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Abstract: The integration of medical imaging and artificial intelligence (AI) has revolutionized interventional therapy of 
valvular heart diseases (VHD), owing to rapid development in multimodality imaging and healthcare big data. Medical imaging 
techniques, such as echocardiography, cardiovascular magnetic resonance (CMR) and computed tomography (CT), play an 
irreplaceable role in the whole process of pre-, intra- and post-procedural intervention of VHD. Different imaging techniques 
have unique advantages in different stages of interventional therapy. Therefore, single imaging technique can’t fully meet the 
requirements of complicated clinical scenarios. More importantly, a single intraoperative image provides only limited vision of 
the surgical field, which could be a potential source for unsatisfactory prognosis. Besides, the non-negligible inter- and intra-
observer variability limits the precise quantification of heart valve structure and function in daily clinical practice. With the 
help of analysis clustered and regressed by big data and exponential growth in computing power, AI broken grounds in the 
interventional therapy of VHD, including preoperative planning, intraoperative navigation, and postoperative follow-up. This 
article reviews the state-of-the-art progress and directions in the application of AI for medical imaging in the interventional 
therapy of VHD. 
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The incidence rate of VHD correlates nonlinearly 
with the growth of age. In population younger 
than 65 years old, the incidence rate is less than 

2%, whereas in population aged between 65 to 75, the 
incidence rate has risen to 8.5%. The incidence rate has 
spiked to 13.2% in population older than 75 years [1]. 
Focusing on the treatment of VHD for elders with high 
surgery risk, and contraindications for traditional open-
heart surgery, the area of transcatheter interventional 
therapy has made remarkable achievements with 

advantages such as minimal invasiveness, lowered risk, 
and quick post-operative recovery. This is largely due to 
the important role medical imaging plays in the process 
of preoperative planning, intraoperative guidance, and 
postoperative follow-up of the intervention therapy. 
However, observer variability in imaging evaluation 
of cardiac structure and function still exists. In the 
meantime, the surgeon’s need for more accurate imaging 
continuously grows with the updating and innovating 
of interventional devices and the desire to expand 
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indications for interventional procedures, especially 
when individual clinical case gets complicated. AI, with 
its strong capability to process massive data and to self-
correct, has already shown great promise in improving 
efficiency and reproducibility in cardiac function 
assessment [2,3]. With the continuous development 
of deep learning (DL) algorithm, AI is becoming 

increasingly stronger and will serve as a powerful tool 
in the field of medical imaging in the future. Here we 
review the current status of AI in the management of 
VHD, especially focusing on the accurate diagnosis and 
prediction that medical imaging provides in surgical 
intervention (Fig. 1).

Figure 1  Overview of AI-assisted medical imaging in interventional management of VHD. Current AI-assisted medical imaging in interventional 
management of VHD mainly focuses on disease diagnosis, pre-operative planning, intra-operative navigation, prognosis analysis and risk stratification. 
Diseases diagnoses are mainly based on aortic stenosis and mitral regurgitation. Pre-operative planning mainly includes plane positioning, simulating 
valve implantation, and simulating MC implantation. Intra-operative navigation focuses on image fusion, lesion localization, and three-dimensional model 
reconstruction. 

AI-assisted Medical Imaging for VHD Interventional 
Management

Diagnosis
Accurate diagnosis of VHD is essential to clinical 

decision-making. At present, the commonly used imaging 
diagnosis methods for VHD include echocardiography, 
CMR, CT, etc. Many operation steps in the imaging 
process are laborious and repetitive. This situation can be 
changed with advances in AI, which can automatically 
segment the anatomical structure of the heart, extract 
important phenotypic features related to interventional 
diagnosis and treatment, and visualize the disease 
process. The incorporation of AI into medical imaging 
will greatly improve the efficiency of the measurement 

process.
 Aortic Stenosis Accurate diagnosis of aortic 

stenosis (AS) is crucial to the clinical decision of 
valve replacement. Different machine learning (ML) 
algorithms have been developed for the diagnosis of 
specific VHD, including least absolute shrinkage and 
selection operator (LASSO), random forests (RFs), 
eXtreme Gradient Boosting (XGBoost), etc. Kang et 
al. [4] developed a prediction model to diagnose severe 
aortic stenosis with three different ML algorithms 
based on the radiometry characteristics of 408 patients 
undergoing cardiac CT scans and finally realized the 
accurate recognition of severe AS. The results showed 
that the radiomic prediction model derived from LASSO, 
RFs and XGBoost had excellent performance. The 
combined model composed of LASSO with feature 
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selection and XGBoost with model classification showed 
the highest c index of 0.921 in the validation set. Compared 
to prediction models based on traditional aortic valve 
calcium volumes and scores, radiomics prediction models 
seemed to present higher discrimination abilities for severe 
aortic stenosis, although statistical significance of the 
difference was lacking. What’s more, the phenotype of 
aortic stenosis could also be accurately identified through 
topological data analysis (TDA). Sengupta et al. [5]  
conducted similarity analysis on patients and used the 
AS phenotype obtained from unsupervised clustering 
learning as labels to develop an ML classifier, which 
was used to identify AS of different severity levels. Its 
diagnostic performance was validated by independent 
markers of disease severity obtained from the gold 
standard. The study showed that compared with the 
traditional nursing classification standard, the ML-based 
approach showed higher discrimination ability for AS 
with different severity, and its values of corresponding 
pathophysiology markers were consistent with that 
of the gold standard. Yang et al. [6] developed a DL 
framework to automatically analyze Doppler information 
obtained from echocardiography videos for the first 
time, achieving the diagnosis of VHD and quantifying its 
disease severity. The results showed that the diagnostic 
accuracy of this method for VHD was high, equivalent 
to the performance of experienced experts. It’s worth 
mentioning that the area under the curve of AS obtained 
in the prospective validation set was 0.97. Meanwhile, in 
assessing the severity of VHD, the consistency between 
the DL algorithm and a doctor is comparable to that 
between two experienced doctors. 

