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Introduction: The aim of this paper is to address the problem of the limited
number of defect images for both metal tools and insulators, as well as the small
range of defect features.

Methods: A defect detection method for key area-guided transmission line
components based on knowledge distillation is proposed. First, the PGW
(Prediction-Guided Weighting) module is introduced to improve the foreground
target distillation region, and the distillation range is precisely concentrated in the
position of the first k feature pixelswith the highest quality score in the formof amask.
The feature knowledge of defects of hardware and insulators is used as the focus for
the teacher network to guide the student network. Then, the GcBlockmodule is used
to capture the relationship between the target defects of the hardware and the
transmission lines in the background, and the overall relationship information of the
image is used to promote the students’ network to learn the teacher’s network
perception ability of the relationship information. Finally, the classification task mask
and regression task mask generated by the PGWmodule, combined with the overall
image relationship loss, formadistillation loss function for network training to improve
the accuracy of students’ network detection accuracy.

Results and Discussion: The effectiveness of the proposed method is verified by
using self-build metal fittings and insulator defect data sets. The experimental
results show that the student network mAP_50 (Mean Average Precision at 50) in
the Faster R-CNN model with the knowledge distillation algorithm added in this
paper increases by 8.44%, and the RetinaNet model increases by 2.6%. The
Cascade R-CNN model improved by 5.28%.
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1 Introduction

The transmission line is one of the most important infrastructures of China’s energy
Internet, and ensuring the reliability of the transmission line is one of the important contents
of the construction of the energy Internet. Transmission line components are an important
part of mechanical connection, fixing, protection and insulation. However, they are
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susceptible to abnormalities and defects such as defects, corrosion
and soiling due to the influence of the complex natural environment
and harsh climatic conditions (Nguyen et al., 2018). Therefore,
regular inspection and maintenance of transmission line fittings,
insulators and other important components can effectively reduce a
series of safety accidents caused by transmission line faults.

Inspection is a way to guarantee the continuous and stable
power supply of the power grid, the purpose of which is to carry out
online condition detection and fault diagnosis of components such
as shockproof hammers and insulators on the lines (Zhao and Cui,
2018). The current transmission line inspection methods include
manual inspection, robot inspection (Toth and Gilpin-Jackson,
2010), helicopter (Pham et al., 2020), unmanned aerial vehicle
inspection (Li et al., 2021), and remote sensing satellite
inspection (Yang et al., 2021). “Drone inspection is the main
focus, supplemented by manual labor” has developed into the
main operation and maintenance mode of China’s power system
(Yang et al., 2020). The construction of intelligent and manual
synergistic inspection system is an important initiative to promote
the safe operation of the power grid (Du et al., 2022).

The development of deep learning technology provides an
effective means for transmission line inspection and can more
effectively complete the task of defect detection of transmission
components in aerial images. At present, a lot of research work has
been done. Literature (Zhai et al., 2023) proposes a transmission line
multi-fitting detection method based on implicit spatial knowledge
fusion, aiming at the tiny-size and dense occlusion problem in the
transmission line multi-fitting detection task. First, in order to mine
the implicit spatial knowledge between transmission line fittings to
assist the model in detection, the spatial box setting module and the
spatial context extraction module are proposed to set the spatial box
and extract the spatial context information. Then, the spatial context
memory module is designed to filter and remember the spatial
context information to assist the location of the multi-fitting
detection model. Finally, the post-processing part of the model is
improved to further alleviate the low detection accuracy problem
caused by dense occlusion fittings. The experimental results show
that the proposed model has a promotion effect on the detection of
various kinds of fitting. Literature (Li et al., 2023) proposes a metal
fittings equipment detection algorithm based on improved
YOLOV7. This method adds a CA attention mechanism to the
network structure of YOLOV7 to enhance the feature extraction of
hardware devices in the network model. At the same time, it reduces
the interference of complex backgrounds on the network model to
extract features of hardware devices, allowing the network model to
extract features in detail, thereby improving the network model’s
detection generalization for hardware devices. In order to alleviate
the problem of misdetection and recheck caused by the lack of
context information in various existing hardware and defect
detection methods, literature (Zhao et al., 2023) proposes a
method of transmission line hardware and defect detection based
on context-structure reasoning. First, the image is input into the
target detection model; Then, the output result of the detection
model is sent to the structural reasoning module, and the output
result is sent to the bidirectional gated cycle unit and self-attention
for processing. The structural knowledge of transmission line fittings
and their defects is used to improve the confidence degree of the
correct positive sample and reduce the confidence degree of the

