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Abstract: Real-time intelligent segmentation of ultrasound video object is a demanding task in the field of medical image 
processing and serves as an essential and critical step in image-guided clinical procedures. However, obtaining reliable and 
accurate medical image annotations often necessitates expert guidance, making the acquisition of large-scale annotated datasets 
challenging and costly. This presents obstacles for traditional supervised learning methods. Consequently, semi-supervised 
learning (SSL) has emerged as a promising solution, capable of utilizing unlabeled data to enhance model performance and 
has been widely adopted in medical image segmentation tasks. However, striking a balance between segmentation accuracy 
and inference speed remains a challenge for real-time segmentation. This paper provides a comprehensive review of research 
progress in real-time intelligent semi-supervised ultrasound video object segmentation (SUVOS) and offers insights into future 
developments in this area.
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Ultrasound imaging is a widely used medical 
imaging technique that can dynamically display 
images of internal organs and tissues in real-

time, playing a crucial role in image-guided interventions 
and clinical diagnosis [1]. However, the low signal-to-
noise ratio and indistinct texture of ultrasound images 
make it challenging to achieve robust, high-precision, and 
rapid segmentation. Furthermore, acquiring well-labeled 
data is costly for medical image datasets, which require 
experts to provide reliable and accurate annotations [2]. 
To address the challenges of medical image segmentation 
tasks and reduce the burden of manual annotation, 
researchers have explored efficient utilization of medical 
image datasets and proposed semi-supervised learning 
(SSL) [3] solutions, such as generating pseudo-labels [4]  
and employing different data augmentation methods in 

consistency learning [5]. SSL is a practical approach for 
dealing with medical image data where data is scarce 
and labeling is expensive. It aims to use a small amount 
of labeled data while training the network with large-
scale unlabeled data to achieve the same segmentation 
performance as supervised learning models. As medical 
images are more readily available than annotations, 
SSL methods are widely used in various medical image 
segmentation tasks. However, effectively exploiting 
unlabeled data and deriving useful information from it 
remains a challenge for SSL.

This paper focuses on a series of studies that have 
employed semi-supervised learning (SSL) methods 
to address real-time segmentation tasks in ultrasound 
videos, known as semi-supervised ultrasound video 
object segmentation (SUVOS). In recent years, SSL has 
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shown promising results in SUVOS scenarios. We first 
introduce the concepts and fundamental assumptions 
of SSL, its common approaches in segmentation tasks, 
and its applications in video object segmentation (VOS) 
tasks. Subsequently, we discuss recent research in 
SUVOS, comparing and summarizing the advantages 
and disadvantages of these methods. Finally, we explore 
the challenges and future research directions in this 
area, providing insights for researchers to develop more 
accurate and efficient real-time intelligent segmentation 
algorithms for SUVOS.

Preliminary investigation

Semi-supervised learning on image segmentation
Semi-supervised learning (SSL) is a machine learning 

method that combines supervised and unsupervised 
learning and is typically employed to enhance the 
accuracy of classification or regression tasks when 
labeled data is limited. In SSL, the training data consists 
of both labeled samples (with explicit output values or 
classifications) and unlabeled samples. Compared to 
supervised learning using only labeled data, SSL exploits 
the potential information of unlabeled data to improve 
learning performance. As medical image datasets are 
very expensive to annotate, SSL methods that can utilise 
small quantities of annotated data are widely used in 
medical image lesion segmentation and classification.

SSL methods are commonly based on three assumptions 
[6]: the cluster assumption, the manifold assumption 
and the smoothness assumption. The cluster assumption 
posits that samples from the same class should exhibit 
similar class labels within the feature space. The 
manifold hypothesis assumes that sample data within 
the same local neighbourhood have similar properties, 
and embedding high-dimensional data into a low-
dimensional manifold should result in samples having 
similar labels when they are located within a small 
local neighbourhood of the low-dimensional manifold. 
Conversely, the smoothness assumption presumes that 
two samples in close proximity within a dense data 
region share similar class labels, meaning that when two 
samples are linked by edges in a dense data region, they 
likely share the same class label.

Semi-supervised segmentation with pseudo labels
The SSL model, which employs pseudo-labels, seeks to 

generate usable labels for unlabeled data to augment 
the dataset. This approach boasts the advantages of 
simplicity and ease of implementation, facilitating 
effective utilization of unlabeled data. Nonetheless, 
a drawback lies in the susceptibility to errors during 
the generation of pseudo-labels, leading to potential 

instability in their overall quality. Enhancing the 
confidence level of pseudo-labels remains a significant 
challenge for this method. Pseudo-labels-based methods 
can be categorized into self-training and co-training, 
contingent upon whether a single model is used for 
parameter updates or not.

