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Abstract— Maintenance of machines is highly necessary 

to prolong the operational lifespan of induction motors. 

Prioritizing preventive measures is crucial in order to 

prevent more significant damage to the machinery. One of 

these measures includes detecting abnormalities, such as 

misalignment, in the motor shaft. This research is aimed to 

detect the misalignment of induction motor experimentally 

by varying the coupling between normal and parallel 

misalignment. The signal readings were analyzed in the 

frequency domain using Fast Fourier Transform (FFT). 

The results revealed that in the case of coupling 

misalignment, a peak appeared at f = 13.5 Hz, whereas in 

the parallel misalignment condition with a 1 cm 

misalignment, a peak was found at f+fr = 20 Hz. By utilizing 

the Convolutional Neural Network (CNN) system, normal 

and parallel conditions can be detected with an accuracy 

level of 87.5%. 

 
Index Terms— Induction motor, misalignment, FFT, 

CNN.  

I. INTRODUCTION 

Electric motors are electromechanical devices that 

convert electrical energy into mechanical energy. The 

most widely used electric motor is the induction motor, 

which is an essential component in many commercially 

available industrial equipment and processes [1]. This 

machine is chosen due to its numerous advantages, 

including being cost-effective, dependable, easy to 

operate, brushless, not requiring DC excitation, and 

having a prolonged lifespan without significant issues 

[2]–[4]. However, despite their reliability, these 

electromechanical devices are susceptible to various 

types of faults. Such faults can be destructive, hazardous, 

lead to production downtime, and cause personal injuries. 

Therefore, it is crucial to detect these faults as early as 

possible to prevent total machine failure and unexpected 

production costs [5], [6]. 

One of the common faults that can occur in induction 

motors is misalignment [7]. This problem is the second 

most common mechanical fault in induction machines 

after imbalance. It is responsible for more than 70% of 

rotating machinery vibration problems [8]. Broadly, 

there are three common types of misalignment such as 

angular misalignment, parallel misalignment, and a 

combination of both. In practice, nearly all misalignment 

conditions observed in motor drive systems are 

combinations of these two basic types [9].  

 

 

Special for parallel misalignment, this fault occurs 

when the rotational axes of the motor and the driven load 

deviate from being perfectly aligned in parallel, resulting 

in detrimental effects such as increased mechanical 

stress, elevated energy consumption, and reduced motor 

lifespan [10]. To address this issue, proper alignment of 

rotating machinery is essential to ensure all sensitive 

components caused misalignment errors can operate 

within acceptable design limits. Accurate alignment 

allows for the reduction of axial and radial forces, thereby 

extending the machine's lifespan while maintaining rotor 

stability under dynamic operating conditions.  

Previous research in [11] conducted experiments and 

numerical simulations, and the results showed that 

misalignment generates sidebands in the stator current at 

frequencies of f+2fr and f-2fr. Another study by [12] 

utilized Motor Current Signature Analysis (MCSA) to 

identify radial and angular misalignment when 

connecting an induction motor to a load through a 

flexible coupling. In [13], parallel misalignment is 

analyzed based on stator current, vibration and stray flux. 

This research used Multilayer Perceptron (MLP) based 

machine learning algorithm which shows an excellent 

performance to detect the parallel misalignment fault. 

In recent years, Convolutional Neural Networks 

(CNN) have exhibited outstanding performance in 

various image recognition and classification tasks [14]. 

CNN, a class of deep learning algorithms, possess the 

ability to automatically learn and extract meaningful 

features from input data, making them well-suited for 

identifying patterns and abnormalities within motor 

systems [15], [16]. Leveraging the capabilities of CNN, 

researchers have begun exploring their potential in 

detecting misalignment within induction motors.  

Therefore, this study aims to propose an innovative 

detection system that utilizes the CNN method to identify 

and quantify parallel misalignment in induction motors. 

