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Colorectal cancer (CRC) is one of themost lethal humanmalignancies, and with the

growth of societies and lifestyle changes, the rate of people suffering from it

increases yearly. Important factors such as genetics, family history, nutrition,

lifestyle, smoking, and alcohol can play a significant role in increasing susceptibility

to this cancer. On the other hand, themetabolism of several macromolecules is also

involved in the fate of tumors and immune cells. The evidence discloses that

cholesterol and its metabolism can play a role in the pathogenesis of several

cancers because there appears to be an association between cholesterol levels

and CRC, and cholesterol-lowering drugs may reduce the risk. Furthermore,

changes or mutations of some involved genes in cholesterol metabolism, such as

CYP7A1 as well as signaling pathways, such as mitogen-activated protein kinase

(MAPK), can play a role in CRC pathogenesis. This review summarized and discussed

the role of cholesterol in the pathogenesis of CRC as well as available cholesterol-

related therapeutic approaches in CRC.
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1 Introduction

Colorectal cancer (CRC) is the third most common cancer and the second cause of cancer-

related deaths. Many people, particularly those over 50 years, are affected by CRC yearly (1).

Generally, the proliferation of epithelial cells in normal colon and GI is dysregulated in patients

with CRC (2). The most frequent cause of death in CRC patients is metastasis of tumor cells to

the liver, bones, lungs, brain, and spinal cord (3). In addition to people over 50, regarding

genetic and family history, others with various age ranges could be at risk for CRC (4, 5). The

most common risk factors in CRC are heredity, family history, gene mutations, GI microbiome

pattern, obesity, smoking, alcoholism, and poor nutrition (low-fiber and high-fat diets).

Furthermore, human disorders, such as inflammatory bowel disease (IBD), gastrointestinal

adenomatous polyps, and diabetes, are considered other CRC risk factors (2). Polyps, as small

and nontumoral masses that could be detected in the large intestine, are the fundamental core of
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CRC. It has been revealed that, upon chronic inflammation, polyps

may ultimately turn into tumoral masses (6, 7). CRC is the third most

frequently diagnosed type of malignancy, and targeted therapies have

been ineffective for cases with RAF or RAS mutations (8).

Cholesterol plays an essential role in cell physiology (9). Steroid

hormones, vitamin D, and bile acids are synthesized from

cholesterol, a structural component of cell membranes.

Furthermore, cholesterol is involved in regulating the function of

cells and its structural function in providing stability and fluidity

(10). The findings of preclinical and clinical studies revealed that

high-fat diets and hypercholesterolemia are involved in

tumorigenesis and cancer development through activating various

metabolic pathways. Exogenous cholesterol activates the oncogenic

Hedgehog pathway, and the mammalian target of rapamycin

complex 1 (mTORC1) can be activated by endogenous

cholesterol. Lipid rafts are the most critical signaling platforms

for tumor cells. Therefore, cholesterol as a central component of

lipid rafts could contribute to cancer progression (9). Studies

reported that cholesterol could participate in CRC development

(11). Based on previous investigations, serum cholesterol levels

significantly increased in CRC patients (12).

Besides, cholesterol-rich foods can alter blood lipids’ patterns

and induce bile acid formation in the liver. The excretion of bile

acids in the bile may stimulate Single Nucleotide Polymorphisms

(SNPs) in CYP7A1. Previously, it was reported that SNPs in

CYP7A1, the rate-limiting enzyme in the metabolic pathway

responsible for cholesterol converting to primary bile acids, were

associated with an increased risk of CRC (13). Furthermore, low-

density lipids (LDLs), by activating the mitogen-activated protein

kinase (MAPK) pathway and the production of reactive oxygen

species (ROS), promote intestinal inflammation and CRC

development (14). Accordingly, targeting cholesterol and its

metabolic pathways could be considered a potential treatment in

CRC patients. For instance, Bisphosphonate and statin therapies

modulate the cellular cholesterol biosynthesis pathway and reduce

the prenylation of G-proteins, inhibiting tumor cell growth

pathways involved in CRC. Chelating membrane cholesterol is

another effective anticancer approach that interrupts lipid raft

functions. According to the available data, proprotein convertase

Subtilisin/Kexin type 9 (PSCK9) induces adenomatous polyposis

colitis (APC)/KRAS-mutant CRC. In addition, de novo cholesterol

biosynthesis can promote APC/KRASmutant CRC, along with high

levels of an essential metabolite for KRAS activation, termed

geranylgeranyl diphosphate (GGPP) (15). Accordingly, PSCK9

could be a therapeutic target in CRC.