Mitral Regurgitation For patients with mitral 
regurgitation (MR), accurate evaluation of regurgitation 
severity and correct identification of etiology by 
multimodal imaging is also very important. Recent 
progress in ML methods brings the hope of AI-
assisted automated medical imaging in evaluating MR. 
Moghaddasi et al. [7] used the texture analysis method to 
extract image features from video echocardiograms of 102 
patients, and accurately identified MR severity through 
support vector machine(SVM), linear discriminant 
analysis, and template matching technology classifiers. 
The results showed that the accuracy of the ML method 
in identifying patients with normal, mild, moderate, 
and severe MR was 99.52%, 99.38%, 99.31%, and 
99.59%, respectively. Pimor et al. [8] used a hierarchical 
clustering algorithm based on echocardiography 
videos and clinical information from 122 patients 
to divide MR patients into three phenotypic groups 
with different characteristics and prognoses, helping 
clinical doctors identify high-risk patients in the early 
stage and achieve personalized and refined disease 

management. By means of principal component analysis 
and unsupervised clustering algorithm, Bartko et al. [9] 
divided 383 patients with stable chronic heart failure 
and reduced ejection fraction into four main phenotypic 
groups according to the 32 morphological variables 
recommended by the guidelines. The morphological 
and functional characteristics of secondary MR and its 
impact on prognosis were explored. The results indicated 
that MR in HFrEF is not only related to changes in LV 
morphology, but also to LA and mitral annulus structure, 
and there is a strong correlation between significant 
reduction in left ventricular volume and increased 
mortality.

The power of non-invasive imaging, a traditional 
visual tool for disease diagnosis, can be increased 
exponentially when organically combined with AI, which 
can improve accuracy and efficiency, and is expected to 
achieve individualized, accurate and efficient intelligent 
medical treatment of VHD.

 Preoperative planning 
When developing treatment strategies for patients 

with VHD, the medical team often faces the dilemma of 
risk aversion versus therapeutic gain. When traditional 
open-heart surgery is deemed unfavorable for patients, 
transcatheter may be the only choice of plan. To ensure 
optimal outcomes for patients, pre-operative planning 
is of vital importance, in which AI-assisted medical 
imaging may serve as a powerful tool.

Transcatheter Aortic Valve Replacement Accurate 
locating the aortic valve ring plane is a crucial step in 
determining the valve size before transcatheter aortic 
valve replacement (TAVR). Contrast-enhanced coronary 
computed tomography angiography (CCTA) is a key 
imaging technique for quantifying valve structure 
in preoperative planning. Due to the complexity of 
aortic valve anatomy and the presence of artifacts in 
CCTA, locating critical sections is a time-consuming 
and challenging task. Theriault-Lauzier et al. [10] first 
applied the recursive convolutional neural network 
algorithm to the aortic valve plane locating task based 
on 1007 ECG-gated CT volume data from 94 patients 
with degenerative severe AS with an aim to accurately 
infer the position of the annular aortic valve plane and 
the direction of the valve. The results showed that the 
proposed method, enabled automatic location of the 
aortic valve plane with accuracy comparable to that of 
experts. Besides, this approach was independent of the 
unique anatomical characteristics of the aortic valve and 
could be extended to other anatomical structures. Al et 
al. [11] adopted regression tree ML algorithm to train 
the CCTA images from 31 cases of transcatheter aortic 
valve implantation (TAVI) and 40 patients without TAVI 
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with an aim to automatically locate 8 important anatomic 
markers of aortic valve. The results showed that this 
method can facilitate preoperative surgical planning for 

TAVI and guide physicians to quickly obtain aortic valve 
images for clinical analysis. 