Moreover, this study employs MCSA as a method to 

analyze the frequency spectrum in parallel misalignment 

in induction motors, with signal processing conducted 

using Fast Fourier Transform (FFT). The proposed 

system aims to streamline the misalignment detection 

process, enabling automated and real-time monitoring 

and diagnosis. By analyzing the current waveform 

signals captured by a dedicated sensor, the proposed 

system can accurately determine the degree of parallel 

misalignment present in the motor. 
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II. METHOD 

In this section, the research flow of designing a 

parallel misalignment detection system on an induction 

motor based on CNN is outlined, as depicted in Fig. 1. 

 
Fig. 1. Flowchart of metodology 

A. Mechanical Test Preparation 

Experimental testing was carried out by designing a 

mechanical system comprising an induction motor, 

machine base, shaft, bearings, load, and coupling as 

designed in Fig. 2. The induction motor used in this study 

had specifications of a three-phase induction motor with 

a voltage of 220/380 V and a power of 0.37 kW. The 

coupling used was independently fabricated and 

specifically designed for the parallel misalignment 

scheme. The experimental procedure began with 

connecting the induction motor to a three-phase power 

source on the input side and connecting it to an inverter, 

which primarily functioned to regulate the speed (rpm) of 

the induction motor. 

 

Fig. 2. Mechanical test design 

B. Current Measurement Setup 

This setup part is developed to measure the stator 

current of a three-phase induction motor. The current 

readings are acquired using an SCT 013-000 sensor along 

with auxiliary components, interconnected to an Arduino 

Uno microcontroller. The current range sensed by the 

SCT 013-000 sensor is specified to span from 0 to 100 A. 

To facilitate data collection, the sensor's current reading 

range requires reduction to enhance measurement 

accuracy. Consequently, the SCT current sensor is 

supplemented with a supportive circuit. This auxiliary 

circuit serves as an amplifier to convert the current signal 

into voltage, making it readable by the microcontroller. 

The auxiliary circuit components comprise R1 with a 

value of 10 kΩ, R2 with a value of 10 kΩ, R3 with a value 

of 680 kΩ, and C1 = 10 µF/16V. The reistance R3 serves 

as a load resistor, generating varying voltages for ADC 

microcontroller reading. The resistance value of R3 is set 

to enable reading currents below 10A. The voltage across 

the load resistor at peak current must be half of Arduino's 

reference voltage (Vref/2), which is a half of 5V. 

Subsequently, the primary current value needs 

calculation using the formula of (1) and (2), which N 

denoted the SCT turns.  

Iprim = N×Isec (1) 

Iprim = N×
Vref/2

R3

 
(2) 

Iprim = 2000×
5/2

680
= 7.4 A 

(3) 

The primary current obtained from the auxiliary 

circuit is 7.4 A, which suffices for current sensor 

readings. This is occurred due to the motor's induction 

specifications, where the maximum current generated is 

2 A. Furthermore, it is conducted the calibration process 

through a comparison between the readings from the SCT 

sensor and the current measured from the ammeter. Data 

collection on the ammeter spanned 30 seconds, whilst the 

SCT sensor readings were recorded over a 10-second 

interval, resulting in a dataset of 2210 data points. This 

calibration procedure encompassed diverse RPM speed 

variations on the induction motor. 

 

 

Fig. 3. Current measurement setup and circuit modul 
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C. Paralel Misalignment Test 

In this experiment, two conditions were tested: the 

first condition being normal or unlignment, and the 

second being parallel misalignment. Within the parallel 

condition as shown in Fig. 4, two variations were 

executed, consisting of 1 cm and 2 cm of parallel 

misalignment. The induction motor was set to a speed of 

400 RPM. Data collection was carried out for 10 seconds 

over a span of 20 minutes. The effect of misalignment 

angles on the coupling between the motor and the load 

shaft was examined through an analysis of the stator 

current spectra acquired from the experiment. The 

current spectrum indicated peaks around the fundamental 

component, as described by (4): 

f + nf
r
 (4) 

where f is frequency, n is a constant, and fr is angular 

speed in Hz. The value of f for each normal and parallel 

data collection differed due to adjustments based on the 

motor's speed conditions. In the normal condition, f was 

13.5 Hz. As for fr, it was derived from the motor speed 

set by the inverter, which was 400 RPM divided by 60, 

yielding an fr value of 6.6 Hz. 