Self-training [7], a simple semi-supervised method 
utilizing pseudo-labels, typically involves a network 
containing a single supervised segmentation model. 
Pseudo-labels are determined by the highest confidence 
prediction of this segmentation model. During training, 
data iteration occurs exclusively over this model. Bai 
et al. [8] refined segmentation results by implementing 
conditional random fields (CRF) and employed the 
optimized segmentation results as pseudo-labels for 
iterative processes. Chaitanya et al. [9] introduced local 
contrast loss to promote similarity in representations 
of pixels with identical labels (or pseudo-labels). He et 
al. [10] developed Distribution Alignment and Random 
Sampling (DARS) methods to acquire unbiased pseudo-
labeling data that align with the true distribution. 
Some researchers discovered that incorporating data 
augmentation techniques into the self-training process 
yielded more advantageous model iterations. Yang et 
al. introduced ST++ [11], which prioritizes the most 
reliable pseudo-labels during iterative processes and 
mitigates overfitting of noisy pseudo-labels through data 
augmentation.

The self-training approach does not possess a mechanism 
for detecting inaccurate labels. As a result, co-training 
extends the self-training approach to enhance network 
performance by training multiple models concurrently.

Co-Training [12] is a disagreement-based approach 
that predominantly depends on the disparities in 
predictions between models and aims to minimize 
disagreement by assigning pseudo-labels across multiple 
views of unlabeled data. It posits that each training 
instance can be characterized by two complementary 
view feature sets. The method employs labeled data to 
train classifiers for each view, utilizes these classifiers 
to categorize unlabeled samples, selects the pseudo-
labels with the highest confidence along with their 
original images to incorporate into the training set, and 
subsequently retrains the classifiers. The two primary 
objectives are to promote differences between views on 
the data and to estimate confidence in the predictions. 
Yao et al. [13] introduced a confidence-aware cross-
pseudo-supervised algorithm to enhance the quality of 
pseudo-labels through a confidence-aware regularization, 
measuring the pseudo-variance between the original 
image and its Fourier-transform-enhanced counterpart. 
Lee D et al. [14] incorporated the concepts of low-
density separation and entropy regularization to facilitate 
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the generation of pseudo-labels. Xia et al. [15] proposed 
an uncertainty-aware Mean Teacher [16] framework, 
which employs uncertainty estimation to select reliable 
pseudo-labels from the teacher model's predictions and 
provide them to the student model for learning.

Semi-supervised segmentation with consistency 
regularization 

In accordance with the smoothness assumption, a model 
should produce consistent predictions for an image and its 
perturbed counterparts. Semi-supervised segmentation 
methods that leverage consistency regularization make 
use of unlabeled data by incorporating perturbations. 
These methods involve adding a regularization item 
to the loss function, which measures the discrepancy 
between the original image prediction and that of the 
perturbed image. Laine et al. [17] proposed two models: 
Pi Model and Temporal Ensembling. The Pi Model is 
forward-propagated twice during training using identical 
input data, with each propagation introducing a distinct 
random perturbation to the input data and calculating 
the consistency loss to ensure the model's predictions 
remain consistent on the unlabeled data after both 
perturbations. This method of forward propagation 
twice reduces computational efficiency, and the authors 
present an alternative model, Temporal Ensembling, 
which computes an exponential moving average 
(EMA) of the current model output predictions with the 
predictions obtained from past segmentation, with only 
single input to the model per epoch. In comparison to 

Temporal Ensembling, the Mean teacher [16] introduces 
a separate network of teachers, as opposed to relying 
solely on historical predictions. The teacher model 
updates the parameters in real-time by applying an 
EMA to the student network. This allows the teacher 
model to make better use of the dynamic information 
available to the model during the training process. In 
addition to exploring regularized input methods, some 
researchers have focused on incorporating perturbations. 
This approach typically involves adding perturbations 
directly to the input image using data augmentation 
techniques. Li et al. [18,19] transformed the input image 
and calculated the unsupervised loss by assessing the 
difference between network predictions under various 
transformations. Bortsova et al. [20] investigated the 
impact of the isotropy of elastic deformations on model 
performance improvement. CutOut [21] method is to 
randomly select an area in the original image and set its 
pixel value to zero or other fixed value, and the model 
is equivalent to adding some images with occlusion in 
training. New training samples are generated by merging 
these modifications. Following data augmentation 
with these two methods, a regularization item enforces 
consistency between the original image and the predicted 
results of the modified image. Olsson et al. [22] proposed 
a novel data augmentation mechanism, ClassMix, for 
semi-supervised semantic segmentation. Similar to 
CutMix, ClassMix generates new samples by blending 
pixel-level labels from two distinct images, also relying 
on mask blending.

Figure 1 Pi Model and Temporal ensenmbling model structure [17].

Semi-supervised segmentation with comparative 
learning

The fundamental concept of contrast learning 
involves obtaining meaningful feature representations 
from unlabeled data by learning to differentiate between 

similar and dissimilar positive and negative sample 
pairs. Due to the absence of data annotations, similar 
samples are treated as augmentations of the same sample 
during training, while other data are considered distinct 
samples. Alonso et al. [25] applied contrast learning to 
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semi-supervised semantic segmentation tasks in order 
to learn similar class features between labeled and 
unlabeled datasets. A self-supervised learning structure 
was employed during the training process to learn 
feature representations using only positive sample pairs. 
Moreover, a memory bank was constructed to store high-
confidence samples learned by the teacher model on the 
labeled dataset, with a contrast loss function ensuring 
that sample features were closely aligned with similar 

sample features stored in the memory bank. Lai et al. 
[26] primarily addressed the issue of semi-supervised 
semantic segmentation overfitting on a limited number 
of labeled samples. They proposed maintaining context-
aware consistency across contexts and developed a 
directed contrast loss that achieves consistency on a 
pixel-to-pixel basis, requiring only lower quality features 
to be aligned with their corresponding objects. 

