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Construction and experimental
validation of a signature for
predicting prognosis and
immune infiltration analysis of
glioma based on disulfidptosis-
related lncRNAs
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Backgrounds: Disulfidptosis, a newly discovered mechanism of programmed

cell death, is believed to have a unique role in elucidating cancer progression and

guiding cancer therapy strategies. However, no studies have yet explored this

mechanism in glioma.

Methods: We downloaded data on glioma patients from online databases to

address this gap. Subsequently, we identified disulfidptosis-related genes from

published literature and verified the associated lncRNAs.

Results: Through univariate, multivariate, and least absolute shrinkage and

selection operator (LASSO) regression algorithms analyses, we identified 10

lncRNAs. These were then utilized to construct prognostic prediction models,

culminating in a risk-scoring signature. Reliability and validity tests demonstrated

that the model effectively discerns glioma patients’ prognosis outcomes. We also

analyzed the relationship between the risk score and immune characteristics,

and identified several drugs that may be effective for high-risk patients. In vitro

experiments revealed that LINC02525 could enhances glioma cells’ migration

and invasion capacities. Additionally, knocking down LINC02525 was observed

to promote glioma cell disulfidptosis.

Conclusion: This study delves into disulfidptosis-related lncRNAs in glioma,

offering novel insights into glioma therapeutic strategies.
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Introduction

Glioma, originating from neuroepithelial cells, represents the

most prevalent malignant tumor in the central nervous system

(CNS) (1), accounting for approximately 70% of intracranial

malignant tumors (2). Glioma has a global annual incidence of 4-

6 per 100,000 (3) individuals and is responsible for up to 30,000

deaths annually. However, patients diagnosed with glioblastoma

multiforme (GBM) face a bleak prognosis, characterized by a

median survival time of just 12-15 months and a 5-year survival

rate of<5% (4). While the combination of surgery, radiotherapy,

and chemoradiotherapy remains the primary treatment for glioma

(5), it is imperative to delve deeper into glioma pathogenesis and

identify potent therapeutic targets.

Since 2007, the classification of CNS tumors has incorporated

molecular diagnosis into its criteria (6). The most recent

classification integrates factors such as IDH mutation, 1p/19q

codeletion, ATRX and/or TP53 mutations, and MGMT promoter

methylation, thus forming a new tissue-molecular classification (7).

IDH mutation status is a decisive marker for the classification and

prognosis assessment of gliomas, with all wild-type IDH gliomas

classified as WHO grade 4, emphasizing its importance for glioma

diagnosis and prognosis. Although these classifications, combined

with other therapies (8, 9), guide clinicians in diagnosing and

treating gliomas, effective therapeutic targets are still lacking. It’s

pivotal to further investigate the molecular changes involved in

their development to improve the prognosis of gliomas.

As bioinformatics and functional genomics have advanced,

researchers have established several pivotal cancer research

databases, including The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), and Chinese Glioma Genome Atlas

(CGGA) (10–12). These databases have allowed researchers to

identify potential tumorigenic genes and facilitate the search for

glioma-related molecular targets.

Apoptosis, an essential cell death mechanism, can be initiated

both internally and externally. This process activates caspases,

leading to the cleavage of vital proteins, resulting in cell death

(13). Recent findings suggest multiple cell death mechanisms,

including ferroptosis, pyroptosis, anoikis, and cuproptosis, play

roles in tumor progression (14–17). Among these, “disulfidptosis”

stands out as it is linked to the actin cytoskeleton, an essential

cellular framework ensuring cell shape and survival. This

cytoskeleton is built from actin filaments, fundamental for cellular

shape and structure. Disulfide stress caused by increased cystine

intake and a lack of NADPH, can destabilize the actin structure,
Abbreviations: CNS, central nervous system; GBM, glioblastoma multiforme;

IHC, Immunohistochemistry; TCGA, The Cancer Genome Atlas; GEO, Gene

Expression Omnibus; CGGA, Chinese Glioma Genome Atlas; DRGs,

disulfidptosis-related genes; DRlncRNAs, disulfidptosis-related lncRNAs; OS,

Overall survival; PFS, progression-free survival; PCA, the principal component

analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; GSEA, gene set enrichment analysis; TIDE, Tumor Immune

Dysfunction and Exclusion; BP, biological process; CC, cellular components;

MF, molecular function; TAMs, tumor-associated macrophages; TMB, tumor

mutation load.
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potentially causing cell death if left untreated (18). These

observations underscore the importance of irregular disulfide

bonds in cancer evolution and offer valuable perspectives for

treating aggressive cancers, notably gliomas.

Long non-coding RNAs (lncRNAs) are gene expression

regulators that comprise more than 200 nucleotides and lack

protein-coding potential, are involved in the cell cycle, cellular

invasion, and immune response during pathophysiological

processes (19, 20). There has been extensive evidence that

lncRNAs play a role in the progression of many malignant

tumors, including gliomas (21), which makes them promising as

novel biomarkers and therapeutic targets for cancer (22–24).

Signatures based on lncRNA have been proven effective in

accurately evaluating the survival status of patients with most

tumors (25, 26). Therefore, investigating the role of disulfidptosis-

related lncRNAs (DRlncRNAs) in glioma is crucial.

