (benchmark; Table 1, column 1)
and at level 2 in the condition σ2

δ = 0 (Table 1, column 2). At level 2, #vi/#ac slightly in-
creased as σ2

δ increased, but the values remained very low (Table 1, rows 1–2, columns 2–5).
Indicator #zsig did not increase as σ2

δ increased (Table 1, rows 3–4, columns 2–5).

Table 1. False-positive counts for method manifest monotonicity.

Indicator Violation S Level 1
Level 2

σ2
δ = 0 σ2

δ = 0.2 σ2
δ = 0.5 σ2

δ = 0.8

#vi/#ac None 50 0.003 0.005 0.010 0.015 0.032
200 0.003 0.004 0.006 0.012 0.019

#zsig None 50 0.001 0.000 0.000 0.000 0.000
200 0.001 0.000 0.000 0.000 0.000

As expected, at level 1 both indicators of the sensitivity count (#vi/#ac and #zsig)
increased as the model violations became larger (Table 2). At level 2, in the condition
σ2

δ = 0, the relative number of detected violations (#vi/#ac) was comparable to (for large
violations) or larger than (for small violations) the values at level 1 (Table 2, rows 1–4,
columns 1–2). However, Table 2 (columns 1–2) shows that the number of significant
violations (#zsig) decreased by 38% (large violation, S = 200) to 100% (small violation,
S = 50), indicating that the significance test is relatively insensitive at level 2 compared
to level 1. As σ2

δ increased, there was no discernible effect for #vi/#ac (Table 2, rows 1–4,
columns 2–5) but the number of violations deemed significant tended to show a further
decrease (Table 2, rows 5–8, columns 2–5).

https://osf.io/jq69u
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Table 2. Sensitivity counts for method manifest monotonicity.

Indicator Violation S Level 1
Level 2

σ2
δ = 0 σ2

δ = 0.2 σ2
δ = 0.5 σ2

δ = 0.8

#vi/#ac Small 50 0.334 0.511 0.443 0.297 0.246
200 0.325 0.477 0.398 0.285 0.241

Large 50 0.726 0.737 0.731 0.701 0.567
200 0.731 0.751 0.752 0.729 0.625

#zsig Small 50 1.466 0.000 0.000 0.000 0.000
200 1.354 0.255 0.017 0.000 0.001

Large 50 7.677 0.111 0.000 0.000 0.000
200 7.803 4.847 2.491 0.335 0.021

4.2. Manifest Invariant Item Ordering

The average number of active comparisons across conditions and replications was
#ac = 40 at level 1 and #ac = 42 at level 2. As expected, both indicators of the false-positive
count (#vi/#ac and #tsig) were close to zero, both at level 1 (benchmark, Table 3, column
1) and at level 2 in the condition σ2

δ = 0 (Table 3, column 2). At level 2, both indicators
remained constant as σ2

δ increased (Table 3, columns 2–5), suggesting a satisfactory false-
positive count for manifest IIO at level 2.

Table 3. False-positive counts for method manifest invariant item ordering.

Indicator Violation S Level 1
Level 2

σ2
δ = 0 σ2

δ = 0.2 σ2
δ = 0.5 σ2

δ = 0.8

#vi/#ac None 50 0.007 0.009 0.010 0.010 0.008
200 0.006 0.007 0.006 0.007 0.007

#tsig None 50 0.000 0.001 0.003 0.002 0.004
200 0.000 0.001 0.003 0.000 0.001

As expected, at level 1 both indicators of the sensitivity count (#vi/#ac and #tsig)
increased as the model violations became larger (Table 4). The values of both indicators
were similar at level 1 and level 2 with σ2

δ = 0 (Table 4, columns 1–2), suggesting that
the cluster size reduction does not affect the sensitivity of the procedure. As σ2

δ increased,
there was no discernible effect for #vi/#ac (Table 4, rows 1–4, columns 2–5), but Table 4
(rows 4–8, columns 2–5) shows that the number of violations deemed significant decreased
between σ2

δ = 0 and σ2
δ = 0.8 with a range from 38% (large violations, S = 200) to 71%

(small violations, S = 50).

Table 4. Sensitivity counts for method manifest invariant item ordering.

Indicator Violation S Level 1
Level 2

σ2
δ = 0 σ2

δ = 0.2 σ2
δ = 0.5 σ2

δ = 0.8

#vi/#ac Small 50 0.322 0.376 0.344 0.309 0.251
200 0.325 0.377 0.342 0.305 0.257

Large 50 0.507 0.510 0.488 0.468 0.408
200 0.520 0.524 0.521 0.496 0.449

#tsig Small 50 0.380 0.671 0.556 0.379 0.189
200 0.384 0.668 0.534 0.350 0.221

Large 50 1.658 1.961 1.757 1.505 1.011
200 1.694 1.901 1.786 1.526 1.202
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5. Discussion

In this paper, we implemented model-fit procedures for two-level MSA into soft-
ware by copying model-fit procedures from traditional (one-level) MSA to both level 1
and level 2. Several modifications were proposed for the level 2 model-fit investigation.
First, we proposed using the average (rather than the total) of the item scores in a cluster
as the level 2 item score. Second, we proposed a modified version of minsize (coined
minsize*, Equation (13)) to ensure that the number of rest-score groups at level 1 and level
2 were similar.

