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Insulators are important components of transmission lines, serving as support for
conductors and preventing current backflow. However, insulators exposed to
natural environments for a long time are prone to failure and can cause huge
economic losses. This article proposes a fast and accurate lightweight Fast and
Accurate YOLOv5s (FA-YOLO) model based on YOLOv5s model. Firstly, attention
mechanisms are integrated into the network module, improving the model’s
ability to extract and fuse target features. Secondly, the backbone part of the
network is lightweightened to reduce the number of parameters and
computations at the cost of slightly reducing the accuracy of detecting a few
objects. Finally, the loss function of the model is improved to accelerate the
convergence of the network and improve detection accuracy. At the same time, a
visual insulator detection interface is designed using PyQt5. The experimental
results show that the algorithm in this paper reduces the number of parameters by
28.6%, the computational effort by 35.7%, and the mAP value by 1.7% compared
with the original algorithm, and is able to identify defective insulators quickly and
accurately in complex backgrounds.
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1 Introduction

With the increasing demand for electricity, transmission lines have spread all over the
country. Insulators, as an important part of them, have good mechanical support and
electrical insulation properties, and play an important role in supporting the conductor and
preventing the current from returning to the ground during the whole transmission process.
However, its long-term exposure to strong electric field environment and susceptibility to
adverse weather conditions such as rain, snow, and extreme temperatures, resulting in
defects such as spontaneous explosion and fracture, creates a huge potential risk to the safe
and stable operation of transmission lines, and according to statistics, the highest number of
failures in power systems is caused by insulator defects (Chen, 2020; El-Hag, 2021).
Therefore, fast and accurate detection of defective insulators and timely replacement are
particularly important for the safe operation of the entire transmission system.

The defect detection of insulators is mainly divided into insulator localization as well as
defect detection. The defect detection of insulators can be divided into manual observation,
traditional image processing based and deep learning based methods. Among them, the
manual observation method is time-consuming and labor-intensive, and has certain safety
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risks (Yu et al., 2019). And the traditional image processing-based
methods need to set the target features artificially, and different
features need to be set for different targets, and the recognition
accuracy is low, which can easily cause false detection or missed
detection. In (Lu et al., 2017), an active contour model is proposed
for insulator segmentation based on the shape and texture features
of insulators, and the method proves to be effective in identifying
defective insulators even in a cluttered background. Zhang et al.
(2018) proposed a computer vision-based insulator feature
extraction method, which extracts texture features through a
grayscale co-occurrence matrix and then detects insulator
features using local features. Although the traditional image
processing-based method has been able to detect defective
insulators well, the detection process is complicated and easily
disturbed by the background environment, resulting in missed
and false detection. To overcome the interference of complex
background, Zheng H. et al. (2020) proposed an improved
infrared insulator image detection model based on the complex
substation environment, which improves the extraction capability
for insulator infrared image features by generating new feature
pyramids with feature enhancement modules. However, the
infrared imaging-based method is susceptible to the influence of
temperature leading to poor detection results.

The above methods based on traditional image processing can
only accurately identify defective insulators in a specific
environment because they cannot automatically extract insulator
features, but insulators are usually in complex background
environments such as rivers, farmlands, construction sites and
forests, so a method that can automatically extract insulator
feature information from images is urgently needed.

With the rise of deep learning technology, target detection
algorithms have achieved great success in the field of insulator
defect detection by virtue of their fast and accurate recognition
capability. Compared with traditional image processing methods,
deep learning-based target detection algorithms can automatically
extract deep feature information in images, reduce recognition time
and improve detection accuracy (Yang et al., 2021). The flow of
insulator defect detection based on deep learning algorithm is shown
in Figure 1.

At present, the mainstream object detection algorithms are
mainly divided into Two stage and One stage. Two stage first
generates a prior box based on the target object, and then
recognizes and judges the objects within the prior box. This
method has high detection accuracy and can accurately identify
the target, but the detection time is long. Themainstream algorithms
include Faster R-CNN (Ren et al., 2015) andMask R-CNN (He et al.,

FIGURE 1
Flow Chart of Insulator Defect Detection in UAV Aerial Photography based on deep learning algorithm.
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2017). For example, Shuang et al. (2023) introduced a feature
enhancement and assisted classification module based on Faster
R-CNN to improve the accuracy of model detection. The data
enhancement method of YOLOv5-X was also ported to expand
the dataset. Zhao et al. (2021) firstly used feature pyramid network to
improve the Faster R-CNNmodel, and then segmented the image by
hue, saturation and value color space (HSV) adaptive thresholding
algorithm, and finally localized and detected the defective insulators.
Tan et al. (2022) usedMask R-CNNmodel to segment out insulators
and detected defects such as breakage, dirt, foreign matter and
flashover by multi-feature fusion and cluster analysis model.