Our study analyzed the 10 known genes associated with

disulfidptosis on a pan-cancer basis to explore their common

features and specificities across different cancers. We then verified

the expression of these 10 genes in gl ioma through

immunohistochemistry. Finally, we developed a prognostic

signature based on DRlncRNAs and evaluated the gene mutation

and tumor immunity in glioma. According to our findings,

disulfidptosis may play an important role in the development of

gliomas, opening up new therapeutic possibilities.
Materials and methods

Dataset and source

Ten disulfidptosis-related genes (NCKAP1, SLC7A11, NUBPL,

SLC3A2, RPN1, NDUFA11, GYS1, NDUFS1, OXSM, LRPPRC) were

selected based on previous studies (18, 27, 28). The mRNA and

lncRNA expression data and corresponding clinical data of 707

glioma patients were retrieved from the TCGA data portal (https://

portal.gdc.cancer.gov/). Part of the molecular subtype information

was collected in UCSC Xena (http://xena.ucsc.edu/). The

downloaded data were consolidated with the Strawberry Perl

program. All data were collated and merged through R 4.2.2. The

flowchart of the article design was shown in Figure 1.

Pan-cancer analysis

Pan-cancer analysis of 10 genes was performed using the online

tool SANGERBOX 3.0 (http://sangerbox.com/home.html). The

differential expression information of genes across 34 tumor types

was integrated with TCGA and GTEx databases. These tumor types

included GBM, GBMLGG, LGG, UCEC, BRCA, CESC, LUAD,

ESCA, STES, KIRP, KIPAN, COAD, COADREAD, PRAD, STAD,

HNSC, KIRC, LUSC, LIHC, WT, SKCM, BLCA, THCA, READ,

OV, PAAD, TGCT, UCS, ALL, LAML, PCPG, ACC, KICK, and

CHOL (Table S1) . StromalScore , ImmuneScore , and

ESTIMATEScore were calculated using the Pearson coefficient.

All samples were sourced from the TCGA database; samples with

expression values recorded as “0” were excluded.
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Acquisition of immunohistochemical
staining information

The data on protein expression for the 10 specified genes in

gliomas was retrieved from the Human Protein Atlas website

(http://www.proteinatlas.org/). We searched for the 10 genes

related to disulfidptosis. However, information was only available

for eight genes, including GYS1, SLC3A2, and NUBPL. We then

compared samples from healthy tissue, low-grade glioma, and high-

grade glioma. The same genes were stained with the same antibody.
Glioma and disulfidptosis-related genes

The presence of these 10 DRGs in glioma with various immune

cells was calculated with the Cibersort algorithm. We used R to

achieve a more refined comparison of expression between normal

and tumor samples, integrating data from both the GTEx and

TCGA databases. The hazard ratio of overall survival for the 10

DRGs in glioma was visualized using the forest plot.
Development and evaluation of the
DRlncRNAs-related prognostic signature

The criteria for selecting DRlncRNAs were established with

CorFilter= set at 0.3 and pvalueFilter= at 0.001. We visualized the

correlation between 10 DRGs and the selected DRlncRNAs using a

Sankey diagram.

In R, the “Survival”, “caret”, “glmnet”, “survminer” and

“timeROC” packages were installed and utilized for analyses. We

allocated 50% of the sorted cohort data to the training set and the

remaining 50% to the test set. Given the sizable gene count, the

univariate Cox analysis had a filtering condition set to “coxPfilter =
Frontiers in Immunology 03
0.001”. The DRlncRNAs data were analyzed by Lasso regression

and cross-validation to select the most appropriate DRlncRNAs

combination with the smallest error. Finally, the risk scores of the

training set and test set were calculated through the risk score

calculation formula:

Risk score =on
i=1(bi � xi)

The difference in P-value was obtained by comparing the

survival differences of two different risk groups. Then, we

calculated the area under the ROC curve by evaluating the

accuracy of the modified model. The established risk signature

was saved if the following conditions were met, given a prediction

time of 1 year: P-value-train< 0.01, ROC-AUC-train > 0.68, P-

value-test< 0.05, and ROC-AUC-test > 0.65.
Prognostic value of the DRlncRNAs-related
prognostic signature

Patient risk scores were calculated and reordered using the risk

score formula, and the risk heat map was generated using the

“Pheatmap” package. Overall survival (OS) and progression-free

survival (PFS) analyses were performed for each group.

Clinicopathological characteristics, such as age, grade, and 1p/

19q, were used to divide patients into different subgroups. Box plots

were drawn by the “ggpubr” and “limma” packages to analyze

whether clinical characteristics were associated with risk scores.

Subsequently, univariate and multivariate Cox regression analyses

were performed using the “survival” package for risk scores and

corresponding clinical variables, including age, gender, and grade.

A nomogram was constructed using all independent prognostic

factors, including risk score, to predict the probability of OS at 1, 3,

and 5 years. The “RMS” package was used to calculate the

nomogram’s concordance index (C-index) to evaluate its
FIGURE 1

The flow chart of research design.
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discriminant ability. Then, ROC curves and decision curves were

drawn to evaluate the prognostic prediction accuracy of the risk

score and nomogram. Finally, to plot the concordance index, we

utilized packages including “dplyr”, “survival”, “rms”, and “pec”

in R.
Principal component analysis

Principal component analysis (PCA) of disulfidptosis was

performed using the “Scatterplot3d” package, with results

visualized in three dimensions.
Functional analysis of significant risk
differentially expressed genes