Table 1 AI-assisted medical imaging in diagnosis of VHD

Study VHD Task AI methods Samples Performance metrics

Kang, N. G. et al. [4](2021) AS Diagnosed severe AS LASSO; 
RFs; 
XGBoost

Training: 312 subjects 
Testing: 96 subjects

AUC: 0.921 (LASSO & XGBoost)

Sengupta, P. P. et al. [5](2021) AS Distinguished AS phenotypes TDA; ML 1964 subjects AUC: 0.988 
Accuracy (%): 94.3 
Precision (%): 91.3 
Recall (%): 95.5

Yang, F. et al. [6](2014) AS Differential diagnosis with other 
diseases

ML Training: 1335 subjects 
Validation: 311 subjects
Testing: 434 subjects

AUC: 0.97 
Accuracy (%): 94 
Sensitivity (%): 90 
Specificity (%): 94

Moghaddasi, H. et al. [7](2016) MR Detected normal, mild, moderate 
and severe MR subjects

Textural 
analysis; 
SVM; 
LDA; TM

5004 images Accuracy (%): 99.45 (SVM) 
Accuracy (%): 95.72 (LDA,NN)  
Accuracy (%): 95 (TM)
Sensitivity (%): 99.38 
Specificity (%): 99.63

Pimor, A. et al. [8](2019) MR Distinguished MR phenotypes DL 122 subjects HR: 3.57 (1.72-7.44)

Bartko, P. E. et al. [9](2021) MR Explored the morphological and 
Functional characteristics of 
secondary MR

PC; cluster 
analysis

383 subjects HR: 2.18 (clusters3)

AS, aortic stenosis; MR, mitral regurgitation; LASSO, least absolute shrinkage and selection operator; RFs, random forest; XGBoost, extreme gradient 
boosting; TDA, topological data analysis; ML, machine learning; SVM, support vector machine; LDA, linear discriminant analysis; TM, template matching 
techniques; DL, deep learning; PC, principal component; AUC, area under curve; NN, neural network; HR, hazard ratio.

A number of studies have adopted the finite element 
(FE) modeling technology based on the anatomical 
structure of lesions to achieve simulated implantation of 
interventional valves, which has important clinical value 
in determining the size and location of implanted valves, 
improving the rationality and efficiency of preoperative 
planning. However, in patients with unclear aortic root 
dimensions, the selection and positioning of implanted 
valves are challenging. To address this clinical problem, 
Rocatello et al. [12] used FE modeling technology to 
predict the maximum aortic valve contact pressure and 
contact pressure index based on the CT images of 62 
patients with severe AS. They further verified it by using 
the data of postoperative echocardiography, angiography 
and electrocardiogram to determine optimal valve size 
and implantation position. The results showed that the 
method had good consistency. At the same time, the 
method could help estimate the optimal implant size and 
location for patients with unclear aortic root dimensions, 
providing effective technical support for personalized 
surgical decisions. De Jaegere et al. [13] and Auricchio 
et al. [14] relied on FE modeling technology to simulate 
the TAVR surgical process, conduct preoperative 

planning and evaluate the severity of postoperative aortic 
valve regurgitation, which helped them determine the 
appropriate implant size and the optimal implantation 
depth. Astudillo et al. [15] used deep convolutional 
neural network (DCNN) and image post-processing 
techniques to automatically predict the circumference 
and area of the aortic ring and calculate the size of the 
prosthesis to be implanted based on the preoperative CT 
images of 473 patients with TAVI. The results showed 
that the difference between AI prediction results and 
manual measurements was similar to the difference 
between human observers, and the analysis time was less 
than 1 s. Therefore, this method can help practitioners 
automatically and accurately select the size of TAVI 
implants with negligible time, improving surgical 
efficiency, and achieving repeatability in the analysis of 
results.

Transcatheter Mitral Valve Replacement Quantitative 
analysis of the valve structures is critical to transcatheter 
mitral  valve replacement (TMVR), but manual 
analysis is time-consuming and labor-intensive. To 
tackle this clinical issue, Astudillo et al. [16] used the 
multi-detector row computed tomography (MDCT) 
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images of 71 MR patients to develop an algorithm for 
automatic detection of the mitral valve (MV) annulus, 
successfully realizing the measurement of multiple 
biological parameters. Compared with manual analysis 
(25 minutes), the analysis time of a single patient was 
only 1 s, which greatly sped up the process. Oguz et 
al. [17] analyzed the volume data set based on three-
dimensional transesophageal echocardiography (3D 
TEE) examination in 59 patients undergoing TMVR 
with the aid of 3D modeling software (MV Navigator), 
and then they explored the correlation between 3D TEE 
parameters and MR reduction. The results showed that a 
second operation only occurred in patients with poor 3D 
TEE anatomical display, confirming a good correlation 
between 3D TEE parameters and MR reduction, which 
is helpful for early screening of patients suitable for 
TMVR surgery. Assessing the valve's interaction with the 
primary mitral annulus and surrounding cardiac cavity 
structures, as well as selecting the appropriate valve size 
and implantation depth, is critical to improving TMVR 
outcomes and reducing complications. Guerrero et al. [18]  
generated three-dimension (3D) heart models based on 
preoperative CT images of patients with severe MV 
and used FE modeling to perform virtual implantation 
of the valves at different depths, which can quantify 
left ventricular outflow tract (LVOT) size and predict 
whether LVOT obstruction would occur. The study 
demonstrated that the models can be used to predict the 
risk of TMVR-induced LVOT obstruction, confirming 
the dynamic interaction between the implanted device 
and the surrounding tissues. At the same time, this 
study compared and analyzed the effect of valve 
implantation with different valve sizes, different mitral 
ring implantation depths, different angles and different 
contraction periods, and verified the reliability of AI in 
evaluating the risk of LVOT obstruction [19,20].