wrong positive sample. Finally, the final output result is obtained
through the regressor. To achieve the purpose of improving the
average accuracy. Literature (Sun et al., 2023) proposes a two-stage
insulator defect detection framework composed of attention-based
insulator detection network and defect detection network. Among
them, the attention-based insulator detection network is responsible
for the location of the insulator, and the defect detection model
determines whether the insulator is damaged. The two-stage design
of first positioning and then detection avoids the interference of
complex background and can realize the high-precision detection of
defects. Literature (Li et al., 2023) proposes a multi-scale feature
fusion insulator defect detection network for solving the problem of
insulator defective regions with little pixel information and varying
shapes and sizes. The network used a residual attention network to
obtain insulator defect features with different resolutions, and
designed a multi-scale feature fusion network based on inverse
convolution and multi-branch detection, which gradually fused
the deep feature maps with the shallow feature maps. In this
way, more abundant image semantic information can be
generated for target classification and location regression. In
addition, the literature also used Focal loss and Gaussian non-
great suppression methods to further enhance the detection effect.

Although these methods improve the accuracy of detection, they
inevitably increase the complexity of the model, consume a lot of
computing resources and time, and are difficult to deploy on resource-
limited equipment. The knowledge distillation algorithm provides a
solution to this problem. Literature (Gu et al., 2023) proposes a deep
neural network model compression algorithm for knowledge
distillation of multi-teacher models, which takes advantage of the
integration of multi-teacher models and takes the predictive cross-
entropy of each teacher model as the quantitative criterion for
screening to select the teacher model with better performance to
guide students, and allows the student model to extract information
from the feature layer of the teacher model. And give better
performing teacher models a greater say in instruction. Literature
(Wang et al., 2022) proposes an attention mechanism based on the
feature map quality evaluation algorithm (IQE). The knowledge
distillation method based on the IQE attention mechanism uses
the IQE method to identify important knowledge in the pre-
trained SAR target recognition deep neural network. Then in the
process of knowledge distillation, the lightweight network is forced to
focus on the learning of important knowledge. Through this
mechanism, the method proposed in this paper can efficiently
transfer the knowledge of the pre-trained SAR target recognition
network to the lightweight network, which makes it possible to deploy
the SAR target recognition algorithm on the edge computing
platform. Literature (Zhao et al., 2022) propose a target detection
model distillation (TDMD) framework using feature transition and
label registration for remote sensing imagery. A lightweight attention
network is designed by ranking the importance of the convolutional
feature layers in the teacher network. Multiscale feature transition
based on a feature pyramid is utilized to constrain the feature maps of
the student network. A label registration procedure is proposed to
improve the TDMDmodel’s learning ability of the output distribution
of the teacher network.

At present, some researches have applied the knowledge
distillation method to the field of electric power. Literature (Yang
et al., 2022) proposes a compression and integration application
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method based on knowledge distillation. In this method, the Detr
model is used to identify the initial target, and the Deformable Detr
algorithm is used to compress the Detr model, so that the
compression ratio reaches 87.5% and the target detection
accuracy is maintained at a high level, and the effective
integrated application of the target detection model in the
substation inspection robot body is realized. Literature (Zhao
et al., 2021) proposes a bolt defect image classification method
based on dynamically supervised knowledge distillation, aiming to
solve the problem of high computational resource consumption of
large models. The method utilizes adaptive weighting and attention
transfer techniques to improve the ability of the small model to learn
and represent bolt defects, which in turn enhances its classification
performance. In addition, literature (Zhang et al., 2022) improved
the YOLOv4 model and introduced the PCSA (Positional
Contextual Attention Shift) attention module for the problem of
anti-vibration hammer small target detection. This method
combines pruning and knowledge distillation techniques to tailor
and compress the network parameters, and constructs a lightweight
anti-vibration hammer detection network model, PCSA-YOLOs, to
improve the detection accuracy of small targets in complex
backgrounds.