This review summarized the role of cholesterol in the

pathogenesis of CRC and discussed related therapeutic tactics and

the advantages and disadvantages of these therapies.
2 Biology of cholesterol

Cholesterol is an essential molecule in the body. It plays a

polygonal role in maintaining cellular homeostasis and overall

health. Cholesterol is primarily known for its presence in cell

membranes, where it modulates permeability and fluidity,
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guaranteeing structural integrity and proper cell functioning (16).

Additionally, cholesterol plays a vital role in serving as a precursor

for synthesizing crucial molecules, including sex hormones like

testosterone and estrogen and steroid hormones such as aldosterone

and cortisol. Additionally, it plays a key role in producing bile acids,

essential for digestion and absorption of dietary fats. Cholesterol is

transported in the bloodstream via lipoproteins, notably LDL and

HDL, with LDL often referred to as “bad” cholesterol due to its

association with cardiovascular diseases (CVDs) (17). Therefore,

cholesterol’s biological function is maintaining cellular homeostasis

and regulating myriad physiological processes indispensable for

human health (18, 19).
2.1 Biostructure of cholesterol

The structure of cholesterol is unique, comprising 27 carbons with

a hydrocarbon tail, four hydrocarbon rings in the nucleus, and a

hydroxyl group on the side (Figure 1). All steroid hormones have this

central sterol nucleus or ring. The cholesterol structure’s central ring

and hydrocarbon tail are non-polar and not water-soluble.

Accordingly, cholesterol (lipid) should be bound to apoproteins

(protein) and formed lipoproteins for transportation in blood

circulation (10). Besides synthesizing cholesterol de novo (10% of

total) in the intestines and liver, humans can also obtain it through

diet. Exogenous cholesterol and triglycerides are packaged with Apo

proteins in the liver before relapsing into the blood circulation as very

low-density lipoproteins (VLDL). Evidence has demonstrated that

VLDLs contain cholesterol, triglycerides, and phospholipids. When

the triglycerides within VLDLs are broken down, cholesterol-rich low-

density lipoproteins (LDLs) are formed. These LDLs circulate through

the bloodstream and are transported to cells in peripheral tissues that

express LDL receptors, where they undergo endocytosis (20, 21). In

contrast, high-density lipoproteins (HDLs) carry cholesterol from the

peripheral tissues to the liver to reduce cholesterol levels (22).
2.2 Biosynthesis of cholesterol

Although a broad range of cells synthesizes cholesterol, hepatocytes

in the liver are the leading site for cholesterol biosynthesis. Firstly, two

acetyl coenzyme A (acetyl-CoA) molecules generate an acetoacetyl-

CoA and acetyl-CoA third molecule added to it by activated

hydroxymethylglutaryl-CoA (HMG-CoA) synthase to create a six-

carbon molecule termed 3-hydroxy-3-methyl glutaryl coenzyme A

(HMG-CoA). The next rate-limiting/committed step in cholesterol

synthesis is converting HMG-CoA to mevalonate catalyzed by HMG-

CoA reductase. After this step, mevalonate is converted into 3-

isopentenyl pyrophosphate, farnesyl pyrophosphate, squalene,

lanosterol, and cholesterol in several steps (Figure 2) (23).

High cholesterol levels should be balanced by different

mechanisms, such as reducing the activation of HMG-CoA

reductase. Adenosine monophosphate (AMP)-activated protein

kinase (AMPK) inactivates HMG CoA reductase by phosphorylation

of this enzyme because HMG CoA reductase is active in the

dephosphorylated state and inactive in the phosphorylated state. In
frontiersin.org

https://doi.org/10.3389/fonc.2023.1276654
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2023.1276654
high cholesterol available conditions, some hormones, including

thyroxine and insulin, activate HMG CoA reductase; however,

glucagon has a reverse mission by inhibiting insulin, activating HMG

CoA reductase (24, 25). Moreover, sterol regulatory binding proteins

(SREBPs) expressed in the membranes of ER are involved in

transcriptional regulating HMG CoA reductase in a dual-role

manner. When the cholesterol level is low, the SREBPs are carried to

the Golgi complex to process and release an active fragment that can

enter into the nucleus and bind to the sterol regulatory element (SRE),

upregulating the expression of involved genes in encoding HMG-CoA

reductase and also other essential proteins and enzymes cholesterol

synthesis. In contrast, insulin-induced gene (INSIG) proteins do not

allow SREBPs to transport to the Golgi complex in high cholesterol

levels. Therefore, the active fragment of SREBPs cannot release and

bind the SRE and activate the expression of HMG-CoA reductase and

other essential cholesterol synthesis-mediated enzymes (26) (Figure 2).