The “ClusterProfile” package in R software was used to conduct

Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analysis on the

differentially expressed genes. Statistical significance was set at P<

0.05. Gene Set Enrichment Analysis (GSEA) was performed to

determine the enrichment of functions or pathways between two

groups and the five most significant pathways were displayed.
Correlation analysis between DRlncRNAs-
related prognostic signature and immunity

StromalScore, ImmuneScore, and ESTIMATEScore were

calculated using the “estimate” packages, and the scores of the tumor

microenvironment were then compared between the two groups. The

relative percentage of each type of immune cell and the immune

function score were calculated using the “limma”, “reshape2”,

“ggpubr”, “GSVA”, and “GSEABase” packages. Patient response was

also predicted using the Tumor Immune Dysfunction and Exclusion

(TIDE) analysis. The TIDE score was calculated using the online tool

available at http://tide.dfci.harvard.edu/, and results were visualized

using a violin plot.
Tumor mutation burden and drug
sensitivity analysis

Once downloaded from TCGA, the tumor mutation data were

processed and analyzed using the “Perl” programming language.

Kaplan-Meier survival curves were plotted to analyze the combined

effects of high versus low mutation burden and high- versus low-

risk groups. The sensitivity of various drugs’ response to glioma was

predicted with “oncoPredict” and “parallel” packages.
Cell culture

The Key Laboratory of Carcinogenesis and Cancer Invasion of

the Chinese Ministry of Education of Central South University,
Frontiers in Immunology 04
Changsha, China, provided glioma cell lines (T98G and U251).

T98G and U251 cells were cultured in high-glucose DMEM (Gibco)

containing 10% fetal bovine serum. The siRNAs against the

LINC02525 gene were purchased from RiboBio Corporation

(Guangzhou, China).
Wound-healing assay

Glioma cells from various culture models were seeded onto 6-

well plates. Once they achieved 95% confluence, a P-200 pipette tip

was used to inflict wounds on the cell monolayers. Subsequently,

these wounded layers were gently rinsed thrice with PBS; A medium

enriched with 2% FBS was then introduced, followed by plate

incubation. Imaging was conducted immediately (0 h) and after

48 hours. During analysis, distances between wound edges were

measured at three distinct positions over the specified

time intervals.
Cell migration and invasion assay

Transwell assays were used to detect cell migration and invasion

abilities. Transfected U251 or T98G cells (1 × 104 cells) were

harvested after 24-48 h transfection and resuspended in 100 mL
serum-free medium for cell migration detection. The cells were then

seeded into the upper chamber of a Transwell assay insert

(Millipore), and 700 mL 10% FBS medium was added to the lower

chamber. After incubation at 37 °C for 48 h, the cells on the lower

side were washed three times with PBS, fixed in 4%

paraformaldehyde for 20 min, and stained with crystal violet

solution for 15 min. Cells from five random fields were counted

under an inverted microscope (Olympus) for statistical analysis,

and photographs were captured. Transwell chambers were coated

with Matrigel for 1 h at 37 °C for the invasion assay. The transfected

cells (1 × 104 cells) were resuspended in 100 mL serum-free medium

and seeded into the upper chamber. Then 700 mL 10% FBS medium

was added to the lower chamber. After a 48 hours incubation

period, the invasive ability was evaluated, as mentioned

previously, for the cell migration assay.
Immunohistochemistry

The paraffin-embedded tissue microarray of GBM was obtained

from the Neurosurgery department of Xiangya Hospital. The GBM

tumor tissue (n = 83) and para-tumor tissue (n = 12) were collected

from patients who received primary and curative resection without

systematic anticancer treatment in our hospital. The consent

procedures for human tissues and the protocols were approved by

the Ethics Committee of Xiangya Hospital (NO.202307161). IHC

assays were performed with the primary antibody against CD163

(dilution at 1:1000, 16646-1-AP, Proteintech, China), RPN1

(dilution at 1:200, 12894-1-AP, Proteintech, China), and GYS1

(dilution at 1:200, 10566-1-AP, Proteintech, China). Microscopic

images were captured for calculating IHC scores. The IHC scores
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were obtained according to the following formula: overall score =

percentage score (≤25%, 1; 26–50%, 2; 51–75%, 3; and >75%, 4) ×

intensity score (no staining, 0; light brown, 1; moderate brown, 2;

and deep brown, 3). The scoring was performed in a double-blinded

manner by two pathologists.
Fluorescent staining of actin filaments

The treated U251 cells were cultured in a complete DMEM

medium overnight and then treated with low-sugar RPMI-1640

medium for 6 hours. Following this, the cells in the six-well plates

were washed three times with PBS and then fixed with a 3.7%

formaldehyde solution (prepared in PBS) at room temperature for

approximately 10 minutes. After the staining incubation, the cells

were washed 2 to 4 times with 0.1% Triton X-100, with each wash

lasting 5 minutes. Actin-Tracker Red was used for staining and

diluted in a 1:100 ratio with 1% BSA and 0.1% Triton X-100. To

each well, 1 mL of the dye solution was added, followed by

incubation at room temperature away from light for 30-60

minutes. Next, the cells were washed twice, the nuclei were

stained with DAPI, and images of the cells were captured using

a microscope.
Statistical analysis

All statistical data were analyzed using the R statistical language

(version 4.2.2). Survival curves were analyzed using the Kaplan-

Meier method, and log-rank tests compared the survival between

subgroups. For comparisons between two groups based on

clinicopathologic features such as age (≤ 65 vs. > 65 years old),

WHO grade (2 vs. 3 vs. 4), gender (male vs. female), 1p/19q status

(codeletion vs. non-codeletion), IDH status (wild vs. mutation), and

ATRX status (wild vs. mutation). Student’s t-tests were used.