Figure 2 Overview of the OSVOS structure [27].

Semi-supervised Video Object Segmentation 
Video object segmentation (VOS) involves the 

continuous localization and segmentation of user-
defined objects of interest within video frames, achieved 
through the application of segmentation algorithms. 
Semi-supervised video object segmentation represents 
the predominant task within this category. Primarily, 
it tackles the one-shot learning problem, which entails 
providing pixel-level annotations for the initial frame 
of a video sequence and allowing the algorithm to 
automatically segment the specified object in subsequent 
frames. The prevailing algorithms encompass online 
fine-tuning-based methods, mask-based propagation 
techniques, and matching-based approaches.

Online fine-tuning-based methods
The concept of online fine-tuning methods was first 

introduced in OSVOS [27]. The core idea is to train a 
parent model on a large dataset so that the model can 
distinguish general features of foreground objects, fine-
tune the model online at test time based on the image 
and its annotation in the first frame, and then segment 
the object frame by frame in subsequent frames. 
OnAVOS [28] attempts to address the limitations of 
the OSVOS method in adapting to drastic changes in 
object appearance by introducing an online adaptive 
mechanism. OSVOS-S [29] facilitates the segmentation 

of subsequent frames by extracting instance semantic 
information from the first frame through an instance 
segmentation network.

These methods do not consider the temporal association 
of video frames, processing each frame independently. 
Fine-tuning the parameters by training on the first frame 
results in high-quality segmentation in subsequent 
frames, demonstrating robustness to occlusion and object 
loss. However, the lack of available temporal information 
makes these networks less capable of handling changes 
in object appearance. Additionally, the requirement for 
online learning for each video during the testing phase 
to update model parameters poses challenges in meeting 
real-time requirements for segmentation speed. Thus, 
careful adjustment of the network structure and training 
strategy is necessary to achieve optimal performance in 
practical applications.

Propagation-based methods 
The online learning approach faces challenges in 

achieving real-time segmentation; thus, some methods 
use mask propagation to accomplish semi-supervised 
VOS. These techniques primarily leverage the inter-
frame temporal information of the video to predict 
the current frame mask by propagating the semantic 
information from the previous frame and its segmentation 
result to the current frame. One type of solution involves 
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utilizing optical flow to propagate the mask. For 
instance, MaskTrack [30] employs affine transformation 
and non-rigid deformation on the mask of the previous 
frame to obtain the current frame prediction. MaskRNN 
[31] predicts multiple object instance-level segmentation 
using estimated optical flow and the object's bounding 
box. PReMVOS [32] applies optical flow between 
consecutive image pairs to propagate the proposed mask 

to the next frame, computing the temporal consistency 
between the two proposed masks and enhancing 
segmentation accuracy by refining the network.

In addition to optical flow, a category of VOS methods 
is based on object tracking. FAVOS [33] developed a 
part-based tracking method that predicts object masks 
from multiple tracking frames within an object part. 
SAT [34] utilizes inter-frame consistency to treat 
each object as a tracelet, predicting the mask for each 
tracelet by cropping the search area around the object. 
SiamMask [35] considers the bounding box of a trace as 
an approximation of the mask, generating a segmentation 
mask by adding mask branches in SiamRPN [36]. This 
approach narrows the gap between target tracking and 
target segmentation, improving the speed of tracking 
and segmentation. Although these methods achieve 
favorable results in terms of segmentation accuracy and 
real-time performance, they are less robust to occlusions 
and drifts and may suffer from error accumulation in the 
segmentation of subsequent frames. Figure 3 MaskTrack mask propagation process [30]. 

Figure 4 Overview of the STM framework [39].

Matching-based methods
In recent years, matching-based approaches have 

achieved exceptional results, garnering considerable 
attention as the most promising VOS solution. The 
fundamental concept involves capturing rich target 
information by learning pixel-level similarity or distance 
maps between query frames and historical frames in the 
embedding space. Most of these methods utilize only the 
first frame and adjacent frames or key frames sampled 
by parameters. PLM [37] conducts pixel-level matching 
of objects initialized in the first frame to subsequent 
images using twin networks. VideoMatch [38] devises 
a soft matching mechanism that computes the similarity 

