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In the last couple of decades, the study of human living brain has benefitted 
of neuroimaging and non-invasive electrophysiological techniques, which are 
particularly valuable during development. A number of studies allowed to trace the 
usual stages leading from pregnancy to adult age, and relate them to functional 
and behavioral measurements. It was also possible to explore the effects of 
some interventions, behavioral or not, showing that the commonly followed 
pathway to adulthood may be  steered by external interventions. These events 
may result in behavioral modifications but also in structural changes, in some 
cases limiting plasticity or extending/modifying critical periods. In this review, 
we outline the healthy human brain development in the absence of major issues 
or diseases. Then, the effects of negative (different stressors) and positive (music 
training) environmental stimuli on brain and behavioral development is depicted. 
Hence, it may be  concluded that the typical development follows a course 
strictly dependent from environmental inputs, and that external intervention can 
be  designed to positively counteract negative influences, particularly at young 
ages. We also focus on the social aspect of development, which starts in utero 
and continues after birth by building social relationships. This poses a great 
responsibility in handling children education and healthcare politics, pointing to 
social accountability for the responsible development of each child.
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1. Introduction

The study of brain development from pregnancy to adult age has been devoted for years to 
establishing a fix sequence of events in the morpho-functional development. This vision was the 
consequence of two concurrent causes, in different fields of knowledge. First, the development 
of theories of cognitive development in the field of child psychology, during the last century, that 
described a rather fixed sequence of functional acquisitions from birth onwards, during typical 
development. This brought forward the underlying idea that both the sequence and timing of 
acquisition were rather stable and culture-independent, at least in the first phases of development. 
A revision of the literature on these topics is outside the scope of this review: the readers can 
refer to the seminal works of leaders in the field, like Jean Piaget and Lev Semënovič Vygotskij. 
Second, in the emerging field of neuroscience, most data on brain development were from 
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histology, while physiological recordings were limited to certain ages 
and were mostly not intended to detect lifelong changes. This had the 
consequence of transmitting the idea that fixed steps of structural and 
functional development are reached at precise times, with an invariant 
sequence and limited variability in timing. Some notable exceptions 
included the studies on plasticity of the visual cortex, that led David 
Hubel and Torsten Wiesel to share the Nobel prize in 1991. However, 
technical advances like functional neuroimaging and powerful 
electrophysiological registration, coupled to the enhanced information 
processing and miniaturization of devices, led in the last three decades 
to a paradigm shift in neurosciences. This happened for the inspiring 
works of Penfield on cortical registrations (Penfield and Boldrey, 1937; 
Penfield and Jasper, 1954), leading to the definition of brain functional 
maps (the so-called ‘homunculus’), that now appear more and more 
plastic even in adults. It is becoming increasingly clear that any 
function of the brain emerges from a complex network of interactions 
between gene expression and environmental inputs, at the micro- and 
macro-scale. Under usual circumstances, moving from one step to the 
other occurs along a phylogenetically defined best-fit pathway, 
common to most mammals, that goes from sensory-motor to social 
and cognitive development, linked to the maturation of specific brain 
areas and networks. As such, any anomaly may hamper the typical 
developmental scheme (see Figure  1) and triggers a wealth of 
downstream effects aimed at fixing the path, with outcomes that may 
be fitting or not.

However, during the developmental path (summarized in Table 1) 
some critical periods of particular sensitivity and plasticity may 
be delimited, which span through infancy (for example: language 
acquisition) and extend to adolescence, in particular for some 
functions like memory and social stress management (Fuhrmann 
et al., 2015). Actually, time is a critical factor in development, since the 
susceptibility to some influences may dramatically vary, as well as the 
consequences at different time frames, including biochemical, 
electrical, genomic and epigenetic mechanisms, up to the effects at the 
level of development of the organism, which may be lifelong (Boyce 
et al., 2020).

Here we review the recent literature on the development of the 
human brain and its susceptibility to both negative and positive 
environmental influences. A search on PubMed was done on March 
24, 2023 with the following terms: BRAIN and PLASTICITY and 
CHILD and DEVELOPMENT, in any field, with no filters for 
language or year of publication: 1705 papers were retrieved. By 
applying the filters: Meta-Analysis, Review and Systematic Review 
573 papers were excluded to give 1,132 papers. The goal was to focus 
on healthy brain development, hence abstracts were read and 
evaluated to exclude papers exclusively or mainly related to Autism 
(n = 75), other diseases (n = 376) or out of focus, including studies 
done on cells or animals, or retracted studies (n = 311). The resulting 
370 articles were evaluated, sorting out those describing studies on 
the morphological and functional normal development of the brain, 
stress effects on the brain and music training effects on the brain. 
Articles related to second language learning or other manipulations 
were excluded, as well as comment articles or introduction to issues, 
or duplicate publications (same authors, title or content, also in 
different languages). The 125 resulting relevant articles are 
reviewed here.

