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Introduction: The time, frequency, and space information of 
electroencephalogram (EEG) signals is crucial for motor imagery decoding. 
However, these temporal-frequency-spatial features are high-dimensional 
small-sample data, which poses significant challenges for motor imagery 
decoding. Sparse regularization is an effective method for addressing this issue. 
However, the most commonly employed sparse regularization models in motor 
imagery decoding, such as the least absolute shrinkage and selection operator 
(LASSO), is a biased estimation method and leads to the loss of target feature 
information.

Methods: In this paper, we propose a non-convex sparse regularization model 
that employs the Cauchy function. By designing a proximal gradient algorithm, 
our proposed model achieves closer-to-unbiased estimation than existing sparse 
models. Therefore, it can learn more accurate, discriminative, and effective feature 
information. Additionally, the proposed method can perform feature selection 
and classification simultaneously, without requiring additional classifiers.

Results: We conducted experiments on two publicly available motor imagery EEG 
datasets. The proposed method achieved an average classification accuracy of 
82.98% and 64.45% in subject-dependent and subject-independent decoding 
assessment methods, respectively.

Conclusion: The experimental results show that the proposed method can 
significantly improve the performance of motor imagery decoding, with better 
classification performance than existing feature selection and deep learning 
methods. Furthermore, the proposed model shows better generalization 
capability, with parameter consistency over different datasets and robust 
classification across different training sample sizes. Compared with existing 
sparse regularization methods, the proposed method converges faster, and with 
shorter model training time.
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1. Introduction

Motor imagery-based brain-computer interface (BCI) systems 
have been widely applied in stroke rehabilitation, neuroprosthetics, 
and robot control (Liao et  al., 2023). However, motor imagery 
electroencephalogram (EEG) signals are spontaneous, with poor 
signal quality and large individual differences, resulting in low 
accuracy and poor stability of motor imagery decoding (Zhang et al., 
2021). Currently, motor imagery decoding is still a big challenge.

The time, frequency, and space information of EEG signals is 
crucial for motor imagery decoding (Zheng et al., 2022). Therefore, 
temporal-frequency-spatial feature-based motor imagery decoding 
has been widely studied (Chen et al., 2023). In the process of temporal-
frequency-spatial feature extraction, the original EEG signals are first 
decomposed into multiple time-frequency units, then the common 
spatial pattern (CSP) algorithm is used to extract the spatial features 
on each time-frequency unit, and finally, the spatial features of 
multiple time-frequency units are cascaded into a feature vector (Miao 
et al., 2021), which significantly increases the feature dimension of 
EEG. The number of feature dimensions exceeds one hundred or even 
several hundred, while feature redundancy exists. In addition, due to 
the difficulty and high cost of collecting EEG samples, especially for 
patients, the sample size is generally relatively small, usually only a few 
dozen. Therefore, the temporal-frequency-spatial feature is high-
dimensional small-sample data, which will bring a series of problems 
to the EEG classification model, such as the problem of overfitting and 
model solution underdetermination (Chadebec et al., 2022).

For high-dimensional small-sample problems, feature selection is 
an effective method (Chen et al., 2023), which can remove redundant 
information, reduce the feature dimension, simplify the model 
complexity, and effectively solve many problems (Shen and Zhang, 
2022). Sparse regularization-based feature selection methods are 
commonly used in motor imagery decoding, such as the least absolute 
shrinkage and selection operator (LASSO; Zhang et al., 2022), group 
LASSO (gLASSO; Zhang et  al., 2020), and sparse group LASSO 
(sgLASSO; Jiao et al., 2018). These methods are all convex sparse 
regularization models, which penalize the regression coefficients of 
the model by the l1 norm so that regression coefficients with small 
absolute values are automatically compressed to zero, thus generating 
sparse solutions and achieving feature selection. However, the l1 norm 
is a biased estimation that penalizes all components of the regression 
coefficients to the same extent. In addition to compressing the 
regression coefficients corresponding to the noisy features to zero, a 
certain degree of compression is applied to the target features, 
resulting in a biased estimation of the target features. Therefore, the 
biased estimation model applied to feature selection will result in the 
loss of useful information and degrade the classification performance.

Non-convex sparse regularization models penalize the regression 
coefficients to different degrees for different values of the regression 
coefficients, which are approximate unbiased estimation models and 
have stronger noise suppression and sparsity induction capabilities 
(Wang et al., 2018). The commonly used non-convex regularization 
models, such as smoothly clipped absolute deviation (SCAD; Chopra 
and Lian, 2010) and minimax concave penalty (MCP; You et al., 2019) 
models, have been widely used in the fields of image restoration and 
image denoising, and their effect is remarkable. SCAD and MCP 
models penalize the regression coefficients in chunks, reducing the 
compression of the regression coefficients corresponding to the target 

features and alleviating the biased estimation problem of the l1 norm 
to some extent (Wen et al., 2018). However, the SCAD and MCP 
models may still compress the regression coefficients of a portion of 
the target features. Therefore, there is still a need to explore new 
non-convex sparse regularization methods to better address the biased 
estimation problem and learn more accurate, discriminative, and 
effective feature information.