Transcatheter Edge-to-edge Repair Patients with 
severe MR are at high risk of surgical treatment, and 
transcatheter edge-to-edge repair (TEER) is the preferred 
treatment option. 

The MitraClip (MC) device is the most commonly 
used therapeutic instrument in the TEER field, and 
the FE modeling technique is often used to quantify 
its biomechanical effects. Kong et al. [21] used FE 
modeling technology to simulate MC device for TEER 
treatment, and evaluated its biomechanical interaction 
by quantifying the morphological changes between MV 
device and MC device in real MR patients. The results 
indicated that the biomechanical results obtained by this 
method were consistent with the actual values. Sturla 
et al. [22] adopted a similar method to establish a FE 
model that simulated the biomechanical effects of valves 
before and after MC implantation, which could evaluate 

the biomechanical effects of important anatomical 
structures during the surgical process. The results showed 
that MC implantation significantly alleviated the clinical 
symptoms of severe MR patients for all simulated valves. 
The research showed that this method has important 
clinical value for MC implantation and can help optimize 
preoperative treatment plans. Caballero et al. [23] 
evaluated the biomechanical interaction between MC 
device and specific anatomical structures by quantifying 
the dynamic changes between the valve and surrounding 
tissues based on the fluid structure interaction (FSI) 
modeling framework. The study showed that computer 
simulation can reveal the biomechanical interactions 
between complex implant devices and specific anatomical 
structures, with the potential to guide device positioning 
and improve surgical outcomes.

FE modeling of MV physiology has been proposed 
to study the biomechanical impact of MV repair, but 
their translation into the clinics remains challenging. In 
response to this challenge, Mansi et al. [24] evaluated 
the biomechanical impact of mitral valve repair by 
establishing a FE model to achieve quantitative analysis of 
valve structure and function, and verified the reliability of 
the system with 3D TEE in 120 patients. At the same time, 
the system was used to simulate MC in performing TEER 
treatment, and the results showed that the predicted MV 
closure effect after surgical intervention was consistent 
with the actual surgical outcome, indicating that the system 
has clinical potential. Although FM modeling can simulate 
different surgical procedures, it is time-consuming. To 
tackle this challenge, Dabiri et al. [25] used the XGBoost 
decision tree model and DL model to predict the effect 
of TEER therapy with MC. The DL model showed an 
prediction accuracy comparable to that of the FE model, 
but its running time is less than 1 second, an astonishing 
increase in efficiency as compared to 6 h by the FE model, 
thereby effectively facilitating the process of TEER by 
providing real-time intraoperative information.

Intraoperative navigation
The image fusion technology in VHD is vital for 

the safety, precision and efficiency of intraoperative 
navigation. It has shown unique clinical value in 
interventional therapy by integrating space and time 
information and superimposing echocardiographic 
images with perspective. 

Transcatheter Aortic Valve Replacement Biaggi, 
P. et al. [26] developed fusion software (FS) with 3D 
TEE and perspective images of 138 patients with severe 
AS who received TAVR treatment. This study is the 
first to investigate the efficacy of the novel FS in the 
perioperative period of TAVR. The results showed that 
FS can be used to visually represent and accurately 
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analyze the individual anatomy of patients, quickly and 
automatically adjust the optimal C-arm angle, as well 
as accurately locate the aortic root and determine the 
artificial valve size. However, image fusion has problems 
such as single image positioning and image quality 
differences. Echo Navigator (EN) can effectively solve 
these problems by virtue of its multi-directional imaging. 
Biaggi, P. et al. [26] applied EN in TAVR surgery. They 
superimposed 3D TEE and perspective images in real 
time, automatically generating heart models with key 
anatomical markers, and realizing accurate locating of 
the optimal flap ring plane and pacemaker lead position. 

Based on the ionizing radiation of fluoroscopy, Luo 
et al. [27] developed a magnetic navigation system for 
TAVI with preoperative four-dimensional CT images 
and intraoperative two-dimensional ultrasound images, 
reconstructed dynamic 3D aortic valve models combined 
with real-time ECG signals, and determined the target 
location for aortic valve prosthesis implantation. At the 
same time, the system could automatically extract the 
contour of the aortic valve root from the intraoperative 
short-axis ultrasound image and register it with the 
dynamic aortic valve model, guiding the interventional 
physician to accurately position the aortic valve 
prosthesis. Reliable system performance is crucial to 
the safety of patients. In order to objectively evaluate its 
performance, Mazomenos et al. [28] evaluated surgical 
skills by analyzing the motion patterns of the catheter/
guide wire in fluoroscopy video sequences with or 
without robot assistance, confirming that robot-assisted 
TAVR surgery can reduce complications and improve 
surgical efficiency.

