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A survey of path planning of
industrial robots based on rapidly
exploring random trees

Sha Luo, Mingyue Zhang, Yongbo Zhuang, Cheng Ma and

Qingdang Li*

College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong,

China

Path planning is an essential part of robot intelligence. In this paper,we summarize

the characteristics of path planning of industrial robots. And owing to the

probabilistic completeness, we review the rapidly-exploring random tree (RRT)

algorithm which is widely used in the path planning of industrial robots. Aiming at

the shortcomings of the RRT algorithm, this paper investigates the RRT algorithm

for path planning of industrial robots in order to improve its intelligence. Finally, the

future development direction of the RRT algorithm for path planning of industrial

robots is proposed. The study results have particularly guided significance for the

development of the path planning of industrial robots and the applicability and

practicability of the RRT algorithm.
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1. Introduction

Robotics has demonstrated its power since the concept of robots was first proposed in

the 1850s. With the development of information technology, communication technology,

artificial intelligence, sensor technology, navigation technology, control technology, etc.,

robotics has been evolving for nearly 70 years, and it has become a high-tech technology

integrating cybernetics, mechanisms, bionics, artificial intelligence, and other disciplines.

Meanwhile, the structure and function of robots also tend to be diversified. In the context

of the deep integration of artificial intelligence, the internet, big data, and cloud computing,

the perception and decision-making cognitive ability of robots have been improved with

the help of supercomputing ability. Also, the robot has stronger flexibility, versatility,

environmental adaptability, and autonomy; it can adapt to more complex and changeable

application scenarios. As an integrator of automation equipment, the application scope of

robots covers all aspects of people’s production and life from industrial manufacturing to

social services, military, education and entertainment, agricultural production, etc. (shown

in Figure 1). At present, there are many types of robots, and some scientists classify robots

into industrial robots, service robots, and special robots (Jiawei, 2018). The industrial robot

is a multi-joint manipulator, mechanical arm, or multi-degree of freedom robot for the

industrial sector. Service robots mainly refer to human services, e.g., maintenance, security,

rescue, guardianship, etc. Besides, special robots are advanced robots that are suitable for

special application scenarios, special structures, and special functions, e.g., micro-nano

robots, deep-sea robots, bionic robots, etc. In industry, jointed industrial robots are widely

used in welding, spraying, handling, assembly, machining, and other fields (Patle et al., 2019).
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In the context of the continuous development of the global

robotics industry and the new generation of technological

revolution, industrial robots have gradually become the core

equipment of national industrial development. Also, they

are known as the crown jewel of the high-end equipment

manufacturing industry, which reflects a country’s industrial

development level and comprehensive strength. Therefore,

robotics has been included in the 21st century national high and

new technology development plan by many countries around the

world. In terms of global robot applications, the typical application

scenarios of robots include automobile manufacturing, electronics

manufacturing, storage and transportation, medical rehabilitation,

emergency rescue, etc. With the help of the new generation of

information technology, the applications of robots continue to

expand. Meanwhile, according to the report released during the

2022 World Robot Conference, the global robotics market is

expected to reach $51.3 billion in 2022, with an average annual

growth rate of 14% from 2017 to 2022. Specifically, the market

size of industrial robots, service robots, and special robots will

reach $19.5 billion, $21.7 billion, and more than $10 billion,

respectively. It is expected that by 2024, the global robot market

will surpass $65 billion.

If the application of robotics is to develop at a high speed,

robotics must first develop. With the development of robot

technology and application, the path planning of robots as the

foundation and support of robotics (shown in Figure 2) is one

of the essential indicators of robot automation and intelligence.

It has become one of the important branches in this research

field. Meanwhile, path planning has been relevant to a range of

tasks in industrial robots over the last three decades (Mithun

et al., 2021). However, in the background of complex industrial

robot applications, people put forward higher requirements for

objective task control of industrial robots. In industry, path

planning of industrial robots can enable them to complete the task

while avoiding collision in a complicated environment. Especially,

in the wave of the fourth industrial revolution, smart factories

and intelligent manufacturing have developed rapidly. Multi-

machine collaboration and human-machine integration whose core

are industrial robots have become the key pillars of intelligent

manufacturing (Balomenos et al., 2005). In order to ensure the

safety of people and robots and complete the task efficiently,

the dynamic path planning of industrial robots is particularly

important. For the dynamic obstacles in the environment, the real-

time obstacle avoidance path planning of industrial robots has

become a difficult problem in international research.

Recently, the development of industrial robots is still in the

first or second generation. The characteristics of industrial robots

at this stage are that all tasks need manual debugging and teaching.

This not only requires high labor and time costs but also affects

the development of automation and intelligence of industrial robots

(Alterovitz et al., 2016). Most importantly, the accuracy is low, the

generalization ability is poor, and there are safety risks. Therefore,

with the development and application of vision technology, sensing

and recognition techniques are developing rapidly. This not only

brings opportunities but also challenges for the intelligence of

robots. From the perspective of opportunities, vision technology

such as sensor and recognition technology can provide visual

support for the intelligence of robots (Shi et al., 2023a,b). For

challenges, path planning is in urgent need to match with the

vision technology of industrial robots. Specifically, path planning

of industrial robots uses vision technology to determine the pose

of the target object and feedback to the industrial robots. Then,

industrial robots plan the optimal path, mobilize the motion of

each joint, and finally complete the corresponding task. The whole

system with high precision, real-time, and intelligence represents

the trend of industrial robot application in the future. From the

perspective of the application object, path planning is a vital part of

the industrial robot system. The high quality and efficiency of path

planning enable industrial robots to complete their tasks safely,

which is an important approach to save time and cost as well as

reduce body wear. Many scholars have studied the path planning

of industrial robots and made a lot of achievements. However,

due to the complex process of path planning of industrial robots,

there are still many immature aspects, e.g., the consideration of

the planning dimension, the collision detection of industrial robots,

etc. The path planning of industrial robots has important value and

practical significance.