2. Morphological and functional 
development of the brain

2.1. Structural changes across development

A large longitudinal study addressed the question of whether 
cognitive improvement preceded, accompanied or followed the 
changes in the thickness and surface area of the cortex from infancy 
to adulthood, when an association between cortical measurements 
and cognitive performance is apparent: being the rate of change at 
each measurement predictive of subsequent changes, it was concluded 
that structural changes in the cortex are related to cognitive 
performance and vice-versa, without a clear sequence in any measure 
(Estrada et al., 2019). Cortical thickness has been also specifically 

FIGURE 1

The timeline shows some acquisitions during typical development. EEG, electroencephalographic; EM, embryonic month; EW, embryonic week; PM, 
postnatal month; Yrs, years.
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linked to different neurodevelopmental and psychiatric disorders 
(Patel et al., 2021).

Normative structural data in the first 6 years of life highlight a 
generalized thinning of cortex, with the exception of the occipital 
areas, which first decrease and then become thicker (Remer et al., 
2017). Cortical thinning is mostly related to pyramidal neurons, 

astrocyte and microglia marker genes (Shin et al., 2018). Also, during 
the first 5 years of life, genes in cortical neurons change dramatically 
their methylation status, while later changes are much reduced (Price 
et al., 2019).

Structural maturation of the frontal cortex, crucial for executive 
functions, requires a prolonged postnatal development, which involves 

TABLE 1 Summary of the main developmental steps during infancy.

Age Stage of 
development

Main changes Developmental abilities

Prenatal 

period

Fetal development Structural features of the brain

Neurons and synapses start to mature from the spinal cord

Gyri and sulci formation

First synapses and myelination

 - First movement of the fetus

 - Sensory development of the fetus

First two 

years

Sensory-motor 

stage

Gradual development of prefrontal cortex and cerebellum

Fusiform gyrus (visual attention)

Myelination increase

Visual/auditory cortex

Increased brain connectivity

Experience dependent synapse formation

0–3 months

 - Development of visual and sound perception: turns head toward 

speakers and follows face

 - Emerging head control

 - More controlled movements (hands in the middle line)

 - Looks at adult face/Respond to facial expression

 - Smile at response

Continue development of motor cortex

Visual/auditory cortex

Experience-dependent synapse formation

3–6 months

 - When pulled to sitting, holds head in line with body

 - Reaches side position

 - Mouths toys

 - Reaches and grasps toys

 - Looks toward noises

 - Smiles in response to speakers

Connectivity between the amygdala and bilateral anterior 

insula (fear expression); experience dependent synapse 

formation

6–9 months

 - Sits alone and extends arm if falling to the side

 - Crawls forward on belly

 - Picks up object easily and transfers them from hand to hand

 - Expresses emotional states

 - Responds differently to caregivers and strangers

 - Looks at objects and family members when named

 - Imitates facial expressions, actions and sounds

 - Angular Gyrus/Broca area maturation 9–12 months

 - Cruises holding on the furniture

 - Stands alone momentarily

 - Imitates actions (claps hands and waves on command)

 - Turns when called by name

 - Gives objects by request

 - Expresses emotions and affections

 - Articulates most speech sounds

 - Angular Gyrus/Broca area refinement (receptive language 

and speech production)

12–24 months

 - Walks forward and backwards

 - Walks up and down stairs with assistance

 - Demonstrates use of everyday items

 - Language fast development

 - Plays alone and with peers

2–7 years Pre-operational 

stage

 - Synaptic density in the prefrontal cortex reaches its peak

 - Frontal and temporal lobes (executive function and 

emotional regulation)

