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Esophageal cancer is a malignant tumor with a high incidence worldwide.
Currently, there are a lack of effective early diagnosis and treatment methods
for esophageal cancer. However, delivery systems based on nanoparticles (NPs)
have shown ideal efficacy in real-time imaging and chemotherapy, radiotherapy,
gene therapy, and phototherapy for tumors, which has led to their recent
widespread design as novel treatment strategies. Compared to traditional
drugs, nanomedicine has unique advantages, including strong targeting ability,
high bioavailability, and minimal side effects. This article provides an overview of
the application of NPs in the diagnosis and treatment of esophageal cancer and
provides a reference for future research.
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1 Background

As a common malignant tumor of the digestive system, the global incidence and
mortality rates of esophageal cancer rank seventh and sixth among all malignant
tumors, respectively. The number of male patients is approximately 2–3 times that of
female patients (Sung et al., 2021). Currently, there are two main histological subtypes of
esophageal cancer, comprising esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC), each of which have significant geographical differences and
different risk factors. EAC, which is highly prevalent in Western countries, is associated
with Barrett’s esophagus, gastroesophageal reflux disease, obesity, and smoking. In contrast,
ESCC, which is highly prevalent in China and some other East Asian regions, is associated
with smoking, alcohol abuse, and poor dietary habits (Morgan et al., 2022). Early symptoms
of esophageal cancer are atypical and can be easily overlooked, leading to the majority of
patients being diagnosed at an advanced stage, significantly increasing the difficulty of
treatment and the chance of recurrence. Despite advances in tumor treatment research in
recent years, as well as the emergence of various new drugs, esophageal cancer lacks the
targeted therapy options available for lung cancer, which was higher mutation rates (Melosky
et al., 2021). Moreover, unlike renal cancer and malignant melanoma, esophageal cancer
does not respond well to immunotherapy (Yoneda et al., 2021). Therefore, chemotherapy
remains the cornerstone of treatment for esophageal cancer in clinical practice; however, the
accompanying toxic side effects and strong drug resistance should not be underestimated.

The rapid development of nanomedicine undoubtedly brings a ray of hope to this
problem. Multiple studies have confirmed that nanoparticles (NPs) show good results in
tumor imaging, targeted drug delivery, tumor immunotherapy, and tumor photothermal
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therapy due to their unique structure and properties. To construct
an ideal nanomaterial, it is important to consider not only size,
shape, and surface charge, but also hydrophilicity and deformability
(Lakshmanan et al., 2021). For example, loading of the polymer
material poly lactic-co-glycolic acid (PLGA) with polyethylene
glycol (PEG) can improve solubility and enhance cell uptake in
the tumor microenvironment, while also reducing immunogenicity
and prolonging the circulation time of drugs in the blood, ultimately
avoiding the recognition of NPs by the reticuloendothelial system
(RES) (Ding and Zhu, 2018). Subsequently, due to the damaged
endothelial blood vessels and abnormal lymphatic drainage, more
NPs accumulate in tumor tissues, known as the enhanced
permeability and retention effect (EPR) (Jhaveri and Torchilin,
2014).

Currently, nanomaterial delivery systems used for tumor
diagnosis and treatment can be mainly divided into four types
(Al-Zoubi and Al-Zoubi, 2022) (Figure 1): 1) organic NPs, such
as liposomes, polymers, and nanohydrogels; 2) inorganic NPs, such
as gold, carbon, silica, graphene, and other metal NPs; 3) viral NPs
(Mellid-Carballal et al., 2023); and 4) hybrid NPs, such as organic-
inorganic NPs, and biofilm-coated NPs (Peng and Yao, 2022). This
article provides a comprehensive overview of nanomedical research
related to esophageal cancer diagnosis and treatment (Table 1),
offering different perspectives and a reference basis for future design
and exploration of novel nanosystems.

2 Diagnosis

From the histological perspective, the esophagus is a muscular
duct that has a certain degree of expansibility and activity. As a
result, clinical symptoms of esophageal stenosis or obstruction, such
as difficulty in swallowing and pain, only occur when the tumor
reaches a relatively advanced local or metastatic stage (Smyth et al.,

2017). At this time, endoscopy is undoubtedly the first choice, which
not only allows for a biopsy to determine the pathological
classification, but also enables the identification of tumor
location, lesion length, and surrounding involvement (Schmidlin
and Gill, 2021). Imaging examinations, such as computed
tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET-CT), and single photon emission
computed tomography (SPECT), are also used for staging and
overall assessment of esophageal cancer. However, these imaging
techniques have limitations to varying degrees, including the
presence of artifacts, ionizing radiation damage, rapid clearance
of contrast agents, and long scanning time (Nagaraju et al., 2021).