In order to make industrial robots more suitable for complex

application scenarios, this paper comprehensively analyzes the

particularity of path planning of industrial robots and then reviews

the development of the RRT algorithm to promote the development

of industrial robot path planning algorithm. The advantages of this

paper are summarized as follows:

• From a new perspective, this paper analyzes the classification

of path planning of robots, and summarizes the particularity

of path planning of industrial robots.

• In terms of the overview of RRT algorithms, it innovatively

takes four steps, which are sampling, measuring connection,

collision detection, and path query. The development status

and problems of the RRT algorithm are reviewed from these

four aspects.

• Finally, the paper proposes the development trend of the

RRT-based path-planning algorithm of industrial robots.

The rest of this paper is arranged as follows: In Section 2,

the principle of path planning of robots is analyzed, in which the

traditional path planning algorithms and the classification of path

planning algorithm of robots are presented. The particularity of

path planning of industrial robots is emphatically summarized. In

Section 3, the development of the RRT algorithms is reviewed in the

sampling phase, connection measurement, collision detection, and

path query, which is beneficial for the path planning of industrial

robots in a high-dimensional space. Section 4 is the summary

and analysis. In Section 5, the development trend of the path-

planning algorithm of industrial robots based on the RRT algorithm

is analyzed. Section 6 is the conclusion.

2. The principle of robot path planning

Path planning is the core technology for robots to realize

collision-free paths and complete tasks. So firstly, the basic

principle of path planning of robots is analyzed, and then the

classification of path planning algorithms of robots from a new

comprehensive perspective is presented. Finally, the particularity
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FIGURE 1

The application scenarios of robots (http://image.glgooo.top/). (A) Robots in social services. (B) Robots in education. (C) Robots in the military. (D)

Robots in agriculture.

FIGURE 2

The role of robot path planning.

of path-planning algorithms of industrial robots is summarized in

order to select the appropriate path-planning algorithm.

2.1. The classification of path planning of
robots

The purpose of path planning is to solve the path given the

geometric constraints (such as obstacles and maps). Essentially,

path planning is to determine a non-collision path between the

initial point and the target point in the space without a time

component (Cheng et al., 2023). Specifically, it may be to plan a

collision-free shortest path from the initial position to the target

position for mobile robots in a two-dimensional space (Xie et al.,

2019) or to plan a safe and non-collision path with a relatively

optimized path or search time for industrial robots. Jiang Xinsong,

the father of Chinese robotics, synoptically defined path planning

as the task of determining a non-collision path between the

initial state (including position and attitude) and the target state

(including position and attitude) according to a certain evaluation

criterion in an environment with obstacles (Hong et al., 2022).

Different distributions of obstacles in the environment directly
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FIGURE 3

The classification of the path planning.

affect the path, and the target location determination is provided

by the higher-level task decomposition module.

Path planning can be classified into different types according to

different classification criteria, as shown in Figure 3. For instance,

depending on the degree of environmental awareness, global path

planning and local path planning are two main forms of path

planning. Global planning is to fully understand the environmental

information, while local path planning only needs to understand

the obstacle information around the robot. From the perspective

of obstacle information, global path planning is a static process,

and local path planning is a dynamic process. According to

different objects, path planning mainly serves mobile robots and

industrial robots. The solution to path planning of mobile robots

is to treat the mobile robot as a particle that can reduce the

calculation amount in the planning process, especially in the

collision detection process. In this process, the size problem caused

by the robot’s position transformation is solved by map expansion.

In contrast, path planning of industrial robots needs to consider

collision-free and cross-free restrictions (the industrial robot body

does not have a cross-collision). Also, its scheme is to help

industrial robots complete the path planning problem through

kinematics transformation.

2.2. The di�erence between path planning
of industrial robots and mobile robots

As shown in Table 1, there are differences between the

path planning of industrial robots and mobile robots in the

configuration space, the collision detection process, and the

involvement of kinematics. In terms of configuration space, the

configuration space of path planning of industrial robots is higher

than in the non-European type space. Specifically, each joint

of an industrial robot belongs to one dimension, so the spatial

dimension of path planning of an industrial robot with more

than three degrees of freedom is higher than three. It was proved

that the configuration space of an industrial robot is a high-

dimensional ring space. In terms of the complexity of collision

detection, the collision detection process of the path planning

of industrial robots should consider the collision detection of

industrial robot actuators and realize the obstacle avoidance

of each link of the robot arm (Szabó and Szádeczky-Kardoss,

2019). In terms of the involvement of kinematics, depending on

different planning tasks, path planning of industrial robots can

be divided into joint space (JS) path planning and Cartesian

space (CS) path planning. The so-called JS path planning directly

gives the expected path of the joint space, and this process

needs to convert the end path points of the industrial robot

into the corresponding joint Angle value according to the inverse

kinematics equation. CS path planning describes the path sequence

at the end of industrial robots in the task Cartesian space.

In order to execute the path, it is also necessary to use the

inverse kinematics equation of the industrial robot to convert

the end-effector pose into joint value. Therefore, no matter the

configuration space, path planning of industrial robots involves a

kinematics solution.