With the intelligent development of power system inspection
technology, it is urgent to deploy models on UAV and helicopter
aerial photography and online monitoring equipment. Knowledge
distillation can help improve the performance of the model with a
small number of parameters, but making the student network
simulate the teacher’s network feature extraction ability without
difference cannot achieve the best effect. The focus of this paper is to
enable students to learn the effective feature processing ability of
teachers’ networks. In this paper, the PGW module is first
introduced to refine the feature knowledge of foreground object
distillation, and the first k most important pixels are extracted to
form a feature mask to improve the distillation performance of
student network for detecting hardware defects. Then, the GcBlock
module is used to capture the relationship between the target defects
of the hardware and the transmission lines in the background, and
the overall relationship information of the image is used to promote
the students’ network to learn the teacher’s network perception
ability of the relationship information. The combination captures
information about the relationship between transmission line
components and components, and between components and
backgrounds, helping to improve target detection accuracy.

2 Research methodology

2.1 Refinement of prospects regional
distillation

The application of knowledge distillation algorithms to image target
detection has focused on models using feature pyramid networks. Past
approaches usually directly used the output of the classification and
regression tasks of the teacher network as the target of the student
network. With the development, knowledge distillation can guide the
training of the student network in a more targeted way to improve the
detection accuracy. As shown in the literature (Guo et al., 2021), unlike
the general classification task, the classification and regression tasks in

the detection network can be negatively affected if the same objective
function is used for both tasks. This is because the two tasks have
different preferences for features: classification requires regions with
rich semantic information, whereas regression prefers to focus on the
edge portion of feature information. Features that produce better
classification scores are not accurate enough in predicting bounding
boxes (Song et al., 2020). Therefore, the same sensory field does not
guarantee optimal performance for both classification and regression
tasks. As shown by the images of defects of gold tools and insulators,
important feature knowledge exists for defects of the same kinds of gold
tools and insulators, and the datasets of defects of gold tools and
insulators are much smaller, which should be fully utilized to guide the
students’ network by taking advantage of the ability of the teacher’s
network to deal with the feature knowledge of the defects.

Therefore the features are scored to determine whether they are
good for classification or regression tasks, in order to reduce the
adverse effect of complex background on the detection of defective
targets of gildings and insulators, with the help of ground-turth box
first decouple each layer of features of FPN (Feature Pyramid
Network) whether it belongs to the foreground target region or
the background region as shown in Eq. 1:

M i,j( ) �
1, if i, j( ) ∈ G
0, if i, j( ) ∉ G

{ (1)

Let (i, j) denote the horizontal and vertical coordinates of the
feature pyramid network generating the feature map of the model. If
(i, j) is in the ground-truth bounding box, it is determined that this
feature belongs to the foreground target region, and the mask is set
M(i,j) � 1; if (i, j) is not in the ground-truth bounding box, it is
determined to be the feature map of the background region, and the
mask is set M(i,j) � 0.

Amplifying the most meaningful feature distillation signals
generated by the teacher network and using them to guide the
student network is the purpose of knowledge distillation. For this
purpose, we look at the quality of a teacher’s bounding box
predictions taking both classification and localization into
consideration. Formally, the quality score of a box b(i,j) predicted
from a position Xi � (xi, yi) w.r.t. a ground truth b is as shown in
formula (2):

q b i,j( ), G( ) � M i,j( ) · p i,j( )G( )λ

· DIOU G, b i,j( )( )( )1−λ
(2)

where M(i,j) is an indicator function that is 1 if Xi lies inside box b
and 0 otherwise; (p(i,j)G) is the classification probability w.r.t. the
GT box’s category; DIOU(G, b(i,j)) is the DIOU between the
predicted and ground-truth box. b(i,j) is a prediction frame and
G is a real labeled box, it is the ground-truth box; λ is a hyper-
parameter that balances classification and localisation. We calculate
the quality score of location Xi as the maximum value of all
prediction scores for that particular location, as shown in Eq. 3.
Y is used to represent the set of Xi locations as shown in Eq. 4:

qi � maxj∈Y q b i,j( ), G( ) (3)
Y � 1, 2, ..., Xi{ } (4)

Use of mass fraction qi as an important parameter in
determining distillation, these positions are the highest quality
predictive ensemble of scores generated by the teacher network.
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The purpose of knowledge distillation is to allow the student
network to mimic the strong generalization ability of the teacher
network. To achieve this, this paper focuses the foreground
distillation region on the locations where the teacher network
produces predictions with high-quality scores, as these locations
contain detection information that combines both classification and
regression considerations and represent the excellent performance
of the teacher network, helping the student network to improve its
ability to detect defective targets in complex contexts.