 - Language improvement

 - Increased cognitive abilities

 - Uses symbols in play and pretending

 - Executive functions (attention control, memory self-regulation, 

emotional regulation)
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also the migration and integration of newly formed inhibitory 
interneurons (Paredes et al., 2016). Interestingly, inhibitory control 
training in children shows larger effects that in adolescent, both on the 
efficiency of behavioral control and in the structure of some 
subdivisions of the inferior frontal gyrus in the prefrontal cortex 
(Delalande et al., 2020). Maturation of cortical circuits are also echoed 
by biochemical fingerprinting in specific cell types. Neural cell 
adhesion molecule (NCAM) isoforms are implicated in cell migration, 
axonal growth and synaptic plasticity, besides schizophrenia. As 
determined in post-mortem samples, they peak at different times 
during development in the various areas, from fetal/early infancy to 
late adolescence, supporting specific roles in neural circuitry 
formation, emerging at precise developmental timepoints (Cox et al., 
2009). Also, connections between areas mature with time: for example, 
at 9 months the connections over longer distance are emerging, while 
local network connectivity decreases (Damaraju et  al., 2014). 
Throughout development, structural and functional connectivity 
develop with non-linear trajectories, which also differ for the various 
areas, starting in utero and extending to late adolescence (Vandewouw 
et al., 2021). Increased connectivity boosts the emergence of executive 
and cognitive functions, with a differential contribution of the 
striatum, which improves cognitive functions in childhood through 
increase in the cortico-cortical connections, while its effects on the 
executive functions appear less age-related (Darki et al., 2020). During 
adolescence, myelin microstructure refines to increase the speed of 
electrical signal transmission, at the expenses of diminished plasticity, 
and mature first in sensorimotor areas and then in associative areas 
(Baum et al., 2022).

2.2. Development of sensory-motor 
functions

In the striate cortex, functional plasticity mirrors the number of 
synapses that peaks in the first year of age and is rapidly refined and 
reduced in the subsequent pre-school years (Huttenlocher and de 
Courten, 1987). Early imaging studies reported a decrease in grey 
matter of frontal and parietal cortices during adolescence (Jernigan 
et al., 1991), while enzymes related to cholinergic and glutamatergic 
neurotransmission vary across the entire lifespan, in specific areas 
(Court et al., 1993). Notably GABA-ergic neurotransmission show a 
protracted period of postnatal refinement, spanning the first years of 
life and possibly accounting for the protracted plasticity of visual 
areas, which allows therapeutic interventions (Murphy et al., 2005).

Also, in the primary motor cortex GABAergic interneurons 
mature after childhood, fostering plasticity and motor learning 
(Walther et al., 2009). Contrary to findings in monkeys, in humans the 
corticospinal projections start connecting with spinal cord at 24 post-
conception weeks, between 2 and 4 postnatal months the spontaneous 
activity becomes more coordinated between limbs, yet functional 
control of distal effectors is reached much later, between 6 and 
12 months of age, to support goal-directed movements (Eyre et al., 
2000; Kanemaru et al., 2012).

Movement of the hand requires the identification of targets, which 
is usually based on vision: already 2 days after birth, newborns may 
be trained to discriminate kinematic patterns of biological movement, 
characterized by subsequent acceleration/deceleration, even if they 
spontaneously do not (Craighero et al., 2020). Already at 5–6 months, 

the movement of the hand is typically directed to a person or to an 
object: this specificity is missing in children not sharing typical 
developmental paths (Ouss et al., 2018). Sensorimotor coordination 
accuracy improves in primary school children while sensorimotor 
integration relies on subcortical circuits maturing at a later stage, 
towards adulthood (Savion-Lemieux et al., 2009). On the other hand, 
in children and adults, observation of an action activates the same 
mirror-neurons system (premotor cortex-inferior frontal gyrus and 
posterior parietal lobe), but with a more widespread and more 
bilateral activation in children than in adults (Biagi et  al., 2016). 
Human movement develops through the progressive control of tools 
use, which requires a complex dynamic between body size 
representation and sensory inputs, so that only in late puberty the 
body representation acquires adult features and may rely on 
proprioception instead of visual perception (Martel et al., 2021). Of 
note, children do not adapt as adults to tactile stimuli, until 8–10 years 
of age, suggesting a different sensory experience in addition to a 
different stimulus processing (Domenici et al., 2022).

Expert visual processing of face is lateralized to the right 
hemisphere and requires visual input during infancy to become 
fully operational, suggesting protracted need for stimulation (Le 
Grand et  al., 2003), yet face specialization starts before reading 
acquisition an impinges on the decreased cortical responses to the 
other stimuli (Cantlon et al., 2011), as well as on higher glutamate 
relative to GABA levels in the inferior frontal gyrus (Cohen Kadosh 
et al., 2015). Similarly, movement-directed visual attentional shifts 
for actions appears already at 7 months, suggesting concomitant 
maturation of visual and attentional systems (Daum et al., 2016). 
Later on, during school-age period, the increase in activity of the 
adrenal gland with dehydroepiandrosterone (DHEA) surge, 
promotes the concomitant maturation of amygdala with occipital 
lobe, related to visual awareness, parietal lobe, related to visuomotor 
abilities, and frontal lobe, related to attention (Nguyen et al., 2016). 
Apparently, DHEA in childhood helps optimization of attentional 
and working memory functions but may impair the processing of 
spatial cues by reducing the connections from hippocampus to 
cortex (Nguyen et al., 2017).