Student’s t-tests were also used to compare experimental groups

with the control group in transwell and wound healing assays. P-

value of< 0.05 was set as the threshold for statistical significance for

all analyses. ns P ≥ 0.05, * P< 0.05, ** P< 0.01, *** P< 0.001,

****P< 0.0001.
Results

Pan-cancer analysis of ten disulfidptosis-
related genes

We initiated our investigation by analyzing the differential

expression of the 10 disulfidptosis-related genes in 34 tumor

types. In most tumors, including LGG, GBM and LGGGBM,

these DRGs exhibited abnormally high expression compared to

normal samples (Figure 2). Furthermore, we analyzed the

correlation between the expression of 10 DRGs and StromalScore,

ImmuneScore, and ESTIMATEScore in 32 tumors. We found a

significant positive correlation between the expression of several

DRGs (RPN1, GYS1) and StromalScore (Figure 3A), ImmuneScore
Frontiers in Immunology 05
(Figure 3B), and ESTIMATEScore (Figure 3C) in glioma. To further

understand disulfidptosis in gliomas, we analyzed correlations with

various immune cells using the TCGA database. SLC3A2, RPN1,

OXSM, NDUFA11, and GYS1 showed a relatively strong positive

correlation with macrophages M2 (Figure 3D). By integrating the

TCGA and GTEx databases, we found that these 10 genes were

significantly highly expressed in glioma (Figure 3E). The forest map

shows that these five genes (SLC3A2, RPN1, NDUFA11, GYS1,

OXSM) might be high-risk factors for glioma prognosis (Figure 3F).

We also examined RPN1, GYS1, and CD163 (M2 macrophage

marker) expression levels in 83 glioma tissues. As depicted in

Figures 4A, 4B, glioma tissues with increased GYS1 or RPN1

expression also exhibited elevated CD163 expression, aligning

with our pan-cancer analysis findings (Figure 3D). Subsequent

assessment of GYS1 and RPN1 expressions within LGG and GBM

showed that GYS1 (Figures 4C, D) and RPN1 (Figures 4E, F)

displayed higher IHC scores in GBM. Furthermore, based on IHC

scores, we classified the samples into three groups: Low (0-4 score),

Mid (5-8 score), and High (9-12 score). The results showed that the

proportion of Mid and High IHC scores of RPN1 (Figure 4F, P<

0.05) in GMB was higher.

Moreover, we also examined the expression profiles of these ten

DRGs using Protein Atlas data. The data underscored that GYS1,

SLC3A2, NUBPL, and PRN1 were predominantly expressed in

tumors, and notably, tissues with a higher grade displayed

significantly increased these protein expressions of these genes

(Figure S1).
Construction and assessment of the risk
score signature

We initially screened 261 lncRNAs related to the 10 DRGs from

glioma samples in the TCGA database. The direct relationship

between DRGs and DRlncRNAs was explained by the Sankey

diagram (Figure 5A). All datasets were subsequently randomly

divided into a training set (276 samples, 50% of total samples)

and a test set (275 samples, 50% of total samples). The risk signature

was developed using the training set, and their accuracy was verified

using the test set. There were no significant differences in clinical

traits between the training and test sets (Table S2), indicating no

bias in clinical traits between the two groups. We employed the

multivariate Cox regression analysis and the LASSO regression

algorithm identify the optimal combination of DRlncRNAs for

prognostic prediction (Figures 5B, C). As a result, eight lncRNAs,

including AC007695.1, LINC02525, and ZNF516-DT, were selected

for inclusion in the construction of the risk signature. Subsequently,

we conducted a correlation analysis between the 10 DRGs and these

eight modeled lncRNAs, revealing significant correlations between

RPN1, OXSM, and GYS1 with these lncRNAs (Figure 5D).

Based on our signature, we calculated a risk score for each

sample. Patients were then divided into high-risk and low-risk

groups using the median risk score from the training set as the

cutoff. The distributions of risk scores and the expression level of

DRlncRNAs in the training set are shown in Figure 6A, with the

scatterplot distribution of survival times indicating a positive
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correlation between poorer patient prognosis and the risk score. In

addition, we analyzed the risk score, survival time, and expression

level of DRlncRNAs in the test set and all sets, with the results of

these analyses matching those of the training set (Figures 6B, C).

Kaplan–Meier analysis demonstrated that patients in the high-

risk group had a significantly worse OS time than those in the low-

risk group in the training, test and combined sets (Figures 6D–F).

Additionally PFS analysis across all sets revealed that patients in

LGG with a high-risk classification had a significantly shorter PFS

than low-risk patients (Figure 6G). These results indicate the

robustness of our risk score model in identifying outcomes in

LGG patients.

We conducted a principal component analysis to discern the

spatial distribution traits of the two subgroups. Figures 6H–K

sequentially depicts the three-dimensional distribution of the

entire gene expression profile, the 10 DRGs, the DRlncRNAs, and

the lncRNAs, as per our designated signature. Observations indicate

that the low and high‐risk groups, when stratified by DRlncRNAs,

exhibited a more scattered distribution than other gene sets.
Stratified analysis and construction of
nomogram diagrams

To determine the relationship between risk score and clinical

characteristics of glioma patients, we analyzed the potential

predictors (level of risk, age, gender, WHO grade, 1p/19q, and

IDH1 status). Our analysis revealed that, apart from gender and age,
Frontiers in Immunology 06
clinical grade and IDH1 mutation status were significantly

associated with the risk score, while other evaluated clinical

characteristics also showed significant associations (Figures 7A–F).