In addition, many deep learning methods for temporal-frequency-
spatial feature learning have been proposed, which are mostly inspired 
by the FBCSP approach (Ang et  al., 2008) in a machine learning 
framework, using convolutional neural network (CNN) for frequency 
band filtering followed by spatial filtering (Zancanaro et al., 2021). 
Earlier and more classical works include ConvNets (Schirrmeister 
et al., 2017) and EEGNet (Lawhern et al., 2018). There are also works 
that use traditional band-pass filtering banks to decompose the raw 
EEG signal into multiple frequency subbands and then use CNN to 
learn spatial domain or time domain information, such as FBCNet 
(Mane et al., 2020), FBMSNet (Liu et al., 2022), and the literature 
(Sakhavi et al., 2018; Kwon et al., 2019; Dai et al., 2020). Subsequent 
work uses multiscale convolution to learn frequency domain 
information in parallel and then learns either spatial domain or time 
domain information at each branch, such as MSFBCNN (Wu et al., 
2019), MMCNN (Jia et al., 2020), and the literature (Chang et al., 
2022; Li et  al., 2023). Deep learning methods have a strong 
representation learning capability but require a large number of data 
samples (Autthasan et al., 2021). Although deep learning has been 
widely used in motor imagery decoding, feature selection is integrated 
into the overall network structure, and the theoretical support and 
physiological interpretability are relatively poor. Furthermore, the 
model training is time-consuming.

A new non-convex sparse regularization model is proposed to 
deal with high-dimensional small-sample problems for motor 
imagery decoding in this paper, which can learn more accurate, 
discriminative, and effective temporal-frequency-spatial features. 
Specifically, we propose a non-convex sparse regularization model 
based on the Cauchy function and design an effective solution 
algorithm based on the proximal gradient. The proposed model 
penalizes the weight coefficients of each feature independently 
with a better ability to induce sparsity while avoiding the 
compression of the weight coefficients of the target features to zero 
during noise suppression, which achieves approximately unbiased 
estimation. We conducted experiments on two publicly available 
motor imagery EEG datasets to fully and adequately validate the 
effectiveness of the proposed model, using subject-dependent and 
subject-independent assessment methods.

The main contributions and innovations of this paper are 
summarized below.

 1. A new non-convex sparse regularization model based on the 
Cauchy function is proposed, which penalizes the weight 
coefficients of each feature independently, avoiding the 
compression of the weight coefficients of the target features to 
zero during noise suppression, thereby achieving closer-to-
unbiased estimation than existing sparse models. Therefore, it 
can learn more accurate, discriminative, and effective 
feature information.

 2. In addition to the proposed non-convex sparse regularization 
model, we introduced two other existing non-convex models 
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(SCAD and MCP) for EEG temporal-frequency-spatial feature 
learning and demonstrated the effectiveness of the non-convex 
sparse regularization model in EEG decoding. The non-convex 
sparse regularization model significantly outperformed the 
convex sparse regularization model in subject-
dependent decoding.

 3. We conducted a comprehensive and adequate validation of the 
effectiveness of the proposed methods using subject-dependent 
and subject-independent assessment methods. Comparisons 
are made with nine existing feature selection methods and four 
deep learning methods. For filtered and wrapped methods, five 
classifiers are combined for data experiments.

The rest of this paper is organized as follows. Section II presents 
the experimental data; Section III introduces the temporal-frequency-
spatial feature extraction method, the EEG decoding framework, and 
the Cauchy non-convex sparse regularization model proposed in this 
paper; Section IV presents and analyzes the experimental results. 
Sections V and VI are discussion and conclusion, respectively.

2. Data description

The proposed method was validated using two publicly available 
motor imagery EEG datasets, Dataset 1 from the international BCI 
competition and Dataset 2 from the database of the BNCI Horizon 
2020 project with no. 002–2014. The basic information of both 
datasets is shown in Table 1, other detailed information can be found 
on the official website.

For Dataset 1, we only study the binary classification problems, so 
the four types of tasks are arranged and combined to obtain six sets of 
binary classification problems (Zhang et al., 2022), namely, L vs. R, L 
vs. F, L vs. T, R vs. F, R vs. T, and F vs. T, where L vs. R denotes the 
left-hand and right-hand motor imagery tasks, the rest can be deduced 
accordingly. Note that, for the binary classification task, the number 
of both training and test sets is 144. For Dataset 2, the original data are 
downsampled to 256 Hz in this paper.

3. Methods

This section first introduces the temporal-frequency-spatial 
feature extraction method, then describes the EEG decoding 
framework based on temporal-frequency-spatial features, and finally 
proposes the non-convex sparse regularization model based on the 
Cauchy function.

3.1. Temporal-frequency-spatial feature 
extraction

As shown in Figure 1, the temporal-frequency-spatial feature 
extraction mainly consists of three steps. First, time window 
segmentation. A sliding time window is used to intercept the 
original EEG signal to obtain 5 time windows with a length of 2 s 
and an overlap rate of 0.5 s, i.e., 0–2 s, 0.5–2.5 s, …, 2–4 s. Second, 
band-pass filtering. Each time window is filtered with a band-pass 
filter bank to obtain 17 sub-bands with a width of 4 Hz and an 
overlap rate of 2 Hz, i.e., 4–8 Hz, 6–10 Hz, …, 36–40 Hz, the 
6th-order Butterworth filter is selected. After the above signal 
processing, the original EEG signal is divided into a total of 85 
time-frequency units. Third, feature extraction. For each time-
frequency unit, the CSP method is used to extract the spatial 
features separately, thus obtaining multiple groups of temporal-
frequency-spatial features containing rich EEG information. In 
this paper, the pair number of the spatial filter for CSP is set to be 1 
(Blankertz et  al., 2008; Lotte and Guan, 2011), i.e., each time-
frequency unit contains two spatial features.