2.2 Knowledge distillation guided by key
area scoring

The features of fitting and insulator defects are very different from
those of their intact targets; the features are more consistent between
parts of the same species, but the features of each component defect are
variable and complex (Zhao et al., 2021), and when labeling the dataset,
the size of the labeled box is as close to the target as possible, and the
defects are damages that are produced on the component targets, which
have a more reduced range of effective features compared to the intact
targets. Therefore, we would like to use the knowledge of features of
defects in gold tools and insulators as a focus for the instructor network
to guide the student network. Therefore, the PGW (Prediction-Guided
Weighting) (Yang et al., 2022) module is introduced to improve the
prospect distillation region. And the PGW module is precisely
concentrated in the first k feature pixels with the highest mass
fraction in the prospect region. The effect of each position is then
smoothed according to the two-dimensional Gaussian distribution
fitted for each ground-truth box by the maximum likelihood
estimation method. Finally, only the k position is extracted in the
foreground target region, and the weight of the position is assigned by
the Gaussian function, the schematic is shown in Figure 1.

We smooth the effects of each position according to the 2D
Gaussian distribution fitted by the maximum likelihood estimate
(MLE) for each ground-truth box. Finally, foreground distillation is
performed only for those k positions, whose weights are assigned by
Gaussian. For detection targets with ground-truth O, the quality
score qi for each feature pixel within G is first calculated (Du et al.,
2021). The calculation formula of qi is shown in (3). The k highest
scoring pixels are then selected among all the layers of the FPN
network. TO � (XO

k , L
O
k )|k � 1, ..., K{ } is used to generalize the k

highest scoring pixels. Where XO
k is the absolute coordinate of the

pixel of the detection target O. LOk denotes which layer of the FPN
where the pixel of the detection target O is located. Both quantities
represent the k th pixel. Assuming that the selected pixel description
is represented on the image plane as Tk

o ~ N(μ,Σ|o) defined, the
maximum likelihood estimation algorithm is used to compute and
the two parameters μ and Σ as shown in Eqs 5, 6:

μ � 1
K
∑K
k�1

Xo
k (5)

∑ � 1
K
∑K
k�1

Xo
k−( μ) Xo

k − μ( )T (6)

Each feature pixel p(i,j)l with absoluteX(i,j) coordinates in layer l
of the FPN, calculates its importance in the distillation process as
expressed in Eq. 7:

Io
i,j( ),l �

0 P i,j( ) ,l ∉ To

exp( −1
2

X i,j( )−( )∑−1
X i,j( ) − μ( )T( ) P i,j( ) ,l ∈ To

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(7)

where Io(i,j),l denotes that the detection target O is in layer l of the
FPN, the importance of the feature pixel p(i,j)l with coordinates
(i, j). If p(i,j)l belongs to the highest scoring pixel, calculate the
importance value using the formula, and if it does not belong to the
pixel, make it equal to zero. If a feature pixel is equally important for
more than one object, we use its maximum value I(i,j),l , and the
formula representation is shown in (8):

I i,j( ),l � max o Io
i,j( ),l{ } (8)

l refers to a layer of the FPN layer of size Hl × Wl, by normalizing
the importance of the distillation with the number of pixels of that
layer that are important and have a non-zero mass fraction so that
they are used to assign the distillation weights Q, and the formula is
expressed as shown in (9).

Q � I i,j( ),l
∑Hl

i�1
∑Wl

j�1
M i,j( ),l

(9)

Hl and Wl denote the length and width dimensions of the feature
map in the l-layer of the FPN, the above process constitutes the
Predictive Guidance Weighting (PGW) module, whose output is the

FIGURE 1
Schematic diagram of the processing principle for the foreground target area.
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foreground distillation weight Q of all feature levels and pixels,
which are used to find out the important feature pixels for use in the
teacher’s network to guide the student’s network.

2.3 Overall distillation loss function

The high-level network of the feature extraction network can
output better semantic features, but due to the size of the feature
map is too small, the geometric information is not sufficient, which
is not conducive to the detection of the target; the shallow network
contains more geometric information, but the semantic features of
the image are not much, which is not conducive to the classification
of the image. Therefore, when the network is trained, the student
network is made to learn the ability of the teacher network to extract
and process features at each layer of the FPN. By distilling the
classification and regression tasks separately, the student network
integrally learns the generalization ability of the teacher network for
these two tasks, which leads to an increase in its detection accuracy.