between the current frame and the first frame at the 
feature level. Among the most well-known in recent 
years is STM [39], which proposes a space-time memory 
model that explicitly stores previously computed 
segmentation results in external memory. This memory 
mechanism facilitates the neural network in learning the 
temporal evolution of objects and exhibits remarkable 
performance, particularly when leveraging historical 
segmentation results. However, this approach suffers 
from space-time redundancy and performs unnecessary 
matching in untargeted regions,  rendering the 
segmentation speed less than real-time. Several scholars 
have made improvements based on STM. Lu et al. [40] 
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perform in-memory updates by storing and extracting 
target information from external memory, and they fine-
tune the segmentation model online to fit specific targets. 
STM-cycle [41] applies a cyclic approach to training 
and implementing segmentation networks to reduce 
incorrect segmentation in memory frames. Swiftnet [42] 
develops a more efficient memory mechanism to reduce 
the unnecessary accumulation of similar images through 
a Pixel-Adaptive Memory (PAM) module that adaptively 
selects whether to update memory frames. Matching-
based approaches offer a great deal of flexibility in 
model design and can handle long-term correspondence. 
However, this approach relies on robust and generalized 
feature representation, which may limit its performance 
in some challenging scenarios.

Real-time Segmentation of Semi-supervised 
Ultrasound Video Objects (SUVOS)

Semi-supervised learning (SSL) has achieved 
impressive results in the field of natural image and video 
object segmentation. Ultrasound images are widely 
employed in clinical practice due to the excellent real-time 
performance, non-invasiveness, no radiation, and ease of 
operation. In recent years, some researchers have also 
applied SSL and semi-supervised object segmentation 
methods to ultrasound video segmentation tasks. In this 
section, we review and discuss representative methods in 
semi-supervised ultrasound object segmentation tasks, 
comparing the performance of various models in this 
domain. 

Figure 5  ASS-GAN semi-supervised flow using unlabeled images [48].

Pseudo-labels-based SUVOS
Semi-supervised segmentation algorithms utilizing 

pseudo-labels through iterative models are prevalent 
in the field of natural images, and some researchers 
have also applied these methods in ultrasound image 
segmentation scenarios.

Wang et al. [43] developed a Unet [44] based segmentation 
network to segment ultrasound thyroid nodules. Initially, 
the segmentation model was trained with labeled data; 
subsequently, unlabeled data was fed into the segmentation 
model to obtain predictions as pseudo-labels, which were 
used to retrain the network for updating parameters. Li et 
al. [45] designed a semi-supervised segmentation network 
based on the Temporal Ensembling (TE) method. After 
each training, the current model made predictions for 
the entire training set to generate pseudo-labels for each 
sample. These pseudo-labels were then averaged with the 
original labels to obtain the label average for the entire 
training set. Cao et al. [46] proposed an uncertainty 

TE segmentation model to reduce the negative impact 
of unreliable pseudo-labeled samples on the training 
process. This model employed an integration strategy to 
generate relatively stable pseudo-labels and incorporated 
an uncertainty mapping to further ensure the reliability 
of these pseudo-labels. Li et al. [47] generated pseudo-
labels for unlabeled data by smoothing network 
predictions using a simple linear iterative clustering 
(SLIC) superpixel algorithm.

ASS-GAN [48] is an approach that incorporates 
two generators and a discriminator. In the first step, the 
generator and discriminator are trained with labeled 
data, endowing them with fundamental segmentation 
and discrimination capabilities. During the second step, 
unlabeled data is introduced to the two generators, 
which generate predictions. The discriminator evaluates 
its output predictions and employs high-confidence 
predictions as pseudo-labels for the other generator. 
These two generators form a mutual supervision 
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module, supplying each other with supervisory signals. 
Adversarial training is utilized to further constrain the 
distance between the pseudo-label and the true result, 
thereby facilitating the mutual supervision module's 
training. Huang et al. [49] integrated a fuzzy feature 
generator and a multi-scale fuzzy entropy module into 
the GAN-based network to discern the differences 
between the uncertainty map and the input.

In contrast to ASS-GAN, which employs generators 
as segmentation networks to produce pseudo-labels 
for unlabeled data, Iqbal et al. [50] and Pang et al. [51] 
utilized GAN networks to synthesize ultrasound breast 
tumor images to augment the dataset. Specifically, 
Pang et al. [51] employed a semi-supervised GAN 
architecture trained on unlabeled ultrasound breast data 
to generate synthetic breast tumor images. PDF-Unet 
[50] designed a self-encoder network, data expansion 
network (DEN), based on GAN and used the DEN to 
generate pseudo-images of ultrasound breast tumors to 
expand the dataset. The quality of the synthetic images 
was improved through adversarial training during the 
training process. In each iteration, the authors first fed 
unlabeled ultrasound data into the DEN, then employed 
a discriminator to differentiate between real and 
synthetic images, and updated the DEN parameters. A 
segmentation network was also trained using labeled data 
and used to generate probability maps for the pseudo-
images. Finally, the generated images and probability 
maps were fused with the labeled data to train the 
primary segmentation network PDF-Unet.

However, insufficient supervision of the discriminator 

may impact the quality of the fake samples generated 
by the generator. Han et al. [52] effectively ensured 
the quality of predictions generated by the generator 
by designing a dual-attention fusion block to better 
extract representative features of the lesion region and 
background.