As 3D TEE provides real-time imaging and is radiation-
free, it plays an important role in the intraoperative 
navigation of TAVR. Prihadi et al. [29] applied aortic 
valve navigator (AVN) in 3D TEE image reconstruction of 
aortic valve structure to quantify aortic ring and root size. 
This method has good correlation and consistency with 
existing clinical diagnostic criteria, and is expected to be 
a potential alternative method for TAVR intraoperative 
navigation. In order to improve the interpretability 
of ultrasonic images, Lang et al. [30] developed an 
algorithm for automatic contour extraction by combining 
3D TEE images with the static heart model obtained 
from preoperative CT. They then verified it on human 
body image data, thus successfully building an enhanced 
image guidance system for TAVI. The results showed 
that real-time image guidance is expected to improve the 
accuracy of TAVI and optimize intraoperative navigation.

Transcatheter Mitral Valve Replacement The 
application of intraoperative 3D TEE in the treatment 
of TMVR has been well proved. Coisne et al. [31] 
evaluated the measurement differences between 3D TEE 

and CT, the gold standard measurement, in intraoperative 
navigation based on 57 patients who received MV 
prosthesis treatment, and defined the optimal 3D TEE 
parameters for TMVR. The results showed that 3D 
TEE imaging was feasible for most patients and there 
was little difference between the two modes. 3D TEE 
showed great potential to replace CT imaging for 
intraoperative guidance. Although 3D TEE can improve 
the visualization of MV, image analysis relies on the 
sonographer’s experience, and manual labeling of local 
MV anatomical structures is time-consuming and labor-
intensive. Jin et al. [32] used anatomical intelligence 
in ultrasound (AIUS) technology to locate mitral valve 
prolapse (MVP) based on 3D TEE images of 90 patients 
with degenerative MVP, and validated its performance 
in assisting operators in MVP localization. The results 
show that the AIUS algorithm not only effectively 
improved the accuracy of MVP area localization, but also 
significantly reduced the image analysis time of complex 
lesions. The semi-automatic algorithm of AIUS can be 
used to help junior doctors quickly and accurately locate 
MVP, which has important clinical value in planning 
surgical paths. 

Transcatheter Edge-to-edge Repair TEE is 
essential for intraoperative guidance of TEER therapy 
with MC. Altiok et al. [33] used two-dimensional 
transesophageal echocardiography and real-time three-
dimensional transesophageal echocardiography (RT 
3D TEE) to guide the TEER treatment with MC of 28 
patients with severe MR. A structured analysis of the 
information provided by the two imaging methods was 
conducted to evaluate the value of RT 3D TEE for this 
complex interventional surgery. The results showed 
that RT 3D TEE could help identify optimal surgical 
anatomical sites and achieve real-time accurate detection 
of MV anatomical location, which no doubt could 
improve MC implantation strategy and help the surgical 
operator build confidence. The incremental value of 
fluorography-echocardiographic fusion imaging (FI) in 
the provision of intraoperative guidance for TEER is 
unclear. To delve into this clinical problem, Melillo et 
al. [34] compared the TEER treatment effect after MC 
implantation in 80 patients with severe MR before and 
after FI guidance and evaluated their clinical value. The 
results showed that intraoperative navigation using FI 
protocol significantly reduced fluoroscopy time and 
improved the success rate of surgery. Sündermann et 
al. [35] applied EN software to the treatment of 21 
patients, evaluating the feasibility and safety of using 
MC for TEER treatment through real-time fusion of 
echocardiography and fluoroscopy images. The results 
showed that EN software is feasible and safe, which can 
be used to guide the surgical process in real time.

Advanced Ultrasound in Diagnosis and Therapy 2023;03:217–227
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Table 2 AI-assisted medical imaging in pre-operative planning of VHD interventional therapy

Study Operation Task Technology Samples Performance metrics

Theriault-Lauzier, P. et al. [10] (2021) TAVR Plane positioning CNN 94 subjects Localization error (mm): 0.9 ± 0.8 (testing)

Al, W.A. et al. [11] (2018) TAVR Located important 
anatomic markers

ML 71 subjects Localization error (mm): 2.04 ± 1.11

Rocatello, G. et al. [12] (2019) TAVR Determined the optimal 
valve size and implantation 
position

FE 62 subjects Accuracy (%): 71
Maximum contact pressure (%): 75
Contact pressure index (%): 71

De Jaegere, P. et al. [13] (2016) TAVR Simulated the TAVR 
surgical process

FE 60 subjects Accuracy (%): 80
Cutoff value (ml/s): 16.0
Sensitivity: 0.72
Specificity: 0.78

Auricchio, F. et al. [14] (2014) TAVR Simulated valve 
implantation

FE 2 subjects Stress state has consistency
(between 2 subjects)

Astudillo, P. et al. [15] (2019) TAVR Calculated the size of the 
implanted prosthesis

CNN Training: 
355subjects
Testing:  
118 subjects

Total analysis time(s): < 1
Device size has consistency 
(between the manual and automatic selection)

Astudillo, P. et al. [16] (2019) TMVR Measured multiple 
biological parameters

DL 71 subjects Total analysis time (s): < 1

Oguz, D. et al. [17] (2019) TMVR Explored the correlation 
between 3D-TEE 
parameters and MR 
reduction

3D TEE; 
Mitral Valve 
Navigator.