To overcome these issues, nanomaterials have been used to
develop new methods to optimize tumor imaging (Liu and
Grodzinski, 2021). Superparamagnetic iron oxide (SPIO) has
been proven to enhance the detection rate of metastatic cervical
lymph nodes in patients with esophageal cancer during MRI scans
(Motoyama et al., 2012). Furthermore, studies by Pultrum et al.
(2009) have shown that ultrasmall superparamagnetic iron oxide
(USPIO) combined with MRI can detect most mediastinal and
abdominal lymph nodes, providing a significant reference for
regional staging and pre-operative assessment. Additionally, a
gold nanoprobe labeled with a heterobivalent (HB) peptide
ligand, HB-Au-NPs, has demonstrated good results in esophageal
cancer imaging, where it can specifically target overexpressed
epidermal growth factor receptor (EGFR) and tyrosine kinase
receptor 2 (ErbB2) in cancer cells. After injection into xenograft
mouse models, a tumor uptake peak can be observed within 8 h,
showing strong contrast in photoacoustic and CT imaging, while
also exhibiting good stability and biocompatibility (Chen et al.,
2021).

Nanomaterials have also received wide attention in the early
diagnosis of esophageal cancer. Gai et al. (2018) prepared a novel
chitosan-Fe3O4 NP, CNFV, encapsulated with bispecific antibodies

FIGURE 1
Classification of nanomaterial delivery systems.
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TABLE 1 The current application of nanomaterials in esophageal cancer diagnosis and treatment.

Categories Examples Applications Refs.

Diagnosis Imaging SPIO MRI contrast agents Motoyama et al. (2012)

USPIO MRI contrast agents Pultrum et al. (2009)

HB-Au-NPs Photoacoustic and CT contrast agents Chen et al. (2021)

CNFV CT contrast agents Gai et al. (2018)

Treatment Chemotherapy bMED NPs Delivery of DOX and β-elemene Zhan et al. (2020)

HCS–Dox Delivery of DOX Zhang et al. (2017)

PMPNs Delivery of DOX and Cur Gao et al. (2021)

PEI-Ap-EPI Delivery of EPI Wang et al. (2020)

RGD-fPNPs/EPI Delivery of EPI and imaging Fan et al. (2018)

T7-NP-DC Delivery of DTX and Cur Deng et al. (2020)

DTX-DCMs and BTZ-DCMs Delivery of DTX and BTZ Wang et al. (2017)

FLNP Delivery of 5-FU and LY Feng et al. (2018)

Radiotherapy GDY-CeO2-miR181a-PEG-iRGD Radiosensitizer Zhou et al. (2021)

iE-PRNPs Radiosensitizer Ren et al. (2018)

USMBs Radiosensitizer Shi et al. (2021)

UiO-66-NH2(Hf) Radiosensitizer Zhou et al. (2022)

188Re-liposome Radiosensitizer Chang et al. (2015)

Gene therapy CEAMB NPs Delivery of siRNA and DOX Zhang et al. (2022)

mEYLNs-Dox/siLPCAT1 Delivery of siRNA and DOX Jun et al. (2020)

4WJ-EGFRapt-miR-375-PTX Delivery of miRNA and PTX Li et al. (2021)

miR-203/F-PNDs Delivery of miRNA and imaging Deng et al. (2017)

ZVI@ CMC DNMTs inhibitor Hsieh et al. (2022)

CPNP/shVEGF-yCDglyTK/5-FC Delivery of suicide gene Liu et al. (2016)

phytochemical therapy GNRs-1/Curc@PMs Delivery of Cur Martin et al. (2015)

rHGFI-Cur Delivery of Cur Niu et al. (2020)

GE11-Ori-Se NPs Delivery of Oridonin Pi et al. (2017)

Ori@GE11-GO Delivery of Oridonin Jiang et al. (2018)

Phototherapy GCD-Ce6/Pt-EGF Photosensitizer Ren et al. (2022)

CS-GGS Infrared-induced thermal ablation Li et al. (2013)

Fe3O4 Photothermal agents Chu et al. (2013)

Cu9S5@MS Photothermal agents Wang et al. (2019)

liposome-BSM Photothermal agents and SLN mapping Chu et al. (2016)

PPy&DOX@TaOx-NIRDye800-PEG Photothermal agents and triple-modality imaging Jin et al. (2017)

PDA NPs Photothermal agents and Photosensitizer Zmerli et al. (2021)

(Au2Se/Au and ZnPc)-loaded BSA nanospheres Photothermal agents and Photosensitizer Yu et al. (2013)

BMIOC Photothermal agents and Photosensitizer Liu et al. (2020)

FA-PPSM Photothermal agents and Photosensitizer Chen et al. (2020b)
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against fibroblast growth factor receptor (FGFR) and vascular
endothelial growth factor receptor (VEGFR) using a covalent
bonding method. The CNFV was used for enhanced CT imaging
of patients with suspected esophageal cancer. The results showed
that compared to patients who underwent CT imaging alone,
CECT-CNFV not only enhanced the resolution of the captured
images but also significantly improved the accuracy and sensitivity
for diagnosing patients with suspected early stage esophageal cancer.
Notably, patients who were diagnosed early with CECT-CNFV had
a higher median overall survival and median progression-free
survival. As mentioned above, the use of NP-based techniques
contributes to the early diagnosis and prognostic evaluation of
esophageal cancer, thus guiding personalized treatment.