It has been revealed that INSIG1 negatively regulates cholesterol

biosynthesis via suppressing de novo cholesterol biosynthetic gene

expression (27).
3 Cholesterol in lipid rafts and
aberrant cellular Signaling

Cholesterol plays a fundamental role in the cell membrane’s

organization and functions, mainly in specialized microdomains

known as lipid rafts. These cholesterol-rich regions are characterized

by their higher lipid order and serve as platforms for various

physiological processes, such as cell signaling. However, an irregular

upsurge in cholesterol levels within lipid rafts can disrupt normal

cellular signaling, initiating various pathological states, including cancer

and CVDs (28). Moreover, cholesterol is critical for the proper

membrane receptor function, including receptor tyrosine kinases
Frontiers in Oncology 03
(RTKs) and G protein-coupled receptors (GPCRs), which are

essential for cell signaling (29). Increased cholesterol levels within

lipid rafts can modify receptor conformation and distribution,

dysregulating cell-mediated signals. For instance, augmented

cholesterol can stimulate constitutive activation of receptor signaling

pathways, contributing to abandoned cell growth and proliferation

(30). Furthermore, this can lead to the aberrant activation of

downstream signaling pathways, such as the phosphoinositide 3-

kinase (PI3K)/AKT and MAPK pathways, commonly involved in

cancer growth and progression (31). Uncontrolled signaling through

these pathways can induce tumor cell survival, proliferation, and

metastasis. On the other hand, the accumulation of cholesterol in

immune cells-lipid rafts can impair immune responses in the TME,

reprogramming tumor milieu (32, 33).
4 Cholesterol metabolism in
physiologic and pathologic states

Despite the beneficial roles of cholesterol, abnormal cholesterol

metabolism can lead to the accumulation of cholesterol in the

bloodstream and tissues, increasing the risk of CVDs and other

disorders. This section explores the metabolism of cholesterol in

both physiologic and pathologic states.
4.1 Physiologic states of
cholesterol metabolism

Cholesterol metabolism begins with dietary cholesterol intake,

primarily found in animal-based foods (34). In the small intestine,

cholesterol is absorbed into the enterocytes, the cells that line the

gut (35). Dietary cholesterol is incorporated into chylomicrons,
BA

FIGURE 1

Cholesterol biostructure. 2D cholesterol biostructure (A) and 3D cholesterol biostructure (B).
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lipoprotein particles that transport lipids through the lymphatic

system and into the bloodstream (36). The liver is a central organ in

cholesterol metabolism. It synthesizes cholesterol de novo through a

series of enzymatic reactions. A family of transcription factors, such

as the SREBPs, tightly regulates this endogenous synthesis (37).

When cellular cholesterol levels are low, SREBPs are activated,

leading to increased cholesterol synthesis and uptake from the
Frontiers in Oncology 04
blood. Conversely, when cellular cholesterol levels are high, the

liver decreases cholesterol synthesis and increases the synthesis of

bile acids (38). Cholesterol is transported through the bloodstream

in lipoprotein particles, including LDL and HDL (39). LDL delivers

cholesterol to peripheral tissues, while HDL helps to remove excess

cholesterol from these tissues and transport it back to the liver in a

process known as reverse cholesterol transport (40).
FIGURE 2

Cholesterol biosynthesis pathway. Two acetyl-CoA molecules generate an acetoacetyl-CoA, and acetyl-CoA third molecule is added to it by
activated HMG-CoA synthase to create a six-carbon molecule, HMG-CoA. The next rate-limiting/committed step in cholesterol synthesis is
converting HMG-CoA to mevalonate catalyzed by HMG-CoA reductase. After this step, mevalonate is converted into 3-isopentenyl pyrophosphate,
farnesyl pyrophosphate, squalene, lanosterol, and finally, cholesterol in several steps.
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4.2 Cholesterol metabolism in
pathologic states