One stage directly locates and recognizes targets, which has a fast
detection speed and can achieve real-time detection. However, the
detection effect is not satisfactory. The mainstream algorithms
include YOLO series algorithms and SSD (Wei et al., 2016)
algorithm, and timely detection and replacement of defective
insulators is important for the safe and stable operation of
transmission lines. In order to detect the working status of
insulators in real time, Yi et al. (2023) improved the Neck part
of the YOLOv5s model and proposed a new attention module
MainECA to enhance target perception, and the proposed
YOLO-Small model reduced the number of parameters while
improving the detection accuracy. Zhang et al. (2023) used
GhostNet as the Backbone network of the YOLOv4 model, and
at the same time optimized the model using K-means algorithm and
Focal loss function. Chen Y et al. (2023) added the GSConv module
to the latest YOLOv8n algorithm to reduce the complexity of the
network, and also adopted a lightweight Content-Aware Feature
Reconstruction (CARAFE) structure to enhance the feature fusion
capability of the model. Miao et al. (2019) used a combination of
SSD model and two-stage fine-tuning strategy to complete the
detection of defective insulators, which can automatically extract
multi-level features of images and can identify porcelain insulators
and composite insulators quickly and accurately in complex
backgrounds.

Based on the fact that deep learning methods need to use a large
number of datasets to achieve better results, and then there are not
many open-source insulator datasets due to confidentiality factors,
most of the methods mentioned above use data augmentation
strategies to expand their datasets, as shown in Table 1.

In Table 1, Shuang et al. used 806 images captured fromGuangxi
Power Grid in China as the dataset, and did not expand the dataset
using image processing methods, but directly used the data
enhancement methods in YOLOv5x to enhance the training data.
Zhao et al. used 4 datasets with a total of 10,468 images, and YI et al.

used data enhancement methods such as rotating, panning, scaling,
cropping, etc. to expand 1700 original images to 5180 images. Zhang
et al. also used the above methods to expand 848 images in the
original open-source Chinese Power Line Insulator Dataset (CPLID)
into 880 images. Zhang et al. also used the above method to expand
848 images in the original open-source Chinese Power Line
Insulator Dataset (CPLID) to 5832 images, and Miao et al. used
a drone to take 6700 original images on the transmission line as a
dataset for their experiments. Finally, Chen et al. expanded the
open-source datasets CPLID and Insulator Defect Image Dataset
(IDID) to 5676 images using common data expansion methods.

The main research objective of this article is to propose an
improved YOLOv5 algorithm, FA-YOLOv5s, to address the issues of
high computational complexity, slow detection speed, complex
background, mutual occlusion, and small targets in the existing
insulator defect detection algorithms. The proposed method mainly
improves the network structure of YOLOv5 model and loss
function, so that the new algorithm can quickly and accurately
identify insulators in complex environments and detect whether
they have faults. The main contributions of this article are as follows:
1) Integrating the Convolution Block Attention Module (CBAM)
(Woo et al., 2018) with the network’s C3 module enhances the
network’s ability to fuse insulation feature information, improving
detection accuracy. 2) By using Partial Convolution (PConv) to
lightweight the main network part of the model, the computation
cost is reduced at the cost of reduced accuracy. 3) The loss function
of the network was improved by using Wise_IoU Loss as the loss
function, which improved the convergence speed of the model.

2 Related work

As one of the current popular target detection methods, the
YOLOv5 algorithm is a product of continuous innovation and
improvement based on the YOLOv3 (Redmon and Farhadi,
2018) and YOLOv4 (Bochkovskiy et al., 2020) algorithms. It
combines the advantages of both algorithms, has fewer parameter
quantities, and a simpler structure. While accelerating the detection
speed, it also increases the detection accuracy, and achieves better
detection results on PASCAL VOC (Everingham et al., 2015) and
COCO (Lin et al., 2014) datasets. According to its network depth
and width, YOLOv5 is successively YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x, with the fastest detection speed and
lowest accuracy. The comparison on the COCO datasets is
shown in Table 2.

TABLE 1 Relevant datasets used to cite the Reference.

Author Number of data Method Data enhancement Fault location

Shuang et al. (2023) 806 Detail R-CNN × √

Zhao et al. (2021) 10,468 Faster R-CNN × √

Yi et al. (2023) 1700 YOLOv5s √ √

Zhang et al. (2023) 848 YOLOv4 √ √

Miao et al. (2019) 6700 SSD × √

Chen Y et al. (2023) 2448 YOLOv8n √ √
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The network model is shown in Figure 2. YOLOv5s network
structure is mainly divided into four parts: Input, Backbone,
Neck and Head. Mosaic (Lewy and Mańdziuk, 2023) data
enhancement is performed on the input side to speed up the
image processing and reduce the memory size of the model,
which makes the model obtain better detection results. backbone
is mainly composed of Conv-Batch Normalization-SiLU(CBS),
Stack 3 convolutional layers on top of multiple bottleneck layers
(C3) and Spatial Pyramid Pooling Fusion (SPPF) modules. The
CBS module consists of a normal convolutional layer
(Convolutional), a batch normalization (Batch Normalization)
and an activation function (SiLU), while C3 consists of three
standard convolutional layers and several Bottleneck modules,
which are structured The SPPF is divided into two branches, one
passing through multiple Bottleneck stacks and 3 standard
convolutional layers, and the other passing through a basic
convolutional module, and finally they are concatted. SPPF
improves the perceptual field of the network through feature
extraction with maximum pooling of different pooling kernel
sizes.The main role of the Neck part is to deep fuse the features
extracted from the Backbone The Head part outputs the input
size of 640 × 640 images as 20 × 20, 40 × 40 and 80 × 80 size
feature maps, which are used to predict large, medium and small
targets in three different sizes.