Functional lateralization requires the maturation of corpus 
callosum, which has a critical refinement period after 6 years of age, 
thus affecting language transfer between the two hemispheres 
(Westerhausen et al., 2011). Myelinization is indeed critical for full 
functional maturation, but while myelin turnover is fast, the number 
of oligodendrocytes in the corpus callosum is stable from childhood, 
with a yearly exchange rate of only 1 out of 300 (Yeung et al., 2014). 
Prolonged maturation and myelin plasticity appear related also to 
increased functional cognitive ability already by 3 years of age (Deoni 
et al., 2016). In the first 2 years of life myelination and microstructural 
properties of glia appear related to cognitive abilities, with protracted 
development associated to better performance in cognitive and 
language tasks (Girault et al., 2019). Also, cortical thickness in the first 
2 years appears related to cognitive abilities, yet the contribution of 
gestational age and maternal education may overcome structural 
differences (Girault et al., 2020).

More complex sensory functions, including multisensory 
integration, appear subsequently after middle childhood (Ernst, 2008), 
and their fine-tuning appears complete by 14 years (Brandwein et al., 
2011). Cognitive mathematical abilities may be related to white matter 
in the left parietal lobe (Matejko et al., 2013) and better outcomes of 
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intense math training rely on left perisylvian tracts plasticity (Jolles 
et al., 2016a), with a specific effect on connectivity of the intraparietal 
sulcus, but not of the angular gyrus, with hippocampus, lateral 
prefrontal and ventral temporo-occipital cortex (Jolles et al., 2016b). 
The intraparietal sulcus content in glutamate and GABA appears 
developmentally linked to math abilities (Zacharopoulos et al., 2021). 
Similarly, abacus training in primary school children improves 
performance and executive functions by modulating frontoparietal 
activation (Wang et al., 2017), and appears linked to the volume of 
fusiform gray matter (Zhou et al., 2022). In the first 2 years of primary 
school, better outcomes in mathematical abilities are associated with 
specific changes in some cortical areas, in detail: arithmetic abilities 
are linked to folding change in the right intraparietal sulcus, and 
thickness changes in right temporal lobe and left middle occipital 
gyrus, while visuospatial abilities are linked to right superior parietal 
thickness, and other frontal areas in the right hemisphere (Kuhl et al., 
2020). However, complex visuospatial tasks elicit strong bilateral 
parietal activation in both adults and children from age 5 onwards 
(Ferrara et al., 2021).

Quantitative differences in cognitive abilities, operationally 
defined as a higher IQ, appear linked to a prolonged sensitivity to 
environmental influences (Brant et al., 2013) while its relationships to 
cortical thinning and surface area in late childhood appears 
controversial (Burgaleta et al., 2014; Schnack et al., 2015). Functional 
control for cognitive functions emerges at a later time, for example 
executive attention is linked to planning and inhibitory control, and 
allows the development of self-regulation (Rueda et  al., 2005). 
Functional plasticity appears high in late childhood also for memory 
function (Brehmer et  al., 2007). Emotional regulation steers 
impulsivity in the context of prospective thinking: it appears in late 
childhood and is related to insula thickness (Churchwell and 
Yurgelun-Todd, 2013). As outlined above, amygdala development is 
crucial in managing the emotional reactivity: it is noteworthy that the 
paralaminar nuclei of amygdala host a population of immature cells 
that slowly develops through childhood and adolescence into 
excitatory neurons but still persists even in old age, suggesting a 
protracted plasticity in this area (Sorrells et al., 2019).

The developmental trajectory goes through a reduction in 
modularity and local efficiency of brain processing, while increasing 
global efficiency. This increase in the efficiency of global processing, 
linked to functional maturation, initially affects sensorimotor areas. 
At variance, associative and paralimbic areas show a protracted 
plasticity during late childhood, which may account for peripubertal 
behavioral modulation (Khundrakpam et al., 2013). In school-age 
children, enhanced brain modularity may also prepare for disclosing 
effects of physical activity on cognitive and executive functions 
(Chaddock-Heyman et al., 2020).