3.2. EEG decoding framework

The EEG decoding framework is shown in Figure 2, where 
each group of temporal-frequency-spatial features is cascaded by 
the time window and frequency band to obtain a feature vector. 
One motor imagery task corresponds to one feature vector, and 
feature vectors from multiple tasks will form a sample matrix, 
each row of which is a sample and each column is a 
one-dimensional feature. Feature selection and classification are 
performed sequentially on the sample matrix. Filtered and 
wrapped methods need to be  configured with additional 
classifiers, and the embedded methods can perform feature 
selection and classification simultaneously.

The contents of the dashed boxes indicate the specific algorithms 
used for feature selection and feature classification, respectively. The 
feature selection methods used in this paper include Fisher score 
(F-score; Radman et al., 2021), mutual information (MI; Park et al., 
2018), binary differential evolution (BDE; Datta and Dutta, 2012), 
binary particle swarm optimization (BPSO; Too et al., 2019), LASSO 
(Zhang et al., 2022), gLASSO (Zhang et al., 2020), sgLASSO (Jiao 
et al., 2018), SCAD (Chopra and Lian, 2010), MCP (You et al., 2019), 
and Cauchy. The classifiers configured for filtered and wrapped 
methods include Fisher linear discriminant analysis (FLDA; 
Hoffmann et al., 2008), Bayesian linear discriminant analysis (BLDA; 

TABLE 1 Description of all datasets.

Datasets Number of 
channels

Sampling 
rate

Number of 
subjects

Tasks Number of training 
and test sets for 

each subject

Data access 
website

Dataset 1 (Liu et al., 

2022)
22 250 Hz 9

Left-hand, right-

hand, foot, tongue
288, 288

https://www.bbci.de/

competition/iv/

Dataset 2 (Autthasan 

et al., 2021)
15 512 Hz 14 Right-hand, foot 100, 60

http://bnci-

horizon-2020.eu/

database/data-sets

https://doi.org/10.3389/fnins.2023.1292724
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.bbci.de/competition/iv/
https://www.bbci.de/competition/iv/
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets


Zhang et al. 10.3389/fnins.2023.1292724

Frontiers in Neuroscience 04 frontiersin.org

Hoffmann et al., 2008), sparse BLDA (sBLDA; Bishop and Nasrabadi, 
2006; Hoffmann et  al., 2008), K-Nearest Neighbor (KNN), and 
Logistic Regression (LR).

Cauchy is a newly proposed embedded feature selection method. 
Next, we will introduce the Cauchy non-convex sparse regularization 
model in detail.

3.3. Cauchy non-convex sparse 
regularization model

The general mathematical model of the embedded feature 
selection method based on sparse regularization is as follows:

 
min
w

y Xw w1

2 2

2
 − + ( )λP

 
(1)

where X x x x= ( ) ∈ ×
1 2, , ,

T
 N

N PR  denotes the sample matrix, 
N  is the total number of samples, and P is the feature dimension of 
one sample. w = ( ) ∈w w w RP

T P
1 2, , , is the model regression 

coefficient vector, which represents the weight magnitude of the 
features. y = ( ) ∈y y y RN

T N
1 2, , ,  denotes the sample labels, and 

yi ∈ −{ }11, . 2
2• 

 denotes the square of the l2 norm, and λ > 0 denotes 

the regularization parameter. The first term of Eq. (1) is the data 
fidelity term and the second term is the penalty term. P w( )  is a 
function of the coefficient vector w, which penalizes or constraints w. 
During model training, some regression coefficients in w  are 
compressed to zero by P w( ) . The features corresponding to a 
coefficient of zero will not work in the model fit. Therefore, sparse 
regularization models can simultaneously achieve feature selection 
and classification. When P w( ) takes a different penalty function, the 
model will obtain solutions with different structures.

FIGURE 1

Temporal-frequency-spatial feature extraction. Time window interception is performed first, followed by frequency band filtering, and finally CSP 
features are extracted on each time-frequency unit.

FIGURE 2

EEG decoding framework. The dashed boxes indicate the specific implementation methods of each data processing step. The embedded feature 
selection method based on sparse regularization performs feature selection and classification simultaneously.
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LASSO is a biased convex sparse model, and its specific 
mathematical model is as follows (Zhang et al., 2022).

 
w w w

w
= − +argmin

1

2 2

2

1
   y X λλ

 
(2)

where P w w w
i

P
i( ) = =

=
∑ 1

1
, 1•   denotes the l1 norm, wi  

denotes the absolute value of wi . The LASSO model penalizes all 
components of the regression coefficients to the same extent, which 
results in a biased estimation. Similarly, gLASSO (Zhang et al., 2020) 
and sgLASSO (Jiao et al., 2018) are also biased convex sparse models.

3.3.1. Existing non-convex sparse regularization 
models

Non-convex sparse regularization are approximate unbiased 
estimation models, which have stronger noise suppression and sparsity 
induction capabilities than convex sparse regularization (Wang et al., 
2018). In the following, we will provide a detailed introduction to two 
existing non-convex sparse regularization methods, namely SCAD 
and MCP.

SCAD is an approximate unbiased non-convex sparse model with 
the following objective function (Chopra and Lian, 2010).

