
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Wei Jing Liu,
Beijing University of Chinese Medicine,
China

REVIEWED BY

John Cijiang He,
Icahn School of Medicine at Mount Sinai,
United States
Adriana R. Silva,
Oswaldo Cruz Foundation (Fiocruz), Brazil
Shougang Zhuang,
Brown University, United States

*CORRESPONDENCE

Hui-Yao Lan

hylan@cuhk.edu.hk

Xueqing Yu

yuxueqing@gdph.org.cn

Xiaoqin Wang

wangxiaoqin@hbhtcm.com

RECEIVED 20 July 2023

ACCEPTED 10 October 2023

PUBLISHED 03 November 2023

CITATION

Wu W, Wang W, Liang L, Chen J, Sun S,
Wei B, Zhong Y, Huang X-R, Liu J, Wang X,
Yu X and Lan H-Y (2023) SARS-CoV-2 N
protein induced acute kidney injury in
diabetic db/db mice is associated with a
Mincle-dependent M1 macrophage
activation.
Front. Immunol. 14:1264447.
doi: 10.3389/fimmu.2023.1264447

COPYRIGHT

© 2023 Wu, Wang, Liang, Chen, Sun, Wei,
Zhong, Huang, Liu, Wang, Yu and Lan. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 03 November 2023

DOI 10.3389/fimmu.2023.1264447
SARS-CoV-2 N protein induced
acute kidney injury in diabetic
db/db mice is associated with a
Mincle-dependent M1
macrophage activation
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“Cytokine storm” is common in critically ill COVID-19 patients, however,

mechanisms remain largely unknown. Here, we reported that overexpression

of SARS-CoV-2 N protein in diabetic db/db mice significantly increased tubular

death and the release of HMGB1, one of the damage-associated molecular

patterns (DAMPs), to trigger M1 proinflammatory macrophage activation and

production of IL-6, TNF-a, and MCP-1 via a Mincle-Syk/NF-kB-dependent
mechanism. This was further confirmed in vitro that overexpression of SARS-

CoV-2 N protein caused the release of HMGB1 from injured tubular cells under

high AGE conditions, which resulted in M1 macrophage activation and

production of proinflammatory cytokines via a Mincle-Syk/NF-kB-dependent
mechanism. This was further evidenced by specifically silencing macrophage

Mincle to block HMGB1-induced M1 macrophage activation and production of

IL-6, TNF-a, and MCP-1 in vitro. Importantly, we also uncovered that treatment

with quercetin largely improved SARS-CoV-2 N protein-induced AKI in db/db

mice. Mechanistically, we found that quercetin treatment significantly inhibited

the release of a DAMP molecule HMGB1 and inactivated M1 pro-inflammatory

macrophage while promoting reparative M2 macrophage responses by
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suppressing Mincle-Syk/NF-kB signaling in vivo and in vitro. In conclusion, SARS-

CoV-2 N protein-induced AKI in db/db mice is associated with Mincle-

dependent M1 macrophage activation. Inhibition of this pathway may be a

mechanism through which quercetin inhibits COVID-19-associated AKI.
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Introduction

Acute kidney injury (AKI) has been recognized as a common

complication of the coronavirus disease 2019(COVID-19), which

is caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2). AKI is common in critically ill COVID-19

patients with high mortality (1–4). Patients with older age

and underlying diseases such as hypertension, diabetes, and

chronic kidney disease (CKD) are at high risk for COVID-19 AKI

(5, 6). However, mechanisms for COVID-19 AKI remain

largely unknown.

Increasing evidence shows that cytokine storm is common in

critically ill patients with AKI (7). Cytokine storm is related to

excessive immune responses in patients with severe SARS-CoV-2

infection and is characterized by the production of large amounts of

cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor

necrosis factor-alpha (TNF-a), and monocyte chemotactic protein-

1 (MCP-1) (8–13). Thus, understanding the mechanisms that lead

to the cytokine storm associated with COVID-19 infection is

extremely important for developing potential treatments for

critically ill COVID-19 patients.

Elevated inflammatory markers such as white blood cell count,

monocyte count, high levels of C-reactive protein, and

proinflammatory cytokines such as IL-6, TNF-a, and MCP-1 have

been demonstrated in patients with severe COVID-19 (10–15). It is

also reported that the CD68+ macrophages infiltrating the kidney

are also associated with severe kidney injury in COVID-19 patients

(16). Tubular necrosis is a pathological feature of COVID-19

patients with AKI (7). Tubular necrosis can induce renal

inflammation by releasing the damage-associated molecular

patterns (DAMPs) to activate immune cells through identical

pattern recognition receptors (PRR) (17). Macrophage-inducible

C-type lectin (Mincle) is a transmembrane pattern recognition

receptor that is expressed by M1 pro-inflammatory macrophages

in response DAMPs (18, 19). Mincle acts via its downstream Syk

and NF-kB signaling to activate M1 pro-inflammatory

macrophages and is essential for maintaining the pro-

inflammatory phenotype of M1 macrophages in AKI (20). It has

been reported that increased expression of DAMPs such as the

high-mobility group box 1 protein (HMGB1) and S100A8/A9 is

found in patients with moderate to severe COVID-19 (21, 22). Early

post-mortem examination confirms that SARS-CoV-2 can directly

infect human kidney tubular cells and then induce acute tubular
02
damage by a direct cytopathic effect and CD68-positive