Consistency regularization SUVOS
Xu et al. [53] introduced a shadow consistency method 

for segmenting ultrasound prostate images based on 
consistency learning. This approach employs shadow 
enhancement and shadow removal mechanisms to 
encourage the segmentation network to extract features 
from shadow-free regions at both the image and feature 
levels. Chen et al. [54] developed a semi-supervised 
segmentation network based on the Mean Teacher method 
to assist robots in vascular puncture. While Mean Teacher 
has achieved some success in SSL tasks, its consistency 
loss is more sensitive to noise. Xie et al. [55] proposed a 
prior knowledge-guided consistent regularization method 
for semi-supervised breast cancer diagnosis in ultrasound 
images. This approach incorporates physicians' domain 
knowledge into sample perturbations, enabling the model 
to generate consistent predictions for unlabeled images 
and perturbed samples. Mendel et al. [56] transferred 
the Mean Teacher from consistent regularization to error 
correction for semi-supervised segmentation by adding a 
correction network. This network accepts the output of the 
segmentation network as input and produces a corrected 
segmentation result. 

Figure 6 Ultrasonic renal parenchymal segmentation network based on the STM framework [57].  

Based on video object segmentation SUVOS
The measurement of renal parenchyma area in 

the kidney is correlated with acute and chronic renal 
diseases, and the thickness of renal parenchyma serves as 

an indicator of chronic renal failure. This measurement 
can be obtained from ultrasound images. Wang et al. [57] 
proposed a deep learning method for kidney parenchyma 
segmentation in kidney ultrasound videos, capitalizing 
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on the temporal information present in video frames. 
Specifically, the authors designed a network based on 
the Space-Time Memory (STM) model and attention 
mechanism [58], in which video frames are input into 
an encoder, and an image mask is provided for the first 
frame. Subsequently, starting from the second frame, 
video frames are processed sequentially as query frames. 
The encoder enhances the model's robustness against 
changes in target appearance by extracting features from 
the input image and calculating the feature similarity 
between the query frame and the memory frame within 

a position-aware module. The model then determines 
whether each feature's mask information belongs to the 
foreground or background by incorporating an attention 
module. During the memory unit's reading process, 
the corresponding weights are initially computed by 
assessing the pixel similarity between the input and 
historical frames. Finally, a pre-trained decoder is 
employed for performing binary classification tasks 
for the foreground and background, while the decoder 
undergoes a limited number of iterations to fine-tune the 
parameters on the ultrasound data. 

Figure 7 Semi-supervised echocardiography video segmentation framework based on Mean Teacher [60].

Echocardiography is extensively employed in 
diagnosing various cardiovascular diseases, ranging 
from heart failure to valvular heart disease, due to its 
ease of use, affordability, and absence of radiation [59]. 
Accurate diagnosis of cardiovascular disease based on 
echocardiography relies on the precise segmentation 
of several key features and the measurement of critical 
indicators of cardiac function. Wu et al. [60] emphasized 
the significance of temporal coherence in cardiac motion 
for ultrasound video to enhance model segmentation 
accuracy and efficiency, in contrast to processing frame-
by-frame video input without considering inter-frame 
coherence. Directly applying methods from natural 
image segmentation to ultrasound images is ineffective 
due to the inherent scattering noise in ultrasound 

images. The authors propose a model that addresses the 
challenges of ultrasound video segmentation accuracy 
and real-time segmentation by exploiting the space-
time coherence between frames in the presence of 
scattered noise. Specifically, the model is implemented 
based on the Mean Teacher semi-supervised framework 
and primarily consists of: 1) An adaptive space-time 
semantic calibration module for aligning feature maps of 
consecutive frames; 2) A temporal context-aware feature 
extraction module; 3) A weight learning module. During 
training, the model receives input from three consecutive 
frames of images and achieves accurate segmentation 
of the current frame by extracting and calibrating the 
contextual features of adjacent frames. However, this 
training method is specific to offline video, and its 
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effectiveness for online video transmission remains 
unknown. Ta et al. [61] proposed a semi-supervised 
joint learning network utilizing a bridging structure with 
two branches—one for motion tracking and the other 
for segmentation—while incorporating physiological 
constraints as shape priors to enforce realistic heart 
motion.

El Rai et al. [62] viewed VOS as a node classification 
problem and proposed GraphECV, a semi-supervised 
VOS method based on graph signal processing, and 
applied it to echocardiogram video segmentation. 
Specifically, they initially employed FgSegNet_S as 
the segmentation network, then extracted optical flow, 
texture, and statistical features from each instance, 
connecting them to represent the vertices of the graph. 
Subsequently, the graph was constructed utilizing the 
K-nearest neighbor algorithm, which connected the 
K-nearest neighbors of each node or vertex, followed by 
graph sampling performed by embedding the graph with 
a limited quantity of labeled data. Ultimately, all nodes 
were labeled and reconstructed using semi-supervised 
Sobolev parametric minimization techniques to classify 
nodes as either left ventricle or background.