59 subjects Optimal MR reduction: 68%

Guerrero, M. et al. [18] (2018) TMVR Simulated valve 
implantation

FE / Total analysis time: < 3 h

Wang, D.D. et al. [19,20] (2018) TMVR Simulated valve 
implantation

CAD 38 subjects R2: 0.8169 (neo-LVOT surface area)
Sensitivity: 100%
Specificity: 96.8%

Kong, F. et al. [21] (2020) TEER simulated the biomechanics 
of MC implantation

FE; MC. 1 subject Antero-posterior distance: ↓26%
Annulus area: ↓19%
Valve opening orifice area: ↓48%
Regurgitant orifice area: ↓63%
Anterior leaflet peak stresses: ↑ 64%
Posterior leaflet peak stresses: ↑62%
Anterior leaflet peak strains: ↑ 20%
Posterior leaflet peak strains: ↑10%

Sturla, F. et al. [22] (2015) TEER Simulated the 
biomechanics of MC 
implantation

FE; MC. 3 subjects Systolic CoA: ↑11-40%
Systolic leaflet stresses (Kpa): 100-500
Diastolic leaflet stresses (Kpa): 250
(subject 3) Diastolic orifice area (%): ↓58.9%

Caballero, A. et al. [23] (2020) TEER Evaluated the 
biomechanics of MC 
implantation

FE; FSI; 
MC.

1 subject Antero-posterior distance: ↓28%
Mitral annulus spherecity index: ↓39%
Anatomic regurgitant orifice area: ↓52% 
Anatomic opening orifice area: ↓71%
Diastolic anterior leaflet stress: ↑210%
Diastolic posterior leaflet stress: ↑145% 

Mansi, T. et al. [24] (2012) TEER Evaluated the 
biomechanical impact of 
mitral valve repair

FE; ML. 25 subjects Mean error (mm):1.49 ± 0.62 (ground truth)
Mean error (mm):2.75 ± 0.86 (automatic detection)
Total analysis time (min): < 14

Dabiri, Y. et al. [25] (2023) TEER Predicted the effect of 
TEER therapy with MC

DL; 
XGBoost.

1267 FE 
models

MAPE: 54 and 0.310 (DL)
MAPE: 0.115 and 0.231 (XGBoost)
Total analysis time (s): < 1

TAVR, transcatheter aortic valve replacement; TMVR, transcatheter mitral valve replacement; TEER, transcatheter mitral valve edge-to-edge repair; 3D 
TEE, three-dimensional transesophageal echocardiography; MR, mitral regurgitation; MC, mitraclip; CNN, convolutional neural network; ML, machine 
learning; FE, finite element; DL, deep learning; CAD, computer aided design; FSI, fluid-structure interaction; XGBoost, extreme gradient boosting; LVOT, 
left ventricular outflow tract; CoA, coaptation area; MAPE, mean absolute percentage error.

AUDT 2023;03:217–227

Chen et al. AI-assisted medical imaging in VHD



224

AI and image fusion technologies have effectively 
improved visual field clarity and operational accuracy 
in valve interventional surgery, but there are still many 
challenges. First, the heterogeneity of valve structure 
and the complexity of movement lead to the deviation of 
echocardiography and perspective fusion, which limits 
its clinical application and promotion. Second, real-
time image analysis is needed in valve interventional 

surgery, and the algorithm performance needs to be 
improved. Therefore, efficient and real-time visualization 
of intraoperative images combined with image 
interpretation to assist diagnosis is an important research 
direction at present.

Prognosis analysis and risk stratification 
TAVR provides a new treatment strategy for patients 

Table 3 AI-assisted medical imaging in intra-operative navigation of VHD interventional therapy

Study Operation Task Technology Samples Performance metrics

Biaggi, P. et al. [26] (2020) TAVR Investigated the 
efficacy of FS in the 
perioperative period 
of TAVR

FI; EN; 3D 
TEE.

Total: 
138subjects 
FS+: 69subjects 
FS-: 69subjects

Procedure time (min): 42.1 ± 15.2 (FS+) 
Procedure time (min): 49.2 ± 20.7 (FS-) 
Contrast agent use (ml): 34.3 ± 22.0 (FS+) 
Contrast agent use (ml): 39.0 ± 23.3 (FS-) 
Fluoroscopy time (min): 11.4 ± 4.7 (FS+) 
Fluoroscopy time (min): 10.9 ± 5.5 (FS-) 
Pearson correlation r: 0.63-0.78 
Interclass correlation coefficient: 0.95-0.99

Luo, Z. et al. [27] (2013) TAVR Reconstructed aortic 
valve models and 
determined the target 
location for aortic 
valve prosthesis 
implantation

MTS; 2D 
US; 4D CT.