2.3. Sleep to grow

Already during the first year of life, the pattern of night sleep and 
awakening may predict typical and atypical cognitive trajectories 
(Pisch et al., 2019), while slow waves propagation during the night, 
which depends on brain connectivity, is reduced in toddlers 
compared to older children (Schoch et al., 2018). Also, the decline in 
slow-wave non-REM sleep activity is steeper during adolescence, in 
caudal-rostral direction, suggesting late functional reorganization 

following structural synaptic pruning (Feinberg et  al., 2011). At 
variance, local increase in slow-wave activity over the right parietal 
areas, related to visuomotor-dependent plasticity, is higher in 
children (Wilhelm et al., 2014), as it is the slow-wave increase in left 
frontoparietal areas after working memory training (Pugin et al., 
2015). Around 1 year of age, sleep spindles appear to be related to 
semantic generalization of words (Friedrich et al., 2015), while in 
school-age children the learning-dependent hippocampal activity 
and sleep-related frontal activity do change at a faster rate than in 
adults (Urbain et al., 2016). Children also show the largest overnight 
slope change in slow waves, which may be related to the increased 
plasticity of children brain (Jaramillo et al., 2020). Slow waves are 
generated by corticocortical connections while spindles results from 
thalamocortical activity and in adolescents appear modulated by 
genetic background in posterior areas, while spindles in anterior 
areas are more sensitive to environmental factors (Rusterholz et al., 
2018). Interestingly, the larger modulation of slow-wave activity 
during night in children is not accompanied by the change in 
glutamate/glutamine which is apparent in adults, pointing to different 
biochemical pathways in children (Volk et al., 2019). Another feature 
of human EEG activity is the alpha oscillation, which shows a 
maturation during childhood, most apparent for the aperiodic 
component: this is related to increased thalamocortical connections 
and attentional performance (Tröndle et al., 2022).

3. How environment may interact with 
developmental trajectories

The effect of environment on development can be positive or 
negative from the very beginning of pregnancy throughout postnatal 
life. Among negative environmental regulations with a heavy societal 
impact, the effect of pre-natal alcohol exposure has long been studied 
in both animals and humans. Several studies have documented the 
long-lasting effects of maternal alcohol consumption on both the 
structure and functions of the developing brain and ultimately child 
fitness. Despite the detailed discussion of this topic is outside the 
scope of this Review, we  highlight that early longitudinal studies 
proved the adverse effects of heavy drinking during pregnancy on the 
morpho-functional development, in particular in the parietal cortex 
(Lebel et al., 2012) and in the development of white matter in relation 
to executive functions (Gautam et al., 2014).

Also, other environmental stimuli or their absence may interfere 
with the development of structural features and functional 
acquisitions during postnatal development. In order to develop 
harmonic abilities, the interaction with environment may foster or 
hinder functions after their appearance. As an example, children with 
blind parents normally show the eye contact from birth, which 
usually is a common means of communication, but by age 6 months 
onwards they display progressively less attention to gaze processing, 
even if this is not related to impairments in social or cognitive 
abilities, suggesting that even ‘obvious’ abilities require a strong 
social/environmental input and practice to be  fully operational 
(Senju et al., 2015). Hence, the neuroscientific literature provides 
several lines of evidence that support the steering role of 
environmental stimuli in early development, with durable effects in 
different areas, both anatomical and functional, including cognitive, 
emotional, and social abilities.
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3.1. Case studies

Here we briefly introduce two examples, one of negative (stress) 
and one of positive (music training) environmental influences on the 
development of the brain and its functions, to highlight how much 
we as adults are responsible for the life paths of future generations. In 
order to include articles from different countries, socioeconomical 
status and cultures, we focused on two modulators that were less likely 
linked to these factors. Stressful environmental conditions like low 
socioeconomical status, trauma or neglect share similar characteristics 
among different cultures. Also, music and music training are 
widespread in all cultures, and include learning sensory-motor 
abilities which makes them less dependent on overall cognitive 
abilities or higher socioeconomical status than, for example second 
language training. Thus, music training appears a robust example to 
explore in this review.

