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Malignancies contain a relatively small number of Mesenchymal stem/stromal

cells (MSCs), constituting a crucial tumor microenvironment (TME) component.

These cells comprise approximately 0.01–5% of the total TME cell population.

MSC differentiation potential and their interaction with the tumor environment

enable these cells to affect tumor cells’ growth, immune evasion, metastasis,

drug resistance, and angiogenesis. This type of MSC, known as cancer-

associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/

non-tumor cells in the TME and affects their function by producing cytokines,

chemokines, and various growth factors to facilitate tumor cell migration,

survival, proliferation, and tumor progression. Considering that the effect of

different cells on each other in the TME is a multi-faceted relationship, it is

essential to discover the role of these relationships for targeting in tumor therapy.

Due to the immunomodulatory role and the tissue repair characteristic of MSCs,

these cells can help tumor growth from different aspects. CA-MSCs indirectly

suppress antitumor immune response through several mechanisms, including

decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural

killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-

associated macrophages (TAMs) and Treg cells, and immune checkpoint

expression to reduce effector T cell antitumor responses. Therefore, if these

cells can be targeted for treatment so that their population decreases, we can

hope for the treatment and improvement of the tumor conditions. Also, various

studies show that CA-MSCs in the TME can affect other vital aspects of a tumor,

including cell proliferation, drug resistance, angiogenesis, and tumor cell

invasion and metastasis. In this review article, we will discuss in detail some of

the mechanisms by which CA-MSCs suppress the innate and adaptive immune

systems and other mechanisms related to tumor progression.
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1 Introduction

Tumors are formed by complex environmental components,

including various cells such as fibroblasts, mesenchymal stromal/

stem cells (MSCs), endothelial cells, immune cells, and factors

involved in intercellular communication, including extracellular

vesicles (EVs), cytokines, and extracellular matrix (1). These

components together and coordinate with each other to form the

tumor microenvironment (TME) that helps tumor growth. Also,

these cells, in relation to the environment, affect the physicochemical

conditions of the tumor site, including fibrosis, hypoxia, extracellular

pH, and increased interstitial fluid pressure, and in this way, they

contribute to tumor growth (2). Tumor-initiating cells (TICs), also

known as cancer stem cells (CSCs) (3), are subpopulations of tumor

cells in TME that can start tumors and trigger relapses (4, 5). It is

believed that CSCs originate from differentiated cells that have

undergone mutations or from stem cells that are resident in adult

tissues (6–8). Several biomarkers are used to identify CSCs and have

been correlated with diagnosis, therapy, and prognosis (9). Despite

having specific biomarkers, CSCs are regarded as highly plastic,

leading to changes in their phenotype and function over time due

to this plasticity (6). It is known that CSCs are capable of forming

their microenvironment in favor of tumor growth through the

recruitment and activation of specific cell types, including MSCs,

which are referred to as cancer-associated mesenchymal stromal/

stem cells (CA-MSCs) (9, 10). MSCs usually exist in various

mesenchymal tissues such as bone marrow, adipose tissue,

cartilage, dental pulp, umbilical cord, and umbilical cord blood,

and they can be isolated from these tissues (11). These cells have a

high ability of self-renewal and differentiation and can differentiate

into a variety of different types, including osteocytic, adipocytic, and

chondrocytes. Also, due to the increased expression of chemokine

receptors related to inflammation, these cells can migrate to the site of

inflammation and induce their actions there. One type of chronic

inflammatory site in the body of patients is tumor tissue. Therefore,

MSCs can migrate to the tumor tissue and perform various actions

there under the influence of the tumor environment (12). MSCs can

play their role by producing multiple cytokines, growth factors, and

extracellular vesicles, including exosomes (13, 14). MSCs and their

exosomes play a role in the treatment of many diseases, such as

orthopedic diseases (15), inflammatory diseases, infectious diseases

(16, 17), etc. However, it seems that the presence of these cells (CA-

MSCs) in tumor tissue can lead to tumor progression.

The CA-MSCs have the potential to modify the stroma and

establish an optimal microenvironment for the restoration of CSCs

and the progression of tumors. Crosstalk between cancer cells and

MSCs within a microenvironment has also altered the CSC

phenotype in different cancers. The current evidence suggests that

the primary source of CA-MSCs employed by cancer cells derives

from both distantly recruited MSCs and resident MSCs, a principal

origin of the cells (6, 18, 19). It is typical for tumor and non-tumor

cells in the TME to influence the phenotypical and functional

transition of naive MSCs into CA-MSCs (20). Multiple

mechanisms are involved in crosstalk between CSCs/cancer cells

and CA-MSCs, including cell-to-cell interactions (21), secretion of

exosomes (22), and paracrine secretion of inflammatory mediators,
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cytokines, and growth factors (23–25). Considering CA-MSCs and

their mediators that play a unique role in the TME, more studies are

required to elucidate how CA-MSCs/CSCs interact to overcome

tumor immunity.
2 Regulation of immune responses

It has been observed that CA-MSCs interact with tumor cells and

recruit various immune cells, especially macrophages and

neutrophils, as well as myeloid-derived suppressor cells (MDSCs),

then skew their phenotype in favor of tumor cells, immune response

suppression, and tumor development, as it is summarized in Table 1.
2.1 Regulation of innate immune responses

2.1.1 Regulation of macrophage functions
Tumor-associated macrophages (TAMs) are divided into two

distinct subsets, M1, stimulated by lipopolysaccharide (LPS) alone

or combined with Th1 cytokines, and M2, activated by Th2-related

cytokines. Producing tumor necrosis factor (TNF), reactive oxygen

species (ROS), and facilitating antibody-dependent cellular

cytotoxicity, M1-type macrophages have an anticancer function in

the TME (52). While extracellular matrix (ECM) remodeling,

tumor angiogenesis, immune suppression, and metastasis are all

factors that M2-type macrophages use to promote tumor

growth (53).

CA-MSCs can also switch macrophages from a pro-

inflammatory M1 phenotype to an anti-inflammatory M2

phenotype, which enhances macrophage immunosuppressive

effect. For instance, the results of a study showed lower

production levels of pro-inflammatory cytokines, such as TNF-a,
IP10 (IFN-g inducible Protein 10kDa), RANTES, and macrophage

inflammatory protein-1 alpha (MIP-1a), when macrophages were

co-cultured with CA-MSCs derived from gastric cancer compared

to normal MSCs (26). The result of in vitro studies have provided

more detailed insight into the role of the interaction between MSCs

and macrophages in the development of tumors and their

metastasis. Researchers have discovered that CA-MSCs express

high levels of CCR2, which binds to CCL2, CCL7, and CCL12

(34). CCR2 is also highly expressed in macrophages and regulates

myeloid cell recruitment to tumor sites (35). After macrophages

were specifically eradicated from melanoma, lymphoma, and breast

cancer, Ren G et al. found that the tumor-promoting function of

CA-MSC cells was also abolished once macrophages were

specifically eliminated from these cancers (34). It is also

accompanied by evidence that the tumor-promoting properties of

CA-MSCs have been attenuated in CCR2-deficient mice (34, 54).