3 Chemotherapy

Chemotherapy has been used to treat cancer for more than a
century. Most chemotherapeutic drugs act on cells during their
division phase, inhibiting tumor cell growth by affecting the
functions of microtubules, proteins, or DNA synthesis. However,
they also exhibit side effects and toxicity to normal human tissues,
some of which are even irreversible (Amreddy et al., 2018).
Multidrug resistance (MDR) also poses a significant challenge
and greatly reduces the effectiveness of chemotherapy (De Jong
and Borm, 2008). However, with the help of NPs, chemotherapeutic
drugs can achieve targeted delivery (Figure 2), increasing drug
bioavailability and improving the therapeutic effects, with an
effective cycle time andminimal side effects (Al Bostami et al., 2022).

Doxorubicin (DOX) has been widely used to treat various
cancers including esophageal cancer. Liposomal doxorubicin was
the first liposome-encapsulated anticancer drug to gain clinical
approval (Rivankar, 2014). Research on the combination of DOX
and NPs for the treatment of esophageal cancer is ongoing, with the

aim to achieve lower drug toxicity and better tolerance. Zhan et al.
(2020) used mesoporous silica as a carrier, loaded DOX and β-
elemene simultaneously, and absorbed hyaluronic acid on its surface
to construct a dual-drug co-delivery nanosystem termed bMED
NPs. Through a series of in vitro and in vivo experiments, bMED
NPs have been proven to have not only good antitumor effects, but
also accumulate in tumor tissues to achieve drug release and
prolonged circulation in the body. Zhang et al. (2017) developed
novel hollow carbon spheres (HCSs) for the efficient delivery of
DOX. Their results showed that these spheres were easily engulfed
by cancer cells and unaffected by environmental pH. Moreover, due
to their ability to alter drug distribution and prolong circulation
time, they exhibited significant inhibitory effects on esophageal
cancer cells. Additionally, a nanocomposite composed of the
polymer material PLGA connecting DOX and curcumin has been
used for the treatment of drug-resistant esophageal cancer cell lines
after being wrapped by TE10 cell membranes. Both in vitro cell
studies and in vivo animal models have demonstrated the strong
targeting and anti-tumor activity of these NPs, which also showed
good biocompatibility, effectively avoiding the side effects of
chemotherapeutic drugs and providing a novel strategy to treat
multidrug-resistant esophageal cancer (Gao et al., 2021).

Epirubicin (EPI) is an isomer of DOX, which has received
favorable attention from many researchers. In a study conducted
by Wang et al. (2020), EPI was first inserted into an ATP adapter
(Ap) to form a double-stranded DNA, before being compressed
using polyethyleneimine (PEI) to successfully construct the PEI-Ap-
EPI nanosystem. After being ingested by esophageal cancer cells,
PEI-Ap-EPI was shown to open and release EPI in an ATP-enriched
environment within the cells, significantly improving the inhibition
efficiency against cancer cells. Fan et al. (2018) also proposed and
synthesized fluorescent peptide-assembled NPs (f-PNPs) for the
delivery of EPI and imaging of tumor tissues. To achieve tumor
targeting, f-PNPs were first conjugated with the RGD peptide to

FIGURE 2
Various nanoformulations of chemo-drugs on EC growth. Doc, docetaxel; EPI, epirubicin; DTX, docetaxel; 5-FU, 5-fluorouracil; EC, esophageal
cancer.
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selectively target esophageal cancer cells through the αvβ3 integrin,
before embedding the NPs with EPI to obtain RGD-fPNPs/EPI. This
system not only demonstrated the enhanced EPR effect of RGD-
fPNPs/EPI at the cellular level, resulting in greater EPI accumulation
in tumor tissue, but also proved the targeted delivery and tracking of
EPI in vivo using a xenograft mouse model, achieving drug delivery
to the tumor site and facilitating monitoring of the treatment
response with the help of NIR fluorescence.

As a kind of natural cytotoxic drug, the taxane family changes
the carcinogenic process of multiple cells, including mitosis,
angiogenesis, inflammatory reaction, and cell apoptosis (Mosca
et al., 2021), and its second-generation product docetaxel (DTX)
is a frontline drug for treating esophageal cancer. To further improve
the efficacy of DTX, Deng et al. (2020) loaded DTX and Cur together
onto NPs to form T7-NP-DC. T7 functioned to enhance the targeted
distribution of the nanomedicine to tumor tissues and significantly
increased the release of DTX and Cur through the pH response,
effectively exerting a safe and efficient anti-tumor effect.
Additionally, Wang et al. (2017) prepared nanoscale formulations
of DTX and bortezomib (BTZ) using a disulfide-bond-crosslinked
micelle (DCM) platform (DTX-DCMs and BTZ-DCMs), further
revealing that NPs loaded with chemotherapeutic drugs not only
have the advantages of a small diameter and high loading rate, but
can also be effectively internalized by esophageal cancer cells to
induce apoptosis in a dose-dependent manner.

The 5-fluorouracil (5-FU) is another commonly used
chemotherapy drug for treating esophageal cancer. The 5-FU
works by inhibiting the synthesis of thymidylate synthase, thus
blocking DNA synthesis and ultimately affecting tumor growth
and proliferation. However, toxicity and MDR remain major
factors limiting its effectiveness (Longley et al., 2003). Previous
studies have reported that autophagy inhibitors can overcome the
MDR of cancer cells (Kumar et al., 2012). Therefore, Feng et al.
(2018) designed a PEG nano-liposome loaded with both 5-FU
and the autophagy inhibitor LY294002 (LY) for targeted therapy
of esophageal cancer. The results confirmed that this unique drug
delivery system achieved controlled release of both components,
with a relatively faster release rate of LY compared to 5-FU.
Moreover, when autophagy was inhibited, the cancer cells
showed significantly increased sensitivity to 5-FU, leading to
higher levels of apoptosis.