ECG signal Aortic root segmentation algorithm error (mm):  
0.92 ± 0.85 
Computational time (ms): 36.13 ± 6.26 
Yielding fiducial localization errors (mm):
3.02 ± 0.39 
Target registration errors(mm): 3.31 ± 1.55 
Deployment distance(mm): 3.23 ± 0.94 
Tilting errors (°): 5.85 ± 3.06

Mazomenos, E. B. et al. [28] (2016) TAVR Evaluated surgical 
skills and verified the 
role of robot assisted 
TAVR surgery

FE; 
k-means 
clustering; 
EM.

12 subjects  
(novice group:  
6 subjects)

The median value of the procedure time (s): 34.9  
(stage 1)
The median value of the procedure time (s): 111.2  
(stage 2)
Maximum accuracy (%): 83 (k-means)
Maximum accuracy (%): 91 (EM)
Average speed (px/s): 22.3 (stage1)
Average speed (px/s): 22 (stage2)
P = 0.031(conventional equipment vs robotic 
system )

Prihadi, E. A. et al. [29] (2018) TAVR Quantified aortic ring 
and root size

3D TEE; 
AVN.

150 subjects Mean analysis time (min): 4.2 ± 1.0 
r≥0.90 (inter- and intra-observer variability)

Lang, P. et al. [30] (2012) TAVR Build TAVI's 
enhanced image 
guidance system

3D TEE / Mean contour boundary distance error (mm): 1.3 
(short-axis views)
Mean contour boundary distance error (mm): 2.8 
(long-axis views)
Mean target registration error (mm): 5.9

Coisne, A. et al. [31] (2020) TMVR Defined the optimal 
3D TEE parameters 
for TMVR

3D TEE 57 subjects AUC: 0.88-0.91 (mitral annular area)
AUC: 0.85-0.91 (mitral annular perimeter)

Jin, C. N. et al. [32] (2016) TMVR Located MVP AIUS 90 subjects Accuracy (%): 89 (nonexperts) 
Image analysis time (min): 1.9 ± 0.7 (experts) 
Image analysis time (min): 5.0 ± 0.5 (nonexperts) 

Altiok, E. et al. [33] (2011) TEER Evaluated the value 
of RT 3D TEE

RT 3D TEE; 
2D TEE.

28 subjects Advantages: 9/11 (RT 3D TEE)

Melillo, F. et al. [34] (2021) TEER Explored the TEER 
treatment effect after 
MC implantation 

FI; MC. 80 subjects Fluoroscopy time (min): 37.3 ± 14.6
Procedural time (min): 92.2 ± 36.1

Sündermann, S.H. et al. [35] (2014) TEER Evaluated the 
feasibility and safety 
of using MC

EN 
Software; 
MC.

21 subjects Radiation dose (Gy/cm2): 146.5 ± 123.6
Total procedure time (min): 136.2 ± 50.2

TAVR, transcatheter aortic valve replacement; TMVR, transcatheter mitral valve replacement; TEER, transcatheter mitral valve edge-to-edge repair; FS, fusion 
software; TAVI, transcatheter aortic valve implantation; 3D TEE, three-dimensional transesophageal echocardiography; MVP, mitral valve prolapse; RT 3D 
TEE, real-time three-dimensional transesophageal echocardiography; MC, mitraclip; FI, fusion imaging; EN, echo navigator; MTS, magnetic tracking system; 
2D US, two-dimensional ultrasound; 4D CT, four-dimensional computer tomography; FE, finite element; EM, expectation maximization; AVN, aortic valve 
navigator; AIUS, anatomical intelligence in ultrasound; 2D TEE, two-dimensional transesophageal echocardiography; AUC, area under curve.

Advanced Ultrasound in Diagnosis and Therapy 2023;03:217–227



225

with severe AS who cannot receive conventional surgery, 
but there are risks such as higher postoperative blood 
events and higher in-hospital mortality. In response to 
this challenge, Navarese et al. [36] conducted a large-
scale, multicenter study to construct a model based 
on the clinical information database of 5,185 severe 
AS patients undergoing TAVR treatment, and verified 
its clinical value in predicting the intraoperative and 
postoperative bleeding risk of TAVR patients. This 
model showed great promise in preoperative patient 
screening and personalized treatment plan formulation. 
Jia et al. [37] developed a BLeNet model based on 
DL to achieve accurate prediction of postoperative 
bleeding complications after TAVR. The study showed 
that the model had good predictive performance in the 
stratification of patients at high and low risk of bleeding, 
which is expected to optimize clinical decision-making. 
CMR is widely used in AS risk stratification. Kwak et al. 
[38] used the random survival forest model to identify 
important CMR predictors associated with mortality 
after TAVR based on the clinical, echocardiographic, 
CMR, and other multi-modal parameters of 799 patients 
with AS. The results showed that extracellular volume 
fraction, late gadolinium enhancement, right ventricular 
ejection fraction, and left ventricular end-diastolic index 
volume were the most predictive markers of CMR.