D. Signal Processing 

The signal processing depicted in Fig. 5 commences 

with the detection of stator current generated by the 

induction motor through the SCT sensor. The result of 

this detection is then converted into analog-to-digital 

(ADC) format to be utilized as input for the Arduino Uno. 

The sinusoidal signal obtained from the Arduino Uno's 

sensor reading is subjected to the Fast Fourier Transform 

(FFT) to unveil peak amplitude-frequency values. These 

values are subsequently used to compute misalignment 

detection predictions using CNN.  

During the CNN-based detection process using the 

normalized FFT signal, several stages are encompassed, 

which include:  

a. Preprocessing: In this stage, the FFT output is 

normalized to values ranging between 0 and 1.  

b. Random Sampling: In this part, a total of 240 data 

points (120 normal and 120 parallel) are divided, 

with a composition of 77%, that is, 160 data points 

for training and 33%, which accounts for 80 data 

points, designated for testing.  

c. CNN: This phase produces a training model for 

subsequent testing.  

d. Testing: In this step, 80 testing data points are 

processed to generate predictions for parallel 

misalignment. 

 

Fig. 4. Parallel misalignment configuration 

 

 

 

Fig. 5. Block diagram of signal processing 

III. RESULT AND ANALYSIS 

A. Sensor Calibration Result 

Sensor calibration was carried out by comparing the 

sensor readings on Arduino with the readings on the 

ammeter at different RPM variations. Unfortunately, the 

readings by current sensor were not satisfied with the 

ammeter readings as shown in Fig. 6. Hence, regression 

method is applied to obtain a good deal result. The output 

from this process will be an input for Arduino 

programming. The regression formula from previous 

data as given: 

y = 0.4133x + 1.273 (1) 

The new data of current measurement after applying 

regression method is shown in Fig. 7. It is calculated that 

the standard deviation in the validation measurement of 

the current sensor (SCT readings) is 0.0521, the 

uncertainty is about of 0.0197, and the reading error is 

around 1.22%. Therefore, the reading accuracy of the 

current sensor is found to be under 3%, indicating a 

commendable precision in the data readings. 

 

Fig. 6. Measurement result of current between SCT and ammeter 

 

 

Fig. 7. Measurement result of current between SCT and ammeter 
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B. Signal Processing Result 

In signal processing, a frequency sampling length of 

258 data points was employed, collected over a period of 

10 seconds. This signal processing was conducted at an 

induction motor speed of 400 RPM. The results of this 

signal processing, manifested as sinusoidal current 

readings across the time domain, are illustrated in Fig. 8a 

for the normal coupling condition, Fig. 8b for a 1 cm 

parallel misalignment variation, and Fig. 8c for a 2 cm 

parallel misalignment variation. It is obvious that notable 

differences exist among these three conditions. The 

normal coupling condition demonstrates a more 

consistent current response in contrast to both the 1 cm 

and 2 cm parallel misalignment variations. 

 

(a) 

 

(b) 

 

(c) 

Fig. 8. Time domain signal of coupling condition: (a) normal (b) 1 cm-

parallel misalignment (c) 2 cm-parallel misalignment 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 9. FFT signal of coupling condition: (a) normal (b) 1 cm-parallel 