 

w w w
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P
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where p P∈{ }1, , , ϕλ γ,
1 •( )  are SCAD penalties, defined as
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where λ > 0 is the regularization parameter. γ > 2, γ  is set to 3 in 
this paper. SCAD compresses each weight coefficient to different 
degrees. The compression of the weight coefficients corresponding to 
the noise variables (absolute values less than λ) has the same effect as 
the LASSO model, which tends to compress this part of the weight 
coefficients to zero; the compression of the weight coefficients 
corresponding to the target variables is gradually reduced. Since 
SCAD reduces or even avoids the compression of the weight 
coefficients corresponding to the target variables, it effectively 
overcomes the biased estimation of LASSO and improves its 
parameter estimation consistency and variable selection consistency.

MCP is also an approximate unbiased non-convex sparse model 
with the following objective function (You et al., 2019).

 

w w w
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P
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=
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2

1
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where p P∈{ }1, , , ϕλ γ,
2 •( )  are MCP penalties, defined as
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where γ >1, γ  is set to 2 in this paper. Similar to SCAD, MCP also 
compresses each weight coefficient to different degrees. MCP 
compresses the weight coefficients corresponding to the noise 
variables (absolute values less than γλ), while it does not compress the 
weight coefficients corresponding to the target variables (absolute 
values greater than γλ ). Thus, MCP also achieves approximately 
unbiased estimation.

The SCAD and MCP models penalize the regression coefficients 
in chunks, which mitigates the biased estimation problem to some 
extent, but still inaccurately compresses a portion of the 
target features.

3.3.2. The proposed Cauchy regularization 
models

To better solve the biased estimation problem in temporal-
frequency-spatial feature selection, we propose a non-convex sparse 
regularization model based on the Cauchy function. The Cauchy 
function is defined as follows:

 
ϕ

γ

γ
C x

x
( ) = −

+









log

2 2
 

(7)

where γ ≥ 0. In this paper, the Cauchy function is used as a penalty 
term P w( ) , and a new non-convex regularized feature selection 
model is constructed, the mathematical model of which is specified 
as follows:

 
w w

ww
= − −

+









argmin log

1

2 2

2

1

22
 

 

y X λ
γ

γ  
(8)

where 2
1•   denotes the square of the l1 norm. This concave 

log function imposes an uneven penalty on all regression 
coefficients (Zhang et  al., 2020). It allows a larger penalty to 
be  imposed on small-valued elements than on larger-valued 
elements, a property that makes the log function closer to 
unbiased estimation than the SCAD and MCP models. Also, the 
Cauchy model has a better ability to induce sparsity than the l1 
norm (Zhang et al., 2020).

In this paper, the Cauchy non-convex regularized model is solved 
in two parts and iterated cyclically until convergence. The specific 
procedure is as follows:

 1. Gradient solution. Gradient solution of the differentiable term 
of the model with an intermediate point vτ  in the τ  
step iteration:

 
v w wτ τ τβ= − −( )( )1 / X X yT

 
(9)

where β =  X XT
2

, wτ  denote the feature weights of the τ  
step iteration.
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(2) Proximity operator solution. Compute the proximity operator 
of the Cauchy function at the intermediate point vτ , i.e.

 

w v

w w

Cauchy

Cauchy
T

τ β τ

β τ τβ

+ = ( )
= − −( )( )( )
1

1

prox

prox

,

, / X X y
 

(10)

where proxβ τ,Cauchy v( ) is the proximity operator of the Cauchy 
function, defined as follows (Karakuş et al., 2020):

 
proxβ τ τ

β
λ

γ

γ
, argmin logCauchy
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(11)

Find the partial derivative of Eq. (9) with respect to w  and make 
it zero, i.e.

 
w v w w vτ τ τ τγ

λ
β

γ+ +− + +








 − =1

3
1

2 2 22
0

 
(12)

Next, the Cardano method (Karakuş et al., 2020) is used to solve 
for wτ +1 in Eq. (12), i.e.

 

w v q p q

q p q
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3 23
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v

= + −γ
λ
β

τ2
2

2

3
, q

v v v
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2

27 3

2
3

2 2τ
τ

τγ γ
λ
β

.

In this paper, γ  is set to 0.007 in subject-dependent decoding and 
0.003 in subject-independent decoding.

4. Experiments

4.1. Evaluation indicators and assessment 
methods

For each subject, the classification accuracy of the test set is used 
as an evaluation indicator, i.e., the number of correctly classified 
samples divided by the total number of test set samples. Two 
assessment methods, subject-dependent and subject-independent 
decoding, are used to verify the classification performance of the 
proposed method. For subject-dependent decoding, one model is 
trained for each subject, and the division of the training and test sets 
of the model is kept consistent with the original data set, as detailed 
in the data description section.

For subject-independent decoding, the training and test sets 
of all subjects except the target subject are used to train the model, 
and the test set of the target subject is used to evaluate the 
performance of the model. For example, if subject 1 in Dataset 1 
is selected as the target subject, all training and test sets of the 
other 8 subjects constitute the training set of the model, and the 
test set of subject 1 constitutes the test set of the model.

4.2. Comparison methods and model 
parameter settings

There are nine feature selection methods involved in the 
comparison. F-score and MI are filtered methods, and BDE and BPSO 
are wrapped methods. LASSO, gLASSO, sgLASSO, SCAD, MCP, and 
Cauchy are embedded methods, among which LASSO, gLASSO, and 
sgLASSO are based on convex sparse regularization, and SCAD, MCP, 
and Cauchy are based on non-convex sparse regularization. 
We further divide the training set of the model into a training subset 
and a validation set and use the average accuracy of 10 cross-
validations as the selection criterion for the optimal model.