Formally, at each feature level in FPN, this paper utilizes the PGW
module to generate two distinct foreground distillation masks, Qcls

(i,j) is
the foreground distillation mask generated specifically for the
classification task. Qreg

(i,j) is the foreground distillation mask generated
specifically for the regression task. In this context, RC×H×W represents a
feature layer has C channels, and the feature map height and width of
each layerH andW. During training, the student model is encouraged
to learn the corresponding classification and regression features
FS,cls
n,(i,j), F

S,reg
n,(i,j) ∈ RC×H×W from the teacher network. The classification

feature loss function is represented as Eq. 10, and the regression feature
loss function is represented as Eq. 11.

Lcls
fea � ∑C

n�1
∑H
i�1
∑W
j�1

αQcls
i,j( ) + βNcls

i,j( )( ) FT,cls
n, i,j( ) − FS,cls

n, i,j( )( )2

(10)

Lreg
fea � ∑C

n�1
∑H
i�1
∑W
j�1
γQreg

i,j( ) FT,reg

n, i,j( ) − FS,reg

n, i,j( )( )2

(11)

α , β, and γ are hyperparameters used to balance the loss weights.
Ncls

(i,j) is the normalized mask for the background distillation region.
As shown in Eq. 12, when Qreg

(i,j) ≠ 0 , M−
(i,j) is 1. The meaning of

M(h,w) is opposite to M(i,j), and if the pixel (h, w) is not inside the
region G, it is assigned a value of 1.

Ncls
i,j( ) � M−

i,j( )/∑H
h�1

∑W
w�1

M h,w( ) (12)

In order to distill background information, the GcBlock (Cao
et al., 2019) module is utilized to capture the relationship between
defects in the hardware target and the transmission lines present in
the background. This module leverages the overall relationship
information in the image (Park et al., 2019). It encourages the
student network to learn the teacher network’s ability to perceive
relationship information (Hu et al., 2018). The representation of the
overall image relationship loss is given by Eq. 13.

Lrela � μ∑ R FT( ) − R FS( )( )2 (13)

In the equation, μ is a hyperparameter used to balance the loss
function, and FT and FS are the feature maps generated by the

teacher and student models, respectively. The function R represents
the relationship information between the hardware target captured
by different models and the background region. Its specific
formulation is given by Eq. 14.

R Fi( ) � Fi +W]2Relu LN W]1 ∑NP

j�1

eWkFj

∑Np

m�1
eWkFM

Fj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

In this context, W]1, W]2 and Wk represent different linear
transformation matrices. Fi represents the feature map of an input
instance. ∂j � eWkFj

∑Np

m�1
eWkFM

represents the weights obtained from global

attention pooling. LN stands for Layer Normalization. Np

represents the number of positions in the feature layer. In the
context of an image, Np � H ·W . e represents the natural
constant. FM represents the feature map generated for the
foreground region. Fj is any extracted feature from the image. δ(·) �
W]2Relu(LN(W]1(·)) denotes the feature transformation that
captures channel dependencies. The GcBlock module consists of
two components: global attention pooling for context modeling and
bottleneck transformation to capture channel correlations.

The structural diagram of the distillation method in this paper
is shown in Figure 2. It consists of two parts: foreground object
region distillation and background relationship distillation. For
foreground object region distillation, the PGW module is used to
calculate the masks for both the classification and regression tasks,
which together form the loss function used for training the
foreground object region. The background relationship
distillation area adopts the GcBlock module to capture
relationships in the image. The overall distillation loss function
in this paper is represented as Eq. 15.

L � Lcls
fea + Lreg

fea + Lrela (15)

3 Manuscript experimental results and
analysis

3.1 Experiment preparation

This article uses 5 types of fittings and insulators, along with
their defects, as the research dataset. Each type of defect has a
corresponding normal target feature for comparison, including
normal vibration damper, vibration damper cross, vibration
damper corrosion, normal single insulator, and insulator
drop. There are a total of 2,497 images, with 1997 images in the
training set, 250 images in the test set, and 249 images in the
evaluation set, with a ratio of 8:1:1. The dataset contains a total of
4,628 objects to be detected.