macrophages (23). Our recent study also finds that SARS-CoV-2

N protein can activate transforming growth factor beta (TGF-b)
signaling by interacting with Smad3 and thus causes tubular cell

death via mechanisms associated with Smad3-dependent G1 cell

cycle arrest and Ripk3/MLKL necroptosis pathways (24–26).

However, Mincle-dependent M1 macrophage activation in

COVID-19 AKI remains unexplored, which was investigated in

the present study.

Quercetin is a widespread flavonoid found in a large variety of

Chinese herbs and dietary supplements. It shows multiple

pharmacological effects, including antiviral, antioxidant, and anti-

inflammatory properties. Clinical trials demonstrate that treatment

of COVID-19 patients with oral quercetin significantly improves

the severity of COVID-19 syndromes (27, 28). Molecular docking

studies predict that quercetin can bind to multiple SARS-CoV-2

proteases and thus inhibit viral infection (29, 30). Our recent studies

confirmed that ultrasound-microbubble-mediated kidney-

specifically overexpressing SARS-CoV-2 N protein can induce

AKI in 8-week-old db/db mice by causing tubular necrosis and

elevated serum levels of creatinine and blood urea nitrogen, which is

further exacerbated in older age (16 weeks) of db/db mice, but is

inhibited by treatment with quercetin (24). We find that quercetin

can effectively block the binding of SARS-CoV-2 N protein to

Smad3, therefore inhibiting SARS-CoV-2 N protein-induced

tubular cell death via the Smad3-p16-dependent G1 cell cycle

arrest mechanism (24). It is also reported that quercetin can

inhibit proinflammatory cytokine expression in a cisplatin-

induced mouse model of AKI by suppressing Mincle/Syk/NF-kB
signaling (31). However, it remains unknown whether treatment

with quercetin inhibits COVID-19 AKI via the Mincle-dependent

mechanism, which was also investigated in the present study in vivo

and in vitro.
Materials and methods

Preparation of SARS-CoV-2 N protein-
expressing plasmid

Mammalian expression plasmids for pcDNA3.1(+)-Flag-N

were constructed and synthesized by GenScript (Nanjing, China)

and GenBank accession number is MW617760.1. The pcDNA3.1
frontiersin.org
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(+)-Flag-N and pcDNA3.1(+)-Empty-Vector (EV) were purified by

EndoFree Maxi Plasmid Kit (DP117, TIANGEN BIOTECH,

Beijing, China). The primers used in this study were as follows:

Flag-N: Forward: GCGGATCCATGTCTGATAATGGACCCCA;

Reverse: GCTCTAGATTAGGCCTGAGTTGAGTCAG.
Mouse model of AKI and treatment
with quercetin

A mouse model of AKI was induced in the male db/db mice at

the age of 16 weeks by ultrasound-microbubble-mediated kidney-

specifically transferring SARS-CoV-2 N protein-expressing plasmid

as previously described (24–26). Quercetin was dissolved in 2%

DMSO and then mixed with jelly in the mouse food. Groups of 6

db/db mice at the age of 16 weeks were given oral quercetin at

dosages of 150mg/kg/day from day 0 before ultrasound-

microbubble-mediated SARS-CoV-2 N gene transfer until being

killed on day 2 as previously described (24). In the present study,

there were 5 groups of db/db mice, including untreated, EV (empty

vector), NP (SARS-CoV-2 N protein), NP +QUE (NP+quercetin),

and NP+DMSO (NP+DMSO-control). A group of 6 db/m mice at

the age of 16 weeks was used as normal control.
Cell lines and cell cultures

The mouse tubular epithelial cells (mTEC) were a gift from Dr.

Jeffrey B. Kopp (National Institutes of Health) and were transfected

with SARS-CoV-2 N protein expressing plasmid as previously

described (24–26). The mTEC with overexpressing SARS-CoV-2

N (or empty vector)-expressing plasmid were cultured in DMEM/

F12 medium (11320082, Gibco, ThermoFisher) supplemented with

10% FBS, 1%(v/v) penicillin-streptomycin (P/S) (15070063, Gibco,

ThermoFisher). Cells were stimulated with or without advanced

glycation end products (AGE, 100mg/ml, ab51995, Abcam), a

hyperglycemia-related products associated with the development

of diabetic kidney disease for 48 hours to obtain HMGB1-rich

conditional medium for the macrophage activation studies as

described below.

A mouse macrophage cell line RAW264.7 was purchased from

the American Type Culture Collection (ATCC) (Manassas, VA).