3 Fast and accurate FA-YOLOv5
algorithm

Current improvements to the YOLOv5 algorithm focus on
improving the accuracy and convergence speed, while ignoring
the complexity of the network model and the increase in the
number of parameters, e.g., Han et al. (2022) added the ECA-Net
attention mechanism to the backbone feature extraction network of
YOLOv5, and also used a bidirectional feature fusion network in the
feature fusion layer to enhance the detection of small targets. Gao
et al. (2021) proposed a convolutional attention module with batch
normalization (BN-CBAM) and a multi-level feature fusion module
to enhance the detection of small targets. Although these methods
are effective in improving the detection accuracy for small targets,
they also make the network structure more complex and reduce the
detection speed. In this paper, the convolutional attention
mechanism CBAM module is fused with the C3 module of Neck
part to improve the accuracy of detection. At the same time, the
network is lightweighted to address the problems of complex
network structure, number of parameters, and large computation.
Finally, the latestWIoU loss is used as the loss function of the model,
which speeds up the convergence, makes full use of the dynamic
non-monotonic FM potential, and solves the problem of unbalanced
sample quality.

TABLE 2 Comparison of YOLOv5 parameters in COCO dataset.

Network model Image size mAP 0.5 mAP 0.5:0.95 Speed (v100/ms) Parameter(M)

YOLOv5s 640 55.4 36.7 2.0 7.3

YOLOv5m 640 63.1 44.5 2.7 21.4

YOLOv5l 640 66.9 48.2 3.8 47.0

YOLOv5x 640 68.8 50.4 6.1 87.7

FIGURE 2
YOLOv5s network structure.
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3.1 Incorporating attention mechanism in
C3 module

Since insulators are mostly in complex backgrounds and the
defective part of insulators is a relatively small part of the whole
image, it is difficult for the algorithm to extract feature information
of insulators and their defects effectively. In order to enhance the
extraction of target feature information, researchers proposed the
attention mechanism (Vaswani et al., 2017), whose main role is to
enhance the extraction of various appearance features of the target
and make the algorithm biased to extract the features, the core of
which is to make the network focus on the region of the target in the
image rather than the whole image. By making the algorithm focus
on the feature information of the target and ignore other
unimportant information to improve the detection performance
of the algorithm, the attention mechanism has been widely used in
computer vision tasks such as target detection and image
segmentation in recent years, and occupies an important position
in the field of deep learning.

Attention mechanisms are usually divided into channel
attention mechanisms and spatial attention mechanisms, which
focus on the channel dimension and spatial dimension,
respectively. Channel attention is used to deal with the

assignment relationship of feature map channels, while spatial
attention allows neural networks to focus more on target regions
in the image and ignore irrelevant regions, and simultaneous
attention allocation to both dimensions enhances the effect of
attention mechanisms on model performance.

The workflow of CBAM is shown in Figure 3, where the
feature map is first passed through the channel attention module,
then the feature map is multiplied with the channel weights and
input to the spatial attention module, and finally the normalized
spatial weights are multiplied with the feature map input to the
spatial attention module to obtain the final weighted feature
map. The final weighted feature map is obtained. This module not
only saves parameters and computational effort, but also can be
easily added to other network structures. For example, Wang
et al. (2022) directly added the CBAM attention module to the
YOLOv5s network structure to improve the insulator feature
extraction capability and achieve insulator detection in complex
backgrounds, but the method is not effective for insulator defect
detection of small targets.

The overall formula of Figure 3 is shown in Eqs 1, 2.

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ) (1)
Ms F( ) � σ fconv AvgPool F( ); MaxPool F( )[ ]( )( ) (2)

FIGURE 3
Principle of CBAM attention mechanism.
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Mc(F) and Ms(F) are the channel and spatial attention weights of
the feature layer F, respectively; AvgPool and max Pool are the
average pooling and maximum pooling operations; MLP stands for
multilayer perceptron; σ is the sigmoid activation function. as the
input to the next layer, as shown in Eq. 3.

F′ � Mc F( ) ⊗ F
F″ � Ms F′( ) ⊗ F′{ (3)

where ⊗ denotes element-wise multiplication, F is the intermediate
quantity of the feature layer passing through the channel attention
module. and F″ denotes the output passing through the spatial
attention module.