4 Radiotherapy

Radiation therapy is a commonly used method for treating
esophageal cancer. Concurrent chemoradiotherapy (CCRT) is of
vital importance for patients with inoperable or pre-operative
esophageal cancer, while radiation therapy alone provides a good
choice for patients who cannot tolerate or have shown a limited
response to chemotherapy (Li et al., 2016). However, due to the
presence of intrinsically and radiation-induced resistant tumor cells,
radiation therapy is not completely effective. Radiation resistance is
mainly caused by hypoxia, DNA damage repair, cell cycle arrest,
related gene alterations, and tumor stem cells, and in certain cases, it
can even promote tumor invasion and metastasis (Chen et al.,
2020a). Therefore, it is crucial to research and develop safe and
effective radiosensitizers.

The level of miR181a in the serum of patients with esophageal
cancer can be used to predict the sensitivity of locally advanced
ESCC to radiotherapy and has a radiosensitizing effect (Xiang et al.,
2014). Zhou et al. (2021) designed a multifunctional nanocomposite
material to effectively deliver miR181a to tumor tissue. They first
anchored CeOs NPs to two-dimensional graphdiyne (GDY) with
sp2-and sp-hybridized carbon atoms to enhance its catalase (CAT)
activity, and then connected miR181a to it. Finally, they
encapsulated the above composite material with PEG-iRGD to
improve its dispersibility and stability. When combined with
radiotherapy, GDY-CeO2-miR181a-PEG-iRGD showed significant
radiosensitizing effects in both cell-derived xenograft and PDX
(patient-derived tumor xenograft) models of ESCC. Moreover,
Ren et al. (2018) took advantage of the common high expression
of EGFR in esophageal cancer and coupled the recombinant protein
anti-EGFR-iRGD to the surface of PTX wrapped in red blood cell
membranes to form a new nanodrug termed iEPRNPs. In vitro
experiments showed that compared to free PTX, iE-PRNPs had
significantly enhanced radiosensitizing effects in EGFR-
overexpressing esophageal cancer cells and exhibited good
targeting, high penetration, and ideal sustained release
characteristics.

Microbubbles (MBs) are materials composed of gas as a core
(usually perfluorocarbon) and lipids, polymers, or proteins as a shell
membrane, which can be used as a contrast agent for ultrasound
imaging after intravenous injection (Czarnota et al., 2012).
Ultrasound-stimulated microbubbles (USMBs) have been proven
to induce endothelial cell apoptosis to achieve anti-angiogenesis
effects. USMBs have also shown synergistic effects with radiotherapy
for treating various malignant tumors, such as colon cancer, breast
cancer, and prostate cancer (Huang et al., 2013; Al-Mahrouki et al.,
2014; Lai et al., 2016). Similarly, the enhanced effect of radiotherapy
mediated by USMBs has been observed in esophageal cancer, which
was accompanied by the inhibition of proliferation, migration, and
invasion ability of esophageal cancer cells, as well as the promotion
of their apoptosis (Shi et al., 2021).

Metal nanomaterials also exhibit good radio enhancement
effects. Zhou et al. (2022) synthesized UiO-66-NH2 (Hf) with a
diameter < 100 nm based on metal-organic frameworks (MOFs)
under atmospheric pressure conditions, which maintain stability in
physiological environments. In vivo and in vitro experiments
demonstrated that UiO-66-NH2 (Hf) enhanced X-ray absorption
leading to DNA breakage in cancer cells, increased generation of
reactive oxygen species (ROS), and ultimately induced apoptosis.
Furthermore, Chang et al. (2015) used rhenium-188 (188Re)
liposomes in combination with radiotherapy for treating
esophageal cancer. The results showed that the inhibition rate of
tumor growth achieved by this combination therapy reached 53%,
which was much higher than that achieved with individual
treatments, without increasing biotoxicity and side effects.