4.2.1 Change of cholesterol metabolism
in cancer

Cancer is a complex and multifaceted disease characterized by

uncontrolled cell growth and division (41). Emerging research suggests

that cancer cells often undergo significant changes in cholesterol

metabolism, which can impact the progression and characteristics of

the disease (9). Cancer cells frequently exhibit an enhanced ability to

take up cholesterol from their microenvironment (42). This elevated

cholesterol uptake is primarily mediated by the upregulated expression

of LDL receptors, scavenger receptor class B type I (SR-B1), and other

cholesterol transporters (43). This adaptation allows cancer cells to

meet the heightened demand for cholesterol, which is essential for their

rapid proliferation and membrane synthesis. In addition to increased

cholesterol uptake, many cancer cells boost their endogenous

cholesterol production (44). This rise in de novo cholesterol synthesis

occurs due to the overexpression of key enzymes and transcription

factors involved in the cholesterol biosynthetic pathway. Notably, the

SREBPs are often upregulated in cancer, promoting the transcription of

genes responsible for cholesterol biosynthesis (45). Lipid rafts are

specialized cholesterol-rich microdomains in the cell membrane that

play a role in signal transduction and cell adhesion. In cancer,

alterations in lipid rafts are frequently observed. These changes affect

the localization of important signaling proteins, leading to

dysregulation of cell growth and survival pathways (46, 47). Elevated

cholesterol metabolism in cancer cells has been associated with tumor

progression and aggressiveness. High cholesterol levels within the TME

can promote angiogenesis and enhance the resistance of cancer cells to

apoptosis (48). Moreover, cholesterol can support invadopodia

formation, which are cell protrusions that facilitate the invasion of

cancer cells into surrounding tissues (49). In CRC, it has been reported

that LDL is involved in exacerbating intestinal inflammation and

promoting the progression of CRC. LDL is identified as a

contributor to these processes, mainly through activating ROS and

signaling pathways, including the MAPK pathway. Notably,

inflammation has long been recognized as a pivotal factor in cancer

initiation and development, and LDL’s role in inciting intestinal

inflammation underscores its potential impact on the tumorigenicity

of the intestine (14).

Given the association between altered cholesterol metabolism

and cancer progression, targeting cholesterol-related pathways has

emerged as a potential therapeutic strategy. Several drugs that

inhibit cholesterol biosynthesis, such as statins, have shown

promise in preclinical studies and early clinical trials for various

cancer types (50). Additionally, research into developing cholesterol

transporter inhibitors is ongoing (51).
4.2.2 Other pathologic conditions
Hypercholesterolemia is a pathological condition characterized by

elevated cholesterol levels in the bloodstream (52). It can result from

genetic factors (familial hypercholesterolemia) or unhealthy lifestyle

choices, such as a high-fat diet, lack of physical activity, and smoking

(53). Elevated LDL cholesterol, often called “bad” cholesterol, is a major
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risk factor for atherosclerosis and coronary artery disease (54).

Atherosclerosis is a pathologic condition that occurs when

cholesterol, specifically LDL cholesterol, accumulates within the walls

of arteries. This accumulation can lead to the formation of plaques,

which narrow the arteries and can ultimately obstruct blood flow (54,

55). If a plaque ruptures, it can trigger the formation of blood clots,

potentially leading to heart attacks and strokes (56). Xanthomas are

lipid deposits that can form in the skin, tendons, or other soft tissues,

primarily due to the accumulation of cholesterol (57). They are

associated with familial hypercholesterolemia and can indicate

abnormal cholesterol metabolism (58). In addition, cholelithiasis, or

the formation of gallstones, is often related to cholesterol metabolism

(59). Cholesterol can precipitate out of bile and form solid particles,

which may aggregate into gallstones in the gallbladder. This condition

can lead to symptoms like pain and, in severe cases, complications

requiring surgery.
5 Cholesterol and colorectal cancer

This section discusses the different aspects of the role of

cholesterol in increasing the incidence of CRC (Figure 3).
5.1 Diets and risk of colorectal cancer