By means of a simulation study, we investigated whether this direct-copying option
provided useful outcomes for evaluating monotonicity and IIO at level 2. For both method
check.monotonicity and method check.iio, the false-positive counts were satisfactory:
low and similar at level 1 and level 2.

For method check.monotonicity, the detected relative number of violations #vi/#ac
were similar for level 1 and level 2, but the Z-test showed a lack of power at level 2.
Especially for a smaller number of clusters (S = 50, not uncommon in two-level data),
the number of significant violations #zsig was close to zero in practically all conditions.
For S = 200, the number of significant violations at level 2 was still substantially lower
compared to level 1. A sensible explanation for this lack of power is the fact that the cluster
size is ignored in the significance test. As a result, the sample size for the test equals the
number of clusters, resulting in standard errors that are too large. An alternative strategy
may be to use the effective sample size (e.g., [27], p. 24), which takes the cluster size and
intraclass correlation into account. How to estimate and implement the effective sample
size in the significance test, and whether this is an effective strategy to gain power, is a
topic for further investigation.

Based on the results, we advise only looking at the (relative) number of violations
#vi/#ac within method check.monotonicity, and evaluating the significance of this vio-
lation by other means, such as visualization of the estimated IRF at level 2.

For method check.iio, the sensitivity counts were similar for level 1 and level 2. For
small respondent effects (i.e., small values for σ2

δ ), there were somewhat more significant
results at level 2 compared to level 1. This may be correct, as in these conditions the
aggregated item scores at level 2 are very precise and result in a more accurate estimate of
the level 2 IRFs. It appears that the T-test reflects this accuracy. Based on the results from
our simulation study, we tentatively conclude that method check.iio seems appropriate
for investigating IIO at both levels.

The simulation study showed for non-monotone IRFs a stronger flattening effect of
the IRF on level 2 for situations where there is a larger respondent effect (and consequently
a smaller group effect). More variation between respondents within groups results in
averaging out non-monotonicity at level 2. On the other hand, non-monotonicity is more
likely with stronger group effects. This means that if a scale is potentially more interesting at
level 2 due to a stronger group effect, the necessity for checking this assumption increases
as well. While our manipulation for violating the IIO assumption showed a relatively
weaker manifestation of this effect, violations of IIO may result from IRFs similar to the
ones we created to cause violations of monotonicity; hence, similar considerations apply.

There were at least three limitations of the performed simulation study. First, we took
the empirical level 1 results as the norm rather than a theoretical norm. This approach
assumes level 1 results to be correct. However, level 2 results may deviate from level 1
results for various reasons, depending on, for example, cluster size or number of clusters.
Using a theoretical norm may provide more insight in the monotonicity results. Second,
related to this issue, we fixed the total sample size, and as a result did not distinguish
between number of clusters and cluster size. Third, we fixed the variance of Θ, and as a
result did not distinguish between the effect of adjusting the variance of Γ and the effect of
adjusting the variance of ∆. Possibly limiting the range of Γ in itself has affected the results
beyond changing the variance of ∆.
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Future research on goodness of fit checks in MSA should focus on developing a
strategy for determining minsize, because the results can change quite substantially for
different values of minsize. Perhaps an iterative analysis for different values of minsize
can improve the interpretation of the stability of the results. In addition, for the two-level
procedures, we set the number of rest-score groups at level 2 similar to the number of rest-
score groups at level 1, but other strategies may be more beneficial; for example, keeping
the values of rest-score groups similar, or reducing/increasing the number of rest-score
groups. If other strategies are implemented, perhaps also presenting the relative #zsig
(i.e., #zsig/#ac) will facilitate a better comparison across levels if the number of rest-score
groups vary. The provided overview outlined MSA for two-level data. The generalization
from single-level to two-level NIRT models may also be extended to multilevel NIRT
models with more than two levels using a similar additional set of assumptions. However,
how to meaningfully generalize popular aspects of MSA, such as scalability coefficients
or the automated item selection procedure, depends largely on the context and, thus, may
be less straightforward. The discussed two-level models are unidimensional. NIRT may
benefit from developing multilevel models from a multidimensional perspective, in which
different levels are distinguished by different dimensions rather than combined into a
single dimension.
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Appendix A

Parameter ξsri is defined on the real line and weighs the discrimination parameter αi in
Equation (15) for specific values of θsri. Let [θl , θu] be the range of θ where the discrimination
parameter αi in Equation (15) is weighed. For θ < θl and θ > θu, parameter ξsri = 1. For
θl ≤ θ ≤ θu, ξsri < 1. In fact, weights ξsri were chosen such that between θl and θu, a
parabola opening up is subtracted from the IRF. Let p(θ) denote the IRF in Equation (15)
with ξsri = 1. The parabola is defined by the three points (θl , p(θl)), (θu, p(θu)), and
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(θu − θl , ψi), where the last point is the parabola’s minimum. The larger ψi, the larger the
violation of monotonicity.

For studying the three factors of violations of monotonicity, parameter ψi played an
important role. Except for item 5, for all items and for each factor ψi = 0, resulting in no
violations of monotonicity (i.e., ξsri = 1). For the factor ‘none’, ψ5 = 0, resulting in no
violations of monotonicity. For the factor ‘small’, θl = −2, θu = 2 and ψ5 = −1, resulting
in minor violations of monotonicity. For the factor ‘large’ θl = −2, θu = 2 and ψ5 = −2,
resulting in larger violations of monotonicity.
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