We further examined the distribution of high and low-risk groups

across various clinical features. Pie diagrams revealed that the high-

risk group predominantly included clinical features associated with

poor prognosis, such as higher grades (Grade3, Grade4), 1p/19q

non-codel, unmethylated MGMT promoter, wild-type IDH status,

glioblastoma histology, CL and ME Transcriptome subtype

(Figures 7G–L). Thus, our risk groupings were consistent with

existing classifications of clinical features that predicted

poorer outcomes.

To determine the relationship between the risk score and OS of

glioma patients, both univariate and multivariate Cox regression

analyses were conducted, focusing on potential OS predictors,

including age, grade, 1p/19q status, IDH status, ATRX status, and

risk score. Analysis outcomes revealed that the group age over 65

(HR = 1.067, 95% CI = 1.053-1.080, P< 0.001), with a higher tumor

grade (HR = 4.899, 95% CI = 3.633-6.605, P< 0.001), 1p/19q non-

codel status (HR = 0.312, 95% CI = 0.196-0.494, P< 0.001), IDH1

wild type (HR = 5.660, 95% CI = 4.084-7.843, P< 0.001), and a

higher risk score (HR = 1.011, 95% CI = 1.009-1.013, P< 0.001),

exhibited a notably reduced OS (Figure 8A). The ATRX status also

showed an impact (HR = 1.527, 95% CI = 1.078-2.164, P = 0.017) in

univariate analysis, but no statistical significance was found in the

multivariate regression analysis (P = 0.220) (Figure 8B).

Subsequently, we constructed a nomogram combining IDH1

status, risk score, WHO grade, 1p/19q status, and age to predict OS
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FIGURE 2

Expression levels of disulfidptosis-related genes in different tumors and normal tissues. (A–J) Expression levels of RPN1, OXSM, NUBPL, NDUFS1,
NDUFA11, NCKAP1, LRPPRC, GYS1, SLC7A11, and SLC3A2 in 34 kinds of tumors and corresponding normal tissues in TCGA and GTEx databases.
*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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(Figure 8C). The C-index of nomogram-predicted OS was 0.863

(95% CI:0.839-0.888), indicating a relatively accurate prognosis

prediction (Figure 8D). The AUCs of the nomogram-predicted

OS for 1-, 3-, and 5- year survival rates were 0.876, 0.864, and 0.818,

respectively, across all sets (Figure 8E). ROC curves for clinical traits

were generated using the third year as the prediction period. Risk

score (AUC=0.864) seemed to predict prognosis more accurately

than clinical features such as age (AUC=0.804), grade

(AUC=0.772) , and 1p/19q (AUC=0.621) (Figure 8F) .

Furthermore, we calculated the concordance index for these

clinical features from 1 to 10 years, and the risk score had the

largest area under the curve, further demonstrating the importance

of our signature prognostic prediction (Figure 8G).
Functional enrichment analysis

Using the criteria of logFCfilter =1 and fdrFilter =0.05, we

identified 1406 differentially expressed genes based on our scoring

model. Subsequently, we conducted GO, KEGG, and GSEA

functional analyses. In the GO analysis, the top three biological

processes (BP) were nuclear distribution, extracellular matrix

organization and extracellular structure organization (Figure 9A).
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For cellular components (CC), prominent features included the

collagen-containing extracellular matrix, the external side of the

plasma membrane, and the endoplasmic reticulum lumen.

Concurrently, in the molecular function (MF) category,

extracellular matrix structural constituent, antigen binding, and

glycosaminoglycan binding were notable (Figure 9A). The KEGG

pathway analysis highlighted significant pathways, especially “focal

adhesion” and “pathways in cancers”, explaining the potential

tumor regulatory mechanisms (Figure 9B). Through GSEA, on

comparing the high-risk and low-risk groups, we observed

that cytokine-cytokine receptor interaction, ECM receptor

interaction, focal adhesion, graft versus host disease and systemic

lupus erythematosus were more pertinent to the high-risk

group (Figure 9C), while, pathways like cardiac muscle

contraction, neuroactive ligand receptor interaction, oxidative

phosphorylation, Parkinson disease, and ribosome were more

related to the low-risk group (Figure 9D).
Correlation analysis of tumor immunity

We calculated the StromlScore, ImmuneScore, and

ESTIMATEScore in 676 tumor samples to understand
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FIGURE 3