Chen et al. [63] highlighted that backbone models, 
pre-trained on natural image datasets, experience 
significant performance degradation when processing 
medical images. However, due to the scarcity of 
medical images, publicly available models pre-trained 
for ultrasound images are limited. To address the data 
shortage issue, the authors initially constructed an 
ultrasound video dataset. They then developed a semi-
supervised contrastive learning method to train a generic 
model using ultrasound video for downstream tasks, 
such as ultrasound image segmentation. This approach 
demonstrated performance advantages over ImageNet 
pre-training methods across multiple downstream tasks.

Sirjani et al. [64] developed EchoRCNN, a video 
object segmentation network for echocardiograms, aimed 
at extracting cardiac features from echocardiogram 
sequences. The network is built upon the robust image 
segmentation architectures of Mask R-CNN, RetinaNet, 
and the RGMP video object segmentation network. 
Specifically, the network comprises a siamese encoder, 
a Feature Pyramid Network (FPN), and three sub-
networks for classification, regression, and segmentation. 
Additionally, the model incorporates a recurrent neural 
network component for processing time series data. The 
training process involves a main stream and a reference 
stream, based on the RGMP network. The main stream 
receives the current frame and the prediction mask of 
the previous frame, while the reference stream takes 
the first image frame and its annotations as input. The 
input passes through the siamese encoder and FPN 

before entering the three sub-networks for classification, 
regression bounding box, and segmentation tasks. 
Finally, the prediction mask undergoes post-processing 
to extract the primary parameters of left ventricular (LV) 
or right ventricular (RV) function, enabling the detection 
of end-diastolic and end-systolic frames.

Other methods on SUVOS
Song et al. [65] introduced a semi-supervised segmentation 

method that utilizes continuous minimum cut blocks of 
superpixels and neighborhood patches. Superpixels 
are blocks of pixels composed of neighboring pixels 
with similar intensities. This approach aims to improve 
segmentation performance by complementarily 
combining the position information of each superpixel 
as coarse features with the grayscale information of 
the neighborhood patches as fine texture features. 
Shin et al. [66] performed breast ultrasound tumor 
segmentation by combining bounding box regression 
and weakly supervised learning methods. Dai et al. [67] 
integrated target detection and unsupervised learning 
for the segmentation of prostate ultrasound images, 
incorporating the YOLOv5 target detection network and 
the C2Fnet [74] unsupervised segmentation network. 
Specifically, the detection model first identifies the 
target, and the region of interest is extracted. The 
extracted slices are then fed into the segmentation 
network for segmentation. Judge et al. [68] proposed a 
semi-supervised segmentation method that optimizes the 
non-differentiable anatomical prior, with the anatomical 
prior providing the regularization term. Yang et al. [69]  
improved segmentation performance by learning 
image semantic information from various hybrid 
loss functions, such as uncertainty loss and context-
constrained loss, performing uncertainty estimation in 
both models. [70] suggested a cyclic self-supervised 
method based on heartbeat cycles to enhance feature 
similarity and employed teacher-student distillation to 
improve segmentation using pseudo-labels on unlabeled 
ultrasound videos. 

Wang et al. [71] developed a semi-supervised bone 
shadow segmentation method for conditional generative 
adversarial networks based on multi-task learning. The 
proposed CNN model consists of a shared encoder 
and two independent multiscale decoders for coarse 
bone shadow enhancement (BSE) and horizontal bone 
interval mask (HBIM), respectively. Specifically, the 
BSE decoder output is an enhanced bone shadow image, 
and the HBIM decoder output is a one-dimensional 
row vector representing the horizontal spacing of the 
bone shadow. Then the outputs of these two tasks are 
processed by a masking operation to generate the final 
bone shadow segmentation. By multiplying the pixel 
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values in the BSE image with the HBIM vector, pixel 
values in the BSE image not belonging to the bone 
shadow region can be set to zero, ultimately obtaining 
the bone shadow mask. Moreover, by introducing a 

conditional shape discriminator, shape information-based 
adversarial loss is added to guide the training of the bone 
shadow segmentation network, further regularizing the 
output bone shadow shape.

Figure 8 Ultrasonic bone shadow segmentation method based on multi-task learning [71]. 

In summary, real-time semi-supervised ultrasound 
video object segmentation methods demonstrate significant 
advantages in processing medical images. These 
techniques have achieved remarkable success in handling 
temporal information and enhancing segmentation 
accuracy as well as real-time performance. The majority 
of researchers have tackled this issue by combining SSL 
with semi-supervised VOS methods, encompassing 
approaches such as pseudo-labeling-based methods, 
consistency learning, and video object segmentation-based 
methods. Additionally, there are solutions integrating 
other techniques like superpixels, weakly supervised 
learning, target detection, and unsupervised learning. 
These methods have been employed in various clinical 
ultrasound tasks, including thyroid nodule segmentation, 
breast tumor segmentation, prostate image segmentation, 
renal parenchyma segmentation, and echocardiogram 
segmentation.

Evaluation Indicators and Methods
In this section, we discuss the metrics and methods 

employed to evaluate real-time ultrasound video object 
segmentation algorithms. Evaluation metrics and methods 
are crucial for assessing the performance of different 
approaches and assisting researchers in comprehending the 
practical performance of various techniques. Generally, 
these methods should be evaluated across multiple 
aspects, including segmentation accuracy, inference 
time, and memory footprint. We provide an overview 

of commonly used metrics for gauging the performance 
of segmentation algorithms and elaborate on real-time 
metrics.