In summary, the complexity of path planning of industrial

robots is higher than that of mobile robots. It involves more

factors and processes and has higher requirements for planning

algorithms. Therefore, the algorithm of path planning of mobile

robots in two or three-dimensional space cannot be applied to

industrial robots whose path planning is in high-dimensional non-

European space. It is urgent to design a set of general path-planning

algorithms for multi-degree-of-freedom industrial robots so that

they can avoid obstacles and obtain the relatively optimal path in

a complex environment.

The characteristics of path planning of industrial robots can be

summarized as follows:

A) The path planning of industrial robots has a higher dimension;

B) The collision detection process in path planning of industrial

robots is more complex;

C) The path planning of industrial robots involves kinematics.

Due to the complexity of path planning of industrial robots,

the efficiency and applicability of the path planning algorithm of

industrial robots are particularly important. This research can not

only improve the performance of path-planning algorithms but also

improve the intelligence of industrial robots. It can also promote

the development of the robot industry.

3. Path planning algorithms of
industrial robots

Based on the particularity of high dimension and high

complexity of collision detection of path planning of industrial

robots, the paper analyzes the advantages and disadvantages of

traditional path planning algorithms for industrial robots. Then,

it innovatively divides the RRT algorithm into four steps, namely,

sampling, measuring connection, collision detection, and path

query, and reviews the RRT algorithm from these four aspects.
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TABLE 1 The di�erence in path planning between industrial robots and mobile robots.

Types of path planning Configuration space Collision detection The involvement of kinematics

Mobile robot path planning Two or three dimensions

European space

Only considering the collision detection

of robot actuators

NO

Industrial robot path planning High-dimensional

non-European space

Considering the collision detection of

industrial robot actuator and realizing

the obstacle avoidance of each link of

the robot arm

YES

Particularly, the RRT algorithm summarized in this paper is not

limited to industrial robots in order to fully understand the

development of the RRT algorithm.

3.1. Path planning algorithms of industrial
robots

According to the principle of path planning, path planning

can make industrial robots independently plan a continuous non-

collision smooth path in the configuration space when they move

in an environment with static and dynamic obstacles. In the

process, various constraints such as environmental constraints,

time constraints, and dynamic constraints of industrial robots must

be satisfied. Since the industrial robot is a highly non-linear, multi-

input, and multi-output complex coupling system with a high

degree of freedom, the complexity of path planning of industrial

robots increases exponentially with the degree of freedom of

robots and in polynomial with the complexity of obstacles in the

circumstances. Recently, the research on industrial robots mainly

focuses on static path planning algorithms. In static planning, the

CAD model of industrial robots and obstacles in the environment

should be determined first, which makes it impossible for robots

to realize dynamic obstacle avoidance in real-time. Mobile robots

are equipped with external sensing devices such as liDAR and

navigation maps; they can flexibly deal with obstacle avoidance

problems in complex dynamic environments, but they are limited

to two-dimensional planar motions. To sum up, various obstacle

avoidance algorithms of mobile robots are not suitable for the path

planning of industrial robots with high-latitude obstacle avoidance

(Zhao et al., 2020). After years of efforts, the following three types

of methods have been proposed for the path planning of industrial

robots (as shown in Table 2).

The traditional obstacle avoidance path planning algorithm has

a simple structure, but it depends on the accuracy of the obstacle

expression in the environment (Karaman and Frazzoli, 2011).

Moreover, constructing the environment graph or traversing the

global nodes also makes the algorithm suffer from more complex

calculations and low efficiency (Latombe, 1999; Huang and Teo,

2019). Traditional obstacle avoidance planning algorithms can

be applied to 2-dimensional or 3-dimensional Euclidean space,

and as to whether they are suitable for high-dimensional path

planning of industrial robots, the paper (Tamaki et al., 2023) proved

that by limiting the joint Angle of industrial robots to a certain

range, the local surface of the ring space of industrial robots

and N-dimensional Euclidean space can realize local differential

homeomorphism. However, according to the concept of local

differential homeomorphism, path planning of 6-DOF industrial is

equivalent to a 6-dimensional surface, which means the algorithm

that works well in mobile robot planning cannot be applied to

path planning of industrial robots. For example, although the

raster method is theoretically feasible in high dimensional space,

the raster discretization and the mapping of obstacles in the

high dimensional space will occupy a large amount of computing

memory. Similarly, it is difficult for the APF method to establish

potential field functions in a high-dimensional configuration space.

Although the APF method is directly applied in the path planning

of industrial robots (Palmieri and Scoccia, 2021), the method is

incomplete and not optimal, so it cannot guarantee the success of

the path planning of industrial robots.

Compared with the traditional path planning algorithm,

the intelligent obstacle avoidance path planning algorithm has

a powerful learning ability, which makes the algorithm more

adaptable to the environment and alleviates the constraints

of the environment on the algorithm. However, this type of

algorithm has complex structures and many parameters, and the

determination and optimization process of parameters makes the

algorithm inefficient.

The above two kinds of algorithms are not fully applicable

to path planning in high-dimensional configuration space. In

addition, in terms of computational efficiency, it is better to create

a graph across the free space directly than to accurately represent

the free space where the robot works or adjust the algorithm

parameters frequently (Sandakalum andAng, 2022). The possibility

of path planning in high-dimensional space was proved, which

solved the problem of path planning in chain robots and maze-

like environments. Sampling-based path planning algorithms do

not depend on the expression of obstacles in the environment,

and they realize path planning by constructing graph networks

or searching random trees by sampling points. Although these

algorithms may take up a lot of computing resources in the search

process, they can always obtain a non-collision path in a long

enough time because the algorithms are not constrained by the

environment. Another advantage of these algorithms is their good

applicability to high-dimensional spatial path planning. Among the

sampling-based path planning algorithms, PRM and RRT are the

two most popular ones. However, due to the dependence on the

geometry of obstacles in the environment, the PRM algorithm is

only applicable to static path planning (Noreen et al., 2018), and

the biggest defect of the algorithm is the limitation in narrow space

and unnecessary collision detection (Katiyar and Dutta, 2022).