RAW264.7 were cultured in DMEM (11965118, Gibco,

ThermoFisher) supplemented with 10% FBS, 1%(v/v) P/S. To

study the inhibitory effect of quercetin on M1 macrophage

activation and proinflammatory cytokine production. RAW264.7

were pretreated with quercetin (32mM) or 0.05% DMSO for 24

hours prior to the addition of HMGB1-rich conditional medium. At

least three independent experiments were performed in each study.
Small interfering RNA transfection

To knock down Mincle, RAW264.7 cells were transfected with

small interfering RNA against mouse Mincle (sense 5’-
Frontiers in Immunology 03
CCUUUGAACUGGAAACAUUTT-3 ’ , a n t i s e n s e 5 ’ -

AAUGUUUCCAGUUCAAAGGTT-3’) (designed and synthesized

by Shanghai GenePharma Co., Ltd. , China) by using

Lipofectamine™ RNAiMAX (13778150, Invitrogen, Thermo

Fisher Scientific) according to the manufacturer’s instructions. A

scramble sense control was used as negative control (NC). At least

three independent experiments were performed in each study.
Immunohistochemistry

Immunohistochemistry was performed on paraffin-embedded

tissue sections (3mm) using endogenous horseradish peroxidase

blocking and microwave-based antigen retrieval technique if

necessary (32). The antibodies used in this study included Ultra-

LEAF purified anti-mouse F4/80 (123164, Biolegend) and p-p65

(ab97726, Abcam). After incubation with the primary antibody

overnight at 4°C, sections were incubated with anti-rabbit EnVision

+ System-HRP Labelled Polymer (K4003, DAKO) at room

temperature for 60 min. Then color was developed with a

diaminobenzidine tablet (045-22833, FUJIFILM Wako Pure

Chemical Corporation) and the nuclei were counterstained with

Hematoxylin (H-3404, Burlingame) if necessary. The stained

sections were viewed under a LEICA CRT6000 Light Microscope.

The positive cells were counted in 6 random areas of kidney sections

under the power field (x20) of a microscope and expected as

positive rate or cells/mm2.
Multiplex immunofluorescence

To detect the co-localization between Mincle and F4/80

expression, paraffin-embedded kidney sections (3mm) were

blocked with endogenous horseradish peroxidase and then

incubated with Ultra-LEAF purified anti-mouse antibody

against F4/80 (123164, Biolegend) overnight, followed by

adding rabbit polyclonal antibody to Mincle (BS-8541r, Bioss)

as previously described (24–26). The fluorescence was developed

using the Alexa Fluor ™ 488 Tyramide Reagent (B40953,

Invitrogen) or Alex Fluor ™ 568 Tyramide Reagent (B40956,

Invitrogen), and the nuclei were counterstained with Hoechst

33342 (H1399, Invitrogen) according to the manufacturer’s

protocol. All staining sections were detected and photographed

by a ZEISS AXIO Microscope. The positive co-location cells were

counted in 6 random areas of kidney sections under the high-

power field (x40) of a microscope and expected as positive

cells/mm2.
Enzyme-linked immunosorbent assay

The serum from mouse and the supernatant from cultured

mTEC were collected and the concentrations of HMGB1 were

measured with a mouse HMGB1 ELISA Kit according to the

manufacturer’s instructions (E-EL-M0676C, Elabscience).
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Flow cytometry

Total kidney tissues were digested by Liberase TM Research

Grade (Roche, Indianapolis, IN) and RAW264.7 cells were digested

with 0.25% trypsin–EDTA into cell suspension. All cells were fixed

by IC Fixation Buffer (00-8222-49, Invitrogene) for 10 minutes.

Then cells were co-stained with CD68-PE antibody (137014,

Biolegend), Mincle-FITC antibody (bs-8541R-FITC, Bioss), iNOS-

APC antibody (17-5920-82, eBioscience), or CD206-FITC antibody

(141704, Biolegend) overnight at 4°C. After being labeled, cells were

gated and analyzed by using a BD LSRFortessa flow cytometer (BD

Biosciences), and the data were analyzed by FlowJo software (V10).
Western blot analysis

The total protein of mouse kidney tissues and RAW264.7 cells

were extracted by RIPA lysis buffer (P0013B, Beyotime, Shanghai,

China). The proteins were electrophoresed in a 10% SDS-PAGE gel

and transferred to a Nitrocellulose Transfer Membrane (66485, Pall

Corporation, Mexico). Then the membranes were blocked for 1 h at

room temperature with 5% skim milk or BSA and incubated with

primary antibodies at 4°C overnight. The next day, the membranes

were incubated with mouse IgG (H&L) antibody DyLight™ 800

conjugated (610-145-002, ROCKLAND) or rabbit IgG (H&L)

antibody DyLight™ 800 conjugated (611-145-002, ROCKLAND).