misalignment (c) 2 cm-parallel misalignment 

The outcomes of signal processing can also be 

depicted in the frequency domain as the output resulting 

from the implementation of FFT. Figure 9a demonstrates 

the FFT signal for the normal coupling condition. It is 

evident that the peak frequency signal emerges at 13.5 

Hz, accompanied by several minor peaks at 26.5 Hz and 

34 Hz. Figure 9b displays the FFT signal for a 1 cm 

parallel misalignment coupling condition. The outcome 

of the FFT indicates multiple small peaks, including 

those at 14 Hz, 20 Hz, and 26.5 Hz. Figure 9c portrays 

the FFT signal for a 2 cm parallel misalignment coupling 

condition. The FFT results yield peaks at 16 Hz, 23 Hz, 

and 30.5 Hz. 
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TABLE I 

CNN PROCESSING RESULT 

No Label Data Accuracy Result Assessment 

1 Normal  Normal 72.20 %  TRUE 

2 Normal  Normal 68.60 %  TRUE 

3 Normal  Normal 82.03 %  TRUE 

4 Normal  Normal 96.59 %  TRUE 

5 Normal  Normal 74.97 %  TRUE 

6 Pararel  Pararel 95.40%  TRUE 

7 Pararel  Pararel 99.55%  TRUE 

8 Normal  Normal 82.28%  TRUE 

9 Normal  Normal 71.89%  TRUE 

10 Pararel  Normal 88.98%  FALSE 

11 Normal  Normal 95.47%  TRUE 

12 Pararel  Pararel 99.97%  TRUE 

13 Normal  Normal 85.59%  TRUE 

14 Pararel  Pararel 77.17%  TRUE 

15 Normal  Normal 77.35%  TRUE 

16 Pararel  Pararel 99.59%  TRUE 

17 Pararel  Normal 86.80%  FALSE 

18 Normal  Normal 73.82%  TRUE 

19 Pararel  Normal 81.95%  FALSE 

20 Pararel  Pararel 99.62%  TRUE 

21 Pararel  Pararel 99.73%  TRUE 

22 Normal  Normal 73.79%  TRUE 

23 Pararel  Pararel 99.69%  TRUE 

24 Normal  Normal 99.68%  TRUE 

25 Pararel  Pararel 97.70%  TRUE 

26 Pararel  Pararel 77.56%  TRUE 

27 Normal  Normal 68.98%  TRUE 

28 Pararel  Pararel 99.80%  TRUE 

29 Pararel  Pararel 99.63%  TRUE 

30 Pararel  Normal 80.15%  FALSE 

31 Normal  Normal 83.12%  TRUE 

32 Pararel  Pararel 99.88%  TRUE 

33 Normal  Normal 96.04%  TRUE 

34 Pararel  Pararel 97.69%  TRUE 

35 Normal  Normal 89.59%  TRUE 

36 Normal  Normal 91.92%  TRUE 

37 Pararel  Pararel 99.37%  TRUE 

38 Normal  Normal 82.81%  TRUE 

39 Normal  Normal 76.41%  TRUE 

40 Pararel  Pararel 99.30%  TRUE 

41 Pararel  Pararel 99.81%  TRUE 

42 Normal  Pararel 73.54%  FALSE 

43 Pararel  Pararel 99.98%  TRUE 

44 Normal  Pararel 77.06%  FALSE 

45 Pararel  Normal 85.06%  FALSE 

46 Normal  Normal 88.60%  FALSE 

47 Pararel  Pararel 99.71%  TRUE 

48 Normal  Normal 94.15%  TRUE 

49 Pararel  Pararel 99.94%  TRUE 

50 Normal  Normal 92.95%  TRUE 

51 Pararel  Pararel 99.97%  TRUE 

52 Pararel  Pararel 99.75%  TRUE 

53 Pararel  Pararel 75.91%  TRUE 

54 Pararel  Pararel 99.60%  TRUE 

55 Pararel  Pararel 99.52%  TRUE 

56 Pararel  Pararel 99.95%  TRUE 

57 Normal  Pararel 76.61%  FALSE 

58 Pararel  Pararel 99.99%  TRUE 

59 Normal  Normal 94.09%  TRUE 

60 Pararel  Pararel 99.65%  TRUE 

61 Normal  Normal 84.35%  TRUE 

62 Pararel  Pararel 95.58%  TRUE 

63 Pararel  Normal 87.36%  FALSE 

64 Normal  Normal 94.12%  TRUE 

65 Normal  Normal 78.10%  TRUE 

66 Normal  Normal 86.46%  TRUE 

67 Normal  Normal 84.46%  TRUE 

68 Normal  Normal 81.06%  TRUE 

69 Normal  Pararel 77.25%  FALSE 

70 Pararel  Pararel 99.39%  TRUE 

71 Pararel  Pararel 99.55%  TRUE 

72 Normal  Normal 82.89%  TRUE 

73 Normal  Normal 96.75%  TRUE 

74 Pararel  Pararel 99.82%  TRUE 

75 Normal  Normal 87.63%  TRUE 