The F-score and MI methods first rank the features using their 
respective metric criteria and finally select the optimal feature subset 
using 10-fold cross-validation and the classifier. After the optimal 
feature subset is obtained by the BDE and BPSO methods, it is directly 
fed into the classifier for classification. The model parameters of the 
BDE and BPSO methods are set following the literature (Datta and 
Dutta, 2012; Too et al., 2019). The alternative sets of regularization 
parameters for the LASSO, gLASSO, sgLASSO, SCAD, MCP, and 
Cauchy methods are set as 2 2 2 2

5 4 8 4 8 5− −{ }, , , ,
. .
 , and the optimal 

regularization parameters are selected using 10-fold cross-validation. 
γ  is set to 3 and 2 in the SCAD and MCP models, respectively.

There are five classifiers used for filtered and wrapped methods, 
including FLDA, BLDA, sBLDA, KNN, and LR. The K  value of the 
KNN classifier is set to 5, and no parameters need to be  set for 
other classifiers.

4.3. Experimental results

4.3.1. Subject-dependent decoding
The classification results of all feature selection methods in 

subject-dependent decoding are listed in Table 2. Due to the limited 
space, only the average classification accuracy is listed for each dataset, 
which is obtained by averaging the classification accuracies of all 
subjects within the dataset. The classification results for Dataset 1 were 
obtained by averaging the classification accuracies of all subjects in the 
six sets of binary classification tasks. From Table 2 we can see that the 
proposed Cauchy feature selection method achieves the highest 
classification accuracy on both Dataset 1 and Dataset 2.

The average classification accuracy for all data is shown in 
Figure 3, which is obtained by averaging the classification accuracies 
of all subjects in Dataset 1 and Dataset 2. From the overall results of 
Figure 3, the existing embedded methods (LASSO, gLASSO, sgLASSO, 
SCAD, and MCP) have little or no advantage over the filtered and 
wrapped methods. However, the proposed method in this paper has 
a clear advantage. In addition, the non-convex regularization method 
outperforms the convex regularization method, which proves the 
superiority of the non-convex regularization method.

4.3.2. Subject-independent decoding
The classification results of all feature selection methods in 

subject-independent decoding are listed in Table 3. Similar to Table 2, 
only the average classification accuracy for each dataset is listed. The 
proposed Cauchy method achieves the best classification results on 
Dataset 1. Although Cauchy is not optimal on Dataset 2, it is not far 
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TABLE 2 Classification accuracy of various feature selection methods in subject-dependent decoding.

Methods Dataset 1 
(L vs. R)

Dataset 1 
(L vs. F)

Dataset 1 
(L vs. T)

Dataset 1 
(R vs. F)

Dataset 1 
(R vs. T)

Dataset 1 
(F vs. T)

Dataset 1 Dataset 2

Classifier Feature Selection

FLDA

F-score 78.55 86.04 83.41 83.80 77.70 77.16 81.11 70.83

MI 75.31 82.72 82.72 82.64 79.78 74.30 79.58 70.36

BDE 73.07 81.56 79.32 78.78 77.08 69.45 76.54 63.93

BPSO 71.68 83.64 78.70 77.55 76.47 71.06 76.52 65.00

BLDA

F-score 80.32 86.26 82.48 86.27 82.72 78.78 82.81 76.07

MI 80.71 85.80 81.71 86.96 83.87 77.78 82.81 73.09

BDE 79.78 86.73 82.64 84.34 82.95 74.23 81.78 72.74

BPSO 78.63 87.35 81.25 83.41 82.56 75.77 81.49 72.26

sBLDA

F-score 78.16 85.49 84.95 86.03 81.40 75.23 81.88 76.19

MI 77.93 85.80 82.41 84.26 80.71 76.31 81.24 74.17

BDE 75.39 84.64 82.02 84.57 80.17 72.07 79.81 68.81

BPSO 76.39 85.80 81.17 81.17 81.48 73.69 79.95 71.19

KNN

F-score 80.71 84.95 85.03 84.88 83.64 80.17 83.23 77.98

MI 82.25 85.80 83.72 86.19 82.02 79.47 83.24 77.62

BDE 78.09 86.34 83.18 81.40 82.48 77.93 81.57 72.74

BPSO 78.32 85.88 84.03 82.10 82.25 77.55 81.69 71.67

LR

F-score 80.40 85.88 84.18 85.34 82.41 79.63 82.97 76.55

MI 79.78 82.10 82.64 84.57 81.87 78.16 81.52 73.69

BDE 70.37 78.09 78.01 75.46 74.07 67.59 73.93 56.90

BPSO 70.14 80.63 78.24 74.31 74.85 69.44 74.60 59.29

LASSO 77.32 86.65 81.87 84.49 81.33 75.31 81.16 73.10

gLASSO 77.55 85.80 80.63 82.41 83.41 77.08 81.15 72.74

sgLASSO 72.14 81.17 80.25 80.55 77.78 73.69 77.60 73.69

SCAD 81.09 87.65 86.34 84.34 83.49 78.78 83.62 75.95

MCP 81.09 87.65 86.27 84.26 83.49 78.47 83.54 75.95

Cauchy 82.95 89.05 83.34 84.03 84.11 81.10 84.09 78.69

Dataset 1 (L vs. R) denotes a subset of Dataset 1, i.e., the subset of data corresponding to the left-hand and right-hand motor imagery tasks, the others can be deduced accordingly. Bold display 
indicates that the method is optimal.