The expression levels of protein were visualized by the Odyssey

Infrared Imaging System (San Diego, CA, USA) and quantitatively

analyzed by the Image J software (NIH, Bethesda, MD, USA). The

antibodies used in this study included mouse antibodies against

Mincle (sc-390806, Santa Cruz), TLR-4(sc-293072, Santa Cruz), b-
actin (sc-69879, Santa Cruz) and rabbit antibodies against HMGB1

(ab79823, Abcam), p-Syk (#2710, Cell Signaling Technology), Syk

(#13198, Cell Signaling Technology), p-p65(ab86299, Abcam), p65

(#8242, Cell Signaling Technology), iNOS (ab15323, Abcam).
Real-time PCR assay

Total RNA from mice kidneys and RAW264.7 cells were

extracted with TRIzol reagent (TR118, Molecular Research

Center) following the manufacturer’s instructions. Real-time

quantitative-PCR was measured with QuantStudio™ 6 and 7 Flex

Real-time PCR systems (4489826, ThermoFisher) and SYBR Green

Supermix (1725122, Bio-Rad). The primers used in this study

included mouse Mincle: forward 5 ’-CCAAGTGCTCTC

CTGGACGATA-3’, reverse 5’-CTGATGCCTCACTGTAGCAG

GA-3’; mouse TNF-a: forward 5’- CATCTTCTCAAAATTCGA

GTGACAA-3’, reverse 5’- TGGGAGTAGACAAGGTACAA

CCC-3 ’ ; mouse IL-6: forward 5 ’- GTCCTTCCTACCC

CAATTTCCA-3’, reverse 5’-TAAC GCACTAGGTTTGCCGA-3’;

mouse MCP-1:forward 5’-TTAAAAACCTGG ATCGG AA C

CAA-3’, reverse 5’-GCATTAGCTTCAGATTTACGGGT-3’;

mouse IL-4:forward 5’-C C C CAGCTAGTTGTCATCCT-3’,

reverse 5’- TGGTGTTCTTCGTTGCTGTG-3’; mouse IL-10:

forward 5’-CGGGAAGACAATAACTGCACCC-3’ reverse 5’-
Frontiers in Immunology 04
CGGTTAG CAG TATG TTG TCCAGC-3’; mouse b-actin:
forward 5’-GTGACGTTGACA T CCGTAAAGA-3’, reverse 5’-

GCCGGACTCATCGTACTCC-3’.
Statistical analyses

All data were presented as the mean ± SD. Statistical analysis

was performed with one-way ANOVA for multiple groups from

GraphPad Prism 9.0 Software (GraphPad, San Diego, CA, USA). P

values less than 0.05 were considered statistically significant.
Results

Overexpression of SARS-CoV-2 N protein
exacerbates renal inflammation in diabetic
kidney of db/db mice, which is associated
with increased HMGB1 and Mincle-
expressing M1 macrophage infiltration

As inflammation is a feature of COVID-19 patients with AKI (7–

17, 33). To explore the pathological link between renal inflammation

and COVID-19 AKI, we first examined renal inflammation in the

AKI kidney of 16-week-old db/db mice induced by overexpressing

SARS-CoV-2 N protein. We found that ultrasound-microbubble-

mediated overexpression of SARS-CoV-2 N protein greatly

enhanced F4/80+ macrophage accumulation and expression of

proinflammatory cytokines such as IL-6, TNF-a and MCP-1

(Figures 1A, B). This was associated with an increase in both

serum and renal tissue levels of HMGB1, one of the DAMP

molecules, and upregulation of Mincle at both mRNA and protein

leve ls (Figures 1D-F) . Further studies by two-color

immunofluorescence and flow cytometry clearly detected that

overexpression of SARS-CoV-2 N protein largely promoted M1

proinflammatory macrophages infiltrating the kidney by co-

overexpressing F4/80 and Mincle/iNOS markers, which was largely

increased in the diabetic kidney of db/db mice (Figures 2, 3A, B).

These observations suggest that overexpression of SARS-CoV-2 N

protein may mediate severe AKI under diabetic conditions by

triggering the release of DAMP molecules such as HMGB1 from

the necrotic tubular cells, which then may activate M1 macrophages

and stimulate the production of proinflammatory cytokines to

exacerbate further AKI via a Mincle-dependent mechanism.
Overexpression of SARS-CoV-2 N protein
promotes M1 pro-inflammatory
macrophage activation and renal
inflammation under diabetic conditions by
activating Mincle-Syk-NF-kB signaling

It is well known that Mincle is a typical PRR expressed by

M1 proinflammatory macrophages and can recognize

the endogenous DAMPs released by necrotic cells. The binding

of DAMPs to Mincle can activate Syk and NF-kB signaling
frontiersin.org
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byphosphorylation (19). Our previous study also demonstrated

that LPS induces M1 macrophage activation in AKI via Mincle/

Syk/NF-kB-dependent mechanism (34). In the present study,

western blot t ing and immunohis tochemica l s ta in ing

also detected that overexpressing SARS-CoV-2 N protein

caused severe rena l inflammat ion wi th mass ive M1

macrophage infiltration in the diabetic kidney of db/db mice,

which was associated with upregulation of Mincle on
Frontiers in Immunology 05
macrophages (Figures 2, 3A, B) and activation of Syk/NF-kB
signaling (Figure 4).