The RRT algorithm is not only suitable for static environments

in high-dimensional space but also dynamic environments and
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TABLE 2 Path planning methods for industrial robots.

Path planning methods Representative algorithms Advantages Disadvantages

Traditional obstacle avoidance

planning methods

APF (artificial potential field method)

(Khatib, 1986), A∗ (Hart et al., 1968)

The principle is simple and

easy to implement

The methods need a large amount

of calculation, are easy to fall into

local minimum value, and cannot

be applied to higher-dimensional

space path planning

Intelligent obstacle avoidance

planning methods

Artificial neural network (Wang et al., 2009),

ant colonies algorithm (Guan-Zheng et al.,

2007)

Easy to implement without

modeling the environment

The methods have randomness, the

solution is not unique, and they are

not suitable for high-dimensional

spatial path planning

Obstacle avoidance planning

method based on random sampling

PRM (Probalistic Roadmaps) (Kavraki et al.,

1996), RRT (Rapidly-exploring Random

Trees) (LaValle, 1998)

It does not depend on the

robot’s state space and is

suitable for high-dimensional

space path planning

The methods have randomness and

a slow search speed

The symbol ∗ represents a special flag for an improved RRT algorithm, which is a specific sign.

scenarios with varying constraints (Adiyatov and Varol, 2013).

In contrast, the sampling-based RRT algorithm is more useful

for high-dimensional non-Euclidean space of industrial robots in

complex environments. Besides the path planning of manipulators

(Weghe et al., 2007), the RRT algorithm is also applicable to space

robots (Zhou et al., 2017), analog circuits (Ahmadyan et al., 2012),

high-speed ultrasonic aircraft (Pharpatara et al., 2015), unmanned

aircraft (Gan et al., 2009), unmanned ground vehicles (Lolla et al.,

2014), etc. In order to obtain a more efficient and advanced RRT

path-planning algorithm for industrial robots, this paper studies

the RRT algorithms applied in various fields. On the aspect of

environment, the paper (Du Toit and Burdick, 2011; Pfotzer et al.,

2017) thought path planning in the dynamic environment was

similar to that in the static environment. Specifically, path planning

in the dynamic environment was considered as the modification

that would be alternated with the planner and would update steps

(Zucker et al., 2007). As the basic environment, this paper takes the

static environment as the working environment regardless of which

environment the reference algorithms are applied to.

The evaluation indexes of path planning algorithms include

the probability completeness and optimality of the algorithm. In

Sampling-based obstacle avoidance planning methods, the RRT

algorithm has probability completeness but not optimality. Thus,

scholars have investigated the RRT algorithm and its improved

algorithms for years. In LaValle (1998) of Iowa State University

proposed the rapid-exploring random trees (RRT) algorithm. The

algorithm has been widely utilized by scholars because of its

high efficiency in high-dimensional spatial path planning. The

RRT algorithm has probabilistic completeness, indicating that this

algorithm can always obtain a satisfying path in a long enough

time (Zhang et al., 2022). However, this “randomness” makes the

RRT algorithm blind to a certain extent, which also leads to its low

efficiency. For the above defects, Professor Lavalle and Professor

Kuffner proposed the bidirectional RRT algorithm in 2000 (LaValle

et al., 2001). This algorithm adds an intermediate point between the

initial and target position, and it builds and extends two random

trees in parallel, which enables the algorithm to achieve better

efficiency. Then, Sertac and Emilio (Karaman and Frazzoli, 2011)

proposed the RRT∗ algorithm to overcome the non-optimality of

the traditional RRT algorithm in 2010, and the algorithm uses the

cost function to optimize the selection of the parent node. In this

way, the algorithm can easily obtain the asymptotically optimal

solution. In Gammell et al. (2014) proposed Informed-RRT∗, which

introduced a state subset to optimize the sampling space to obtain

the optimal path.

The above three algorithms are classic RRT algorithms, but

neither of them fundamentally solves the randomness, inefficiency,

and non-optimality of the algorithm. So, based on the above

three algorithms, scholars further optimized the traditional RRT

algorithm from four aspects (as shown in Figure 4): sampling

progress, measuring connection process, collision detection, and

path query.

The four stages of the traditional RRT algorithm are as follows

(Elbanhawi and Simic, 2014) and its flow chart is shown in

Figure 5:

A) Sampling progress: accessing all nodes in the robot

configuration space with the same probability;

B) Measuring connection process: according to the constraints of

the algorithm, selecting a node as a new node in the random tree;

C) Collision detection: detecting whether a collision occurs. If yes,

the new node is discarded and resampling is performed; if no,

the node is added to the random tree;

D) Path query: querying whether a node of the path is redundant. If

yes, delete it; If no, keep it as the node in the random tree.

3.2. Sampling progress

Sampling is an important part of the RRT algorithm, and the

sampling procedure usually samples in the uniform sampling mode

by visiting all nodes in the space with the same probability (Véras

et al., 2019). The uniform sampling method leads to low sampling

efficiency and a large calculation amount of the algorithm, which

also affects its efficiency and convergence. In terms of sampling

strategy, scholars have improved the sampling process of the RRT

algorithm in two directions: one is to change the probability of

selection, and the other is to limit the sampling area.