FIGURE 3

Average classification accuracy of all data in subject-dependent decoding. (A) Filtered and wrapped methods combined with 5 classifiers. 
(B) Embedded methods perform feature selection and classification simultaneously, without additional classifiers.
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TABLE 3 Classification accuracy of various feature selection methods in subject-independent decoding.

Methods Dataset 1 
(Lvs R)

Dataset 1 
(L vs. F)

Dataset 1 
(L vs. T)

Dataset 1 
(R vs. F)

Dataset 1 
(R vs. T)

Dataset 1 
(F vs. T)

Dataset 1 Dataset 
2

Classifier Feature 
Selection

FLDA

F-score 66.59 62.50 61.57 62.50 62.58 58.87 62.44 63.33

MI 66.67 61.57 62.73 62.96 61.65 58.49 62.35 63.69

BDE 67.82 62.27 62.58 62.96 62.11 59.03 62.80 66.31

BPSO 68.06 62.11 62.27 63.66 61.88 58.03 62.67 63.69

BLDA

F-score 68.05 63.27 63.20 63.50 63.12 58.57 63.29 64.05

MI 68.06 63.27 62.34 63.81 63.12 57.72 63.05 65.36

BDE 68.75 63.19 62.96 63.35 63.66 59.26 63.53 65.72

BPSO 68.44 62.81 62.27 62.42 62.65 58.72 62.89 64.29

sBLDA

F-score 68.75 61.65 64.04 62.50 63.04 56.40 62.73 65.72

MI 66.13 62.35 64.58 62.89 62.04 57.41 62.56 66.55

BDE 68.52 62.65 63.58 63.35 63.58 57.87 63.26 65.24

BPSO 67.28 62.66 62.58 63.12 61.65 57.10 62.40 64.17

KNN

F-score 60.80 58.95 58.95 57.41 58.18 55.40 58.28 57.62

MI 62.27 59.33 58.10 56.79 59.18 54.71 58.40 55.83

BDE 60.96 58.03 57.64 57.95 58.49 54.40 57.91 59.29

BPSO 62.19 59.18 58.64 58.03 58.10 56.56 58.78 56.55

LR

F-score 68.21 62.81 62.19 62.27 61.73 58.03 62.54 64.40

MI 66.74 61.42 63.35 63.27 61.11 57.33 62.20 64.05

BDE 67.67 61.81 62.73 62.89 61.57 59.10 62.63 65.72

BPSO 68.06 61.26 62.35 63.58 61.65 58.03 62.49 63.93

LASSO 67.36 64.66 63.12 62.73 66.13 59.65 63.94 64.41

gLASSO 66.20 66.28 60.65 61.03 63.89 58.80 62.81 62.50

sgLASSO 66.74 68.37 60.19 61.42 61.50 59.34 62.92 65.24

SCAD 63.19 64.35 60.57 62.73 64.20 58.49 62.26 62.26

MCP 63.35 64.43 60.57 62.65 63.74 58.10 62.14 62.62

Cauchy 66.59 68.83 62.11 62.19 64.20 60.80 64.12 65.71

Dataset 1 (L vs. R) denotes a subset of Dataset 1, i.e., the subset of data corresponding to the left-hand and right-hand motor imagery tasks, the others can be deduced accordingly. Bold display 
indicates that the method is optimal.

from the highest value and outperforms the vast majority of 
existing methods.

The average classification accuracy for all the data is shown in 
Figure 4, which is obtained by averaging the classification accuracies 
of all subjects in Dataset 1 and Dataset 2. As can be seen from Figure 4, 
the Cauchy method still achieves the best classification results, 
followed closely by the LASSO method. In subject-independent 
decoding, the existing convex regularization methods (LASSO, 
gLASSO, sgLASSO) outperformed the non-convex regularization 
methods (SCAD and MCP). The filtered and wrapped methods 
performed comparably or even better than the existing embedded 
methods. However, the results of filtered and wrapped methods based 
on KNN classifiers are very poor. This indicates that some classifiers 
are suitable for subject-dependent decoding but not for subject-
independent decoding.

4.3.3. Compared with deep learning methods
In sections 4.3.1 and 4.3.2, the compared methods belong to 

machine learning methods. In this section, the proposed method is 
compared with deep learning methods. Deep ConvNet (Schirrmeister 

et al., 2017), EEGNet-8,2 (Lawhern et al., 2018), Spectral-Spatial CNN 
(Kwon et al., 2019), and MIN2NET (Autthasan et al., 2021) perform 
temporal-frequency-spatial feature learning for EEG decoding in 
different ways. In Table 4, we directly cite the experimental results 
provided in the literature (Autthasan et al., 2021) without reproducing 
these deep learning methods. From Table  4 we  can see that the 
proposed method has significant advantages in subject-dependent 
decoding. In subject-independent decoding, the proposed method is 
optimal on Dataset 1 (L vs. R) and second only to Spectral-Spatial 
CNN on Dataset 2 (Kwon et al., 2019).

4.3.4. Model generalization ability of the Cauchy 
method

The model generalization ability of the proposed Cauchy method 
is analyzed from two aspects. First, the parameter consistency over 
different datasets. Second, the classification performance across 
different training sample sizes.