Additionally, Cascio S’s research on CA-MSCs in ovarian

cancer has declared that these cells, which express CX3CL1,

CCL2, and TGF-b, lead to the migration of CCR2+ monocytes

and M2 TAMs to the TME and the complete elimination of

responses to immune checkpoint inhibitor therapy (36). TNF-a
and the TME hypoxic condition stimulate MSCs to express CCR2,

followed by the production of CCL2, CCL7, and CCL12, and
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macrophage recruitment (34, 37). According to a comprehensive

study on the role of MSCs and macrophages in breast cancer, a

triple communication between tumor cells, macrophages, and

MSCs contributed to the progression of breast cancer by

interacting with chemokines and chemokine receptors. This

interaction is conducted by two signaling loops regulated by the

hypoxia-induced factor-1a (HIF-1a) (37). A signaling loop occurs

when hypoxic CA-MSCs secrete CXCL10, which binds to the

CXCR3 of hypoxic breast cancer cells and results in CXCL16

secretion (37). Upon binding to CXCR6 on hypoxic CA-MSCs,

CXCL16 promotes the expression of CXCL10, resulting in further

MSC recruitment to the tumor site due to more CXCL16 expression

(37). Following this, another signaling loop is activated as well: CA-
Frontiers in Immunology 03
MSCs secrete CCL5, which binds to CCR5 on the surface of cancer

cells and triggers the expression of the chemokine colony

stimulating factor-1 (CSF-1) on those cancer cells, which then

induces macrophages and MDSCs migration (37). Further

investigation revealed that not only are CSF-1 and CCR5 targets

of HIF-1a, but human samples confirmed that these loops exist as

well (37).

2.1.2 Regulation of neutrophils functions
TANs, or tumor-associated neutrophils, phenotypically are

diverse and have various functions (55, 56). These cells are an

essential component of the TME. Neutrophils, like TAMs (M1 and

M2), can be anti-tumorigenic (N1) or pro-tumorigenic (N2),
TABLE 1 The mechanisms of CA-MSCs in innate immune response suppression.

Cell Type Mechanism Example Effect Reference

Macrophage Decrease pro-inflammatory
molecules

TNF-a, IP10, RANTES, MIP-1
Switch M1 to M2

phenotype
(26)

Increase anti-inflammatory
molecules

TGF-b
IL-10

Switch M1 to M2
phenotype

(27–29)

Increase monocyte migration
mediators

MCP-1, SDF-1,
Chi3L1,

M-CSF1, IL-6, IL-8

Increase migration of monocyte and
M2-Macrophage to TME

(30–33)

Expression of Chemokine-
Chemokine Receptor

CCR2
(Induced by HIF-1 or TNF-a, binds to CCL2,

CCL7, CCL12)

Increase migration of monocyte and
M2-Macrophage to TME

(34, 35)

CX3CL1
Increase migration of monocyte and

M2-Macrophage to TME
(36)

CXCL10
(binds to CXCR3, increase CXCL16 secretion)

Increase migration of MSCs to TME (37)

CCL5
(binds to CCR5, increase SCF-1 secretion)

Induces macrophages and MDSCs
migration to TME

(37)

Neutrophil Expression of Chemokine-
Chemokine Receptor

CXCR2
(binds to CXCL1, CXCL2, and CXCL5)

Increase in neutrophil recruitment to
TME

(38)

CLCF1
(Increasing CXCL6 and TGF-b expression)

Induces the polarization of N2-
phenotype neutrophils in TME

(39)

Increase neutrophil activation
pathway

IL-6-mediated STAT3-ERK1/2 axis,
SDF-1a

Induce the chemotaxis and activation of
neutrophils

(40, 41)

Natural killer cell Inhibition of NK cell
activation

PGE2
IDO

Suppression of stimulatory receptors
(NKP30,44)

Induction of inactivity and unresponsive
state

(42, 43)

Reduction of MIC-A, B
(ligands of NK-activating receptors)

in tumor cell

Decrease the cytotoxicity and
g-IFN secretion

(44)

Generate anti-inflammatory
molecules

TGF-b
downregulates NKG2D, NKp30, NKp46,

DNAM-1 expression
(45, 46)

Dendritic cell Induction of rDCs IL6-Stat3 pathway
activation

recruited and transdifferentiated normal
DC into rDCs

(47)

Production of VEGF
Inhibition of

NF-kB
Upregulation of PD-L1 expression

(48–50)

Myeloid-derived
suppressor cells

CCL2
(CCL2-STAT3 signaling enhances the

recruitment of MDSC to TME.)

Inhibition of anti-tumor response
promoted tumor growth

(51)
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depending on whether they have been activated by TGF-b (57, 58).

However, unlike TAMs, the distinction between TAN N1 and N2

phenotypes is made by the activation level as opposed to by various

polarizing chemicals (59). CA-MSCs also alter neutrophil functions

in favor of tumor growth. For example, when CA-MSCs are

stimulated by TNF-a in a mouse breast cancer model with the

4T1 cell line, lung metastasis is increased (38). This phenomenon

can be attributed to increased neutrophil recruitment to tumor

primary sites. CXCR2 ligands, including CXCL5, CXCL2, and

CXCL1, produced by TNF-a activated MSCs account for the

deposition of neutrophils at tumor primary sites and contribute

to the metastatic microenvironment formation (38).

According to Zhu et al., gastric cancer-derived MSCs (GC-

MSCs) interact in 2 directions with neutrophils (41). Firstly, by

STAT3-ERK1/2 IL-6-mediated axis, GC-MSCs can upregulate the

neutrophil’s activation and chemotaxis, resulting in their survival.

The second function of activated TANs is facilitating the

differentiation of MSCs into cancer-associated fibroblasts

(CAFs) (39).

2.1.3 Regulation of natural killer cell functions
NK cells naturally respond to tumor cells (60, 61), but NK cells’

activity is determined by the engagement of their stimulatory or

inhibitory receptor (62). The NK cell receptors include NK group

2D (NKG2D), DNAX accessory molecule 1 (DNAM-1), NKp46,

NKp44, and NKp30, which serve as stimulatory receptors. In

contrast, killer immunoglobulin-like receptors (KIRs) and CD94/

NK group 2A (NKG2A) are inhibitory. TMEs in solid tumors

contain different cells and soluble inhibitory factors, such as MSCs,

which impair the function of NK cells infiltrating the tumor (63,

64). TGF-b is crucial in tumors’ CA-MSC and NK cell interactions.

Evidence suggests that CA-MSCs secreted TGF-b inhibits IFN-g
production and NKG2D activation on cell surfaces. For example,

through miR-183 activation, TGF-b inhibits DAP12 transcription

and NKp30 and NKG2D expression, effectively suppressing NK

cells (45). Additionally, TGF-b, after activating the SMAD2/3

pathway, downregulates NKG2D, DNAM-1, NKp30, and NKp46

expression in the in vitro condition (46).

2.1.4 Regulation of dendritic cells functions
Dendritic cells that infiltrated to tumor tissue (TiDCs), as a

heterogeneous group of DCs, express a high level of MHC class I

and class II complexes, costimulatory and adhesion-related

molecules. These cells are essential for initiating and controlling

innate and acquired (or adaptive) immune responses (43).

According to recent research, CA-MSCs can suppress the

processing and presentation of antigens by DCs and suppress the

adaptive immune response (naïve T cell activation), which can help

cancer cells evade the immune system (65). As a result of IL-6-

mediated STAT3 pathway activation, normal DCs are recruited and

transdifferentiated into regulatory DCs (rDCs), which have no

antigen presentation but release suppressive mediators, including

IDO (47). These mediators (such as IDO) limit T cell-mediated

immunity by inducing T cell anergy and Treg cell proliferation (66).
Frontiers in Immunology 04
2.1.5 Regulation of mast cells
Mast cells (MCs) are corporate in both tumor progression and

suppression, depending on the cancer type, MCs localization,

and degree of tumor progression (67–69). One aspect of MCs’

function as cancer promoters is to stimulate angiogenesis,

lymphangiogenesis, and degradation of ECM by releasing a wide

range of pro-angiogenic molecules [vascular endothelial growth

factors (VEGFs), histamine, heparin, and stem cell factor (SCF)]

(70–74), lymphangiogenic molecules (75), proteases, and matrix

metalloproteinase-9 (MMP-9) (76–78). Meanwhile, MCs increase

antitumor inflammation, induce tumor cell apoptosis, and reduce

cancer cell invasion and metastasis due to their antitumor effector

production, including TNF-a, chondroitin sulfate, tryptase, and IL-

1 (69). CA-MSC immunosuppressive effects through MCs have

received only minimal comprehensive research so far. Researchers

recently found that MCs and CAFs contributed to the

morphological transformation of benign epithelial cells into

cancerous ones in a prostate cancer micro-tissue model (79).
2.2 Regulation of adaptive
immune response

T lymphocytes, such as cytotoxic T lymphocytes (CTLs), Treg

cells, and effector helper T (Th) cells, are the prominent soldiers of

the immune system in driving and modulating adaptive immune

responses (80). There is mounting evidence to support that CA-

MSCs modulate T-cell activities and functions (Table 2).