Segmentation accuracy is the core metric for evaluating 
the performance of image segmentation algorithms. Pixel 
Accuracy is used to evaluate the accuracy of the predicted 
pixels. It is calculated by dividing the number of correctly 
predicted pixels by the total number of pixels. Pixel 
Accuracy is defined as Eq1:

𝑃𝐴 =
∑ 𝑝𝑖𝑖𝑘
𝑖=0

∑ ∑ 𝑝𝑖𝑗𝑘
𝑗=0

𝑘
𝑖=0

 (1)

The Intersection over Union (IoU) or Jaccard index 
is one of the most commonly used metrics in semantic 
segmentation. It is used to evaluate the difference 
between the predicted mask and the true annotations. It 
is defined as the intersection of the predicted mask and 
the true annotation divided by the concatenation of the 
predicted mask and the true annotation, as in Eq2:

𝐼𝑜𝑈 = 𝐽 𝐴,𝐵 =
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

 (2)

Where A and B represent the true annotation and the 
prediction mask respectively. Another metric, Mean-IoU 
(mIoU), is the average intersection ratio of all classes and 
is also widely used in segmentation algorithms. It can be 
expressed in an alternative form, as shown in Eq3:

 (3)
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Where TP is the true positive score, FP is the false 
positive score, FN is the false negative score and TN is 
the true negative score. Using the foreground-background 
dichotomy as an example, as shown in Table 1:

Table 1 Evaluation of accuracy of dichotomous results

True value
Predicted value

Prospects Background

Prospects TP FN

Background FP TN

Precision, Recall and F1 score are common accuracy 
evaluation metrics for image segmentation model 
applications. Precision refers to the proportion of 
samples that actually belong to a positive class among 
all samples identified as positive classes. It measures the 
ability of the model to correctly identify positive classes 
and is calculated as Eq4:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4)

Recall refers to the proportion of samples that are 
correctly identified as positive classes out of all samples 
that are actually positive classes. It measures the extent 
to which the model correctly identifies samples in the 
positive class, as shown in Eq5:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

The F1 score is the combined mean of Precision and 
Recall, which combines the performance of Precision and 
Recall and can be used to assess the overall performance 
of the model when both metrics are considered. the F1 
score is calculated as Eq6:

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 𝑃𝑟𝑒𝑐 𝑅𝑒𝑐
𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐

 (6)

The Dice Coefficient is a metric used to measure the 
geometric similarity of two samples. It is often used as 
a metric to assess model performance in medical image 
segmentation and is calculated as Eq7:

𝐷𝑖𝑐𝑒 =
2 𝐴 ∩𝐵
𝐴 + 𝐵 =

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

 (7)

When applied to a binary classification problem, the 
Dice coefficients and F1 scores are equivalent.

Inference speed and computation are also vital 
metrics when evaluating the performance of an image 
segmentation model. They reflect the efficiency and 
resource consumption of the model in applications 
and are particularly crucial for real-time scenarios 
and equipment requirements. Inference speed is the 
time required for a model to make a single prediction, 

usually expressed as the prediction time per sample. 
It is influenced by various factors such as hardware 
configuration, model complexity, and optimization 
methods.

Computation amount refers to the computational 
resources required by a model to perform inference or 
training. Commonly used computational metrics include 
Floating Point Operations (FLOPs) and the Number of 
Parameters (Params). Params refers to the total number 
of trainable parameters in the model, reflecting the 
storage requirements and memory usage of the model. 
More parameters may render the model unworkable 
on resource-limited devices or affect the speed of  
inference.

Additionally, in video object segmentation tasks or 
some tasks with real-time requirements, FPS (Frames 
Per Second) is a key performance metric that measures 
the real-time performance of a model when processing 
video sequences, reflecting how quickly the model can 
predict and segment between consecutive frames. A high 
FPS means that the model can complete the processing 
of video frames in a shorter time, thus meeting the 
requirements of real-time processing.

When evaluating different real-time segmentation 
algorithms for semi-supervised ultrasound video objects, 
metrics such as segmentation accuracy, inference speed 
and computation, and FPS can be taken into account 
to identify the best model that balances real-time 
performance with segmentation accuracy.

Analysis
SUVOS is focused on video segmentation, making 

continuous image ultrasound video datasets essential to 
drive this type of research. Currently, there are limited 
public datasets for ultrasound video, with CAMUS [72] 
and EchoNet-Dynamic [73] being among the better-
known echocardiography video datasets.

The CAMUS dataset is a publicly available dataset 
for cardiac ultrasound image segmentation and 
includes sequences of two- and four-chamber views 
collected from 500 volunteers. Each sequence contains 
approximately 20 frames of images with two frames of 
expert annotation. EchoNet-Dynamic is a large dataset 
of 10,030 annotated echocardiographic videos, including 
cardiac cases and health samples. Each echocardiogram 
video is approximately 200 frames.