To further confirm the necessary role for Mincle in M1

macrophage-mediated AKI in response to SARS-CoV-2 N

protein under diabetic conditions, we performed serial studies in

SARS-CoV-2 N protein-overexpressing tubular cells under high

AGEs conditions. We found that either SARS-CoV-2 N protein or

AGEs were capable of inducing equal levels of HMGB1 released
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FIGURE 1

Kidney-specifically overexpressing SARS-CoV-2 N protein promotes renal inflammation in db/db mice at the age of 16 weeks by enhancing the
release of HMGB1 and expression of Mincle, which is inhibited by treatment with quercetin. (A) Immunohistochemistry for F4/80+ macrophages
infiltrating the kidney of db/db mice treated with or without quercetin. (B, C) Real-time PCR for proinflammatory cytokines (IL-6, TNF-a and MCP-1)
and anti-inflammatory cytokines (IL-4 and IL-10) mRNA expression in the diabetic kidney treated with or without quercetin. (D) Serum levels of
HMGB1. (E) Real-time PCR for renal Mincle mRNA expression. (F) Western blot analysis for expression of HMGB1 and Mincle in the kidney of db/db
mice treated with or without quercetin. Each dot represents one mouse and data are expressed as the mean ± SD for groups of 6 mice. * p<0.05,
**p<0.01, ***p<0.001, **** p<0.0001 versus empty vector control group (db/db-EV); ##p<0.01, ### p<0.001, #### p<0.0001 versus DMSO-
treated control group(db/db-NP+DMSO). g, glomerulus; scale bar=100mm.
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from injured tubular cells, indicating that either SARS-CoV-2 N

protein or AGEs can induce tubular cell injury to release HMGB1.

Interestingly, once SARS-CoV-2 N protein-overexpressing

tubular cells were cultured with AGEs, the release of a DAMP

molecule HMGB1 became double (Figure 5A), suggesting that

SARS-CoV-2 N protein can potentiate HMGB1 released from
Frontiers in Immunology 06
injured tubular cells under diabetic conditions. To further

determine whether SARS-CoV-2 N protein can activate M1

macrophages via the Mincle-dependent mechanism, we cultured

macrophages (RAW264.7) with high HMGB1-contained

supernatant obtained from AGEs-stimulated SARS-CoV-2 N

protein-expressing tubular cells. As expected, the addition of
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high HMGB1-contained supernatant largely promoted Mincle

expression by macrophages, resulting in a marked activation of

M1 proinflammatory macrophages by co-expressing CD68 and

Mincle/iNOS and production of IL-6, TNF-a, and MCP-1

(Figures 5B-E). All these changes were blocked by specifically
Frontiers in Immunology 07
silencing macrophage Mincle with siRNA (Figures 5B-E),

demonstrating that SARS-CoV-2 N protein may trigger M1

macrophage activation and proinflammatory response via the

Mincle-dependent mechanism. This was further confirmed by

western blotting that silencing macrophage Mincle suppressed
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HMGB1-induced Mincle expression and activation of Syk/NF-kB
signaling (Figure 5F).
Treatment with quercetin attenuates SARS-
CoV-2N protein-induced AKI in diabetic
db/db mice by blocking Mincle-mediated-
M1 macrophage activation via a Syk-NF-
kB-dependent mechanism in vivo

Our recent study showed that quercetin can effectively block

SARS-CoV-2 N protein-induced tubular cell death by targeting the
Frontiers in Immunology 08
Smad3-p16-dependent G1 cell cycle arrest mechanism (24). In the

present study, we further investigated whether treatment with

quercetin can attenuate SARS-CoV-2 N protein-induced AKI in

diabetic db/db mice by blocking M1 macrophage activation and

renal inflammation in diabetic db/db mice via a Mincle-dependent

mechanism. As shown in Figure 1, treatment with quercetin largely

inhibited SARS-CoV-2 N protein-induced F4/80+ macrophages

infiltrating the diabetic kidney (Figure 1A) and greatly suppressed

the mRNA expression of IL-6, TNF-a, and MCP-1 while increasing

the expression of IL-4 and IL-10 mRNA levels (Figure 1B, C). This

was associated with the inhibition of both serum and renal tissue

levels of HMGB1 and expression of Mincle in the diabetic kidney of
db/db

p65

iNOS

p-Syk

Syk

β-actin

β-actin

TLR-4

p-p65

db/m EVUntreated NP NP+QUE NP+DMSO

db/db

β-actin

95kDa

65kDa

65kDa

42kDa

72kDa

72kDa

131kDa

42kDa

42kDa

0.6

0.8

1.0

1.2 TLR-4

Ra
tio

(T
LR

-4
/β

-a
ct

in
)