2.2.1 Regulation of T lymphocytes
There are five major types of Th cells: Th22, Th17, Th9, Th2,

and Th1 (95), all derived from naive T CD4+ cells. Th1 and Th2

cells, involved in cellular and humoral immunity, respectively, by

releasing various particular cytokines (96). Different studies showed

that MSCs can decrease the differentiation of naïve T cells into

inflammatory subsets, including Th1 and Th17 (11). MSCs that are

recruited to the tumor site have an essential role in modulating the

responses of T cells. The results of studies show that CA-MSCs, by

producing TGF-b, can lead to the induction of regulatory T cell

differentiation from naïve T cells (97). Also, they increase the

differentiation of IL10-producing Tr1 cells by producing

prostaglandine E2 (PGE2) (98). This result was demonstrated in

mice infected with Helicobacter pylori and receiving BM-MSCs 10

months after infection. It was shown that this treatment skews the

immune response to an immunosuppressive state by inducing Tr1

cells and Treg cells, possibly contributing to an immune

microenvironment that tolerates H. pylori-mediated gastric cancer

progression. In vitro studies also suggested that Treg cells induced

by TGF-b suppress the cytolytic potency of CD8+ T cells and NK

cells against T47D breast cancer (99). Also, as mentioned in the

previous sections, CA-MSCs can affect the TCD4+ cells’ function by

affecting innate immune cells such as DCs and macrophages (100).

CTLs, or CD8+ T cells, mediate cytotoxic activities by inducing

tumor cell apoptosis (101, 102). Several inflammatory cytokines
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secreted by effector T cells, such as IFN-g and TNF-a, stimulate CA-

MSCs to produce TGF-b, CXC chemokines such as CXCL10,

CXCL9, and CXCL11, as well as the large amounts of inducing

nitric oxide synthetase (iNOS) (103) and IDO (104). All of the

mentioned substants suppress effector T lymphocytes in humans,

including TCD4+ and CTLs. As Sandra Cascio demonstrates, CA-

MSCs have a role by removing TCD8+ cells surrounding tumors

and creating “immune tumor exclusions” that prevent TCD8+ cells

from interacting with cancer cells, causing resistance to immune

checkpoint inhibitor (ICIs) cancer therapy (36). It has been

discovered in another study that the injection of B16 melanoma

cells into allogeneic mice can result in tumor formation only when it

is combined with BM-MSCs (105). In addition, CA-MSCs derived

from cervical cancer patients were also shown to prevent antigen-

specific CD8+ T lymphocytes from destroying CaSki cells in vitro, a

human cervical cancer cell line (106).

2.2.2 Regulation of B lymphocyte functions
A tumor immune microenvironment also contains B cells that

can act as potentiators or inhibitors of antitumor immunity and

regulate cancer progression (107). A lot of study has been shown

recently on how CA-MSCs affect T lymphocytes, but very few

studies have looked at how MSCs affect B cells. However, there is

evidence that BM-MSCs can cause B cells to enter the G0/G1 phase

of the cell cycle and decrease B cell growth and antibody synthesis
Frontiers in Immunology 05
(108, 109). Despite these results, more study is required to

comprehend the consequences of B cell and MSC interaction

during tumor formation. According to current studies, CXCL13 is

the only chemokine secreted by CAFs that enhances B cell

recruitment (110). Therefore, the interaction of CA-MSCs and

CAFs with B lymphocytes to suppress antitumor responses needs

further investigation (Figure 1).
3 Role of CA-MSCs in promoting
cancer growth

In the last decade, many studies have been conducted that have

shown that MSCs cause the growth and proliferation of tumor cells

through the effect on signaling pathways (111). From another

aspect, it has been shown that these cells can impede the growth

of cancer cells (112), so this issue is being discussed. Interestingly,

the anti-tumor or tumor growth-supporting effects of MSCs depend

on the source and type of MSCs, so BM-MSCs and adipose tissue

derived MSCs (AT-MSCs) have the capacity to promote tumor

growth, but UCB-MSCs inhibit tumor growth (113, 114). MSCs

increase the growth and malignancy of cancer cells in several

different ways, including 1) production of cytokines and

chemokines. 2) Phenotypic and metabolic characteristics of

MSCs. 3) Immune cell modulation and immunosuppressive
TABLE 2 The mechanisms of CA-MSCs in adaptive immune response suppression.

Cell Type Mechanism
Example of Responsible

Mediators
Effect Reference

T helper
lymphocytes

Differentiation into
immunoinhibitory subpopulation

TGF-b1
Shift to Th17
differentiation

(38, 81)

TSLP
Shift to Th2
differentiation

(82)

Cytotoxic T
lymphocytes

Immune tumor exclusions Removing TCD8+ cells surrounding
tumors

Resistance to cancer immunotherapy (36)

Release VEGFs
(lead to decrease cell adhesion molecules

ICAM-1/2, VCAM-1)

Decrease CD8+T cells recruitment to
tumor site

(83)

IL6 Decrease CD8+T cells infiltration (84)

Releasing
CXCL12 (facilitate CTLs trafficking away

from juxtatumor area)

Decrease the frequency of infiltrating CTLs
in tumor islets

(83, 85–87)

CTL activity suppression TGF-b Inhibition of Cytotoxicity activity (88)

big-h3
(binds to CD61, inhibition of Lck pathway)

Decreases in TCR signaling transduction (89)

Regulatory T
lymphocytes

Stimulate Treg cells’ migration
CXCL12

(binds to CXCR4)
Increase the frequency of infiltrating Treg

in TME
(90)

CCL5
Regulatory T cells stimulated through

RANKL-RANK signaling
(91, 92)

Induction and maintenance of Treg
cell

TGF-b
(induce Foxp3 expression in T

lymphocytes)

Differentiation of naive T cells into CD4 +
CD25 + Treg cells.

(93)

Expression of CD73, DPP4,
and B7H3

Transform CD4 + T cells into Foxp3+
Treg cells

(94)
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effects. 4) Effect on TME. 5) Effect on non-coding RNAs such as

miRNAs. In the following, we briefly describe these factors. Studies

supporting the function of MSCs to favor tumor growth are

summarized in Table 3.

MSCs properties and functions differ based on the activated

receptor type. One of the most important of these receptors is Toll-

like receptors (TLRs). Among these TLRs, if the TLR-3 receptor is

active on the MSC, it is called MSC2 (TLR3-primed MSCs) (140).

These cells (MSC2) have the property of suppressing immune cells

by secreting anti-inflammatory cytokines such as IL1-RA and IL10.

Subsequently, it promotes cancer cells. On the other hand, in the

presence and activity of TLR-4 receptors on MSCs, they are called

MSC1 (TLR4-primed MSCs). These cells (MSC1) secreted pro-
Frontiers in Immunology 06
inflammatory and pro-apoptotic factors such as IL17, GM-CSF, and

TRAIL. MSC1 reduces the proliferation and inhibits the invasion of

tumor cells (141).