The current common method for improving attention
mechanisms is to directly add them to the network structure,
which does not fully leverage the effectiveness of attention
mechanisms. Although this approach does improve the detection
accuracy to some extent, it also increases the number of layers and
parameters in the network. To further reduce the number of model
parameters and fully leverage the effectiveness of attention
mechanisms, this article combines attention mechanisms with the
C3 module to form a new module, namely, C3CBAM. At the same
time, the newly generated C3CBAM module further enhances the
model’s capability to focus on target feature information. This
module strengthens the model’s ability to fuse and extract target
feature information from both channel and spatial dimensions,
allowing for accurate identification of target feature information
even in complex background environments. As a result, efficient
insulation defect detection can be achieved.

To verify the effectiveness of this method, we conducted
experiments by adding different attention mechanisms after the
same C3 layer and compared themwith themethod of incorporating
CBAM into the network layer. The experimental results are shown
in Table 3. We added different attention mechanisms to the network
model for comparison experiments, which were conducted after
adding different attention mechanisms to the same Conv layer while
ensuring that the number of other parameters of the experiment was
the same. As can be seen from Table 3, different methods have
different effects on the performance of the original model,
Normalization-based Attention Module (NAM) and Efficient
Channel Attention (ECA) reduce the accuracy of the model
detection. The other attention mechanisms all have some
improvement effect on the detection performance of the model,
among which the Global Attention Mechanism (GAM) attention

mechanism has the biggest improvement effect, but it increases the
number of parameters and computation of the model, because the
purpose of this study is for fast and accurate insulator defect
detection algorithm, out of the comprehensive considerations, we
choose to integrate the CBAM Attention Mechanism and
C3 module fusion method to improve the original model. This
method reduces the number of parameters and computation to
some extent, and most importantly has the highest performance
enhancement effect on the original model.

3.2 Lightweight network architecture

The FasterNet (Chen J et al., 2023) network recently released by
CVPR far exceeds other existing networks in terms of lightweight as well
as the balance of detection performance. The current mainstream
lightweight networks such as MobileNet, ShuffleNet, and GhostNet
utilize deep convolution (DWConv) or group convolution (GConv) to
extract spatial feature information, which although greatly reduces the
number of parameters and floating point operations (FLOPs), but the
computation is not efficient, increases the number of layers of the
network, runs slower, and greatly reduces the accuracy and effectiveness
of detection, while adding some additional data operations. In order to
maintain high accuracy while reducing FLOPs, Chen et al. proposed
local convolution (PConv), which works as shown in Figure 4.

PConv has lower computational effort as well as higher
computational efficiency, which can utilize the computational power
of the device more efficiently and also improves the model’s ability to
extract spatial feature information. Based on this, Chen Y et al. (2023)
proposed FasterNet, which can achieve better results in classification,
detection and segmentation tasks at a faster rate, and its can replace the
Backbone part of the YOLOv5 model.

This article improves the backbone network of YOLOv5 using
PConv, FasterNet, MobileNet, ShuffleNet, and GhostNet respectively.
Through experimental comparisons, it is shown that PConv effectively
reduces the complexity and parameter count of the network while
maintaining high accuracy. The experimental results are shown in
Table 4. The backbone network using the FasterNet improvement
algorithm has the highest detection accuracy but the number of
parameters is still high, while replacing the entire backbone part of
the network using ShuffleNetV2 greatly reduces the number of
parameters and computation, but also increases the number of
layers of the network, and the detection speed is also reduced.

TABLE 3 Comparison of different attention mechanisms and addition methods.

Methods Precision (%) Recall (%) mAP0.5 (%) Parameters(M) GFLOPs

YOLOv5 95.5 94.5 95.4 7.0 16.0

NAM 96.1 94.0 95.2 7.0 16.0

CBAM 96.5 94.7 95.9 7.0 16.0

ECA 95.4 95.3 95.5 7.0 16.0

CoordAtt 96.8 95.7 96.3 7.0 16.0

GAM 96.7 95.1 96.4 7.5 16.3

C3CBAM 96.7 96.1 96.5 6.9 15.7

The bold portion of the table indicates the value with the best performance in the metric.
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MobileNetV3 and GhostNet both reduce the number of network
parameters and computation at the cost of increasing the number of
network layers. Based on this, this paper uses PConv to lighten the
Backbone of the network, which can greatly reduce the number of
parameters and computation of the model at the cost of a small
reduction in accuracy.

3.3 Improvement of the loss function

The loss functions of YOLOv5 model are Classification loss,
Localization loss and Confidence loss, and the sum of the three loss
functions is the size of the total loss function. The calculation
formula is as in Eq. 4.

Loss � lossbox + lossobj + losscls (4)

IoU_Loss (Yu et al., 2016) is the first proposed loss function for
target detection, but it only considers the overlap area of the
detection frame and the target frame, which has certain defects.
the appearance of GIoU_Loss (Rezatofighi et al., 2019) loss function
solves the shortcomings of IoU_Loss to a certain extent, but it also
has the disadvantages of not accurate enough boundary regression
and slow convergence speed. The subsequent DIoU_Loss (Zheng Z.

et al., 2020) loss function takes the overlap area and centroid
distance into account and accelerates the convergence speed, but
does not take the aspect ratio factor into account. To address these
drawbacks, the CIoU_Loss (Zheng et al., 2021) loss function takes
into account the overlap area, centroid distance and aspect ratio
influence factor α and ʋ, and its calculation process is shown in Eq. 5.