0.0

0.2

0.4

0.6

0.8
p-p65

Ra
tio

(p
-p

65
/p

65
)

****
**

****
####

0.0

0.2

0.4

0.6

0.8

1.0
p-Syk

Ra
tio

(p
-S

yk
/S

yk
)

****

***

****
####

db/m

Untre
ated EV NP

NP+QUE

NP+DMSO
0.0

0.1

0.2

0.3

0.4

0.5
iNOS

Ra
tio

(iN
OS

/β
-a

cti
n) **** ****

####

db/db

db/m db/db-Untreated db/db-EV

db/db-NP db/db-NP+QUE db/db-NP+DMSO

p-
C

HI 56p
p-

C
HI 56p

db
/m

Untr
ea

ted EV NP

NP+Q
UE

NP+D
MSO

0

500

1000

1500

2000

p-p65

p-
p6

5+
ce

ll/
m

m
2 ****

***

****

####
g

g

g

g

gg

g

A B

DC

FIGURE 4

Kidney-specifically overexpressing SARS-CoV-2 N protein activates Syk/NF-kB signaling in db/db mice at the age of 16 weeks, which is inhibited by
treatment with quercetin. (A, B) Western blot analysis of activation of Syk (p-Syk), NF-kB(p-p65) and expression of TLR-4 and iNOS in the kidney of
db/db mice treated with or without quercetin. (C, D) Immunohistochemistry for detecting activation of NF-kB (p-p65 nuclear translocation). Note
that treatment with quercetin inhibits phosphorylation of Syk and NF-kB as well p65 nucleated translocation in SARS-CoV-2 N protein-induced AKI
kidney. Each dot represents one mouse and data are expressed as the mean ± SD for groups of 6 mice. ** p<0.01, *** p<0.001, **** p<0.0001
versus empty vector control group (db/db-EV); #### p<0.0001 versus DMSO-treated control group(db/db-NP+DMSO). g, glomerulus; scale
bar=100mm.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1264447
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2023.1264447
db/db mice (Figures 1D-F), suggesting that treatment with

quercetin may inhibit the release of DAMPs such as HMGB1

from necrotic renal tubular cells and thus suppresses M1

macrophage activation and renal inflammation. This was further

demonstrated by two-color immunofluorescence, demonstrating

that treatment with quercetin inhibited Mincle-expressing F4/80+

macrophage infiltrating the diabetic kidney of SARS-CoV-2 N

protein-induced AKI (Figure 2). Further studies by two-color flow

cytometry also confirmed this notion that treatment with quercetin

significantly inhibited SARS-CoV-2 N protein-induced M1

macrophages by co-expressing Mincle+CD68+and iNOS+CD68+

macrophages while increasing CD206+CD68+ macrophages

(Figure 3). These findings suggest that quercetin may result in the

switching of macrophage properties from M1 to M2

macrophage phenotype.

As Mincle is a typical PRR expressed by macrophages and can

recognize endogenous DAMPs such as HMGB1 released by the

necrotic cells to activate the downstream Syk/NF-kB signaling (19,

34), we further examined whether treatment with quercetin inhibits

SARS-CoV-2 N protein-induced M1 macrophage activation and

renal inflammation via the Mincle-Syk/NF-kB signaling pathway.

Interestingly, although treatment with quercetin did not alter the

expression of TLR-4 (Figures 4A, B), it did significantly suppress

Mincle expression (Figure 1F) and therefore inhibited

phosphorylation of Syk and NF-kB/p65 in the diabetic kidney of

SARS-CoV-2 N protein-induced AKI (Figure 4).
Quercetin inhibits SARS-CoV-2 N protein-
induced M1 macrophage activation while
promoting M2 macrophages via Mincle-
dependent Syk/NF-kB signaling in
RAW264.7 cells

To further confirm the mechanism of quercetin in the

inhibition of SARS-CoV-2 N protein-induced M1 macrophage

activation, we treated RAW264.7 cells with HMGB1-contained

medium obtained from SARS-CoV-2 N protein-overexpressing

mouse tubular cells as described above. Mincle-dependent

mechanism in M1 macrophage activation was confirmed by

treating RAW264.7 cells with the Mincle siRNA. Results showed

that, like Mincle siRNA, treatment with quercetin was capable of

inhibiting HMGB1-induced M1 macrophage activation by

suppressing the expression of Mincle and pro-inflammatory

cytokines including IL-6, TNF-a, and MCP-1 while increasing

anti-inflammatory cytokines such as IL-4 and IL-10 expression

(Figure 6A). Two-color flow cytometry also revealed that the

addition of quercetin resulted in the shift from M1 to M2

macrophages as demonstrated by reducing about 50% of the

Mincle+CD68+ and iNOS+CD68+ M1 macrophages while

increasing more than 50% of CD206+CD68+ macrophages

(Figures 6B, C). Further study by western blot analysis also

confirmed this notion that the addition of quercetin blocked the

activation of Mincle-Syk-NF-kB signaling under HMGB1-rich

supernatant (Figure 6D). Taken together, these findings suggest

that quercetin inhibits SARS-CoV-2 N protein-induced AKI under
Frontiers in Immunology 09
diabetic conditions by switching M1 to M2 macrophage phenotype