Relationship between disulfidptosis-related genes and glioma immunity and prognosis. (A–C) The assessment of TME-related scores between high-
and low-risk groups. The relationship between disulfidptosis-related genes and ImmuneScore (A), StromalScore (B), and ESTIMATEScore (C).
(D) CIBERSORT algorithm showed the correlation analysis between disulfidptosis-related genes and 25 kinds of immune cells in glioma. (E) The heat
map showed that disulfidptosis genes were differentially expressed in glioma and normal brain tissue and were highly expressed in tumors. (F) The
forest map showed the results of univariate COX regression analysis between disulfidptosis-related genes and the prognosis of glioma patients. ns
(no significance) P ≥ 0.05, *P < 0.05, **P < 0.01 and ***P < 0.001.
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differences in the tumor microenvironment between high- and

low-risk groups. The high-risk group exhibited elevated

StromlScore, ImmuneScore, and ESTIMATEScore relative to

the low-risk group, as depicted in Figure 10A. Further

examination of immune cell composition revealed a higher

fraction of monocytes and neutrophils n the high-risk group

(Figures 10B, C). In our improved analysis of immune-
Frontiers in Immunology 08
associated functional disparities, we observed significant

differences in functions like APC-co-inhibition, APC-co-

stimulation, and B cells among 32 groups when comparing the

high- and low-risk cohorts (Figure 10D). Additionally,

leveraging the TIDE score for each sample to gauge sensitivity

to clinical interventions, we discerned that the high-risk group

typically displayed higher TIDE scores (Figure 10E).
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FIGURE 4

The relationship of protein expression levels between disulfidptosis-related genes and M2 macrophage marker CD163 in glioma tissue samples.
(A) IHC showed that glioma samples with high GYS1 expression had a higher expression level of CD163 (M2 macrophage marker). The figure on the
right shows the Pearson correlation analysis results of IHC scores of GYS1 and CD163 in tissue samples (r=0.65, P<0.0001). (B) IHC showed that
glioma samples with high RPN1 expression had a higher expression level of CD163 (M2 macrophage marker). The figure on the right shows the
Pearson correlation analysis results of IHC scores of RPN1 and CD163 in tissue samples (r=0.65, P<0.0001). (C, D) The expression levels of GYS1
among LGG and GBM. (E, F) The expression levels of RPN1 among LGG and GBM. ns (no significance) P ≥ 0.05, *P < 0.05, and **P < 0.01.
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Tumor mutation burden and drug
sensitivity analysis

The TMB level of each sample was calculated based on the total

number of molecular mutations after sorting. We first assessed the

differences in TMB between the high- and low-risk groups, finding

that TMB levels were was significantly higher in the high-risk group
Frontiers in Immunology 09
compared to the low-risk group (Figure 10F). The Kaplan-Meier

curve indicated that the high TMB (H-TMB) group had a lower

probability of survival (Figure 10G). In addition, we performed a

combined prognostic analysis for TMB and risk score. The group

with low TMB (L-TMB) and a low-risk score demonstrated the

highest survival probability (Figure 10H). Finally, we screened for

potentially sensitive drugs, and the results indicated that 82 drugs
B C

D

A

FIGURE 5

Disulfidptosis-related genes and lncRNA profiles in this study. (A) Sankey relation diagram for disulfidptosis genes and lncRNAs. (B) The LASSO
coefficient profile of disulfidptosis-related lncRNAs. (C) The 10-fold cross-validation for variable selection in the LASSO model. (D) Heatmap for the
correlations between disulfidptosis-related genes and disulfidptosis-related lncRNAs.
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might benefit glioma treatment. Figure S2 displays a selection

of these drugs, which could offer insights for potential

clinical treatment.
LINC02525 was associated with the
malignant phenotype of glioma cells

We used small interfering RNA (siRNA) to knock down the

expression level of LINC02525 in T98G and U251 cells, Figure S3

showed knockdown efficiency of LINC02525 expression.

Subsequently, transwell assays (Figure 11A) revealed a reduction in

the invasive abilities of T98G and U251 cells after LINC02525
Frontiers in Immunology 10
expression was knocked down. In addition, Figures 11B–D

demonstrated that the migration capabilities of T98G and U251 cells

decreased after LINC02525 expression knockdown. Furthermore,

knocking down LINC02525 led to increased actin polymerization,

lamellipodia formation, and the development of an actin network

cortex branching beneath the cytoplasmic membrane. These changes

promote the disulfidptosis of F-actin (Figure 12).
Discussion

Glioma is a highly malignant and heterogeneous neuroepithelial

tumor of the brain and spinal cord (29). Owing to its high
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A

FIGURE 6

Construction and validation of the prognostic model in the TCGA set. (A–C) The disulfidptosis-related lncRNAs signature-based risk score, survival
time distributions, and heatmaps were calculated. (D, E) The OS analysis between the high-risk and low-risk groups in the training and test sets.
(F) The OS between the high-risk and low-risk groups in the TCGA cohort. (G) The PFS between the high-risk and low-risk groups in the TCGA
cohort. (H–K) PCA analysis between the high and low-risk based on the whole genome expression set (H), disulfidptosis-related genes (I),
disulfidptosis-related lncRNAs (J), and risk model classified by the expression profiles of the 8 disulfidptosis lncRNAs (K).
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recurrence rate and the significant disability it causes, intracranial

glioma has garnered considerable attention in cancer research (30,

31). In 2021, the World Health Organization updated its

neuropathology and molecular pathology diagnostic procedures

to offer a more standardized and integrated approach to glioma

treatment (7). With the advancement of second-generation

sequencing technology and the continuous development of the

molecular database, an increasing number of scholars are not

only focusing on the identification of molecular subtypes but also
Frontiers in Immunology 11
investigating the role of programmed cell death in the occurrence

and development of malignant tumors. Ferroptosis is an iron-

dependent programmed death that is caused by the rupture of the

plasma membrane due to excess lipid peroxidation (32). KRAS

mutations in pancreatic cancer are often associated with Erastin, a

ferroptosis activator (33). Additionally, the tumor suppressor gene

P53 can regulate cell tolerance to ferroptosis through different

pathways (34, 35). In glioma, ferroptosis may regulate tumor

progression by inducing activation and infiltration of immune
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FIGURE 7

Analysis of clinical features and prognostic risk factors. (A–F) Correlations between risk score and clinical features. (G–L) Pie diagrams showing the
proportion of different risk groups in various clinical features.
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cells (36). Pyroptosis is another form of programmed cell death,

characterized by cell swelling and cytoplasmic efflux. It is triggered

by the CASP caspase family in response to infections (37). CASP1-

dependent pyroptosis promotes the growth of pancreatic cancer

cells when induced by macrophage stimulator factors (38).