In terms of changing the probability of selection, Kang et al.

(2016, 2019), Wei and Ren (2018), Huang and Teo (2019), Hu

et al. (2020), Khan et al. (2020), Wang et al. (2021), and Wang

et al. (2022a) introduced the target-biased method to realize “de-

randomization” to a certain extent and achieve higher search
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FIGURE 4

Implementation of the traditional RRT algorithm (Xstart, Xrand, .., Xnear, and Xnew represents the starting, random, end, near, and new points of path

planning).

efficiency. Although the target-biased method guides the sampling

point to search toward the target point, there is no substantial

change in terms of search space or the sampling point quality, and

the redundant sampling of the RRT algorithm still exists (as shown

in Figure 6).

Xstart and Xgoal are the starting and the end points of path

planning. Path (Xstart-Xnearest-Xnew-Xrand2) is the path generated

by adopting the target-biased strategy. Xrand1 and X′
rand1 are

random sampling points generated by the two strategies. Xnearest

and X′
nearest are the nodes closest to the random sampling points

Xrand1 and X′
rand1 in the random tree of the two strategies. Xnew

and X′
new represent new nodes generated by different sampling

strategies. Xrand2 and respectively are the new random sampling

points obtained by sampling the new node. It can be seen that

the distance between the random sampling point Xrand2 obtained

by the target-biased and the target point is smaller. Although

the target-biased strategy makes the sampling process of the RRT

algorithm have a certain orientation, its search space is still large,

and the phenomenon of redundant sampling still exists. Aiming

at the sample space problem and drawing on the target-biased

method, Liu et al. (2020) generated a search space for the RRT

algorithm based on variable probability and obstacle density to

make the search more efficient.

From the aspect of limiting the sampling area, Chi et al. (2021)

proposed a heuristic sampling strategy for the RRT algorithm. The

characteristic area was used as the sampling area, which helped

to reduce the sampling range and obtain better search efficiency.

Wang et al. (2020a) used the method of constantly changing the

sampling area to guide the random tree expansion so that the

algorithm can better adapt to the narrow region. For the quality

of sampling points, Qureshi et al. (2013) and Xinyu et al. (2019)

introduced the APF method into the RRT algorithm to choose

high-quality sampling points. The APF method reduced redundant

samples of the algorithm with the assistance of the attraction

and the repulsion from the target point and obstacles. For the

problem of low efficiency of the RRT algorithm, Qureshi et al.

(2014) introduced the triangular geometry method to determine

the sampling point through the centroid and interior of the triangle,

which is also an extension of the strategy of reducing the search

space. Lonklang and Botzheim (2022) minimized the number of

unavailable nodes to generate a new sampling environment by

reducing the obstacle area.

Based on the analysis of the sampling process of two commonly

used improvement methods, Ganesan et al. (2021) proposed the

G-RRT∗ algorithm to address the slow convergence speed of the

RRT∗ algorithm. The G-RRT∗ algorithm combines the target-

biased method with the method of limiting the sampling area, thus

generating sampling points closer to the target point by the target-

biased method. This method can not only limit the sampling area

but also reduce the number of visiting nodes. Also, simulation
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FIGURE 5

The flow chart of the traditional RRT algorithm.

results indicate that the number of nodes on the path and the

convergence speed of the algorithm can be greatly improved. So, it

can be seen that the size of the sampling area, the target orientation,

and the quality of the sampling points are important factors for

the RRT algorithm to obtain better sampling efficiency, redundant

sampling, and whole efficiency.

To show the effectiveness of algorithms, this paper compares

some RRT variants with the traditional RRT algorithm from the

aspect of the number of sampling nodes and planning time (as

shown in Table 3). The comparison results show that target-bias

strategy and heuristic sampling strategy enables the RRT algorithm

to achieve better efficiency, and particularly speaking, in order

to keep the algorithm under the same condition and reflect the

algorithm performance, the data in Table 3 are the percentages

obtained by comparing with the traditional RRT algorithm.

3.3. Measuring connection process

The measuring connection process of the RRT algorithm is an

important step in determining how to expand the whole algorithm,

and it is also an important factor affecting the overall efficiency

of the algorithm. The measuring connection process involves the

generation and addition conditions of new nodes, the judgment

of the nearest node, and the path cost. Scholars have improved

the RRT algorithm from the above aspects to achieve better

search efficiency.

For the generation of the new node, Qureshi and Ayaz (2016),

Cao et al. (2019), Chen et al. (2021), Wang et al. (2021) and

Yi et al. (2022) introduced the principle of APF into the RRT

algorithm. With this method, the algorithm guides the production

of new nodes by the gravitational effect of the target point (as

shown in Figure 7). Meanwhile, the dynamic step strategy was

adopted to make the improvement on the blindness and the search

speed. However, in terms of APF, the gravitational potential field

cannot fully describe the potential field action. Thus, Kabutan

and Nishida (2018) and Wang et al. (2022a) not only introduced

the gravitational potential field but also considered the influence

of the repulsion of obstacles and realized the guidance effect of

the real APF method on the new node (as shown in Figure 8).