CIoU � 1 − IoU + ρ2 b, bgt( )
C2 + αʋ (5)

where, b represents the center coordinates of the prediction frame, bgt

represents the parameter of the center of the real target bounding box. ρ2

represents the Euclidean distance between the two centroids, c represents
theminimumexternal rectangle diagonal length of the two rectangles, ʋ is
used to measure the consistency of the aspect ratio, and α is the weight
function. The values of α and ʋ are shown in Eq. 6.

α � ʋ

1 − IoU( ) + ʋ

ʋ � 4

π2 arctan
mgt

ngt
− arctan

m

n
( )2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (6)

The original YOLOv5 algorithm uses CIoU_Loss as the loss
function of the network, however, the ʋ-value used to measure the

FIGURE 4
Difference between PConv and ordinary convolution and deep convolution.

TABLE 4 Experimental results of different ways of light weight treatment.

Methods Layers Parameters(M) GFLOPs Precision (%) mAP0.5 (%) FPS

PConv 129 5.1 10.5 95.1 94.4 89

Faster-Net 228 6.4 14.0 95.4 95.2 76

MobileNetV3 320 1.4 2.3 94.8 93.2 80

ShuffleNetV2 193 0.8 1.9 94.5 92.9 82

GhostNet 500 5.3 8.4 96.8 94.1 73

The bold portion of the table indicates the value with the best performance in the metric.
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aspect ratio is too complex and slows down the convergence to some
extent, so when one of the two variables increases (shrinks), the
other one will shrink (increases). To solve this problem, (Zhang
et al., 2022), proposed EIoU Loss by splitting the aspect ratio on the
basis of CIoU, which accelerated the speed of convergence and
improved the accuracy of regression. Focal-EIoU was also proposed
to focus on high-quality anchor frames, which optimized the
problem of sample quality imbalance in the regression task and
made the regression process more focused on high-quality anchor
frames, and the calculation process of EIoU_Loss is shown in Eq. 7.
Thus (Yang et al., 2022) used EIoU as a loss function to improve the
YOLOv3 algorithm, which improved the overlap between the
predicted and actual frames of the target and accelerated the
convergence speed.

LEIoU � LIoU + Ldis + Lasp

� 1 − IoU + ρ2 b, bgt( )
C2 + ρ2 w,wgt( )

C2
w

+ ρ2 h, hgt( )
C2

h

(7)

Although Focal-EIoU solves the problem of sample quality
imbalance to some extent, the potential of non-monotonic FM is
not fully utilized due to its static focusing mechanism (FM), so
(Tong et al., 2023) proposed an IoU-based loss with dynamic non-
monotonic FM, namely, Wise IoU (WIoU), which has a bounding
box regression of attention-based loss WIoU v1, WIoU v2 with non-
monotonic FM, andWIoU v3 with dynamic non-monotonic FM. In
this paper, WIoU v3 is used as the loss function of the network, and
its gradient gain allocation strategy with dynamic non-monotonic
FM is utilized to trade-off the learning ability of high quality as well
as low quality samples and improve the overall performance of the
model. The calculation formula is shown in Eq. 8.

LWIoUv1 � RWIoULIoU

RWIoU � exp
x − xgt( )2 + y − ygt( )2

W2
g − H2

g( )*⎛⎝ ⎞⎠ (8)

where Wg, Hg denote the width and height of the minimum
enclosing frame. To prevent RWIoU from creating gradients that
hinder convergence, Wg and Hg are separated from the
computational graph (the superscript * indicates this operation).
No new metric like aspect ratio is introduced because it effectively
eliminates the factors that hinder convergence. To significantly
amplify the localization loss (LIoU) of the normal quality anchor
box, the range of RWIoU is [1,e) while the range of LIoU is [0,1],
which will significantly reduce the Rwiou of the high quality anchor
box and focus on their centroid distance when the anchor box
overlaps with the target box.

3.4 Network structure of this paper

In order to reduce the complexity of the model and make it more
suitable for deployment on mobile devices such as UAVs, this paper
uses PConv to lighten the backbone part of the network. At the same
time, CBAM attention is fused with C3 module to give full play to
CBAM’s ability to extract target feature information in channel and
space, which improves the accuracy of detection. Finally, WIoU_loss is
used as the loss function of the network, and the improved part is shown
in red, and the specific network structure is shown in Figure 5.

(1) Backbone: Compared with the old version of Spatial Pyramid
Pooling Fast (SPP) (He et al., 2015), the new version uses Fast
-SPP (SPPF) to improve the processing speed of feature
information. And replace all C3 modules in the backbone
network with Pconv reduces the number of parameters as
well as the computational effort of the network model,
making the model able to run on low performance servers
and more suitable for deployment on mobile devices.