It’s interesting to note that the TLR agonist exposure influences

MSC function and aids MSCs in switching between MSC1 and

MSC2 (anti-tumor or tumor growth promoter). In addition, MSCs

can stimulate the growth of cancer cells and angiogenesis in

different ways. For example, in prostate and breast tumors, MSCs

increased pro-angiogenic factors such as VEGF MIP-2, IL-6, and

TGF-b. These factors directly induce the proliferation of tumor cells

and angiogenesis and thus increase the growth rate of solid tumors

in vitro and in vivo (134). In addition, in a study on hepatocellular

carcinoma (HCC), researchers discovered that the mRNA level of
FIGURE 1

Cancer-associated mesenchymal stem cells (CA-MSCs) affect innate and adaptive immune system cells. As shown in the figure, MSCs disrupt
immune system cells’ functions in the tumor environment by producing various mediators and leading immune responses to the expansion of M2
macrophages, regulatory T cells, and N2 neutrophils and suppression of CTL and NK cell responses.
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TGF-b1 was significantly increased. However, in the MSC-treated

group, Smad7 mRNA expression was suppressed. Their research

shows that MSCs may promote growth and angiogenesis via the

TGF-1/Smad pathway (142). By producing chemokines, CA-MSCs

increase the development and cell proliferation in cancer cells; for

example, increasing the expression of CCL5 chemokine by BM-

MSCs increases proliferation, migration, metastasis, and malignant

behaviors in cancer cells (132). It has been found that CA-MSC

forms a niche of cancer stem cells, which increases the ability of

proliferation in cancer cells (143).

Regarding lymphoblastic leukemia, it has been found that PGE2

produced from MSCs activates the cAMP-PKA signaling pathway

in tumor stem cells and inhibits the cancer suppressor function of

p53, thereby increasing leukemogenesis (120). Also, it has been
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stress, they can produce lactate, which will be absorbed by cancer

cells, and result in producing ATP that will increase the growth and

migration of cancer cells (144). Under TME circumstances, MSCs

have been seen to differentiate into CAFs, stimulating cancer cell

heterogeneity and playing an essential role in cancer progression.

Another factor secreted by MSCs that directly affects the growth of

tumor cells is neuregulin 1 (NRG1). NRG1 controls cell

proliferation and differentiation via binding to EGFRs (145). In

vitro, it has been determined that NRG1 produced by BM-MSCs

activates the HER2/HER3-dependent PI3K-AKT signaling pathway

in CRC and increases cell growth (123).

Other studies have reported that direct cell-cell interaction and

co-culture between human UC-MSCs and MDA-MB-231 breast
TABLE 3 The role of CA-MSCs in increasing tumor growth by different mechanisms.

MSC
origin

Cancer
types

Mechanisms Outcomes ref

GC-
MSCs

Gastric cancer
cells

M2 macrophage polarization by IL-6/IL-8/JAK2/STAT3 pathways
Promotes growth, metastasis, and EMT in
gastric cancer

(26)

BM-MSC Melanoma Decrease of T cell proliferation by IL-10-STAT3 Promotes growth of melanoma (65)

BM-MSC Breast cancer Induction of Treg by secreted TGF-b Increased growth of breast cancer (97)

A-MSC Ovarian cancer Inhibit function of CD8+ T by expression CCL2, TGFb1 CX3CL1، Promote tumor growth (36)

MSCs
TA-

Lung cancer Inhibit NK cells by secreted IL6 and PGE2 Promote tumor growth and metastasis (115)

BM-MSC Gastric cancer Induction of Treg by IL-15/STAT5 pathway Increase tumor growth and metastasis (116)

BM-
MSCs

Head and neck
squamous

Decrease of T cell proliferation by secreted IDO Promote tumor growth and malignancy (117)

BM-MSC Breast cancer Immunosuppression by secreted CXCL1, CXCL6, and CXCL8 Increased tumor growth and metastasis (118)

GC-
MSCs

Gastric cancer
Shift neutrophil toward promoting cancer by IL-6 through the STAT3-
ERK1/2

Increased tumor growth gastric cancer (119)

BM-MSC
Lymphoblastic
leukemia

Inhibited P53 by secretion of PGE2-activated cAMP-PKA signaling Support tumor growth of BCP-ALL (120)

BM-MSC
Gastric cancer
cells

TGF-b1 secreted by MSCs activated
the SMAD2/3 pathway and supported cancer progression
through the lncRNA MACC1-AS1/miR-145-5p/fatty acid oxidation
(FAO) axis in cancer cells

Promoting gastric cancer progression (121)

HCC-
MSCs

Hepatocellular
carcinoma

lncRNAMUF acted as a competing endogenous RNA for miR-34a,
leading to Snail1 upregulation and EMT activation

Facilitates hepatocarcinogenesis (122)

BM-MSC
Colorectal cancer
cells

neuregulin 1 activated the HER2/HER3-dependent (PI3K)–AKT
signalling pathway

Support tumor growth of colorectal cancer (123)

LC-MSCs Hepatocarcinoma Induction of S100A4-miR155-SOCS1-MMP9 axis Promote hepatocarcinoma progression (124)

GA-
hMSC

Glioblastoma miR-1587 secreted in exosome- MSC reduces NCOR1 Support tumor growth of glioblastoma (125)

LC-MSCs Hepatocarcinoma
Expression of lncRNA DNM3OS by MSC and effect on DNM3OS/
KDM6B/TIAM1 axis.

Cell proliferation and invasion in vitro and
tumorigenesis and metastasis in vivo

(126)

BM-MSC Gastric cancer G6PD through the G6PD-NF-kB-HGF axis Facilitated the progression of gastric cancer (127)

CA-MSC Ovarian tumor increase BMP2, BMP4, and BMP6 in MSCs Promotes tumorigenesis of ovarian tumor (128)

CA-MSC Breast cancer promoted sphere formation via the EGF/EGFR/Akt pathway Increased tumor growth breast cancer (129)

(Continued)
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cancer cells can significantly increase the proliferation of tumor cells

in mouse models (146), but its molecular mechanisms were not

investigated. In a study, it has been determined that hepatocyte

growth factor (HGF) secreted from BM-MSCs increases the

expression of glucose-6-phosphate dehydrogenase (G6PD) in

gastric cells and, subsequently, by affecting the G6PD/NF-kB/
HGF axis in gastric cancer cells, increases glycolysis, proliferation,

and metastasis of gastric cancer by upregulating c-Myc/HK2

signaling pathway (127). It has been suggested that another

supportive function in tumor growth by MSCs is to increase

cancer stem cell frequencies. This increase in ovarian cancer cells

is due to the increased expression of bone morphogenetic protein

(BMP)2, BMP4, and BMP6 factors on MSCs (128). Another

method MSCs perform to support the growth of tumor cells is

mammosphere formation. It has been shown in a study that when

CA-MSCs are co-cultured with breast cancer cells, CA-MSCs

induce mammosphere formation in these cancer cells using the

EGF/EGFR/Akt pathway. As a result, it increases the growth of

cancer cells (129).

Another tumor proliferation-enhancing effect of CA-MSCs is

attributed to their role in protecting cancer cells from the immune

system through the modulation of regulatory T cells and inhibition

of NK cells, macrophages, and CTL functions (97). It has been

found that gastric cancer-associated MSCs, by secreting IL-6 and

IL-8 cytokines, as well as the JAK2/STAT3 signaling pathway, have

caused the polarization of macrophages towards M2 macrophages,

which promotes tumor growth (26). CA-MSCs in syngeneic

melanoma mice (B16F10), by blocking cysteine in DCs via IL-10-

STAT3 signaling, inhibited the proliferation of naive T cells and

thus increased the growth and development of melanoma cancer

cells (65). Also, by producing TGF-b1, CA-MSCs induce Tregs cells,
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which suppress immune responses in the breast tumor

microenvironment, increasing the proliferation of these cancer

cells (97). It has been found that the proximity of CA-MSCs

isolated from ovarian cancer with active immune cells and the

presence of ICP inhibitors destroy the response to treatment. This

effect is caused by CCL2, CX3CL1, and TGF-b1 expression from

CA-MSCs and the recruitment of CCR2+ monocytes and M2

macrophages in the TME, inhibiting TCD8+ cells (36). IDO is

another substance secreted from CA-MSCs that suppresses anti-

tumor immune responses. It has been reported that the cells in the

head and neck squamous tumor area have decreased the

proliferation and functions of CD4+ and CD8+ T cells against the

tumor and increased the growth and invasion of these cancer

cells (117).