However, it can also suppress cancer in certain tumors, such as

hepatocellular carcinoma(39). Disulfidptosis, on the other hand, is

different from other cell death mechanisms as it is related to the

stability of the actin cytoskeleton, an essential cell structure that

maintains the shape and survival of cells. In glucose-deficient tumor

cells, the accumulation of disulfide molecules can result in atypical

disulfide bonding among actin cytoskeletal proteins. This, in turn,

can lead to the breakdown of the actin network and eventual cell
Frontiers in Immunology 12
death (18). The definition of disulfidptosis provides new insights

into the treatment of tumors. Therefore, we conducted a pan-cancer

analysis of disulfidptosis-related genes to investigate their

expression in multiple tumors.

SLC7A11, SLC3A2, RPN1, NCKAP1, GYS1, OXMS, NDUFS1,

NDUFA11, NUBPL and LRPPRC were identified as the 10 genes

most associated with disulfidptosis by genome-wide Crispr-Cas9

(18). Our subsequent pan-cancer analysis unveiled aberrant

expressions of these DRGs across 34 tumor types, including

significant occurrences in LGG and GBM. This underscores the

pivotal role disulfidptosis may have in tumor progression. The

tumor microenvironment serves as a supporting environment

essential for tumor cell growth and survival (40). We conducted a
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FIGURE 8

Construction of nomogram of patients with glioma and test of its predictive ability. (A, B) Forest plot of univariate (A) and multivariate (B) Cox regression
for prognostic indicators. (C) Constructed nomogram for predicting prognosis in glioma patients. The corresponding values of ATRX, IDH1, risk, Grade,
1p19q, and Age were obtained by using their positions at the “Points” abscissa. The total point of a patient is the sum of the four values. And by using the
total points coordinate scale, we can get the prognosis prediction of the patient. And the calibration curve of the nomogram reflects the accuracy of
nomogram prediction. (D) Calibration curves of 1-, 3- and 5-year OS for all glioma patients. (E) The AUCs of all sets for 1-, 3-, and 5-year OS rates. (F)
The prediction accuracy of the nomogram. (G) The concordance index analysis of nomogram.
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pan-cancer analysis to investigate the correlation between

disulfidptosis and the tumor microenvironment score. The results

indicated diverse immune correlations, suggesting that the

influence of these genes on the immune response might vary

across different tumor types. In glioma, RPN1, NDUFA11, and

GYS1 were significantly positively correlated with StromalScore,

ImmuneScore, and ESTIMATEScore. Delving deeper into the

correlation between DRGs and different immune cells in glioma,

we found that SLC3A2, RPN1, OXSM, NDUFA11 and GYS1 showed

an obvious positive correlation with macrophages M2, which was

exactly consistent with what was described above. Our own IHC

results also confirmed this.

Tumor-associated macrophages (TAMs) are considered major

infiltrating immune cell groups in the tumor microenvironment

and have been shown to interact with glioma cells to promote the

occurrence and progression of glioma (41, 42). Macrophages are

divided into two types according to their activation state and

function, namely classically activated macrophages (M1 type

macrophages) and alternatively activated macrophages (M2 type
Frontiers in Immunology 13
macrophages) (43). The M1 macrophages elicit pro-inflammatory

role while the latter plays an anti-inflammatory role (44). M2-type

macrophages secrete chemokines such as CCL-17, CCL-22 and

CCL-24 to recruit Th-2 cells and Tregs, which play an

immunosuppressive role. They also secrete anti-inflammatory

agents such as IL-4, IL-10 and TGF-b, which further promote

tumor development, induce angiogenesis, and inhibit T-cell anti-

tumor responses (45). Therefore, M2 macrophages have emerged as

indicators of poor prognosis. In our evaluation of the risk factors of

eight genes, we identified SLC3A2, RPN1, NDUFA11, GYS1 and

OXSM as potential risk factors for glioma prognosis. Notably, RPN1

and GYS1 were paramount, consistent with our prior analysis

linking them with M2 macrophages. These results further confirm

the potential role of disulfidptosis in the development and prognosis

assessment of glioma.

Constructing a prognostic risk signature can effectively evaluate

the role of multiple genes in tumors and predict prognosis (46). Due

to the relatively small number of reported DRGs, we selected 261

lncRNAs closely related to them to construct a prognostic risk
B
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A

FIGURE 9

Functional enrichment analysis of risk score differential genes. (A) GO of the RDGs signature in the TCGA cohort. (B) KEGG of the RDGs signature in
the TCGA cohort. (C, D) GSEA of the RDGs signature in the TCGA cohort.
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signature. Despite having limited protein-coding potential,

lncRNAs play a crucial role in cell regulation and are involved in

drug resistance to cancer, making them a promising therapeutic

option for improving patient prognosis (47). Eight lncRNAs were

selected by regression analysis to construct the risk model, and their

prognostic prediction was verified through multiple aspects. WHO

grade, IDH, and 1p/19q are the main criteria used to determine the

prognosis of glioma. Our results confirmed that a high-risk

designation is significantly associated with a higher WHO grade,

IDH1 wild-type status, absence of 1p/19q codeletion, and ATRX

wild-type status, all of which often represent a poor prognosis. We

also conducted functional enrichment analysis, which revealed that

important pathways such as extracellular matrix organization,

extracellular structure organization, focal adhesion, and cytokine-

cytokine receptor interaction were involved. These pathways may

be related to the involvement of disulfidptosis in the stability of

skeleton proteins.