This method can improve the goal orientation and the ability of

obstacle avoidance of the RRT algorithm. As shown in Figures 7,

8, the introduction of APF can provide theoretical guidance for

the new node direction of the RRT algorithm, but the specific

location of the new node cannot be determined. During the

generation of new nodes, Adiyatov and Varol (2013) introduced

the forced elimination strategy to obtain new nodes by considering

factors such as the path cost of the node and whether there are

child nodes. It makes the path quality greatly improved. In the

new node extension, and Zhang et al. (2019), Liu et al. (2020),

and Wang et al. (2020a, 2022b) introduced the dynamic step

into the RRT algorithm to adaptively extend a certain step size

to determine the location of new nodes. In this way, the RRT

algorithm could ensure the success rate of new nodes in the

area of dense obstacles and rapidly expand new nodes in the

area of sparse obstacles, thus enabling the algorithm to achieve

better efficiency.

In addition, as for the improvement in the asymptotic

optimality of the path, in the measurement connection, Liu

et al. (2020) and Wang et al. (2020b) took the path cost as the

evaluation criterion to obtain the new node with the highest

quality. Specifically, it requires the path cost of the new node to

be a minimum in order to obtain the locally optimal path. Zhang

et al. (2018) introduced a regression mechanism to select a new

node with the smallest path for expansion, thus optimizing the

local path. García et al. (2015) designed the path cost function by

comprehensively considering the length and the average cost of the

path, and the change of the cost with the path. Based on this, the

RRT algorithm can obtain the node with the minimum path cost

as the new node, thus improving the quality of the path. Besides,
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FIGURE 6

The schematic diagram of the target-biased strategy.

TABLE 3 The e�ciency comparison of some algorithms.

Algorithms Improvement
strategy

Planning
time

Reduction
rate of

sampling
points

S-RRT (Wei

and Ren, 2018)

Target-Biased 80.32% 77.11%

Improved RRT

(Xia et al., 2022)

Heuristic sampling

strategy

97.87% 97.69%

Variable

Step-RRT∗ (Liu

et al., 2020)

Target-Biased+

variable probability

+ obstacle density

49.34% 40.52%

The symbol ∗ represents a special flag for an improved RRT algorithm, which is a specific sign.

Szabó and Szádeczky-Kardoss (2019) introduced the transition test

and minimum control strategy into the RRT algorithm. The path

cost and the change of the new node were tested in real-time to

determine whether the new node was available. According to the

above analysis, the direction and quality of new nodes are the key

factors of the RRT algorithm to achieve better efficiency in terms of

measurement connection.

To show the effectiveness of the improved strategy in the

measuring connection process, Table 4 presents the improvement

of some improved RRT algorithms in planning time and length

of the algorithm compared with the traditional RRT algorithm.

Particularly, in order to keep the algorithm under the same

condition and reflect the algorithm performance, the data in Table 4

are the percentages obtained by comparing with the traditional

RRT algorithm.

Thus, the measuring connection process of the RRT algorithm

is a key factor affecting the overall efficiency and the path

progressive optimality. Thus, the improved RRT algorithm can

obtain better efficiency by measuring the direction of the new

node generated in the measuring connection process. Meanwhile,

the design of the path cost function is conducive to obtaining

the asymptotic optimal path. However, the efficiency and the

asymptotic optimality of the RRT algorithm are two mutually

restrictive factors. The realization of the asymptotic optimality will

result in a large computation amount, while the improvement of

efficiency may sacrifice the asymptotic optimality of the path. The

indicators in Table 4 are sufficient to illustrate the relationship

between efficiency and progressive optimality. However, the

planning efficiency of each algorithm has been greatly improved

by adopting the above strategy, but its path length does not match

the efficiency optimization. The efficiency of the improved P-RRT ∗

algorithm (Yi et al., 2022) improved by 96.28% compared with the

traditional RRT algorithm, and its path length increased only by

24.63%. Therefore, the future development of the RRT algorithm

should take into account efficiency and path optimality in the

measuring connection process.

3.4. Collision detection process

As for the collision detection process, Zhang et al. (2018)

improved the RRT algorithm by introducing collision probability

and a collision evaluation function. With the method, both the

number of collision detections and its efficiency can be optimized.

Liu et al. (2019) introduced grid search and coarse collision

detection for sampling points to simplify collision detection

and improve efficiency. Szabó and Szádeczky-Kardoss (2019)

approximated the robot and the obstacle as a convex polygon

and realized a non-collision path using the RRT algorithm.

Although the collision detection process simplifies the geometric
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FIGURE 7

The strategy of adding the gravitational potential field. G(n) and R(n) represents the gravity from the target and the random sampling point,

respectively. Fatt(n) is the resultant force of two gravitation forces whose direction indicates the direction in which the new node is generated.

FIGURE 8

The strategy of adding the gravitational and repulsive potential field. G(n), R(n), and Fatt(n) are the same with the above Figure. Frep1(n) and Frep1(n) R

respectively represent the repulsive force from two obstacles. is the result of two repulsive forces. Ftotal(n) is the resultant force of attraction and

repulsion whose direction indicates the direction in which the new node is generated.

representation of the robot and obstacles, the representation of a

convex polygon is not suitable for all robots and obstacles, so the

collision detection accuracy is poor. Furthermore, the quality of

the path will be affected too. Collision detection is the key for the

RRT algorithm to obtain a non-collision path, which requires a

large amount of computation. Therefore, simplifying the collision

detection process is the key for the RRT algorithm to reduce the

computation amount, save storage space, and improve efficiency.