We first investigate whether the model parameters are the same or 
close when the optimal classification accuracy is achieved over 
different datasets. The Cauchy model has only one parameter γ , as 
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detailed in Eq. (8). In the subject-dependent decoding, the average 
accuracy change of all subjects in Dataset 1 (L vs. R) and Dataset 2 is 
shown in Figure 5 when γ  is varied from 0 to 1.

From Figure 5, we can see that the classification accuracy change 
curves of the two datasets are almost the same, indicating that the 
Cauchy model parameters have good consistency over different 
datasets. To better represent the consistency of the model parameters, 
we expand the curves on the fuchsia and lime green boxes of Figure 5, 
and the results are shown in Figure  6. The fuchsia box part 
corresponds to Figure 6A, and the lime green box part corresponds 
to Figure 6B. It can be seen from Figure 6 that the model parameters 
are also relatively consistent over different data sets, and the 
parameter values for obtaining the optimal classification accuracy are 
relatively close.

We validated the classification performance of the proposed model 
across different training sample sizes using the data of subjects A01 and 
A09 in Dataset 1 (L vs. R) and subjects S01 and S04 in Dataset 2. In 
Figure 7, the test set remains unchanged, but the sample size of the 
training set increases sequentially. In addition, the sample size in the 
training set is the same for both classes of tasks. From Figure 7, we can 
see that the proposed method is overall superior to existing methods, 
especially after the training sample size per class reaches 25. Therefore, 
the proposed method has robust classification ability.

In summary, the proposed model shows better generalization 
capability with parameter consistency over different datasets and 
robust classification across different training sample sizes.

5. Discussion

We first discuss the overall experimental results, followed by a 
further analytical study of the feature selection method. Finally, 
we explore new research directions for future work.

FIGURE 5

The classification accuracy varies with the Cauchy’s. model 
parameter γ, ranging from 0 to 1.

FIGURE 4

Average classification accuracy of all data in subject-independent decoding. (A) Filtered and wrapped methods combined with 5 classifiers. 
(B) Embedded methods perform feature selection and classification simultaneously, without additional classifiers.

TABLE 4 Classification accuracy of the proposed method and deep learning methods.

Assessment 
methods

Datasets Deep ConvNet 
(Schirrmeister 

et al., 2017)

EEGNet-8,2 
(Lawhern et al., 

2018)

Spectral-Spatial 
CNN (Kwon 
et al., 2019)

MIN2NET 
(Autthasan 
et al., 2021)

Cauchy

Subject-dependent
Dataset 1 (L vs. R) 63.72 ± 17.18 65.93 ± 18.44 76.91 ± 13.75 65.23 ± 16.14 82.95 ± 12.14

Dataset 2 61.40 ± 15.66 67.76 ± 18.09 76.76 ± 16.66 65.90 ± 16.50 78.69 ± 14.79

Subject-independent
Dataset 1 (L vs. R) 56.34 ± 8.86 64.26 ± 11.03 66.05 ± 13.70 60.03 ± 9.24 66.59 ± 12.86

Dataset 2 65.26 ± 16.83 58.07 ± 11.45 66.21 ± 15.15 59.79 ± 13.72 65.71 ± 16.97

Bold values indicate that the method achieved the best classification results on a particular dataset.
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FIGURE 6

The classification accuracy varies with Cauchy’s model parameter γ. (A) ranging from 0.001 to 0.01, (B) ranging from 0.01 to 0.1.

FIGURE 7

The classification accuracy varies with different training sample sizes. The classification results of four subjects were used for experimental display. 
(A) Subject A01 in Dataset 1 (L Vs R), (B) Subject A09 in Dataset 1 (L vs R), (C) Subject SO1 in Dataset 2, (D) Subject S04 in Dataset 2.
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5.1. Overall classification results

For the subject-dependent decoding, we can see from Table 2 and 
Figure 3 that the proposed Cauchy method outperforms the existing 
feature selection methods. The non-convex regularized feature selection 
methods (SCAD, MCP, and Cauchy) outperformed the convex 
regularization methods (LASSO, gLASSO, and sgLASSO), indicating that 
the introduction of non-convex sparse regularization methods into EEG 
decoding is effective. Some filtered and wrapped methods also achieve 
better classification results, but rely on specific classifiers.

For subject-independent decoding, we can see from Table 3 and 
Figure  4 that the proposed Cauchy method outperforms existing 
feature selection methods. However, the classification results of 
existing non-convex regularization methods are lower than those of 
convex regularization methods. The classification results of most 
feature selection methods are close and all are low, possibly because 
the extracted temporal-frequency-spatial features are not 
distinguishable across subjects. Also, some classifiers work well in 
subject-dependent decoding, but very poorly in subject-independent 
decoding. Again, it is shown that filtered and wrapped methods are 
very much influenced by the classifier.

In addition, we can see from Table 4 that our proposed method 
works significantly better than the deep learning method in subject-
dependent decoding. In subject-independent decoding, although our 
method outperforms most of the deep learning methods, the 
classification accuracy of both is not high.

Furthermore, we  can see from Figures  5–7 that the proposed 
Cauchy feature selection method shows better generalization capability.

In summary, the proposed Cauchy method achieved good 
classification results in both subject-dependent and subject-
independent decoding. However, it is still challenging to develop 
feature extraction and feature selection methods that are effective for 
both subject-dependent and subject-independent decoding.