MSCs decrease the ability of NK cells to secret IFN-g, thus
weakening their anti-cancer role and causing cancer cell growth

(115). In addition, MSCs reduce the maturation of DCs and other

APCs through PGE2 signaling; thus, T cells cannot be activated, and

cancer cells continue to grow (147). Co-culture of MSCs with

CD11b/Ly6G-positive neutrophils results in extensive inhibition

of T cells in vitro and enhances breast carcinoma growth in vivo

(148). It has also been reported that MSCs present in gastric cancer,

by producing IL-6 through the STAT3-ERK1/2 signaling pathway,

promote neutrophils and their shift towards the supportive

phenotype of cancer cells (119). As a result, CA-MSCs secrete

immune cell suppressor molecules and chemokines such as ICAM-

I, PD-L1, VCAM, HLA-G, COX-2, IDO, TGF-b, PGE2, CXCL11,
CXCL8, CXCL9, CXCL6, CXCL10, CXCL1, and promote cancer

cells viability and increase their growth.

According to growing research, non-coding RNAs are involved

in carcinogenesis, metastasis, and treatment resistance (149).
TABLE 3 Continued

MSC
origin

Cancer
types

Mechanisms Outcomes ref

hCC-
MSCs

Colon cancer
microRNA (miR)-30a and miR-222 derived from colon CaMSCs through
downstream target MIA3

Increased tumor growth. Proliferation and
metastasis of colon cancer

(130)

BM-MSC
Colon cancer
cells

miR-142-3p in exosomes stimulated the Notch signaling pathways
through downregulating Numb

Increased the proliferation of colon cancer stem
cells

(131)

BM-MSC Breast cancer secreted CCL5 by MSCs
Increasing the growth, motility, and metastasis
of breast cancer cells

(132)

AD-MSC Pancreatic cancer Differentiating into CAFs Promoting pancreatic cancer progression (133)

BM-
MSCs

Breast cancer Neovascularization (secretion of VEGF, TGF-b, and IL-6) Increased tumor growth (134)

AD-
MSCs

Breast cancer
AD-MSCs differentiated into cancer-associated
myofibroblasts

Increased tumorigenesis and angiogenesis (135)

AD-
MSCs

Prostate cancer periostin and TGF-b secreted by MSCs Promoting the growth of Prostate cancer (136)

BM-
MSCs

Ovarian cancer IL-6 by MSCs and transition to CAF Promoting the growth of Ovarian cancer (137)

AD-
MSCs

Gastric tumor MAPK pathway activation by MSC Increased gastric tumor growth (138)

BM-
MSCs

Lung cancer IL-6 by MSCs and regulated STAT3 signaling Promoting the growth of lung cancer (139)
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Researchers demonstrated that human UC-MSCs strongly

stimulate the growth of lung adenocarcinoma (LUAD) cells in a

xenograft tumor model by transfecting miR-410 (150). A mouse

cancer model showed that gastric cancer-derived MSCs could

significantly increase the migration and growth of HGC-27

through increased miR-221 expression, which may act as a new

biomarker in stomach cancer increase (151). Another study found

that MSCs accelerated the development of gastric cancer by

secreting TGF-b1, which triggered the SMAD2/3 pathway and the

lncRNA MACC1-AS1/miR-145-5p/fatty acid oxidation (FAO) axis

in cancer cells (121). In addition, in triple-negative breast cancer,

MSCs strongly induce the regulation of RNA LINC01133 in

adjacent tumor cells; this induction increases the spread of cancer

stem cell-like phenotypic features and strengthens cancer cell

growth (152). Also, it has been determined that in HCC-

associated MSCs, a high expression level of lncRNA-MUF is

observed; this lncRNA binds with Annexin A2 (ANXA2) and

activates Wnt/b-catenin and causes their signaling and

overexpression of miR-34a increases hence hepatocarcinogenesis

(122). Microarray studies have shown that the expression of S100A4

on CA-MSCs is increased in liver cancer, and it has been

determined that this molecule increases the growth of liver cancer

cells by increasing the expression of mir-155 and finally by

activating the STAT3 pathway and becomes proliferation of these

cancer cells (124). In a study, it has been reported that when BM-

MSCs enter the glioblastoma tumor environment, they become CA-

MSCs, secrete mir-1587 into their exosomes in a specialized

manner, and are absorbed by their cancer cells. mir-1587 reduces

the level of NCOR1 in cancer cells and thus increases growth and

proliferation in these cells (125). It has also been found that

increasing the expression of DNM3OS lncRNA in CA-MSCs

through the DNM3OS/KDM6B/TIAM1 pathway and interaction

increases invasion, growth, and metastasis in hepatocarcinoma

cancer cells (126). In breast cancer, it has been found that MSCs

inhibit FoxP2 by increasing the expression of mir-214 and mir-199

in these cancer cells, thus increasing the growth, metastasis, and

staying in the phenotypic state of cancer stem cells (153).

Researchers have reported that high levels of miR-222 and miR-

30a were found in the hCC-MSC secreted exosomes. These

miRNAs, by targeting and reducing the expression of MIA3,

increase the stimulation of growth, proliferation, and metastasis

of colon cancer cells (130). On the other hand, it has been found

that the increased expression of miR 221 in the exosomes obtained

from CA-MCS cells of gastric cancer has increased the power of

migration and tumorigenesis in these cancer cells (154).

Additionally, it has been demonstrated that miR-142-3p, which is

highly expressed in exosomes made from BM-MSCs, stimulates the

Notch signaling pathway by decreasing the expression of Numb in

cancer cells, which promotes the development and expansion of

colon cancer stem cells (131).

In addition, CA-MSCs are able to differentiate into other tumor

growth-supporting lineages. It has been shown that the treatment of

BM-MSC with PC-3 prostate cancer cells supernatant increases

their differentiation into the osteoblastic cell lineage. This process is

done through the secretion of FGF-9 by PC-3 cells with the positive

regulation of pro-osteoblastic factors, including fibronectin,
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integrin a5/b1, and osteoprotegerin compared to control

environments, then support the growth of cancer cells (155).

Finally, we can say that the mechanism of CA-MSCs is probably

causing tumor cell proliferation by different factors, including

angiogenic factors (bFGF, HIF-1a , and VEGF) (152);

Chemokines (CCL5, CCL2, CXCL12, and CCL22) (156); growth

factors (PDGF, SCF, HGF, IGF-1E, and GF) (157) and

inflammatory cytokines (TGF-b, TNFa, IL-8, and IL-1b).
4 The role of CA-MSCs in tumor
metastasis and invasion

As cancer cells alter their morphology, getting metastatic and

invasive, they detach from the primary site and localize into a

secondary organ far from the origin during metastasis (158). The

interactions between cancer cells and other existing cells in the TME

are necessary to generate a metastatic TME. One of these cells is

CA-MSC, which migrates to tumor sites during inflammation, like

the incidents during wound healing (159). The interaction between

tumor cells and MSCs can be bidirectional. It has been

demonstrated that carcinoma cells-derived IL-1 stimulates the

production of PGE2, which in turn, in an autocrine manner with

the cooperation of IL-1, induces the release of cytokines like IL-8

and IL-6 by MSCs, leading to the activation of Wnt/b-catenin
signaling and stemness properties of cancer cells to enable tumor

progression (25). In a model of breast cancer, it has been detected

that cancer cells can stimulate the recruitment of BM-MSCs to

tumor sites through the SDF-1a/CXCR4 axis. In turn, breast cancer

cells metastasize to the bone marrow via SDF-1a, which belongs to

the chemokine family and is known as a chemo-attractant mediator

(160). In another study, it has been reported that the incubation of

breast cancer cells with MSCs-derived exosomes elevates the

migratory potential of cancer cells by inducing Wnt/b-catenin
signaling. Indeed, the expression of Wnt/b-catenin targeted genes

such as Axin2 and Dkk1 increases in exosome-treated cancer

cells (161).