5 Gene therapy

The siRNA is a type of double-stranded RNA molecule
consisting of 20–23 nucleotides (Alshaer et al., 2021). In 1998, by
conducting an antisense RNA inhibition experiment in the
nematode Caenorhabditis elegans, Fire et al. (1998) discovered
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that double-stranded RNA was 10 times more efficient at inducing
gene silencing compared to single-stranded or antisense RNA. The
siRNA was speculated to play a central role in RNA silencing in a
phenomenon termed RNA interference (RNAi). As a result of this
discovery, Andrew Z. Fire and Craig C. Mello were awarded the
Nobel Prize in Physiology or Medicine in 2006 (Dong et al., 2019).
Since then, siRNA-based therapeutic strategies have been widely
used in the research of various diseases, including cancer, viral
infections, and genetic inherited diseases. However, the application
of siRNA in vivo poses challenges due to its instability, off-target
effects, and susceptibility to degradation by nucleases (Nikam and
Gore, 2018). The emergence of nanodelivery systems undoubtedly
provides new solutions to this problem. Zhang et al. (2022) designed
a multifunctional carboxymethyl chitosan-based NP (CEAMB NPs)
capable of simultaneously delivering DOX and siRNAs targeting
major vault protein (MVP) and B-cell lymphoma-2 (BCL2) to
explore its anti-tumor effect in esophageal cancer. The results
showed that CEAMB NPs not only effectively targeted the tumor
site and suppressed the expression of target genes but also greatly
enhanced the ability of DOX to induce apoptosis in tumor cells,
significantly improving the therapeutic effect. Moreover, Jun et al.
(2020) developed mEYLNs-Dox/siLPCAT1, a liposome nanocarrier
with a layer of white blood cell membrane wrapped on its surface
carrying both DOX and siRNA targeting the lipid synthesis
metabolic gene LPCAT1. Studies have shown that this
combination of chemotherapy and gene therapy exhibited a
strong synergistic effect, achieving a therapeutic effect greater
than the sum of individual treatments, while the encapsulation of
the white blood cell membrane significantly prolonged the
circulation time of the drugs, making it an ideal medium for
targeted delivery.

As a type of single-stranded non-coding RNA, microRNAs
(miRNAs) play a key role at the post-transcriptional level,
participating in the regulation of a series of biological activities in
vivo, including cell growth, tissue differentiation, and angiogenesis
(Diener et al., 2022). The miRNAs are also abnormally expressed in
various cancers and regulate the growth, invasion, and metastasis of
tumors through functions similar to oncogenes or tumor suppressor
genes (Ganju et al., 2017). Therefore, miRNAs have become
important therapeutic targets for various cancers. The miR-375 is
a tumor suppressor factor that is lowly expressed in ESCC tissues.
Increased levels of miR-375 induce the expression of Bax, Caspase-3,
and E-cadherin, thereby limiting the occurrence and development of
esophageal cancer by promoting apoptosis and inhibiting epithelial-
mesenchymal transition (EMT). To facilitate targeted delivery of
miR-375, Li et al. (2021) designed a novel four-way junction RNA
nanocarrier and loaded it with paclitaxel (PTX) and EGFR-specific
aptamer (EGFRapt) to form a 4WJ-EGFRapt-miR-375-PTX
nanosystem. Under the modification of EGFRapt, esophageal
cancer cells showed significantly enhanced endocytosis of the
nanodrug, allowing selective accumulation of miR-375 and PTX
at the tumor site, demonstrating stronger therapeutic effects and
lower systemic toxicity (Figure 3). Furthermore, Deng et al. (2017)
used a simple two-step assembly method to connect the tumor
suppressor miRNA-203 and near-infrared (NIR) fluorescent
imaging agent cyanine-5 (Cy-5) on the basis of nanodiamond
clusters (NDs). They further confirmed that this nanosystem
(miR-203/F-PNDs) not only significantly inhibited the

proliferation of Ec-109 cells in vitro but also achieved precise
imaging of the tumor site after intravenous injection for 24 h.

Nuclear factor-erythroid 2-related factor 2 (NRF2), derived
from the redox system, is the main regulatory factor in the
cellular antioxidant response, with increasing evidence suggesting
that NRF2 plays a role in the progression, metastasis, and
therapeutic resistance of various cancers (Rojo de la Vega et al.,
2018). Hsieh et al. (2022) found that in ESCC, NRF2 was negatively
correlated with the expression of a tumor suppressor factor, SOX17,
which is lowly expressed due to promoter hypermethylation. They
also proved that SOX17 acted as an upstream inhibitor of NRF2 and
that its downregulation was associated with a poor response to
CCRT and low survival rate. Based on this, they designed
carboxymethyl cellulose-coated zero-valent-iron (ZVI@CMC)
NPs to inhibit the activity of DNA methyltransferases (DNMTs),
thereby restoring the expression of SOX17 and overcoming the
tumor resistance caused by NRF2 upregulation. Coincidentally, in
order to treat carboplatin-resistant ovarian cancer, researchers have
also designed a hyaluronic acid (HA)-decorated metal-organic
framework (MOF) to specifically deliver GSK-J, the
JMJD3 demethylase inhibitor. The negatively charged HA and
positively charged MOF can form a stable nano-shell through
strong surface affinity. It has been verified that the formed
nanosystem HA@MOF@GSK-J1 can target multiple receptors,
such as CD44 and HER2, to treat carboplatin-resistant ovarian
cancer cells (Yang et al., 2022).