The above collision detection aims at static obstacles, but for

robots, the environment is often complicated, and static obstacles,

dynamic obstacles, or both are possible working scenarios. Jiang

et al. (2022) used cylindrical and spherical bounding boxes to

construct collision detection models to realize dynamic obstacle

avoidance in complex environments. In the whole process, the RRT

algorithm is the key technology to realize the obstacle avoidance

path planning. When dynamic obstacles were encountered, the
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TABLE 4 Comparison of indexes of the improved algorithms.

Algorithms Improvement
strategy

Planning
time

Percentage
reduction of
path length

Variable

Step-RRT∗ (Liu

et al., 2020)

Dynamic step size

+ path cost

function designing

49.34% 9.18%

Improved RRT

(Chen et al.,

2021)

Artificial potential

field method

-Gravitational

potential field

88.52% 13.12%

Improved

P-RRT∗ (Yi

et al., 2022)

Artificial potential

field method

-Gravitational

potential field

96.28% 24.63%

Improved RRT Artificial potential

field method

9.59% 3.78%

Improved RRT

(Lixin et al.,

2021)

Artificial potential

field method

69.28% 15.62%

Improved RRT

(Zhang et al.,

2018)

Regression

mechanism

36.36% 1.07%

The symbol ∗ represents a special flag for an improved RRT algorithm, which is a specific sign.

path was optimized by global path planning and local re-

planning to achieve dynamic obstacle avoidance (Hong et al.,

2022). Similarly, Deng et al. (2016) proposed a local re-planning

algorithm-dynamic RRT algorithm to replace global planning,

which preserved the original points as much as possible. So,

this algorithm can reduce the planning time, improve efficiency,

and realize dynamic obstacle avoidance. However, the above two

dynamic obstacle avoidance strategies adopt local planning when

they encounter dynamic obstacles, which essentially fail to predict

dynamic obstacles dynamically and suffer from poor real-time

performance. Fan et al. (2020) used the improved APF method

for dynamic path planning, in which the direction and size of the

obstacles’ speed were introduced into the traditional APF to realize

dynamic collision detection.

For path planning, the collision detection process is very

complicated, and its accuracy and speed determine the efficiency

of the algorithm. However, with the increasing complexity of

working scenarios of industrial robots, dynamic collision detection

will become an important feature of intelligent industrial robots.

Therefore, considering robot application scenarios and algorithm

development, the future research direction of the RRT algorithm

will involve the adaptability of the environment and real-time

collision detection.

3.5. Path query process

Path query is the core step to determine whether the

RRT algorithm can achieve an asymptotic optimal or optimal

solution (as shown in Figure 9). Li et al. (2018) designed a

path reconstruction method that includes two steps: external

extension and rewiring. This method optimizes the original path

and eliminates redundant nodes to obtain the optimal path.

Adiyatov and Varol (2013) optimized the path by limiting the

number of nodes and eliminating the nodes without child nodes

in the original path. Qureshi et al. (2014) combined the pruning

strategy with limiting the number of nodes to eliminate redundant

nodes and achieve the optimal path. Moreover, Jeong et al. (2019)

considered the path cost of the parent node and ancestor node

simultaneously. If the path cost is indeed reduced, this node is

regarded as an effective node; otherwise, it is eliminated. This

method enables the path to achieve asymptotic optimization.

Cao et al. (2019) combined the RRT algorithm with the genetic

algorithm, which introduced the path from the RRT algorithm

as the initial condition into the genetic algorithm. Also, in this

method, the fitness function is designed according to the path

length and the distance between the robot arm and the obstacle to

obtain the optimal path. At last, the redundant nodes are removed

by the triangle inequality method to realize path optimization.

Currently, there are few studies on the path query process in

the RRT algorithm, and the most used method is the pruning

technique. However, in the application of the path planning

algorithm, the optimization and the impact of the path on the robot

(such as singular configuration and wear) are equally important for

the path query process. Meanwhile, in terms of path optimality and

practicability, the development direction of the RRT algorithm in

the path query is to comprehensively consider the optimality of the

algorithm and the constraints of robot kinematics and dynamics.

4. Summary and analysis

Aiming at the randomness, low efficiency, and non-optimality

of the traditional RRT algorithm, methods such as target bias

and APF have been introduced. However, the traditional RRT

algorithm still has a low success rate and efficiency in narrow spaces

and dynamic environments. Also, with the disadvantages of low

efficiency and redundant sampling in the sampling process of the

traditional RRT algorithm, the target-biased method improves its

“randomness,” but the quality of the sampling points is the decisive

factor of its sampling efficiency. Essentially, how to improve the

quality of sampling points is the fundamental measure to improve

the sampling efficiency and avoid redundant sampling.

The APF method enables the RRT algorithm to be goal-

oriented for the problems of non-directivity and low expansion

efficiency in the measuring connection process. However, to

cope with the increasingly complex environment of industrial

robots, how to fully utilize the valuable information and improve

the real-time performance of the dynamic obstacles in the

environment is the focus and difficulty for path planning of

industrial robots.

Finally, in terms of the collision detection process and path

query, simplifying the collision detection process is the key to

improving the RRT algorithm’s efficiency. Specifically, it is to

reduce the amount of calculation and improve the accuracy and

efficiency of collision detection of the RRT algorithm. Also, the

practicability and optimality of the path planning algorithm of

industrial robots can be further improved by eliminating redundant

nodes on the path in a more efficient way and comprehensively

considering the path optimality and the kinematic and dynamic

constraints of industrial robots.
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FIGURE 9

The schematic diagram of path query. After adopting the path query policy, X3 point can be deleted from Path (Xstart − X1 − X2 − X3 − X4 − X5 − Xgoal),

but X4 cannot be neglected because the line between point X3 and point X5 intersects the obstacle.