The active molecules produced by MSCs can contribute to

generating an appropriate microenvironment for tumor metastasis.

The role of IL-6 and IL-8 secreted by MSCs as inflammatory

chemokines on tumor progression has been demonstrated in

some cancer models (162, 163). Some tumor model studies have

shown the role of inflammatory mediators derived from MSCs like

CXCL1, CXCL2, or CXCL12 on metastatic and invasive properties

of cancer cells through activating their specific receptors like

CXCR2 and CXCR4 (164, 165). The MSCs-derived extrinsic

factors can also induce the proliferation of cancer cells,

potentially leading to distant metastasis. It is described that the

released CXCL12 and IGF1 produced by MSCs activate the PI3K/

AKT signaling pathway in breast cancer cells and then shift the

cancer cell population towards more bone metastatic ones (166).

The tumor-derived factors can induce the secretion of

inflammatory chemokine and cytokines from CA-MSCs. For

instance, it is revealed that osteopontin as a tumor-derived

inflammatory cytokine promotes CA-MSCs to the secret high

level of CCL5, which binds to its receptor (CCR5) on cancer cells
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to enhance cancer cells’ metastatic potential and MSCs’ ability to

migrate to metastasis site (132, 167, 168). In prostate cancer, it is

shown that CCL5-derived from MSCs and cancer cells, through

suppressing the nuclear translocation of androgen receptors,

increases the metastatic potential of cancer cells due to inhibiting

androgen receptor signaling (169). It is indicated that blocking these

receptors with neutralizing antibodies can repress tumor metastasis

in a mouse model of breast cancer (170). Indeed, it is identified that

CA-MSCs secret high levels of asporin into tumor stroma,

promoting metastatic tumor development and restricting MSCs

differentiation through binding to BMP-4 (171).

Furthermore, in a model of breast cancer, it is documented that

MSCs induce the metastases and invasive behavior of breast tumors

by altering the cancer cells gene expression profiles by upregulating

the oncogenic pathways like Wnt and TGF-b and thereby,

enhancing the expression of genes related to the cell membrane

and matrix-associated proteins (172). Another study showed that

MSCs, via upregulating the miR-199 and miR-214, inhibit the

expression of the FOXP2 transcription factor in cancer cells to

stimulate breast cancer metastasis (153). Moreover, in human

MSCs-treated hepatocellular tissues, TNF-a, IL-6, and a5 integrin

expression were elevated to promote tumor growth and metastasis

in HCC (173). Enhancement in the migratory and invasive ability of

glioblastoma cells has also been correlated to TGF-b secreted by

MSCs (174). TGF-b, as a growth factor, is implicated in generating

invasive and metastatic properties of cancer cells by inducing

epithelial-to-mesenchymal transition (EMT) (175). In a co-

cultured model of breast cancer cells with MSCs, it has been

reported that the migratory capacity of cancer cells increases

through the ER-SDF-1/CXCR4 pathway (164). In another study,

the role of BM-MSCs in activating the migratory capacity of breast

cancer cells has been attributed to the CXCR2 receptor (165). In a

mice model of gastric cancer, CA-MSCs enhances the survival and

migration of cancer cells by upregulating the expression miR-221

(151). It has been documented that MSCs could transmit

mitochondria to glioblastoma stem cells and breast cancer cells to

enhance the proliferative and invasive potency of cancer cells

through increasing oxidative phosphorylation (OXPHOS) and

adenosine triphosphate (ATP) production (176–178).

Several studies declare the crucial role of MSCs in EMT, a

process by which cancer cells obtain the stem cell phenotype to

migrate to other sites and metastasis. A study on pancreatic cancer

has indicated that human BM-MSCs promote EMT and cancer-

initiating stem cell-like characteristics in cancer cells via the Notch

signaling pathway (179). AT-MSCs have been verified to upregulate

the expression of EMT-related genes in invasive breast cancer cells

through TGF-b and expressing BMP (180).

Some studies describe the role of MSCs in accelerating the

metastasis of tumors by altering the expression of enzymes related

to metastasis. It has been shown that Lysyl oxidase is upregulated in

breast cancer by recruiting MSCs to modulate breast cancer

invasion, metastasis, and EMT (181). Moreover, exosomes

released from AT-MSCs have been stated to enhance the

expression of homosapien collagen beta galactosyl transferase 2

(COLGALT2), which is a crucial enzyme for collagen glycosylation,

to promote metastasis and tumor proliferation in osteosarcoma
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cells (182). Also, it has been demonstrated that MSCs-derived

exosomes enhance the tumorigenic features of ovarian and breast

cancer cells through upregulating MMP-2 and MSCs-related

markers such as CD73 and CD90 (183). MMPs are crucial for the

degradation of ECM (184), and MSCs, by secreting MMPs, play an

important role in inducing a pro-metastatic environment (185).

Some MSCs-secreted factors, such as TGF-b, can also stimulate

tumor fibrosis (186), which can cause the retention of chemokines

and growth factors in the fibrotic environment to accelerate

metastatic growth (187). In addition, MSCs can cooperate in

downregulating or degrading E-cadherin in tumor cells; E-

cadherin acts as an adhesion protein to inhibit cancer cell

dissociation (188).

The role of MSCs in preparing pre-metastatic sites for

circulating cancer cells is shown in some evidence (189–191). It is

determined that CA-MSCs express receptors for VEGF, which not

only enhance the migration of MSCs to tumor site (192) but also,

with high levels of CXCL12 and deposited fibronectin, increases the

migration and adherence of lung carcinoma and melanoma cells to

pre-metastatic niche (193). Cancer-educated BM-MSCs, as a TME

component, induce lung cancer cells’ survival at primary and

metastatic sites by extending BM-PMN-MDSCs during the

metastasis (194).

By contrast, the inverse role of MSCs on tumors has also been

reported in various studies (195–197). In an HCC model, human

MSCs suppressed the metastatic potential of cancer cells via

downregulating TGF-b despite enhancing tumor growth (198).

Recently, it has been indicated that MSCs-derived exosomes

convey miR-3940-5p, which reduces the metastasis of colorectal

cancer cells by targeting the a6 integrin family and then inactivating

TGF-b1 (199).