Among the environmental factors that increase susceptibility to

CRC, diet, environmental pollution, and physical activity are more

significant (60–62). Highlighting the contribution of dietary

cholesterol to CRC and underscoring the role of dietary-free

cholesterol in its pathophysiology is crucial for a comprehensive

understanding of the subject. Numerous studies have demonstrated

the potential link between dietary cholesterol and CRC (63). A diet

high in cholesterol has been associated with an increased risk of

CRC development, with cholesterol-rich foods, such as red meat

and high-fat dairy products, particularly implicated (64). Evidence

demonstrated that tumor cells have a multifaceted relationship with

cholesterol. They primarily synthesize their cholesterol through de

novo synthesis. However, these cells can also obtain cholesterol

from external sources by taking up exogenous free cholesterol and

cholesterol esters from lipoproteins like HDL, LDL, and VLDL (65).

Tumor cells can store excess cholesterol in lipid droplets as

cholesterol esters to manage excess cholesterol and prevent

potential toxicity. Furthermore, excess cholesterol can be either

directly exported from the cell or converted into bile acids for

eventual excretion. Additionally, cholesterol-bound fatty acids can

be broken down through mitochondrial b-oxidation to produce

energy, typically inside the mitochondria. This intricate interplay

with cholesterol underlines its importance in cancer cells’ cellular

processes and survival (65).

In Western diets, animal-related foods, such as red meat and

egg, are the primary source of exogenous cholesterol and increase

the risk of CRC (66). A recent study reported that red (in male sex

and younger age cases) and processed meat (in older age) account

for 1.77% and 1.18% of worldwide CRC mortality, respectively (67).

However, regarding red and processed meat consumption and their
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association with CRC, the outcomes are contradictory, and some

studies have reported a weak and non-significant relationship

(68, 69).

Several studies indicate that unsaturated fat may contribute to

CRC; however, only some of these investigations account for the

differences in overall energy intake. After correction for increased

calorie intake, it was concluded that there was little evidence for an

increased risk associated with dietary fat after a meta-analysis of

case-control studies. Increased calorie intake was also strongly

associated with CRC risk (69, 70). It seems that CRC cannot be

linked to a specific element in various diets, such as cholesterol or

unsaturated fats. It has been shown that diets rich in cholesterol and

saturated fats, such as Western diets, can induce CRC by increasing

the production of reactive oxygen species in the bowel,

inflammation, and mutagenesis (71).

On the other hand, low-fat and low-cholesterol diets, such as

diets based on plant foods, can have a protective role (70). There is

evidence that cholesterol-rich diets and those that would raise

serum total cholesterol are associated with a higher risk of CRC;

however, the association between total calorie intake, metabolic

syndrome, and obesity appears to be more significant (11). Studies

demonstrated that using a cholesterol-enriched diet for a long time
Frontiers in Oncology 06
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develop CRC. For instance, an animal model study reported that

feeding with high-cholesterol diets and further producing

cholesterol crystals could dysregulate inflammasomes through the

activation of the NLR family pyrin domain containing 3 (NLRP3)

and interleukin-1 beta (IL-1b) secretion, developing inflammatory

bowel diseases (IBDs), and colitis-associated cancer (CAC). Crystal

uptake and cathepsin B are responsible for the inactivation of the

AMP-activated protein kinase (AMPK) pathway in macrophages

and the overproduction of mitochondrial ROS, activating

NLRP3 (72).

Moreover, adipose tissue, commonly known as fat tissue, is

involved in developing CRC (27). Adipose tissue is an energy

storage depot and functions as an active endocrine organ,

releasing various adipokines and pro-inflammatory mediators

(73). Higher levels of adipokines, such as leptin, and elevated

production of inflammatory cytokines, like interleukin-6 (IL-6)

and tumor necrosis factor-alpha (TNF-a), in the adipose tissue of

people with obesity can contribute to chronic inflammation and

insulin resistance. These factors are associated with an increased

risk of CRC development through several mechanisms, including

promoting cell proliferation, inhibiting apoptosis, and enhancing
FIGURE 3

Different cholesterol-related factors in CRC development. High cholesterol diets, high serum cholesterol levels, cholesterol metabolism/biosynthesis,
cholesterol-derived bile acids, and gut microbiome are involved in the pathogenesis of CRC.
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angiogenesis (74). In addition, adipose tissue can influence the gut

microbiota pattern and their composition, which may further

influence the risk of CRC (75). Consequently, the association

between adipose tissue and CRC highlights the significance of

preserving a healthy body weight and adipose tissue function to

alleviate the risk of CRC.
5.2 Cholesterol levels and
colorectal cancer

The correlation between high serum cholesterol levels and CRC

has been established for several years. However, the advanced

disease may cause a decline in serum cholesterol levels, which

may explain why some early studies have shown an inverse

association between serum cholesterol concentrations and the risk

of CRC (12).