Patients with severe MR tend to have a poor prognosis, 
but currently effective risk stratification methods 
for MR patients are lacking. To address this clinical 
problem, Zweck et al. [39] adopted ML algorithm to 
evaluate the preoperative clinical parameters of 1,009 
patients undergoing TMVR surgery. After developing 
MITRALITY scores and conducted external verification, 
they applied the score to risk stratification of patients 
undergoing TMVR surgery. The results showed that the 
MITRALITY score only requires 6 easily accessible 
preoperative clinical parameters to accurately predict 1-year 
mortality rate after TMVR surgery, superior to current 
clinical risk stratification methods. This model can be 
used to provide support for screening patients of TMVR 
treatment and determining the timing of surgery [40].  
Hernandez-Suarez et al.  [41] used multiple ML 
algorithms such as random forest, logistic regression, 
SVM, naive Bayes and artificial neural network to 
predict the in-hospital mortality of TMVR patients based 
on the clinical data of 849 patients with TMVR. The 
results showed that the logistic regression model has 
the best predictive performance and acute kidney injury 
is the main influencing factor of in-hospital mortality. 
However, the above studies only included clinical data 
obtained when constructing prediction models, lacking 
echocardiography, CT, and other imaging information. 
To this end, Tse et al. [42] developed a multi-tasking ML 

model to improve the risk stratification of MR based on 
clinical information, echocardiogram, and laboratory 
indicators from 706 patients with MR. The results 
showed that it can accurately predict the postoperative 
mortality of TMVR and improve the overall risk 
stratification performance. Based on multi-modal 
imaging data, AI can improve individualized and precise 
prediction capabilities, promoting the development 
of surgical decision-making towards rationalization, 
personalization, and efficiency.

AI-assisted Learning and Training of VHD Imaging
Interventional therapy of VHD involves multiple 

complex scenarios and is extremely challenging, 
requiring operators to acquire necessary skills and 
accumulate clinical experience. However, this operation 
is not an item in the standard database of surgical skills 
[43]. Most hospitals each year usually conduct only a 
few operations of this sort, and thus most doctors lack 
technical training and clinical experience. With its strong 
learning ability, AI has shown unique clinical value in the 
teaching and training of interventional therapy of VHD.

Liu et al .  [44] used augmented reality (AR) 
technology to develop a new AR three-dimensional 
visualization system for image-guided transcatheter 
intervention surgery, which they expect to be used 
to assist doctors in the treatment of structural heart 
disease. This system can segment the 3D model of 
the patient's heart by means of CT images. With the 
spinal column used as a general benchmark marker to 
register the intraoperative perspective image with the 
3D heart model, AR-guided cardiac intervention can be 
successfully carried out. Combined with 3D printing 
models, this system can enhance visualization, assisting 
doctors in analyzing complex cardiac anatomical 
structures. The results showed that the automatic 
registration method based on AR had a high success rate 
(100%) and a low registration error (0.42 mm), which 
could play an important role in training interventional 
doctors. 

Minimally invasive MV repair  is  extremely 
challenging, requiring years of training for the necessary 
skills. Engelhardt et al. [43] used 3D printing technology 
to prepare novel silicone replicas of patient-specific MV 
to assist surgeons in learning and mastering the operation 
skills. Twelve surgeons (5 experts and 7 beginners) 
were included in the study to perform a comparative 
experiment of single MV reconstruction on silicone 
replicas. The results showed that preoperative-specific 
simulation surgery could quantitatively assess the valve 
geometry and improve the safety and effectiveness of 
MV repair. The system is expected to guide beginners 
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to complete basic training on a more concrete basis, and 
shorten the learning curve of doctors.

Challenges and Prospects
Interventional therapy of VHD is a frontier research 

direction of AI in the medical field. With its strength in 
accuracy and efficiency, AI provides new perspectives 
for preoperative planning, intraoperative navigation, and 
postoperative risk assessment of interventional therapy 
of VHD. However, AI in clinical practice still faces many 
challenges.

First, model training relies on massive amounts of 
data. Most of the existing studies have relied on a single-
center dataset to develop AI models, and they lack 
high-quality external validation sets. Second, model 
evaluation and application require human supervision 
to avoid wrong decisions. Finally, model decisions 
lack interpretability. As a "black box" algorithm, the 
prediction process of AI is not transparent, which affects 
the clinical translation of the model.

Several steps need to be taken for the future 
development in this field. First, medical privacy protection 
standards need to be formulated to ensure data security. 
Second, based on the actual clinical diagnosis and treatment 
processes, high-quality and standardized multimodal 
databases are to be established. Third, high-performance 
AI models are to be developed for multiple diseases. 
Finally, multidisciplinary communication needs to be 
strengthened for the personalization, standardization and 
intelligence of interventional therapy of VHD.
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