via the Mincle/Syk/NF-kB signaling.
Discussion

Our previous studies demonstrated that ultrasound-

microbubble-mediated kidney-specifically overexpressing SARS-

CoV-2 N protein is capable of inducing kidney tubular necrosis

and causing AKI via Smad3-dependent G1 cell cycle arrest and

necroptosis mechanisms (24–26). In the present study, we identified

that SARS-CoV-2 N protein caused AKI by promoting M1

macrophage activation and renal inflammation via a Mincle-

dependent mechanism, which added new information to the

previous findings that SARS-CoV-2 N protein can activate

NLRP3 and NF-kB to induce hyperinflammation (35, 36). We

found that SARS-CoV-2 N protein-induced renal tubular cell

necrosis in diabetic db/db mice resulted in the release of HMGB1,

a DAMP molecule that can bind Mincle on macrophages and

activate M1 macrophages via Mincle-Syk/NF-kB signaling. It is

now clear that HMGB1 is an abundant non-histone nuclear protein

that can be secreted into the extracellular environment and serves as

an essential DAMP to activate proinflammatory signaling (37).

HMGB1 can activate M1 macrophages in mouse models of

ischemia-reperfusion and obstruction kidney disease and in vitro

(38–41). In critically ill COVID-19 patients, serum HMGB1 is

elevated and correlated with levels of inflammatory cytokines (7,

21, 22). The present study also found that a large amount of

HMGB1 was released from injured tubular cells induced by

overexpressing SARS-CoV-2 N protein under diabetic conditions

in vivo and in vitro. Importantly, we also uncovered that HMGB1

could activate M1 macrophages via the Mincle-dependent

mechanism, specifically silencing macrophage Mincle protected

against HMGB1-induced M1 macrophage activation and

production of signature cytokines such as IL-6, TNF-a, and

MCP-1. It is well documented that Mincle plays an important

role in renal inflammation and is a key factor for triggering and

maintaining the M1 macrophage phenotype. Blockade of Mincle on

macrophages can protect against cisplatin-induced AKI (34, 42).

Consistent with these previous findings, we found that SARS-CoV-

2 N protein-induced AKI in db/db mice was associated with a

marked increase in Minc le-express ing macrophages

(Mincle+CD68+) and iNOS+CD68+ M1 macrophages. It is highly

possible that overexpression of SARS-CoV-2 N protein could

largely promote the release of DAMPs such as HMGB1 from

injured renal tubular cells in db/db mice, resulting in high levels

of HMGB1 in both serum and renal tissues. After being released,

HMGB1 could bind and activate Mincle on macrophages and then

stimulate M1 macrophage activation and production of

proinflammatory cytokines such as IL-6, TNF-a, and MCP-1 via

the Syk/NF-kB pathway. This was further confirmed in RAW264.7

cells in which specifically silencing macrophage Mincle blocked

HMGB1-induced activation of Mincle-Syk/NF-kB signaling and

thus blocked M1 macrophage activation and proinflammatory

cytokine production. It should be pointed out that HMGB1 is one

of the DAMPs released from SARS-CoV-2 N protein
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overexpressing tubular cells and many other DAMP molecules

released from the injured tubular cells in response to

overexpression of SARS-CoV-2 N protein may also contribute to

activate proinflammatory macrophages. Indeed, besides HMGB1
Frontiers in Immunology 10
(7, 21, 22), other DAMP molecules such as S100A8/A9, SP-A,

CIRBP, and histone may also participate in M1 proinflammatory

macrophage activation in response to COVID-19 infection as

previously reported (21). This novel finding may well explain the
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clinical notions that DAMPs can cause the “cytokine storm” and

lead to organ damage in critically ill COVID-19 patients (17). Thus,

SARS-CoV-2 N protein is pathogenic in COVID-19 AKI. It can

induce tubular cell death via the Smad3-dependent G1 cell cycle
Frontiers in Immunology 11
arrest and necroptosis mechanisms as previously reported (24–26).