These two datasets provide rich cardiac ultrasound 
images and detailed structural annotations, serving as 
important benchmark datasets in the field of cardiac 
ultrasound image segmentation. Researchers can use 
them to evaluate and improve their own segmentation 
algorithms. 
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We have compiled a table comparing the performance 
of the algorithms discussed earlier, utilizing values from 
the corresponding papers and indicating the datasets 
they employ. In Table 2, we categorize and evaluate six 
main aspects, including the method used, the proportion 
of unlabeled data, Dice and IoU, the real-time metric 
FPS, hardware information, and the dataset. As different 
methods have varying optimization approaches and 
hardware, and different models focus on different 
datasets, this information is provided for reference 
only. In terms of real-time performance, several models 
[48,50,57,60,62,64,71] have achieved this. Notably, 
Wang et al. [57] and El Rai et al. [62] do not mention 
specific real-time metrics in their papers. Yang H et 
al. [69] and Wang P et al. [71] along with previous 
researchers, did not provide real-time performance 
metrics. We have calculated the FPS from the training or 
testing time and batch size for reference purposes only. 
Most approaches concentrate solely on segmentation 
accuracy, which is difficult to deploy for scenarios 
requiring real-time performance. Generative adversarial 
networks (GAN) have been favored by many researchers 
and applied to their own algorithms. Some studies have 
also employed a combination of consistency learning and 
video object segmentation to achieve a balance between 
segmentation accuracy and real-time performance. In 
Wang et al. [57] 's work, STM was applied directly 
to an ultrasound kidney parenchymal segmentation 

scenario, and although the segmentation accuracy of 
STM on the DAVIS dataset was achieved according to 
the results given in the paper, the memory and temporal 
redundancy inherent in STM may adversely affect real-
time performance and deployment. Additionally, there 
are challenges with accurate segmentation of target 
boundaries in ultrasound images.

Conclusion
This paper reviews representative approaches to 

semi-supervised learning (SSL) and semi-supervised 
video object segmentation in recent years, providing an 
overview of the current research progress in real-time 
semi-supervised ultrasound video object segmentation. 
In general, there is relatively limited research in this 
area, but some notable results have been achieved. The 
application of SSL methods in the field of real-time 
intelligent segmentation of ultrasound video objects 
offers new ideas and possibilities for addressing the issue 
of limited annotated data.

In this respect, this paper equips the reader with 
the necessary background knowledge, focusing on 
pseudo-label-based, consistency learning, and video 
object segmentation methods, as well as other semi-
supervised segmentation approaches. These methods 
have demonstrated good performance on ultrasound 
images in various scenarios. However, current research 

Table 2 Comparison of semi-supervised ultrasound video object segmentation models in real-time

Author Method (Based on) Dice/mIou FPS Device Dataset

Zhai D et al. [48] Generative adversarial networks 0.8319/0.7123 17.48 1080Ti DBUS (15% labeled)

Pang T et al. [51] Generative adversarial networks 0.94 33.2 2060Super Mendeley US

Wang P et al. [71] Generative adversarial networks 0.962/0.9297 33.33 TiTan Xp Bone US

Cao X et al. [46] Consistency regularization 0.7287 2x2080Ti ABUS (300 labeled)

Wu H et al. [60] Consistency regularization 0.9379 31.25 2080Ti CAMUS

Xie X et al. [55] Consistency regularization 0.7951 V100 BUSI (10% labeled)

Sirjani N et al. [64] Detection-based 0.7220 12.5 2060-A8G Echocardiography 
series

Dai F et al. [67] Detection-based 0.7594/0.6271 BUS

Wang R et al. [57] Matching-based 0.8387 Real-time  
(Not verified) 2080Ti Renal Parenchyma

B Li Y et al. [47] Simple linear iterative clustering super-pixel 0.8823/0.8495 BUS (100 labeled)

Song X et al. [65] Super-Pixel 0.900 CPU MUS

El Rai M C et al. [62] Graph Signal Processing 0.9270 Real-time  
(Not verified) CAMUS (5% labeled)

Yang H et al. [69] Uncertainty and contextual constraint loss 0.65 50 1080Ti Heart US
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has limitations, such as the generalization ability, 
adaptability, and computational efficiency of the 
models on ultrasound images, which still require further 
improvement.

We believe that there are promising directions 
in the field of semi-supervised real-time intelligent 
segmentation for ultrasound video. SSL can be combined 
with transfer learning, such as domain adaptation, to 
further reduce the reliance on labeled data and enhance 
model generalization performance. The construction 
of large pre-training datasets for ultrasound video is 
crucial. Currently, models are primarily pre-trained 
on ImageNet or other publicly available natural 
image datasets; however, ultrasound images differ 
significantly from natural images. Utilizing models pre-
trained on such datasets may constrain the potential 
improvement of model accuracy. Additionally, the 
well-known Transformer architecture has recently 
achieved remarkable results in computer vision tasks. Its 
application in real-time segmentation for semi-supervised 
ultrasound video object warrants exploration in future 
research.
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