5.2. Classifier impact on filtered and 
wrapped feature selection methods

We take F-score and BDE methods as examples to analyze the effect 
of classifiers on filtered and wrapped methods in subject-dependent and 
subject-independent decoding. The average classification accuracy is 
shown in Table  5, which is obtained by averaging the classification 
accuracies of all subjects in Dataset 1 and Dataset 2, with the maximum 
value marked with an upper triangle and the minimum value marked 
with a lower triangle. From the results in Table 5, we can draw two main 
conclusions. First, the classification accuracies of different classifiers with 
the same feature selection method vary relatively widely. For BDE in 

subject-dependent decoding, the maximum classification accuracy is 
79.92% and the minimum classification accuracy is 70.43%, a difference 
of 9.49%. Second, the same classifier with the same feature selection 
method performs differently on different assessment methods. For 
F-score, the KNN classifier achieved the best classification results in 
subject-dependent decoding but was the worst in subject-
independent decoding.

In summary, the traditional filtered and wrapped methods are 
influenced by the classifiers. How to select a classifier matching the 
feature selection method deserves further study. In contrast, the 
proposed Cauchy method can simultaneously perform feature 
selection and classification without relying on additional classifiers 
and thus has a more convenient and efficient performance.

5.3. Model analysis for Cauchy feature 
selection method

The model analysis of the Cauchy method includes model training 
time and model convergence.

We first compared the model training time of six embedded 
feature selection methods. The program runs in the following 
environment: OS: Windows 10, CPU: AMD Ryzen 74800H 
@2.90GHz, RAM: 16GB, MATLAB R2017b. To prevent randomness 
from affecting a fair comparison, the average model training time of 
all subjects in the dataset is used as the evaluation criterion. The model 
training time of the sgLASSO method in Dataset 1 (L vs. R) and 
Dataset 2 is 130.25 s and 115.11 s, respectively, which is much longer 
than other methods. To not affect the drawing effect, the sgLASSO 
method is not included in Figure 8. From Figure 8 we can see that the 
model training time of the Cauchy method is comparable to LASSO 
and second only to SCAD.

The model convergence curves of various embedded methods in 
subject-dependent decoding are shown in Figure 9, still using the data 
of subject A01 in Dataset 1 for the experiment, in which subject A01 
performs left-hand and right-hand tasks. As can be seen, the Cauchy 
method converges faster and more stable. It is worth noting that the 
objective function of each feature selection method is different, so the 
loss range of the model is also different.

In summary, the proposed Cauchy feature selection method has 
good convergence performance.

5.4. Future work

In the follow-up work, we will continue to optimize the solution 
method of the proposed Cauchy model, such as using the alternating 

TABLE 5 The average classification accuracy achieved by different classifiers with the same feature selection method.

Feature 
Selection

Assessment 
Methods

Classifier Max-Min

FLDA BLDA sBLDA KNN LR

F-Score
Subject-dependent 78.99▾ 81.42 80.71 82.15▴ 81.65 3.16

Subject-independent 62.62 63.44▴ 63.35 58.15▾ 62.92 5.29

BDE
Subject-dependent 73.95 79.92▴ 77.54 79.75 70.43▾ 9.49

Subject-independent 63.52 63.98▴ 63.67 58.19▾ 63.26 5.79
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direction multiplier method. In this way, we can improve the convergence 
speed of the model, reduce the model training time, and make the 
algorithm more applicable to online brain-computer interface systems.

In this paper, subject-dependent decoding achieves better 
classification results, but the classification accuracy of subject-
independent decoding needs to be improved. We will further explore 

FIGURE 9

Model convergence curves of various embedded methods in subject-dependent decoding. (A) LASSO, (B) gLASSO, (C) sgLASSO, (D) SCAD, (E) MCP, 
(F) Cauchy. The regularization parameter λ of the LASSO, gLASSO, SCAD, MCP, and Cauchy methods is set to 2−2.2. The inter-group regularization 
parameter of the sgLASSO method is set to 2−1 and the intra-group regularization parameter is set to 2−2.2. The model parameter γ of the SCAD, MCP, 
and Cauchy methods are set to 3, 2, 0.007, respectively.

FIGURE 8

Model training time of various embedded methods in subject-dependent decoding. (A) Dataset 1 (L Vs R), (B) Dataset 2. The sgLASSO method is not 
include, because it is model training time is much longer than other methods, which will affect the drawing effect.
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more effective feature extraction and feature selection methods to 
enhance the performance of subject-independent decoding. In 
addition, cross-dataset decoding (Miao et al., 2023; Miao and Zhao, 
2023) is also a key direction of our attention.

The extended application of the proposed method is also very 
important. The proposed method only deals with the data of healthy 
subjects, and in the future, we will apply it to stroke patients as well as 
to data from other EEG paradigms, such as P300 and emotional EEG.

6. Conclusion

For motor imagery EEG decoding, a non-convex sparse 
regularization method based on the Cauchy function is proposed 
in this paper, which can perform feature selection and classification 
simultaneously, without relying on additional classifiers. The 
proposed method can effectively alleviate the biased estimation 
problem of convex sparse regularization models and is closer to 
unbiased estimation than existing non-convex sparse regularization 
models. Therefore, the feature selection effect is better than existing 
methods. The experimental results of the subject-dependent and 
subject-independent decoding show that the proposed method 
outperforms existing feature selection methods and deep learning 
methods. The proposed method shows good parameter consistency 
over different datasets and robust classification across different 
training sample sizes. Furthermore, the model training time is 
shorter and converges faster than existing sparse 
regularization methods.
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