Suicide gene therapy is a novel approach to treating malignant
tumors, in which genes from bacteria or viruses are introduced into
target cells, and the enzymes they express are used to activate drug
precursors or encode toxic substances for direct gene therapy. This
approach induces tumor cell suicide without affecting normal cells
(Navarro et al., 2016). Currently, cytosine deaminase (CD) and
herpes simplex virus thymidine kinase (HSV-TK) are the two most
extensively studied suicide genes (Uckert et al., 1998). Previous

FIGURE 3
Various gene-related nanosystems and their therapeutic role in
esophageal cancer (EC). DOX, doxorubicin; MVP, major vault protein;
BCL2, B-cell lymphoma-2; PTX paclitaxel; NRF2, Nuclear factor-
erythroid 2-related factor 2; VEGF, vascular endothelial growth
factor.
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studies have shown that the fusion gene (CDglyTK) of yeast cytosine
deaminase (yCD) and thymidine kinase (TK) was more effective
than a single suicide gene. Therefore, Liu et al. (2016) constructed
calcium phosphate NPs (CPNP) to deliver CDglyTK and shRNA
against vascular endothelial growth factor (VEGF). CPNP efficiently
delivered CDglyTK into EC9706 cells, converting 5-fluorocytosine
(5-FC) to the cytotoxic drug 5-fluorouracil (5-FU) locally, leading to
death of surrounding tumor cells. Meanwhile, VEGF-targeted
shRNA further enhanced the antitumor effect, demonstrating a
more effective anti-esophageal cancer effect both in vitro and in vivo.

6 Phytochemical therapy

In recent years, researchers have gradually discovered that
certain natural chemical substances found in plants have
anticancer activities, which can affect the biological activities of
tumor cells through targeting signaling pathways, promoting
apoptosis, blocking cell cycle progression, and regulating
antioxidant reactions (Jang and Lee, 2023). However, their
clinical applications are limited due to issues such as low
solubility, poor permeability, high hepatotoxicity, and unsuitable
pharmacokinetic parameters. To address these problems, NPs have
been used to deliver plant chemical substances to specific tumor cells
or tissues, while also improving their water solubility and
bioavailability (Rizwanullah et al., 2018).

Cur is a yellow pigment extracted from the rhizomes of the
ginger plant, a member of the ginger family. As a lipophilic
polyphenol, Cur exhibits anti-inflammatory, anti-cancer, antiviral,
and antioxidant properties (Kotha and Luthria, 2019). Martin et al.
(2015) used polylactic-co-glycolic-co-polyethylene glycol acid
(PLGA-b-PEG-COOH) to simultaneously load Cur and lipophilic
gold nanorods (GNRs), forming a new nanosystem termed GNRs-1/
Curc@PMs, and verified its anti-proliferative effect in esophageal
adenocarcinoma OE-19 cells. Additionally, to overcome the poor
water solubility of Cur, Niu et al. (2020) prepared Cur NPs based on
class I hydrophobin recombinant HGFI (rHGFI) using a freeze-
drying method. The results showed that with the help of rHGFI, the
solubility and stability of Cur significantly improved, and it
exhibited stronger anti-esophageal cancer effects than the free Cur.

Oridonin is another well-known phytochemical agent with
potential anti-cancer activity. An increasing number of studies
have demonstrated that oridonin can play a role for treating
various malignant tumors, including lung cancer, cervical cancer,
breast cancer, gastric cancer, and colorectal cancer (Liu X. et al.,
2021). Pi et al. (2017) synthesized selenium element-based NPs
conjugated with the EGFR-binding peptide GE11 to encapsulate and
deliver oridonin to treat esophageal cancer. GE11-Ori-Se NPs taken-
up by KYSE-150 cells (an EGFR-overexpressing esophageal cancer
cell line) were found to not only accumulate in lysosomes and release
oridonin, but also induce cancer cell apoptosis through inducing
ROS production, activating the mitochondrial-dependent pathway,
and inhibiting the EGFR-mediated PI3K/AKT and Ras/Raf/MEK/
ERK pathways. Similar results were observed in the study by Jiang
et al. (2018), where they functionalized graphene oxides (GO) with
the GE11 peptide to create a novel nanomedicine (Ori@GE11-GO)
for targeted delivery of oridonin. This modification of the
GE11 peptide allowed oridonin to achieve specific recognition of

EGFR-overexpressing esophageal cancer cells and improve
anticancer efficiency through pathways such as cell cycle
blockade, disruption of mitochondrial membrane potential, and
activation of apoptosis signaling pathways.

7 Phototherapy

Recently, phototherapy has attracted much attention from
researchers due to its minimally invasive and repeatable
advantages, which have led to its gradual use for treating various
malignant tumors. Phototherapy includes photodynamic therapy
(PDT) and photothermal therapy (PTT) (Li et al., 2020) (Figure 4).
PDT mainly relies on the cell death and apoptosis induced by ROS
produced by photosensitizers under laser irradiation. The
combination of photosensitizers and nanomaterials can improve
the efficiency of PDT and reduce toxic side effects (Kwiatkowski
et al., 2018). Importantly, this therapy can also help drugs effectively
cross the blood-brain barrier (BBB) sand has broad prospects in the
treatment of some brain tumors. Mo and his team designed both
nanosystems to help the drug better target glioblastoma. One is a
combination of yolk-shell nanoparticles, cyclic arginine-glycine-
aspartate, and hydroxychloroquine, encapsulated by cancer cell
membranes (Mo et al., 2022). The other is exosome-modified
combination of zinc sulfide (ZnS), iRGD peptide and
hydroxychloroquine (Liu et al., 2023). Under laser irradiation,
both types of NPs demonstrate excellent ability to target
glioblastoma cells. Hydroxychloroquine effectively inhibits
autophagy, significantly improving the therapeutic effect and
reducing systemic toxicity. Similarly, PDT also exhibits promising
therapeutic effects in esophageal cancer. Ren et al. (2022) used green
fluorescence carbon dots (GCDs), which have excellent optical
properties as drug carriers, and simultaneously loaded the
photosensitizer Ce6, chemotherapeutic drug cisplatin, and
targeting ligand EGF to prepare GCD-Ce6/Pt-EGF