We delved deeper to analyze the correlation between our

prognostic signature and the immune dynamics within glioma.

The results revealed a significant correlation between our signature

scores and measures of the tumor microenvironment, immune cell

composition, and overall immune function. The final TIDE score

calculation also indicated that the high-risk group may have poor
Frontiers in Immunology 14
sensitivity to immunotherapy. The TIDE core, a new method to

evaluate the mechanism of tumor immune escape, will better help

oncologists predict the effectiveness of targeted therapy against

immune checkpoints (48). TMB- is the number of errors in the

gene code detected per million bases (49). TMB serves as a novel

marker to evaluate the efficacy of PD-1 antibodies, as demonstrated

in colorectal cancer treatments (50). Our analysis discerned an

elevated TMB score within the high-risk patient group, offering

insight into potential immunotherapeutic strategies. In addition,

our scoring matrix identified 82 potential drug candidates, offering

more clinical therapeutic options, but their anti-tumor efficiency

needs further experimental verification.

Given the functional enrichment analysis’s emphasis on the

“extracellular matrix” - a complex structural entity surrounding and

supporting cells within mammalian tissues - we hypothesized that

DRlncRNAs might influence tumor cell invasion and migration by

modulating glioma cell adhesion to this matrix. Based on this

hypothesis, we selected LINC02525 for experimental validation, as

previous studies linked it with neuroblastoma tumor progression

(51). After silencing LINC02525 expression, the invasive and

migratory capacities of T98G and U251 cells were notably

reduced. This implies that LINC02525 could enhance glioma’s

malignant progression, subsequently influencing patient
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FIGURE 10

Analysis of the disulfidptosis-related lncRNA prognostic risk score in immune features. (A) The assessment of TME-related scores between high- and
low-risk groups. (B, C) Heatmap of 22 tumor-infiltrating immune cell types in low- and high-risk groups. (D) The differences in immune infiltration
score between the two groups. (E) Differences in TIDE between high and low-risk groups. (F) Differences in TMB between high and low-risk groups.
(G) Kaplan-Meier survival curves of the OS of patients in the high-TMB and low-TMB groups in the entire set. (H) Kaplan-Meier survival curves of the
OS of patients based on the TMB and risk scores. *P < 0.05, **P < 0.01 and ***P < 0.001.
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prognosis. Moreover, silencing LINC02525 triggered disulfidptosis

in F-actin. This observation suggests an association between the

DRlncRNAs LINC02525 and glioma cell disulfidptosis, highlighting

its potential as a therapeutic target for glioma.

In conclusion, our findings underscore the multifaceted role of

disulfidptosis in glioma progression. Our pan-cancer analysis of

DRGs revealed distinct genes that exhibit significant associations

with glioma immunity and prognosis. Utilizing DRlncRNAs, we

constructed a prognostic risk assessment signature. This model not

only accurately forecasts glioma patient outcomes but also sheds

light on the mechanisms underpinning disulfidptosis. Furthermore,

our results demonstrated that LINC02525 promotes glioma cell
Frontiers in Immunology 15
migration and invasion. On the other hand, silencing LINC02525

augmented disulfidptosis in vitro glioma cell experiments.

Nevertheless, our study presents several limitations. One major

constraint is the unverified specific mechanism of the ten genes

associated with disulfidptosis in glioma. Our prognostic risk

signature also warrants validation across diverse databases and a

broader array of clinical samples. Furthermore, the molecular

functions of DRlncRNAs in gliomas remain under-explored,

necessitating comprehensive in vivo and in vitro experimentation.

In light of these gaps, our team intends to undertake additional

cellular and molecular studies to elucidate disulfidptosis

mechanisms in glioma.
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FIGURE 11

LINC02525 is associated with the malignant phenotype of glioma cells. (A) Transwell assays indicated the invasive abilities of T98G and U251 cells
after knocking down LINC02525. (B–D) Transwell assays (B) and wound healing assays (C, D) indicated the migratory abilities of T98G and U251
cells after knocking down LINC02525. ***P < 0.001 and ****P < 0.0001
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FIGURE 12

Fluorescent staining of F-actin after knocking down LINC02525 in the U251 cell line. The green arrows indicate lamellipodia.
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SUPPLEMENTARY FIGURE 1

Protein expression levels of disulfidptosis-related genes in glioma tissue
samples. In The Human Protein Atlas, IHC showed the protein expression

level of disulfidptosis-related genes in normal tissue, low-grade glioma, and

high-grade glioma samples.

SUPPLEMENTARY FIGURE 2

Drug sensitivity analysis between high and low-risk groups.

SUPPLEMENTARY FIGURE 3

Knockdown efficiency of LINC02525 expression. The knockdown efficiency

of LINC02525 in U251 and T98G cell lines by qPCR.
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