It may also cause severe AKI under diabetic conditions by activating

M1 macrophages and promoting massive renal inflammation via

the Mincle-dependent mechanism. However, it should be pointed
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FIGURE 6

Quercetin inhibits HMGB1-contained mTEC supernatant-induced M1 macrophages while promoting M2 populations by targeting Mincle-Syk/NF-kB
signaling in RAW264.7 cells. (A) Real-time PCR detects that like a Mincle siRNA, pre-treatment of RAW264.7 cells with quercetin (32µM) for 24 hour
is able to inhibit Mincle, IL-6, TNF-a, MCP-1, while increasing IL-4 and IL-10 mRNA expression induced by the HMGB1-contained supernatant (Sup)
from SARS-CoV-2 N protein-expressing mTEC. (B, C) Two-color flow-cytometry analysis reveals that like specifically silencing macrophage Mincle,
pre-treatment with quercetin (32µM) for 24 hour inhibits M1 (Mincle+CD68+ and iNOS+CD68+) while increasing M2 (CD206+CD68+) macrophage
populations induced by the HMGB1-contained supernatant (Sup) from SARS-CoV-2 N protein-expressing mTEC. (D) Western blot analysis shows
that like treatment with Mincle siRNA, pre-treatment with quercetin blocks Mincle-Syk/NF-kB signaling in RAW264.7 cells in response to the
HMGB1-contained supernatant (Sup) from SARS-CoV-2 N protein-expressing mTEC. Each dot represents one experiment and data are presented as
mean ± SD for at least three independent experiments. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 versus control group; # p<0.05, ## p<0.01,
### p<0.001, #### p<0.0001 versus cells treated with supernatant from SARS-CoV-2 N protein-induced dead mTEC and negative control siRNA
and DMSO group (Sup+NC+DMSO).
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out that systemic inflammatory responses such as “cytokine storm”

after COVID-19 infection may also contribute to the M1

macrophage activation. It has been well documented that there

are excessive immune responses with massive production of

proinflammatory cytokines such as IL-6, IL-1b, TNF-a, and

MCP-1 in patients with severe SARS-CoV-2 infection (8–13).

These proinflammatory cytokines can activate M1 macrophages

systemically and then promote their migration into the diseased

kidney where they become further activated and maintain the M1

proinflammatory phenotype via Mincle-dependent mechanism as

previously reported (34). Nevertheless, in the present study,

macrophages may be primarily activated locally within the kidney

via the Mincle-dependent mechanism as AKI was induced by

overexpressing SARS-CoV-2 N protein locally in the

diabetic kidney.

In the present study, we also uncovered that quercetin functions

as a Mincle inhibitor to block Mincle/Syk/NF-kB signaling, thereby

inhibiting M1 while promoting M2 macrophage activation in

SARS-CoV-2 N protein-induced AKI in db/db mice. Quercetin is

a natural flavonoid compound, which is widely found in various

heat-clearing and detoxifying herbs and food. Quercetin has

antiviral, anti-inflammatory, antioxidant, and other biological

activities (43). Many studies suggest that quercetin is effective for

the treatment of patients with COVID-19. Both experimental and

clinical trials showed that quercetin has a therapeutic effect on

COVID-19-associated AKI (27–30, 44). In vitro, quercetin can

inhibit LPS-induced M1 macrophages while promoting M2

macrophage differentiation (45), indicating that quercetin

ameliorates renal injury in AKI by regulating macrophage

polarization. Our previous study also showed that quercetin

inhibits M1 while upregulating M2 macrophages by blocking

Mincle/Syk/NF-kB signaling in cisplatin-induced AKI mouse

models and in LPS-induced bone marrow-derived macrophages

(31). Interestingly, the present study found that treatment with

quercetin inhibited SARS-CoV-2 N protein-induced Mincle but not

TLR4 expression in db/db mice with AKI. This suggested that

Mincle but not TLR4 may be involved in the M1 macrophage

activation during the development of SARS-CoV-2 N protein-

induced AKI. We have previously reported that treatment with

quercetin can inhibit SARS-CoV-2 N protein-induced tubular cell

death via the Smad3-p16-dependent G1 cell cycle arrest mechanism

(24). This may also inhibit the release of DAPMs such as HMGB1

from the injured tubular cells and inactivate M1 proinflammatory

macrophages by suppressing the binding of HMGB1 to Mincle.

Thus, quercetin treatment inhibited macrophage activation and

progressive renal inflammation in SARS-CoV-2 N protein-induced

AKI via a Mincle-dependent mechanism. This was further

confirmed in cultured macrophages in which the addition of

quercetin was capable of inhibiting HMGB1-induced Mincle

expression and activation of Syk/NF-kB signaling, thereby

blocking M1 while promoting M2 macrophage activation. Thus,

consistent with previous findings clinically (27, 28), quercetin may

be an effective therapeutic agent for COVID-19 AKI (27, 28).

Furthermore, results from this study also revealed that blockade

of Mincle-Syk/NF-kB-mediated M1 macrophage activation may be
Frontiers in Immunology 12
a novel molecular mechanism through which quercetin treatment

improves the severity of COVID-19 patients clinically.

In summary, SARS-CoV-2 N protein is pathogenic for AKI and

may mediate AKI by activating M1 macrophages via a Mincle-Syk/

NF-kB-dependent mechanism. Quercetin is a therapeutic agent for

SARS-CoV-2 N protein-induced AKI in db/db mice and may

inhibit AKI by switching M1 to M2 macrophage activation,

which may be associated with inactivation of Mincle signaling.
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