FIGURE 4
Classification of phototherapy. PDT, photodynamic therapy; PTT,
photothermal therapy; ROS, reactive oxygen species.
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nanocomposites. Through in vitro and in vivo experiments, these
NPs were found to actively target EGF, avoiding non-specific uptake
by normal tissues, increasing the content of Ce6 and cisplatin at the
tumor site. Moreover, under 660 nm laser irradiation, these NPs
exhibited stronger induction of apoptosis and a stable treatment
effect.

PTT is a treatment method that uses the photothermal effect of
photothermal agents (PTAs) to convert an external light source,
usually near-infrared light (NIR), into heat energy, causing local
high temperatures that kill tumor cells (Zhao et al., 2021). Therefore,
the selection of PTAs with high photothermal conversion efficiency
and good biocompatibility are prerequisites for PTT. Various types
of nanomaterial-based PTAs have shown great potential and
prospects in tumor PTT, currently mainly classified into five
categories: noble metal materials, carbon-based materials,
transition metal-based materials, organic small molecule
materials, and semiconductor polymer materials (Chen et al., 2022).

Gold nanomaterials do not have inherent therapeutic effects, but
their surface plasmon resonance (SPR) characteristics allow them to
convert the oscillation of electrons on the particle surface into heat
under NIR light irradiation, thereby triggering photothermal effects
(Liu XY. et al., 2021). Li et al. (2013) used chitosan coated gold/gold
sulfide (CS-GGS) NPs to treat EAC through endoscopic NIR
irradiation. The results showed that this treatment method could
selectively target cancer cells to achieve therapeutic effects without
harming normal esophageal tissue. Chu et al. (2013) also
demonstrated that Fe3O4 NPs significantly inhibited the viability
and tumor growth of esophageal cancer cells both in vitro and in vivo
after 808 nm NIR irradiation. Similarly, Wang et al. (2019) coated
Cu9S5 NPs with silica to form a Cu9S5@MS core-shell nanostructure
and investigated its anti-cancer activity on esophageal cancer
EC109 and TE8 cell lines. The results showed that Cu9S5@MS
could inhibit the growth of esophageal cancer cells by promoting
apoptosis after 808 nm NIR irradiation and exhibited good affinity
and biocompatibility. Some natural substances have also shown
good photothermal conversion performance in photothermal
therapy for esophageal cancer. Indeed, Chu et al. (2016) reported
that natural black sesame melanin (BSM) extracted from black
sesame could be assembled into 20–200 nm flaky NPs in aqueous
solution, while a liposome layer was encapsulated on the surface of
BSM to improve its water solubility. In a mouse model with Eca-109
cell-induced esophageal cancer, liposome-BSM not only absorbed
NIR light and rapidly converted it into heat energy to achieve
therapeutic effects on esophageal cancer, but also accurately
located the sentinel lymph node (SLN), providing a reference for
the surgical treatment of esophageal cancer.

Despite these successes, single PTT therapy still has limitations.
To further enhance the treatment effect, many researchers are
attempting to co-load chemotherapeutic drugs and PTAs onto
NPs to achieve synergistic therapy of chemotherapy and PTT.
For example, Jin et al. (2017) simultaneously encapsulated DOX
and polypyrrole (PPy) in the core of hollow tantalum oxide (TaOx)
NPs, before coupling NIR fluorescent dye (NIRDye800) onto their
shells to form the PPy&DOX@TaOx-NIRDye800-PEG nanosystem.
As tantalum has a similar X-ray attenuation coefficient to gold and
higher than iodine, it can provide strong contrast in CT imaging,
facilitating initial tumor localization. When treating KYSE30 tumor-
bearing mice, the NPs significantly increased the temperature of the

tumor site after laser irradiation, achieving a tumor growth
inhibition rate of up to 100%, with no cases of recurrence. They
also demonstrated good photoacoustic and fluorescence imaging
capabilities, which assisted with real-time monitoring of tumor
location and anatomy. The combination of these three imaging
modalities provides new directions for early diagnosis and precise
treatment of tumors.