Since lipids may enhance tumor recurrence by providing the

energy required for tumor cell growth proliferation, analysis of

various lipid fractions and molecules that impact cholesterol

metabolism could be beneficial. Recent studies showed that

among total cholesterol, HDL, LDL, triglycerides, and

apolipoproteins, serum lipid levels of triglycerides and LDL-C

were not associated with CRC recurrence (76). However, another

study reported that cholesterol homeostasis is switched to increase

cholesterol biosynthesis because the relative abundance of non-

cholesterol sterols (NCS), as cholesterol synthesis and absorption

biomarkers, was amplified in HDL particles. These data indicate

cholesterol precursors are overproduced in peripheral tissues (77).

Molecular mechanisms have been proposed to explain the

association between cholesterol metabolism and CRC, including

fluctuations in the inflammatory responses and cytokine levels that

affect the proliferation and apoptosis of CRC tumor cells, as well as

a reduction in oxidative stress through the reduction of oxidized

LDL (oLDL) (78, 79).

Nonetheless, analyzing insulin and inflammatory adipokines

revealed that only insulin and leptin were significantly associated

with the risk of CRC. According to the role of polyps in CRC, an

investigation reported that low serum cholesterol was not linked to

the development of CRC. However, smoking was identified as a

potential confounding variable strongly related to the presence of

polyps (80). Interestingly, a significant positive association exists

between serum total cholesterol and vitamin D levels. Serum

cholesterol levels can decrease vitamin D (1,25-dihydroxy-vitamin

D3) and increase the risk of poorly differentiated CRC (81).
5.3 Association between bile acids, gut
microbiota, and colorectal cancer

Evidence revealed a potential link between cholesterol

metabolism and CRC through the association between bile acids

and CRC. The basis for this association is the similarity in structure

between bile acids and carcinogenic polycyclic aromatic
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tumorigenesis, deoxyxholic acid (DCA) and lithocholic acid (LCA)

are formed by deconjugating primary bile acids by anaerobic

bacterial flora (82, 83). In Western countries, it has been reported

that the feces of individuals comprise more anaerobic bacteria

responsible for deconjugating primary bile acids (84, 85). Higher

fecal levels of secondary bile acids and cholecystectomy can also

develop CRC (86). Secondary bile acids, via activating protein

kinase C (PKC) and cyclooxygenase 2 (COX2) pathways,

promote the growth, proliferation, and invasion of tumor cells in

CRC (87). As discussed, SNPs in CYP7A1, which converts

cholesterol to primary bile acids, could be associated with

increased CRC risk (13). Following the deconjugating of bile acids

by gut microbiota, diverse bile acid compounds can interact with

host receptors, such as the farnesoid X receptor (FXR), a nuclear

receptor activated by bile acids membrane-type receptor for bile

acids (M-BAR) or TGR5. Moreover, modulation of the yes-

associated protein (YAP)-associated pathway in intestinal

epithelial cells by M-BAR induces CRC (88).

Interestingly, recent studies revealed that serum bile pigment

bilirubin concentrations, through altering gut microbiota patterns,

are inversely correlated to gut inflammation and the risk of CRC.

Furthermore, fat-mediated changes in the gut microbiota can link

the metabolism of bile acids to the risk of CRC risk and colonic

tumorigenesis (89). Therefore, bile pigments and bile acids have

multiple impacts on gut microbiota composition, which may induce

or inhibit the development of CRC risk (88). Gut microbiota is

essential in preserving human health in various parts (90). As

discussed, the pattern of primary bile acids as endogenous

cholesterol-derived molecules can be converted to secondary bile

acids by the gut microbiota by releasing critical enzymes, such as

bile salt hydrolases (BSH) and CYP7A (91–93). Following these

enzymes’ activity, the gut microbiome’s pattern, bile acids profile,

and metabolism are modified. Gallstone formation is another

consequence of changing bile acids profile and metabolism (93).