Themodel described in this article is trained and tested using the
NVIDIA GeForce GTX 1080Ti professional accelerator card. The
operating system used is Ubuntu 16.04.6 LTS, with training
accelerated using CUDA 10.1. The computer language used is
Python 3.7.11, and the network development framework is
PyTorch. All programs are executed based on the MMDetection
2.16 toolbox. This article uses the commonly used evaluation metric
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in object detection models, mean Average Precision (mAP), to assess
the performance of the model. The mAP is calculated by computing
the Average Precision (AP) for each class of objects and then taking
the mean of all class APs. The resulting mAP is used as the final
evaluation metric for the object detection model.

3.2 Comparison experiments with multiple
models using distillation algorithm

In the experiments, the teacher network, student network, and
the network with the distillation algorithm all use a learning rate of
0.0001. The backbone network for the teacher network is ResNet101,
while for the student network, it is ResNet50. The training is
conducted for 24 epochs (training rounds), and the batch size
used is 50.

The experimental process in this article mainly consists of two
steps.

1) Train the object detection models separately using the teacher
network (with a larger number of parameters) and the student
network (with a smaller number of parameters) on the fittings
defect dataset. Calculate and record their respective accuracy.

2) Train the student network, which has a smaller number of
parameters, using the knowledge distillation algorithm with
the fittings defect dataset. After training, calculate and record
its accuracy.

To validate the effectiveness of the proposed knowledge
distillation algorithm, a comparative experiment is conducted
using the evaluation metrics mentioned earlier. The experimental
results are presented in Table 1. Three image detection models,
namely, Faster R-CNN, RetinaNet, and Cascade R-CNN, are used
in the experiments. Each model is separately trained as a teacher
model, a student model, and a model with the knowledge
distillation algorithm introduced in this article. The detailed
process is to put the same data set into the same model with
the backbone model of Resnet101 and Resnet50. The backbone
network is identified as the teacher network by Resnet101 and the

backbone network is identified as the student network by
Resnet50. The results of two different backbone network
training were analyzed. After adding the distillation algorithm
in this paper, the student network is trained again, and the
difference between the student network with distillation
algorithm added and the student network without distillation
algorithm added is compared. The control parameters adopted in
these processes are consistent, the learning rate is 0.0001, and the
epoch of the training rounds is 24. The batch size is 50.

To verify the general applicability of the proposed method, both
single-stage and two-stage models are used in the experiments. From
the data in Table 1, it can be observed that the detection performance
of the student network improves significantly after the knowledge
distillation algorithm is applied. This distillation algorithm, as
presented in this article, utilizes a decoupling approach between
foreground and background information regions. By focusing on the
foreground object regions and reducing the interference caused by
complex backgrounds, the algorithm enhances the localization
ability of the model. By setting the k value to 45 in the
foreground object regions, the data indicates that, in most cases,
adding the knowledge distillation algorithm proposed in this article
improves the detection accuracy of the student network for both
normal component targets and defects. Particularly, the
improvement in detecting fittings and insulator defects is greater
than the improvement in detecting normal targets. In the case of the
RetinaNet model, where the teacher network’s accuracy is lower
than the student network’s accuracy in detecting vibration damper
corrosion, adding the distillation algorithm does not improve the
performance of the student network. This could be because the
teacher network’s performance is inferior to the student network’s
performance, which hinders its ability to guide the student network
in improving accuracy. In the case of Faster R-CNN, the highest
improvement is achieved in detecting vibration damper corrosion,
reaching up to 22.6%. For RetinaNet, the highest improvement is
seen in detecting normal insulators, with a maximum improvement
of 6.6%. Cascade R-CNN shows the highest improvement in
detecting vibration damper corrosion, reaching 8.2%.

The table shown in Table 2 compares the Grad-CAM distillation
algorithm (decoupling common feature scores) with the distillation

FIGURE 2
Overall distillation structure.
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algorithm proposed in this article, using Faster R-CNN and
RetinaNet as representatives of two-stage and single-stage
detection models, respectively. The Grad-CAM distillation
algorithm improves the detection performance of most targets,
but for fittings defects, its improvement is slightly inferior to the
distillation algorithm proposed in this article. In the case of the
Faster R-CNN model, the detection accuracy for normal vibration
damper targets and normal single insulator targets is slightly lower
in this article’s method compared to the Grad-CAM method.
However, for vibration damper cross defects, our method

outperforms the Grad-CAM method by 6.5 percentage points,
and for vibration damper corrosion and insulator String defects,
it outperforms the Grad-CAM method by 13.3% and 4.8%,
respectively. The analysis shows that the feature used for defect
target detection is more concentrated in the critical pixel regions.
Using ground-truth boxes as the range of foreground object regions
introduces more noise for defects. This article’s method selects
the top-k highest-scored pixels to form a mask, which includes
essential features for defect detection while avoiding introducing
noise from other parts of the foreground object regions. Figure 3

TABLE 1 AP results for different models and after applying the knowledge distillation algorithm.