(2) Neck: This part mainly consists of Feature Pyramid Networks (Lin
et al., 2017) and Perceptual Adversarial Network (Liu et al., 2018),
which first fuses the input insulator feature maps from top to
bottom to transfer the semantic information from the deep layer to
the shallow layer to enhance the semantic representation at
multiple scales, and then performs a bottom-up feature fusion
to transfer the location information from the bottom layer to the
deep layer to enhance the localization at multiple scales. The fusion
of C3 module with CBAM attention mechanism in this part
strengthens the ability of Neck part for fusion of target feature
information, especially for small target insulators and self-
detonation defective parts of insulators, and also reduces the
complexity of the model to some extent.

(3) Head: This part mainly detects 3 different scales, including some
convolutional layers, pooling layers and fully connected layers,
etc. Its role is to perform multi-scale target detection on the
feature maps extracted from the backbone network. The model
proposed in this article uses WIoU loss to improve detection
accuracy and convergence speed in this section.

In order to verify the effectiveness of the method in this paper, the
heat map visualization operation (Quan et al., 2022) was performed on
the insulator feature extraction process in complex backgrounds, as
shown in Figure 6, fromwhich it can be seen that after the convolutional
layer extracts the shallow information of insulators, the model can
effectively segment the region where the target is located from the
background environment; the sampling effect is obviously enhanced
after the second stage C3CBAM feature extraction; after the third and
fourth stage processing, the higher-level semantic information of the
feature map has been more blurred, and the extracted insulator features
have become abstracted. From the visualization results of the heat map,
it is clear that the algorithm of this paper can more fully extract the
color, texture, shape and edge information of insulator defects in the
image, so as to quickly and accurately detect defective insulators.

Meanwhile, we designed a visual detection interface based on
PyQt5 for the algorithm in this paper, as shown in Figure 7, which
mainly has the following functions:

Model, select different models. Input, select the files to be detected,
including the detection of pictures and videos in local files, and also has
the function of real-time detection using the device’s camera and
supports RTSP video streaming. The ability to adjust the IoU,
confidence level and frame rate delay in the detection process of the
model, when reducing the IoU and confidence level, can make the
model detect more targets, but the detection error is higher. When IoU
and confidence are adjusted up, the accuracy of detection increases and
the rate of missed detection increases. The delay can also be selected
independently during the detection process. The interface also has the
functions of start, pause and end, and the detection results are counted
at the bottom left of the interface, and the results are automatically saved
when the detection is completed.
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4 Experimental results and analysis

4.1 Experimental environment and data pre-
processing

The operating system for the experiments in this paper is Window
11, the CPUmodel is Intel(R) Core(TM) i7-11700 2.5GHz, 64GBRAM,

and the GPUmodel is GeForce RTX 3060 Laptop GPUwith 12G video
memory size of the workstation. The experimental environment is
Python 3.8, GPU acceleration software CUDA 11.1 and CUDNN 8.1.0.
The datasets used in this paper ismainly derived from three parts, with a
total of 1006 insulator images. The first part is the Chinese power line
insulator datasets (CPLID) (Raimundo, 2020), which includes
600 images of normal insulators and 248 images of self-exploding

FIGURE 5
FA-YOLOv5 network structure diagram.

FIGURE 6
Feature extraction and detection heat map visualization.
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insulators. The second part is 40 self-exploding images of glass
insulators disclosed by Baidu Flying Paddle; the third part is
118 images containing self-exploding glass insulators as well as
bird’s nests taken on site in a southern power grid. The data set
was also labeled by LabelImg software, and the labeling labels
were divided into: normal insulator (insulator), self-detonation
defect (defect), bird’s nest (nest) and glass insulator (glass
insulator). Due to the lack of sufficient number of datasets, we
expanded the number of datasets to 5174 by Gaussian blurring,
cropping, brightness variation, and flipping of the existing
datasets, and the results of partial data enhancement are
shown in Figure 8. And the ratio of training set, validation set
and test set is divided randomly in the form of 8:1:1. The input
image size is 640 × 640, the batch size is 16, the initial learning
rate is 0.001, the network parameters are updated using SGD, the
learning momentum is 0.937, the weight decay is 0.0005, warmup
momentum is 0.8, the translate parameter is set to 0.1, and each
training is 100 epochs.

4.2 Evaluation metrics

In order to accurately evaluate the performance of the algorithm,
Precision (P), Recall (R), Average Precision AP and Mean Average
Precision (mAP) are the most commonly used model evaluation
metrics in the field of target detection, which are calculated as shown
in Eqs 9–12, respectively.