3.2. The role of stress

Stress may profoundly impact on neurodevelopmental trajectories, 
at different ages, by means of the different neural, endocrine, 
neuroendocrine, metabolic and immune responses. Notably, the brain 
itself is the target of stress hormones, that shape the brain stress 
response, tuned to plasticity, a double-edged sword that may either 
blunt or enhance adaptive responses, modifying the vulnerability to 
early life stressors. Under this respect, the concept of resilience 
includes the processes leading to positive adaptation to relevant 
traumas or adverse challenges. Early rehabilitation and care, including 
proprioceptive stimulation as sensory-tonic stimulation and kangaroo 
care, coupled to parenting support may influence the development of 
very preterm infants (Guittard et al., 2023), while severe maltreatment 
or abuse impairs functional and structural brain development, thus 
representing a relevant threat for the single person and a significant 
cost for society. Hence, boosting resilient responses in high-risk 
persons may promote neural and neuroendocrine plasticity to 
decrease maladaptive or even psychopathological responses (Cicchetti, 
2010). In the first 2 years of life, elicited imitation task as a tool to 
investigate declarative memory, reveals that neglected children do not 
receive maternal feedback while abused children do, leading to a loss 
of plasticity in neglected children, while increased imitation in abused 
infants possibly leads them to increased cognitive but decreased social 
competence (Cheatham et al., 2010). The brain-derived neurotrophic 
factor (BDNF) is involved in synaptic plasticity and is differentially 
expressed in childhood (Sterner et  al., 2012). Interestingly, the 
exposure to unfavorable environment leads to depression in persons 
carrying the Val66Met BDNF polymorphism (Comasco et al., 2013), 
with Val carriers of the same polymorphism more prone to self-
injurious behavior (Bresin et al., 2013), while childhood abuse in Met 
carriers results in poorer cognitive performance and brain anomalies, 
including larger lateral ventricles and reduced right hippocampus 
(Aas et al., 2013). The same polymorphism appears to impact stress 
experience more at late stages (Lehto et al., 2016). BDNF methylation 
in adolescent brain is related to neighborhood disadvantage and 
thinner lateral orbitofrontal cortex (Wrigglesworth et  al., 2019). 
Children outcome on different measures was linked to parenting 
quality, but also to BDNF status and genes involved in dopamine and 
serotonin neurotransmission, that appear to convey some vulnerability 

to environmental stress, fostering the vision of a continuum of general 
traits to describe the responses to stress, instead of two susceptibility 
traits (e.g., the orchid/dandelion duality) leading to different responses 
(Zhang et  al., 2021). By widening the analysis to the BDNF gene 
network, it appeared that this network interacted with adverse 
prenatal conditions to affect later cognitive development, so that a 
high BDNF network score coupled to high prenatal adversity resulted 
in slower cognitive development and grey matter density in associative 
cortical areas (de Mendonça Filho et al., 2021).

Material hardship linked to poverty may lead to different 
amygdala-prefrontal cortex connectivity in late infancy, and leads to 
reduced amygdala-orbitofrontal cortex connections in adolescents, 
also related to anxiety and depression, indicating some preferential 
windows of plasticity for targeted supporting interventions (Hardi 
et al., 2022).

Low socioeconomic resources may impair visual working 
memory, as a proxy for cognitive abilities, and related brain activity in 
the left frontal cortex of children up to 4 years old (Wijeakumar et al., 
2019). The socioeconomical status may result in differential exposure 
to language or stress, which may be the bases for the differences in 
hippocampus and amygdala seen in socioeconomically disadvantaged 
children, with an additional contribution of age, inducing additional 
differences in the left superior temporal and inferior frontal gyri 
(Noble et al., 2012). Similar reductions in amygdala and hippocampus 
were detected in children experiencing early life stress in the form of 
physical abuse, early neglect or low socioeconomic status (Hanson 
et al., 2015). Child abuse appears also to affect the morphological 
complexity of the prefrontal cortex and to increase recruitment of 
perineuronal networks, mediated by oligodendrocyte precursors, that 
lead to decreased plasticity (Tanti et al., 2022).

A large study confirmed that trauma exposure resulted in 
adolescent thinner superior frontal gyri and right amygdala and larger 
cingulate cortices (Jeong et al., 2021). Child maltreatment results in 
increased Cornu Ammonis (CA) 4 subfield of hippocampus, most 
apparent in males, while larger CA1 is associated with late-onset 
psychopathology, suggesting that maltreatment differentially affects 
hippocampal subfields, which may precede the appearance of 
psychopathology (Whittle et al., 2016). The level of self-perceived 
stress is also associated with smaller hippocampal volume in 
adolescents (Piccolo et  al., 2018), and in a longitudinal study, 
attachment dimensions like anxiety and avoidance were linked to 
larger decreases in prefrontal and anterior temporal cortices in 
adolescent brain (Puhlmann et al., 2023).