In many PTT-based combination therapies, the combination of
PDT and PTT also exhibits a synergistic effect of “1 + 1 > 2”. Zmerli
et al. (2021) took advantage of the good photothermal conversion
performance of polydopamine (PDA) to conjugate photosensitizers
and synthesize polyethylene glycolated PDANPs. By combining two
phototherapy modalities under different wavelengths, a synergistic
phototoxic effect was achieved, which significantly inhibited the
growth of esophageal cancer KYSE-30 and HET-1A cells.
Additionally, Yu et al. (2013) prepared a nanocomposite of
thermosensitizer gold selenide (Au2Se/Au) and photosensitizer
zinc phthalocyanine (ZnPc), which was irradiated with a 655-nm
laser to generate ROS and thermotherapy effects on esophageal
cancer Eca-109 cells. After 20 min of treatment, the cell survival rate
was only about 20%, which was significantly better than treatment
using PDT or PTT alone. The photosensitizer IR820 has good tissue
penetration and excellent photothermal conversion efficiency, but it
is easily metabolized in the body and cannot accumulate in large
quantities in tumor sites. To overcome this problem, Liu et al. (2020)
chose to deliver IR820 using hollow carbon nanocages (CNCs) and
crosslink bovine serum albumin-manganese dioxide (BSA-MnO2)
nanozyme on their surface to form the BMIOC nanosystem. In the
BALB/c nude mouse esophageal cancer model, BMIOC not only
rapidly produced O2 in the tumor tissue, enhancing the PDT
efficacy, but also achieved high concentrations of IR820 at the
tumor site; this system improved the PTT effect and realized
real-time magnetic resonance (MR) imaging and NIR
fluorescence imaging. Similarly, Chen et al. (2020b) used BSA-
MnO2 as an oxygen generator and connected PDA encapsulated
with porphyrin porous amine (PZM) to load the chemotherapeutic
drug irinotecan to successfully prepare the FA-PDA@PZM/SN38@
BSA-MnO2 (FA-PPSM) nanosystem for the treatment of esophageal
cancer. The results showed significant tumor suppression effects of
FA-PPSM under 580 nm and 808 nm laser irradiation. Compared to
free irinotecan, the side effects, such as diarrhea and bone marrow
suppression, were greatly reduced, achieving synergistic treatment of
PTT, PDT, and chemotherapy.

8 Conclusion

NPs have potential value in improving the current diagnosis and
treatment methods for esophageal cancer, showing definite effects in
real-time imaging, drug delivery, radiosensitization, and
photothermal and photodynamic therapy. Compared to
traditional therapies, NPs have unique advantages in terms of
targeted drug delivery and sustained release, improving drug
pharmacokinetics, overcoming tumor cell resistance mechanisms,
and reducing toxicity to normal tissues. However, there are still
some key problems to be solved in order to realize clinical
transformation. First, efficacy and safety are important evaluation
indicators for the superiority of drugs. Currently, research on NPs is
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mainly focused on in vitro and animal experiments. However,
existing animal models, including subcutaneous and orthotopic
xenograft models based on tumor cell lines, patient-derived
xenograft models (PDXs), and genetically engineered mouse
models (GEMMs) (Gonzalez-Valdivieso et al., 2021), cannot fully
simulate the physiological barriers between organisms and
nanomedicines. The complexity of the human immune system
makes the acute toxicity and potential long-term side effects of
NPs difficult to predict. The Phase I clinical trial of the liposomal
drug, MRX34, was terminated early due to severe immune-related
adverse reactions occurring in 20% of patients (Hong et al., 2020).
Secondly, the synthesis process of most NPs is complex, difficult,
and relatively unstable for long-term preservation. It requires a
significant investment of manpower, resources, and finances, which
poses great challenges for pharmaceutical companies and quality
control departments. How to optimize manufacturing processes and
achieve large-scale and reproducible preparation while ensuring
drug quality is a question that researchers must consider. In
addition, the inherent pathways and mechanisms of NPs in
tumor diagnosis and treatment have not been fully explored and
elucidated. Only by further exploring key issues such as the
interaction mechanism between NPs and the mononuclear
macrophage system, the key conditions for NPs to be engulfed
and taken up by tumor cells, and the environmental requirements
for NPs to target tumor tissues, can we design nanosystems that are
more suitable for clinical practical applications. Last but not least,
the ethical issues brought about by newmaterials and new processes,
including biological membranes, should not be ignored in the
application of nanomedicine.

Therefore, in the process of translating nanomedicine from
preclinical stage to clinical stage, multiple efforts are still needed.
Currently, several anti-tumor nanomedicines have already been
marketed or are in clinical research stages, mainly involving solid
tumors, lung cancer, breast cancer, pancreatic cancer, etc. (Schmidt
et al., 2020; Yoneshima et al., 2021; Kosaka et al., 2022; Rojas et al.,
2023) However, there are still very few clinical trials specifically
targeting esophageal cancer, and low effectiveness remains the main
reason for trial failures. Thus, researchers need to further investigate
from multiple disciplines such as materials science, physical
chemistry, and pharmacology, taking into account key
performance factors such as drug metabolism, biocompatibility,
tissue distribution, and biological safety. They should design
nanosystems that can overcome a series of biological barriers in
the body, target tumor cells effectively and have good safety. More
importantly, its effects were validated by developing novel animal
models capable of simulating the heterogeneity and specific

physiological environment of human tumors, accelerating clinical
transformation. In addition, pharmaceutical companies need to
establish quality standards and evaluation methods in advance
during the mass production process, and strict implementation is
ensured through collaboration between different operational units
to guarantee product quality. At the same time, regulatory
authorities should also develop relevant guidelines and
identification technologies to promote the research and
development process of nanomedicine. It is believed that in the
near future, multifunctional NPs will provide a realistic basis for the
integration of diagnosis and treatment, as well as individualized
treatment of esophageal cancer, becoming another effective weapon
for precise treatment of tumors.
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