Precision � TP
TP + FP

(9)

Recall � TP
TP + FN

(10)

AP � ∫1

0
P r( )dr (11)

mAP � ∑N
i�1APi

N
(12)

Where TP denotes the number of positive samples predicted as
positive by the model, FP denotes the number of negative samples
predicted as positive by the model, i.e., false detection, and FN
denotes the number of positive samples predicted as negative by the
model, i.e., missed detection. N is the total number of detected
categories, and in this paper N is set to 4, i.e., normal insulators, self-
detonation defective insulators, bird’s nests, and glass insulators. AP
is the area enclosed by the PR curve, mAP is the detected average
value of AP for each category. The larger the mAP, the better the
performance of the algorithm.

4.3 Ablation experiment

In order to verify the effectiveness of the algorithm proposed in this
paper, mAP, Precision, Recall, parameter quantity, and FPS were used
as evaluation indicators to compare the performance of the model
through ablation experiments. A total of 6 sets of models were used.
Group A is the original datasets for YOLOv5s model training, Group B
is the expanded datasets for YOLOv5s model training, Group C, D and
E add PConv, C3CBAM and WIoU loss function respectively on the
basis of Group B, and Group F (Ours) add PConv, C3CBAM and
WIoU loss function on the basis of Group B, and carry out comparative

FIGURE 7
PyQt5-based visual inspection interface.
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experiments with the same parameters. The experimental results are
shown in Figure 9 and Table 5, respectively.

As can be seen from Table 5, before data enhancement, the
YOLOv5 algorithm was not effective in detecting insulator defective
parts due to the lack of sufficient defective samples, and after the data
enhancement operation, it can be seen that the algorithm has

significantly improved the detection accuracy for all four
categories, but there is still some room for improvement in the
number of parameters, computation and overall performance of the
model. When we use PConv to improve the backbone network part
of the model, the number of parameters of the model is reduced by
27.2% and the computation is reduced by 34.4%, while the speed of

FIGURE 8
Partial data enhancement results.

FIGURE 9
Based on FA-YOLOv5 ablation experimental graph.

Frontiers in Energy Research frontiersin.org11

Liu et al. 10.3389/fenrg.2023.1283394

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1283394


detection is improved to some extent, but the accuracy of detection is
reduced.The fusion of the CBAM attention mechanism with the
C3 module not only improves the detection accuracy but also
reduces the complexity of the network. To further improve the
performance of the model, we use Wise_Loss as the loss function of
the model. Finally, a faster and more accurate model FA-YOLOv5 is
proposed, which has 1.6% higher mAP value, 28.6% lower number
of parameters, and 35.7% lower computational effort compared to
the original model.

The comparison graph of experimental results is shown in
Figure 9. Analysis of the mAP0.5 graph in Figure 9A shows that
the convergence of the original algorithm is slow and the
accuracy is low when no data augmentation is performed.
After the data enhancement of the defective samples, the
situation is significantly improved, and it can also be seen
that the algorithm of this paper has stabilized at the 40th
round and achieved a high detection accuracy. From the Loss
plot in Figure 9B, it can be seen that the loss value of the
algorithm for training the original datasets only starts to

stabilize in the 53rd epoch, while the loss value of the
algorithm after doing data enhancement operation on the
original datasets slowly stabilizes after 30 epochs of training,
but the loss values of the algorithm are all improved, and it can
be seen from the curve sets of Group E (WIoU) and Group F
(Ours) that the improvement of the loss function in this paper
has obvious effect on speeding up the convergence, while the
loss value reaches the minimum.

4.4 Comparison experiments

To further verify the superiority and feasibility of the algorithm
in this paper, we conducted comparison experiments on the
unimproved YOLOv7, YOLOv8s, SSD and Faster R-CNN
algorithms with optimal parameters, and the datasets used for
the experiments were all self-built insulator defect datasets in this
paper, and the precision, recall and average precision during the
experiments of the mean value are shown in Table 6.

TABLE 5 Ablation experiments based on improved FA-YOLOv5.

/ Model Precision (%) Recall
(%)

mAP0.5
(%)

Parameters(M) GFLOPs FPS Weights
(MB)

Insulator Defect Nest Glass
insulator

A YOLOv5(Original
datasets)

90.2 94.8 87.8 96.7 85.1 92.4 7.0 16.0 81 13.7

B YOLOv5(Data
Enhancements)

94.6 95.5 95.0 97.2 94.5 95.4 7.0 16.0 81 13.7

C YOLOv5(Data
Enhancements +

PConv)

93.8 94.7 94.2 96.7 94.0 94.4 5.1 10.7 89 10.0

D YOLOv5(Data
Enhancements +

C3CBAM)

95.9 96.3 96.8 96.4 96.1 96.5 6.9 15.7 80 13.6

E YOLOv5(Data
Enhancements +

WIoU)

95.6 97.2 97.5 96.9 96.5 95.9 7.0 16.0 85 13.7

F YOLOv5(Data
Enhancements +

PConv + C3CBAM +
WIoU)

95.4 97.6 97.2 97.3 96.7 97.1 5.0 10.3 89 9.83

The bold portion of the table indicates the value with the best performance in the metric.

TABLE 6 Comparison of experimental results of different algorithmic models.