In adolescents, post-traumatic stress disorder, as a result of altered 
fear regulation, is linked to decreased grey matter volume in the 
centromedial and basolateral amygdala, whose connectivity with left 
orbitofrontal and subcallosal cortices is increased, while connections 
to the right cingulate and prefrontal cortices appear less strong 
(Aghajani et al., 2016).

Volumetric correlations among different areas indicate that 
prenatal stress but not childhood trauma may de-couple amygdala 
growth from the development of other regions involved in emotional 
processing (Mareckova et  al., 2022). Early childhood deprivation 
induces long-term modifications, apparent in adult white matter 
tracts, in particular of the limbic circuits and long-ranging association 
fibers, while the microstructural organization appears not altered 
(Mackes et  al., 2022). Also, epigenetic changes in some genes 
associated to child abuse may enhance the risk of child depression 
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(Weder et al., 2014), and regions of low methylation differentiated 
children receiving less tactile contact (Moore et  al., 2017). Lastly, 
genome-wide mapping fished out some loci linked to postnatal stress 
and subcortical structures like caudate and accumbens nuclei, which 
have a role in neuronal plasticity and neurodevelopmental disorders, 
however causality remains to be ascertained (Bolhuis et al., 2022).

3.3. Music training – positively steering 
development

Highlights for positive experience-related brain plasticity stem 
from the effects of music training in infancy, because of the worldwide 
diffusion of music across all human cultures, paralleled by a 
widespread training at young age, which is however not diffuse to all 
persons. Because of the multimodal nature and prolonged practice of 
instrument or voice, music training appears well suited to exploit 
plastic capabilities of the brain.

Adult musicians show increased sound discrimination, as a result 
of training. Early music training enhances children performance in 
specific musical skills like melody discrimination (Ireland et al., 2019). 
After 2 years of training in school age children, an improvement in 
tonal discrimination and increased maturity of auditory processing 
are apparent (Habibi et  al., 2016). In 9 to 15 years old trained or 
untrained subjects, cognitive flexibility was linked to sound 
discrimination performance, which was more apparent in music-
trained group (Saarikivi et al., 2016).

Instrument practice allows a regional-specific increase in the 
organization of the pyramidal tract already in childhood (Bengtsson 
et  al., 2005) and extend to cognitive abilities underlying musical 
training, initially on more closely related fields (Schlaug et al., 2005). 
Long lasting effects on motor performance appear stronger if the 
music practice starts before age seven, even if the amount of training 
was similar, pointing to the existence of a sensitive period in infancy 
(Penhune et al., 2005).

Interestingly, even relatively a short period (9 months) of music 
training may produce benefits for pitch processing in music but also 
in language, showing that cognitive benefits extend over different 
cognitive domains, by modifying their neural substrates and related 
pattern of brain activity (Moreno et al., 2009). Musical and linguistic 
syntactic abilities may be learned through similar processes in early 
infancy and about age 4–5, music training affects timbre identification 
and improve language abilities, like morphologic rule formation and 
memory for words, showing that training effects extend beyond the 
music domain (Marin, 2009). Notably, increased right brain activity 
due to human voice processing is related to intelligence in toddlers 
and school-age children (An et al., 2020).

Preschool children benefit even from short (20 days) music 
training, whose effects spill over to verbal intelligence and executive 
function tasks (Moreno et al., 2011). Over 2 years of training around 
8 years old, speech segmentation skills improve more than in 
untrained children suggesting therapeutic strategies for children with 
language impairments and related learning difficulties (François 
et al., 2013).

In preschool children, music or second language training induce 
long-lasting improvement in processing of the trained sounds and 
increase suppression of untrained, non-relevant sounds, as shown by 
event-related potentials (Moreno et al., 2015).

By exploring the brain structure, aptitude to music in 
school-age children is related to pre-training structural 
organization of the right corticospinal tract while the corpus 
callosum structure appears more linked to tonal ability (Zuk 
et al., 2022).

Increased pitch discrimination is related to larger auditory regions 
in both untrained and music-trained adults and children, while in 
musicians it is also associated to larger inferior frontal gyrus (Palomar-
García et al., 2020).