The recruited MSCs in the TME can get the CAFs-phenotype to

contribute to TME in cancer progression and chemoresistance

(200). The initial in vitro evidence in this field has found that

treatment of BM-MSCs with conditioned media of human breast

cancer, pancreatic cancer, and glioma lead to the differentiation and

expression of CAFs markers like a-SMA, fibroblast associated

protein (FAP), fibroblast-specific protein 1 (FSP1) and vimentin

(201). The CA-MSCs express lower amounts of vimentin and FSP1

in comparison with CAFs (202). The excessive capacity of CA-

MSCs to differentiate into CAFs versus typical MSCs has been

demonstrated in multiple studies (12, 203). An animal model of

inflammation-promoted gastric cancer has discovered that more

than 20% of CAFs originate from BM-MSCs, which can amplify

during tumor progression and induce the probability of malignancy

(202). Numerous secreted factors to the TME trigger the signaling

pathways to stimulate the CA-MSCs differentiation to CAFs. It is

indicated that the secreted factors by tumors activate the TGF-b/
Smad signaling pathways in CA-MSCs to facilitate their

differentiation to the CAF phenotype (204, 205). In gastric cancer,

it is observed that the migrated MSCs to the inflammation site of

tumor stroma generate CAFs through activating TGF-b and SDF-

1a pathways by TGF-b and CXCL12 isolated from cancer cells and

the TME (202) or by tumor derived exosomes (206). It seems that

TGF-b plays a significant role in attracting and recruiting MSCs to

tumor stroma.
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On the other hand, TGF-b secreted by cancer cells and tumor

stroma is crucial in the transition of MSCs into CAFs-like cells,

which in turn promotes tumor progression (204). Monitoring the

fate of MSCs during tumor progression would help better

distinguish the heterogeneity of MSCs in the TME and consider

its role in therapeutic strategies. Additionally, MSCs are involved in

the progression of cancer cells by releasing active molecules such as

SDF-1, CCL5/CCR5, CCR2, TNF-a, TGF-b, etc. (Table 4).

Therefore, novel therapeutic approaches are needed to suppress

or mediate the interaction between cancer cells and MSCs.
5 The role of CA-MSCs in
tumor chemoresistance

CA-MSCs are one of the crucial actors in chemotherapy

resistance, and they point to potential targets to improve patients’

response to chemotherapy. According to the research of Jeanine M.L.

Rood Hart, endogenous MSCs become activated when treated with

platinum analogs and release substances that protect tumor cells from

a variety of chemotherapeutic agents. Two different polyunsaturated

fatty acids caused by platinum (PIFAs), 12-oxo-5,8,10 hepta

decatrienoic acid (KHT) and hexadeca 4,7,10,13 tetraenoic acid

[16:4(n3)] were discovered using a metabolomics approach. These

PIFAs are minute amounts that can result in resistance to various

chemotherapeutic drugs. Surprisingly, MSC-induced resistance can

be prevented by inhibiting the key enzymes [thromboxane synthase

and cyclooxygenase-1(COX-1)] that produce these PIFAs (209). The

study examined this possibility to understand the underlying

molecular mechanism and determine if exosomes produced from

MSCs mediate gastric cancer chemotherapy resistance. They
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discovered that MSCs-derived exosomes dramatically induced 5-

fluorouracil (5-FU) resistance to gastric cancer cells. MSCs-derived

exosomes increased the expression of multi-drug resistance-related

proteins, such as MDR, MRP, and LRP, and inhibited the 5-FU-

induced apoptosis. In gastric cancer cells, MSCs derived exosomes

functioned mechanistically to activate the Raf/MEK/ERK kinase

cascade and calcium/calmodulin-dependent protein kinases (CaM-

Ks). The boosting function of MSCs-derived exosomes in

chemoresistance was decreased by hampering the CaM-Ks/Raf/

MEK/ERK pathway. Inducing drug resistance in gastric cancer cells

through activating the CaM-Ks/Raf/MEK/ERK pathway is one

potential effect of MSCs-derived exosomes. Chemotherapy for

gastric cancer may be more effective if it focuses on how MSCs-

derived exosomes interact with cancer cells (210).

HCC has an important trait of inflammation. A few

inflammatory cytokines released in the TME alter how MSCs

operate. In both in vivo and in vitro settings, they noticed that

MSCs pretreated with the cocktail of IFN-g and TNF-a promoted

resistance to treatment in HCC cell lines. HCC cell line cells

experienced autophagy after exposure to MSCs pre-treated with

IFN-g and TNF-a. The HCC cells use this process as a defensive

mechanism to tolerate the cell toxicity of chemotherapy medicines.

Treatment of the HCC cells with an autophagy inhibitor

successfully decreased the MSCs-induced resistance to

chemotherapy in these cells. TNF-a and IFN-g-induced
stimulation in MSCs induced TGF-b expressions (211). Another

pathway by which CA-MSCs can cause drug resistance in tumor

cells is the WNT signaling pathway (212). Studies show that the co-

culture of acute lymphoblastic leukemia (ALL) cells and MSCs can

lead to the reduction of apoptosis caused by cytarabine in tumor

cells (213). The use of Wnt signaling inhibitor agent increased the
TABLE 4 The role of CA-MSCs in increasing tumor metastasis by different mechanisms.

MSCs source Cancer type Result Molecular Mechanism Reference

Human BM-MSCs Breast cancer cells Activate metastasis By upregulating lysyl oxidase production (181)

BM-MSCs Breast cancer cells and
mice

MSC facilitates breast cancer cells’ entry
into bone marrow

Through Tac1-mediated regulation SDF-
1a)/CXCR4 axis

(160)

BM-MSCs Prostate cancer Enhance prostate cancer cells’ metastatic
capability and cancer stem cell population

Through secreting CCL5 to inhibit
androgen receptor signaling

(169)

Human BM-MSCs Human carcinoma cell
lines and nude mice

Promote stem cell–like phenotype in
carcinoma cells

PGE2 and IL-1 induce the production of
IL-8 and IL-6 by MSCs

(25)

VEGFR1-positive
hematopoietic bone marrow
progenitors

Melanoma cells and
lung carcinoma cells

Prepare an appropriate environment for
colonization
of circulating cancer cells

By Expressing VEGFR and with the
contribution of CXCL12 and fibronectin

(193)

Human BM-MSCs Hepatocellular
carcinoma

Induces tumor growth and metastasis Via MAPK pathway and enhancing the
expression of TNF-a, IL-6, and integrin a5

(173)

Human BM-MSCs Breast cancer cells Activate metastasis By stimulating the hypoxia-inducible
factors (HIFs)

(207)

Human adipose stromal cells Breast cancer cells Enhance migration and invasion By producing IL-6 (208)

Human BM-MSCs Breast carcinoma
spheroids

Increase metastasis with degradation of E-cadherin via
activating ADAM10

(188)

MSC derived from different
human tissues

Glioblastoma Elevate the migratory and invasive potency
of glioblastoma cells

By producing TGF-b1 (174)
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sensitivity of ALL cells to chemotherapy and compensated for the

inhibition of apoptosis induced by MSCs (213). In addition, it has

been shown that CA-MSCs can activate the expression level of

sphingosine-1-phosphate receptor 1 (S1PR1) in neuroblastoma-

related tumor cells and the downstream signaling pathway that

functions through JAK2 and STAT3 (214). S1PR1 overexpression

protects cancer cells from chemotherapy-induced apoptosis by

activating JAK-STAT3 signaling (215). Co-culture of MSCs by

oral squamous cell carcinoma (OSCC) also leads to the drug

resistance of cancer cells to cisplatin through the activation of the

signaling pathway related to PDGFR-a/AKT (216, 217). Studies

conducted by Bing Tu et al. show that the co-culture of MSCs with

osteosarcoma cells leads to increased resistance to doxorubicin or

cisplatin in tumor cells through a STAT3-dependent pathway (218).

It has also been determined that pretreatment of MSCs with IL-6

increases their ability to induce STAT3 signaling pathway and

induce drug resistance (218).

Another way MSCs contribute to the drug resistance of tumor

cells is the acceptance of damaged mitochondria from tumor cells

by tunneling nanotubules (TNTs) (219). Inhibiting the formation of

TNTs by cytochalasin D leads to a decrease in the transfer of

damaged mitochondria from tumor cells to MSCs and leads to a

reduction in cancer cells’ drug resistance (178, 220). It also seems

that MSCs can transfer healthy mitochondria to tumor cells

through these TNTs and induce drug resistance in them.

Aldehyde dehydrogenase (ALDH) activity has a direct

relationship with the drug resistance of cancer cells (221).