Methods Precision (%) Recall (%) mAP0.5 (%) Parameters(M) GFLOPs

YOLOv5s 95.5 94.5 95.4 7.0 16.0

YOLOv7 96.9 96.0 96.1 37.2 105.2

YOLOv8s 97.3 96.8 96.6 11.1 28.7

SSD-VGG 85.6 67.8 84.3 26.3 62.7

Faster R-CNN 82.1 70.1 81.6 137.1 370.2

FA-YOLOv5 97.6 96.7 97.1 5.0 10.3

The bold portion of the table indicates the value with the best performance in the metric.
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From Table 6, it can be seen that among the unimproved
algorithm models, YOLOv8s and YOLOv7 models, as the latest
target detection algorithms nowadays, have high detection

accuracy, but compared with YOLOv5s, their number of
parameters and computation amount are larger. Faster R-CNN,
as a typical Two-stage algorithm, has the highest number of
parameters and the largest computation amount, and also the
worst performance among all the compared algorithmmodels.SSD
algorithm, as one of the typical One-stage algorithms, has only a
little bit more parameter and computation amount than the
YOLOv5 algorithm, but due to the fact that the last layer of the
feature map of the network structure is too small, it is easy to lose
the feature information of the target, which leads to the loss of
feature information of the target. which leads to easy loss of the
target’s feature information, so the detection effect for this dataset
is also poor. In order to balance the detection accuracy and model
complexity, this paper proposes a lightweight model FA-YOLOv5
with better detection performance on the basis of YOLOv5 model,
which has the highest detection accuracy and the least network
parameters and computation among the listed models, and it is
more suitable for deploying on mobile devices for transmission
line inspection such as UAVs, which proves the feasibility of the
method in this paper. Meanwhile, from the mAP0.5 curve graph in
Figure 10, it can also be more intuitively seen that the algorithm
proposed in this paper has a better convergence speed, and at the
same time, it also has a better detection accuracy, and its detection
performance is better than that of other comparative algorithms,
which further proves the effectiveness of the algorithm in this
paper.

FIGURE 10
Comparison of experimental results of mAP0.5 curves for
different models.

FIGURE 11
Comparison of detection results of different algorithms.
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Finally, this paper compares the detection result graphs of the
four models with the highest mAP values, and the comparison
results are shown in Figure 11. From Figures 11B,D, it can be seen
that the YOLOv7 and YOLOv8s algorithms have high detection
accuracy for glass insulators, but the detection of the small targets as
well as defective regions is not effective, and there are serious leakage
cases.

From Figure C, it can be seen that YOLOv5s, YOLOv7 and
YOLOv8s algorithms have lower detection accuracy under the
interference of low-light as well as Gaussian noise, and the
model’s anti-interference ability is weaker, and the robustness
is insufficient. In contrast, the FA-YOLOv5 proposed in this
paper can accurately detect the small target insulators in the
distance as well as the occluded insulators, and can accurately
detect the insulators and their defective regions even under low
light, and at the same time, it also has high detection accuracy
under the interference of Gaussian noise and good anti-
interference ability, which further proves that this paper’s
method can be applied to the presence of small targets under
complex backgrounds in the presence of occlusion as well as
dense and other cases can have a better detection effect.

5 Conclusion

In view of the slow detection speed and low accuracy, even
leakage detection and false detection caused by the current insulator
defect detection model with large number of parameters and large
computation, as well as the complex environment in which
insulators are located, the small percentage of defective parts, and
the existence of mutual occlusion between insulators, this paper
improves the YOLOv5s algorithm and proposes a lightweight FA-
YOLOv5s algorithm based on it, with the following main
contributions.

1) Strengthening feature fusion: By integrating the CBAM attention
mechanism into the C3 module, the characteristics of both the
attention mechanism and the C3 module are combined to
enhance the algorithm’s ability to fuse target feature
information. This allows the feature information to better
propagate to the detection head, resulting in improved
detection accuracy.

2) Lightweight processing: Lightweight improvement is made to the
convolutional modules in the main network of the model,
balancing the relationship between network structure
complexity and detection performance, so that the network
reduces the number of parameters and computations at the
cost of a small decrease in accuracy.

3) In this paper, the CIoU loss function used in the original model is
improved to aWIoU loss function, which balances the variability
in sample quality and improves the overlap between the
prediction frame and the bounding box to improve the
accuracy of the detection compared to CIoU.

4) A visualized software interface for defective insulator detection is
designed, which enables a more intuitive observation of the
detection results of the model.

However, during the experimental process, we found that the
insulator defective dataset used in this paper is of a single type, and
the data enhancement method can only expand the number of
samples, and cannot enrich the diversity of the background
environment, resulting in limited application in real scenarios. In
the next work, we will consider going to the field to actually shoot
more insulator images in different scenes, to further improve the
robustness of the algorithm and the diversity of the dataset, and
optimize the effect of YOLOv5s algorithm on the detection of
defective insulators.
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