After only 15 months of practice, music training may induce 
structural changes in the brain, directly related to improvements in 
auditory and motor skills (Hyde et al., 2009). Apparently, starting 
musical training before age 7 changes white matter connectivity, more 
robustly in the isthmus of corpus callosum: therein, fractional 
anisotropy, related to myelinization, is linked to both age of starting 
the training and sensorimotor synchronization performance (Steele 
et al., 2013). On the other hand, the benefits of music appear to extend 
also to prenatal age, since in preterm infants exposed to musicotherapy, 
the maturation of white matter improved in acoustic radiations, 
claustrum and uncinate fasciculum, and also amygdala volumes 
increased, suggesting improved acoustic and emotional processing, 
compared to non-exposed preterm and full-term babies (Sa de 
Almeida et al., 2020). The age of onset is critical for structural changes 
to appear: focusing on exposure to a second language and music, it 
emerged that the arcuate fasciculus, which participates in both music 
and language activities by linking areas of the dorsal auditory pathway, 
is sensitive to second language in the left hemisphere, while in the 
right one it changes according to music exposure (Vaquero et al., 
2020). Hence, the structure of different areas is selectively modified 
according to the type of experience mostly in early infancy.

4. Development is socially modulated

A relevant, yet underappreciated, issue in developmental 
neuroscience is the social nature of our species. In a study involving 
both parents and children, focused on the intergenerational 
transmission of sociality, the parents’ limbic, embodied simulation 
and mentalizing networks appeared linked to the use of strategies for 
children’s emotion regulation, suggesting a strong link between 
parent–child interactions and later child social life (Abraham et al., 
2016). However maternal influence starts prenatally, since maternal 
stress (e.g., pandemic-related) affects 3 months infants’ regulatory 
capacity (Provenzi et al., 2021), and also extends to calibration of 
growth rate and timing of sexual development, by affecting postnatal 
testosterone levels in infants (Corpuz, 2021). Maternal depression 
during pregnancy appears to influence the development of amygdala, 
by interacting with the canonical transforming growth factor-beta 
(TGF-β) signaling pathway (Qiu et al., 2021).

In school-age children, parental praise as a positive parenting style 
may result in increased openness to experiences and carefulness, 
together with increase in gray matter in the posterior insula, which is 
involved in empathy modulation due to the connections with 
amygdala (Matsudaira et  al., 2016). By using fMRI-based 
neurofeedback, it was possible to demonstrate that both children and 
adolescents can learn to upregulate amygdala function, suggesting a 
possible tool to act on regulation of emotional reactivity (Cohen 
Kadosh et al., 2016).
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5. Conclusion

The possibility of non-invasive exploration of the living brain also 
in children, emerged in the last years, led to a dramatic increase in our 
understanding of development of the brain and its functions, in the 
context of the growing body. The development of cognitive, 
emotional, and social behaviors appears more along a continuum 
than limited to narrow developmental windows, while certain 
attainments may be specific to some developmental periods (Guyer 
et al., 2018). Out of the laboratory, the increasing knowledge of the 
developmental processes led to a paradigm shift in the approach to 
children, in the context of parental relationships and pedagogical 
approaches, up to inform the political processes. Actually, sharing 
knowledge accumulating through dedicated studies on brain 
development and the increasing evidence about the long-lasting 
functional outcome of environmental modifications, may serve to 
raise consciousness about the actions to undertake to provide support 
and care to fragile children. While awareness of environmental risks 
for development and overall health is increasing (Chesney and 
Duderstadt, 2022), a widespread knowledge of the risks and 
possibilities for external actions to drive children development is still 
on the way. The possibility of early detection of child needs even with 
primary pediatric care and support to the family increases the chances 
of steering cognitive, emotional and social development towards 
positive outcomes (Williams and Lerner, 2019). Addressing adverse 
childhood experiences requires fostering health and educational 
services to promote the foundation of lifelong health, with the 
necessary inclusion of family (Bethell et al., 2017). Assistance for 
families, starting from maternal health, and for communities will 
provide supporting relationships to lay the foundation of resilience 
throughout life (Traub and Boynton-Jarrett, 2017). This should 
be declined across different cultures and is particularly relevant for 
children with additional requirements, like neurodevelopmental 
disorders (Bannink Mbazzi and Kawesa, 2022). Including constructs 
like ‘neuroplasticity’ in the educational trajectories led to an 
empowerment of the main actors, children, parents and teachers by 
fostering executive functions (Choudhury and Wannyn, 2022). The 
contribution of widespread schooling on the social construction of 
cognition and neurocognitive development has long been appreciated 
(Baker et al., 2012). In these last years, programs have been designed 
to support selective attention in children from low socioeconomic 
status with some genotypes which may represent a risk factor (Isbell 
et al., 2017). However, cognitive development is only one side of the 
coin: the role of social regulation of development, starting from 
parents to the group of peers needs to be recognized and actively 

included in political long-sighted plans. More can be done on the 
bases of the recent data on the involvement of social processes in the 
development of self-regulatory processes, to improve both personal 
development and society.
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