Method mAP_50 Normal vibration
damper

Vibration damper
cross

Vibration damper
corrosion

Normal single
insulator

Insulator
drop

Faster-Res101 (Teacher
network)

0.544 0.648 0.312 0.642 0.589 0.530

Faster-Res50 (Student
network)

0.419 0.556 0.286 0.370 0.423 0.458

Faster-Res101-KD-Res50 0.503 0.572 0.368 0.596 0.469 0.510

RetinaNet-Res101
(Teacher network)

0.559 0.699 0.069 0.576 0.751 0.701

RetinaNet-Res50 (Student
network)

0.485 0.660 0.111 0.549 0.510 0.593

RetinaNet-Res101-KD-
Res50

0.511 0.683 0.092 0.567 0.576 0.635

Cascade-101 (Teacher
network)

0.617 0.672 0.464 0.695 0.631 0.623

Cascade-50 (Student
network)

0.503 0.629 0.394 0.486 0.530 0.474

Cascade-101-KD-50 0.555 0.694 0.510 0.568 0.510 0.495

TABLE 2 Comparison of two foreground knowledge distillation methods.

Detection
models

Settings mAP_50 Normal
vibration
damper

Vibration
damper cross

Vibration damper
corrosion

Normal single
insulator

Insulator
drop

Faster R-CNN Teacher
network

0.544 0.648 0.312 0.642 0.589 0.530

Student
network

0.419 0.556 0.286 0.37 0.423 0.458

Decoupled
scoring

0.499 0.654 0.303 0.463 0.614 0.462

Proposed
method

0.503 0.572 0.368 0.596 0.469 0.510

RetinaNet Teacher
network

0.559 0.699 0.069 0.576 0.751 0.701

Student
network

0.485 0.660 0.111 0.549 0.510 0.593

Decoupled
scoring

0.518 0.723 0.101 0.554 0.582 0.630

Proposed
method

0.516 0.683 0.092 0.567 0.576 0.663
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shows visualized detection images for different student networks,
teacher networks, and networks after applying the distillation
method.

3.3 Ablation experiments

To investigate the impact of different k values on improving
the accuracy of the student network, ablation experiments were
conducted based on the Faster-RCNN model, using ResNet-100
as the teacher network and ResNet-50 as the student network.
The mAP_50 values of the student network were observed for
different k values, and the results are shown in Table 3. From the
results, it can be observed that the student network achieves the
optimal mAP_50 value when k is set to 45. It is speculated that if k
is too small, it may not capture crucial defect features, while

setting k to a large value introduces too much noise from
foreground object regions, leading to negative effects.

4 Conclusion

Due to the limited dataset of hardware defects, hardware defects
occur as damage to the hardware target. Compared to the hardware
target, the effective feature range of hardware defects is smaller. In
order to improve the detection accuracy of hardware defects in
power transmission lines by the student network, this paper
improves the foreground target region distillation. It guides the
student network with more refined feature knowledge generated by
the teacher network. Considering the influence of the two tasks,
classification, and regression, in the foreground target region, pixels
are scored, and the top k important pixels’ generated masks
containing feature knowledge are used to guide the student
network. Experimental results show that the proposed method
applied to three different single-stage and two-stage detection
models, Faster-RCNN, RetinaNet, and Cascade R-CNN, has
improved the detection accuracy of hardware and its defects. In
Faster R-CNN, after adding the knowledge distillation algorithm in

FIGURE 3
Comparison of different network experiment results (A) Teacher network (B) Student network (C) Distilled student.

TABLE 3 Ablation Experiments with Different k Values.

k 1 5 10 15 30 45 60 75

mAP_50 0.189 0.265 0.312 0.458 0.467 0.483 0.479 0.410
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this paper, mAP_50 has improved by 8.44% for the student network.
RetinaNet improved by 2.6%, and Cascade R-CNN improved by
5.28%. This lays a solid foundation for lightweighting the hardware
and its defects detection models in power transmission lines.
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