76 Normal  Normal 83.34%  TRUE 

77 Normal  Normal 75.86%  TRUE 

78 Normal  Normal 94.40%  TRUE 

79 Pararel  Pararel 77.25%  TRUE 

80 Pararel  Pararel 94.59%  TRUE 

 

When referring to the readings from the normal 

condition, only a single peak at a specific frequency is 

visible. In this context, the FFT readings for the normal 

condition point to peaks at frequencies of 13.5 Hz, 26.5 

Hz, and 34 Hz. In general, distinctive differences in peak 

frequencies exist between the 1 cm and 2 cm parallel 

misalignment variations. Certain peaks are absent in the 

normal condition, clearly indicating distinct variations in 

peak points between the normal and parallel conditions. 

Specifically, the peak for the normal condition is at 13.5 

Hz, while for the 1 cm parallel misalignment, it appears 

at f+1fr (20 Hz), and for the 2 cm parallel misalignment, 

it occurs at f+1fr (23 Hz) and f+2fr (30 Hz). 

C. Misalignment Detection using CNN 

In the process of the detection system employing 

CNN, a comprehensive dataset comprising 120 samples 

was meticulously gathered, encompassing scenarios of 

both standard normalcy and the parallel or abnormal 

state. This aggregation subsequently translated into the 

analysis of 240 individual data points. The dataset 

earmarked for the training phase constituted a substantial 

portion, precisely 77% or 160 samples, while the 

remaining 30%, equivalent to 80 samples, was dedicated 

to constituting the testing dataset. The outcomes of the 

CNN processing are meticulously documented in Table 

1. Upon meticulous scrutiny of the data label, a 

significant distinction emerges. When the label 

corresponds to the state of normalcy and the reading 

aligns harmoniously with the same state, this congruence 

is acknowledged as a “TRUE” value. In contrast, if the 

label signifies normalcy but the actual reading suggests a 

state of parallel misalignment, the determination is 

categorized as a “FALSE” value.  

The result shows that out of the 80 samples, 70 were 

correctly classified as true, while 10 were classified as 

false. Therefore, the accuracy of the CNN processing is 

calculated as 70/80, which equals 0.875 or 87.5%. Fig. 

10 shows the graph of epoch or iteration against the 

accuracy of the training and testing data. A total of 100 

iterations were used in the CNN model. As the number 

of epochs increases, the accuracy improves. In this study, 

the training data showed stability at epoch 60 with an 

accuracy of 0.87, while the testing data achieved stability 

at epoch 20 with an accuracy level of 0.87. 

 
Fig. 10. Accuracy of CNN test compared to its train 
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IV. CONCLUSION 

The conclusions derived from this research are 

outlined as follows: 

a. The FFT reading results for the peak in the normal 

condition occur at a frequency of 13.5 Hz, while for 

the 1 cm parallel misalignment, it emerges at f+fr (20 

Hz); for the 2 cm parallel misalignment, it is situated 

at f+1fr (23 Hz), and f+2fr (30 Hz). 

b. Through the employment of CNN, the normal and 

parallel conditions can be distinguished with an 

accuracy rate of 87.5%. 

A suggestion for forthcoming research endeavors is to 

conduct calibration tests on the mechanical components 

of shaft connections. 
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