5. The development trend of the RRT
algorithm of industrial robots

Fundamentally, the ultimate goal of the design and

optimization of the path planning algorithm has two aspects.

One is to improve the performance of the algorithm itself, and

the other is to promote the intelligent development of industrial

robots by the improvement of algorithms. Therefore, this paper

will summarize the future development of the RRT algorithm from

two aspects:

(1) Development of the RRT algorithm.

On this aspect, the development trend of the RRT algorithm is

analyzed based on the above four optimization strategies (described

in Section 3.2–3.4). Then, the development trend of the RRT

algorithm will be discussed in combination with other methods.

The ideal sampling process is to obtain the optimal sampling

point which can not only improve the sampling efficiency but also

realize the adaptability of the RRT algorithm to narrow space or

maze scene. Therefore, improving the quality of sampling nodes

is fundamental to solving redundant sampling and obtaining a

higher quality and faster sampling process. In addition, measuring

the connection process is the core of the RRT algorithm. In

this process, the production of the new node can be adjusted in

real-time according to dynamic obstacle information (position,

velocity, and acceleration), which is the key of the RRT algorithm

to realize real-time dynamic path planning (Jeong et al., 2019).

However, most of the current dynamic path planning schemes

using the RRT algorithm are based on re-planning (Cao et al.,

2022; Lee and Song, 2023), but this re-planning method does not

make full use of the information of obstacles in the environment,

and its real-time performance is poor. Moreover, in practical

application, the RRT algorithm has been successfully applied

to many fields, such as virtual simulation (Aleotti and Caselli,

2011), artificial intelligence game development (Bauer and Popović,

2012), robotics (LaValle and Kuffner, 2001; Shkolnik et al., 2011),

analog circuits (Ahmadyan et al., 2012), and protein epidemic

(Vonásek and Kozlíková, 2017). Many automatic driving path

planners are also inspired by the structure of the RRT algorithm

(Gan et al., 2009; Li et al., 2014; Pharpatara et al., 2015).

Therefore, real-time performance is the requirement of the RRT

algorithm in various application scenarios. So, comprehensively

considering the efficiency, real-time performance, and progressive

optimality (Luna et al., 2013) is the further development of

the RRT algorithm in the process of measuring connection.

Furthermore, the collision detection process greatly affects the

computation and security of the RRT algorithm (Liu et al., 2019).

The simplified dynamic collision detection process will make the

RRT algorithm more efficient and secure in the field of path

planning. Finally, path planning algorithms will eventually need

to be deployed into industrial robot motion controllers to control

the movement of industrial robots and complete tasks. The utility

of the path is particularly important. In addition to the smooth

path, the attitude constraints of industrial robots should also

be considered. Therefore, kinematic limitations and path quality

are two important factors for industrial robots to optimize path

planning algorithms.

The performance of the algorithm can be improved not

only by adopting optimization strategies for itself but also

by combining them with other methods. Recently, artificial

intelligence technology has developed rapidly. Especially, it is

more and more widely used in robotics. Particularly, deep

learning algorithms and reinforcement learning algorithms have

a significant effect on improving the searchability and efficiency

of the RRT algorithm (Choi et al., 2021; Hao et al., 2022; Luo

et al., 2022). Therefore, the combination of the RRT algorithm
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and artificial intelligence technology will bring a new chapter for

the RRT algorithm and industrial robot intelligence. In addition,

although the evolutionary algorithm is not suitable for high-

dimensional space path planning of industrial robots, the fusion

development of the evolutionary algorithm and RRT algorithm

also improves the performance of the RRT algorithm (Montiel

et al., 2015). Therefore, the combination of the evolutionary

algorithm and RRT algorithm will become one of the research

directions of industrial robot path planning. On the other hand,

the combination of path planning algorithm and control method

is also an effective way to realize path planning of industrial

robots (Krämer et al., 2020; Palmieri and Scoccia, 2021). On the

basis of improving the performance of the RRT algorithm, it is

an effective way to realize path planning and path tracking of

industrial robots by the integration of the RRT algorithm and

control method. Meanwhile, more intelligent control methods

(Zhao and Lv, 2023) will bring the possibility to improve the

intelligence of the RRT algorithm. In addition, the heterogeneity

caused by the difference in algorithm principles is the obstacle

to the fusion of two different algorithms. So it is another

important direction to improve the intelligence of the RRT

algorithm by using advanced technology (Wang et al., 2022c)

to evaluate the fusion degree of RRT algorithm and other

intelligent algorithms.

(2) The aspect of improving the intelligence of industrial robots.

There are two major obstacles to the development of

industrial robots: Human-robot collaboration barriers and not

completely getting rid of guardrails or cages. Collaborative robots

are an upgrade of industrial robots. Although it solves the

two major obstacles to the development of industrial robots,

it puts forward higher requirements for the safety and real-

time performance of the path. The high-performance RRT

path planning algorithm is not only beneficial to improve

the flexibility, intelligence, and security of cooperative robots

but also to expand their application fields (Krämer et al.,

2020). Therefore, the optimization and improvement of the

RRT algorithm are of great significance for the intelligence of

industrial robots.

6. Conclusion

Aiming at the path planning of industrial robots, this paper

comprehensively expounds on the importance of path planning of

industrial robots. The characteristics of path planning of industrial

robots are summarized. Then, this paper takes the RRT algorithm

as the research object and investigates it for the path planning of

industrial robots. Finally, with the investigation and analysis of

the development and various improvement strategies, the future

development directions of the RRT algorithm of industrial robots

are formulated.
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