Different studies have shown that MSCs increase the ALDH

activity in cancer cells by the production of TGF-b through the

p38-dependent signaling pathway. Inhibiting or reducing the

production of TGF-b from MSCs decreases their ability to induce

drug resistance in tumor cells (222).

Glioma-associated MSCs consist of two distinguishable

populations characterized by the level of CD90 expression (223).

CA-MSCs that express CD90 at a high level play a role in the

proliferation, differentiation, adhesion, and migration of glioma

tumor cells and have no effect on drug resistance induced in tumor

cells. However, CA-MSCs CD90low are of great importance in

the drug resistance of tumor cells. These cells, by increasing the

expression of FOXS1 in glioma cells, lead to a decrease in the

sensitivity of tumor cells to the drug temozolomide and apoptosis in

these cells (224).
7 The role of CA-MSCs in
tumor angiogenesis

Carcinoma-associated mesenchymal stromal/stem cells in the

TME can affect the progression of ovarian tumors by promoting

angiogenesis at the tumor site, which speeds up tumor growth. It

has been shown that endothelial cells, CA-MSCs, and ovarian

adenocarcinoma cells secrete pro-angiogenic cytokines, including

IL-6, IL-8, and VEGF, at higher levels when they are in contact with

a particular cell type (225). CA-MSCscan also induces macrophage

differentiation to an M2 phenotype and activates them, causing
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them to release a large amount of pro-angiogenic cytokines that are

helpful for the advancement of all related ovarian cancer cells that

have been studied (226). According to research by W-H Huang

et al., the angiogenesis and tumor growth rate are both accelerated

when different CRCs are combined with non-tumorigenic MSCs.

IL-6 released fromMSCs stimulates the release of endothelin-1 (ET-

1) in cancer cells, which in turn triggers the activation of Akt and

ERK in endothelial cells, improving their ability to attract other cells

to the tumor and promoting angiogenesis (227). An anti-IL-6

antibody or lentiviral-mediated RNAi against IL-6 in MSCs, the

inhibition or knockdown of ET-1 in cancer cells, or the suppression

of ERK and Akt in host endothelium cells can all be used to target

the IL-6/ET-1/Akt or ERK pathway of tumor-stroma interaction.

These show that efforts to stop the interaction between MSCs and

cancer cells aid in preventing angiogenesis and reducing tumor

growth. These findings indicate that targeting the interaction

between the proangiogenic factors secreted by cancer cells and

the tumor microenvironment, specifically the IL-6 released by

MSCs, may result in novel therapeutic and preventive

approaches (225).

MSCs transplanted into mice support tumor angiogenesis in

vivo through the expression and production of VEGF and lead to an

increase in the density of CD31+ vessels after MSC transfer. The use

of siRNAs that interfere with VEGF expression reduces the ability of

MSCs to induce angiogenesis at the tumor site (228). It has also

been shown that MSCs bind to blood vessel endothelial cells after

intratumoral injection and express procytic markers such as aSMA,

NG2, and PDGFRb. Pericytes promote tumor growth and tumor-

related angiogenesis through the production of various

proangiogenic soluble factors (229).
7 Conclusion and future perspective

As mentioned in this article, intercellular communication in

TME can affect most aspects of tumor development (Figure 2). One

of the most important cells that affect tumor cells is MSCs, which

can also differentiate into fibroblasts (CAFs). Due to their

characteristics, these cells can increase the expansion and

production of cancer stem cells and help the stability of the tumor.

Also, CA-MSCs can contribute to tumor progression by

suppressing the immune system, increasing metastasis, invasion,

angiogenesis, tumor growth, and survival of tumor cells, and also by

increasing drug resistance in tumor cells. In addition, MSCs can

differentiate in the tumor environment and change the conditions

of the TME in favor of the tumor. Intercellular communication in

TME is very complex, and CA-MSCs usually exert their effect on

tumor cells by using three mechanisms, including producing

extracellular vesicles, soluble mediators, and direct cell-to-cell

contact. According to the mentioned studies in this article, it

seems that CA-MSCs are one of the main culprits of tumor

expansion. So, it can be concluded that preventing the spread of

CA-MSCs can also prevent the spread of tumors. It is very

important to know this point because cancer stem cells are

troublesome in many cancers and can lead to tumor recurrence

after treatment. Also, preventing the spread of CA-MSCs can
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partially prevent metastasis, invasion, and drug resistance induced

by these cells in tumor treatment.

On the other hand, inhibiting the expansion and function of

CA-MSCs can lead to removing the suppression of the immune

system against tumor cells and decrease the tumor’s power in

immune evasion so that functional immune responses against

tumor expansion are formed. As mentioned, MSCs, by expressing

chemokine receptors related to migration to the site of

inflammation, in clinical uses, they may migrate to the site of

chronic inflammation induced by the tumor. According to the

authors, they suggest the use of engineered MSCs that do not

express these chemokine receptors (230). However, the lack of

chemokine receptor expression can affect MSCs’ therapeutic

potential and their migration to the target site. This issue can be
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solved through local injection of MSCs. Until now (September

2023), this approach has not been used in any of the pre-clinical or

clinical studies. For this reason, the authors of this article,

considering the importance of the presence of CA-MSCs in the

tumor tissue and their role, encourage researchers to investigate this

matter. However, as mentioned, TME is very complex, and proving

the role and therapeutic importance of removing or preventing the

spread of CA-MSCs requires more studies.
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106. Montesinos JJ, Mora-Garcıá Mde L, Mayani H, Flores-Figueroa E, Garcıá-
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Glossary

(MSC) Mesenchymal stem/stromal cells

(CA-MSCs) Cancer-associated mesenchymal stem/stromal cells

(BM-MSC) Bone marrow-derived mesenchymal stromal/stem cell

(UC-MSCs) Umbilical cord-derived mesenchymal stem/stromal cells

(TME) Tumor microenvironment

(EMT) Epithelial-to-mesenchymal transition

(TAMs) Tumor-associated macrophages

(CAFs) Cancer-associated fibroblasts

(iCAFs) Inflammatory CAF

(myCAFs) Myofibroblastic CAFs

(CSCs) Cancer stem cells

(CAAs) Cancer-associated adipocytes

(MDSCs) Myeloid-derived suppressor cells

(LPS) lipopolysaccharide

(TNF-a) Tumor necrosis factor-a

(ECM) Extracellular matrix

(ROS) Reactive oxygen spices

(HIF) Hypoxia-induced factor

(MCP-1) Monocyte chemotactic protein-1

(MIP-1a) Macrophage inflammatory protein-1 alpha

(TANs) Tumor-associated neutrophils

(GC-MSCs) Gastric cancer mesenchymal stromal/stem cells

(NKs) Natural killer cells

(PGE2) Prostaglandin E2

(IDO) Indoleamine 2,3-dioxygenase

(DCs) Dendritic cells

(rDCs) Regulatory DCs

(MCs) Mast cells

(VEGFs) Vascular endothelial growth factors

(CSF-1) Colony stimulating factor-1

(MMP) Matrix metalloproteinase

(CTLs) Cytotoxic T lymphocytes

(Th) Helper T

(TGFB1) Transforming growth factor b1

(iNOS) Inducing nitric oxide synthetase

(TLRs) Toll-like receptors

(NRG1) Neuregulin 1

(PI3K) Phosphoinositide 3 kinase

(Continued)
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(BMP) Bone morphogenetic protein

(a-SMA) Smooth muscle alpha-actin

(5-FU) 5-fluorouracil

(CaM-Ks) Calcium/calmodulin-dependent protein kinases

(FAP) Fibroblast activation protein

(GC) Gastric cancer

(NSCLCs) Non-small cell lung malignancies

(ANXA2) Annexin A2

(CRC) Colorectal cancer

(ECs) Endothelial cells
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