Secondary bile acids can act as signaling molecules and regulate

host metabolic phenomena. In patients with longtime

asymptomatic gallstones, the risk of CRC was significantly

increased, which may be correlated with the modified gut

microbiome and bile acids metabolism (94).

Metagenome sequencing revealed that stool specimens from CRC

patients or colorectal adenoma showed more Peptostreptococcus

anaerobius than subjects without CRC. An animal study showed that

intestinal dysplasia occurred more in bacteria-depletedmice exposed to

azoxymethane and P. anaerobius than in mice exposed to only

azoxymethane. Furthermore, P. anaerobius tended to colonize the

colon and induce the growth and proliferation of the epithelial cells

in the colon. Interestingly, P. anaerobius could upregulate the genes’

expression in regulating cholesterol biosynthesis, the AMP-activated

protein kinase (AMPK) pathway, and toll-like receptor (TLR)

signaling. P.anaerobius activates SREBP2 and increases total

cholesterol levels. It also interacted with TLR2 and TLR4 to raise

intracellular ROS levels, promoting cholesterol biosynthesis and cell

proliferation (95).
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5.4 Cholesterol metabolism and
colorectal cancer

The cholesterol metabolism, via acting on innate and adaptive

immune cells, plays a significant role in modulating antitumor

responses. In this regard, tumor-associated macrophages (TAMs) can

deplete cholesterol in some human malignancies (96). Additionally,

macrophages with amorphology are correlated to increased cholesterol

metabolism, liver metastasis, and poor survival in patients with CRC

(97). Interestingly, TAMs can contribute to the cholesterol supply for

cancer cells through a process known as cholesterol efflux and

transport. In the TME, TAMs often undergo a phenotypic switch

towards a pro-tumoral, M2-like phenotype, which can facilitate

cholesterol transfer to tumor cells (96). These M2-like TAMs express

high levels of scavenger receptors, such as CD36, which can bind to and

uptake excess cholesterol from the tumormilieu (98). The cholesterol is

then transported within TAMs through intracellular lipid droplets and

may be transferred to cancer cells via cholesterol-rich particles called

lipid rafts or through direct cell-to-cell contact. This cholesterol supply

can promote the growth and survival of cancer cells (99).

CYP27A1 overexpression is associated with poor prognosis in CRC

(100). It has been demonstrated that CYP27A1 expressed in various

tissues produces 27-hydroxycholesterol (27HC), a rich oxysterol in the

blood and plasma membrane (101). Despite the controversial role of

27HC in human tumors, an investigation has reported that 27HC can

induce AKT activation and the secretion of IL-6, vascular endothelial

growth factor (VEGF), and matrix metalloproteinases (MMPs),

resulting in CRC development. In contrast, another study disclosed

that 27HC suppressed AKT activation and inhibited the proliferation of

tumor cells in CRC in vitro (102).

miRNAs (miRs) are non-coding RNAs regulating gene

expression at the post-transcriptional level. miRs are also

implicated in various biological functions of organisms. The

overexpression of multiple miRNAs has been reported in human

malignancies, which were strictly associated with the occurrence

and expansion of tumors (103, 104). It has been shown that miR-

33a can target Pim-3 proto-oncogene and serine/threonine kinase

(PIM3). In addition, miR-33a is an essential factor in cholesterol

metabolism. miR-33a is also overexpressed in several human

cancers. Cholesterol can inhibit the expression of miR-33a and

SREBP2. Moreover, cholesterol treatment could upregulate PIM3,

promoting tumor cell proliferation and inhibiting apoptosis via

phosphorylation of Bad protein, p21, and p27. Consequently, it is

possible that cholesterol regulates the development of CRC via the

miR-33a/PIM3 pathway, and it could be a potential therapeutic

target for treating CRC (105).

Squalene epoxidase (SQLE) is also a rate-limiting enzyme

involved in cholesterol biosynthesis and is known as a proto-

oncogene (106). High cholesterol concentrations can lead to the

degradation of SQLE. Furthermore, reduced SQLE levels via

cholesterol accumulation, activating the b-catenin oncogenic

pathway, and inhibiting p53 can be associated with CRC. These

outcomes show that SQLE is a critical regulator in the development

of CRC (107). It has been found that the insulin-like growth factor

receptor (IGF-1R)/AKT/mTOR and the mevalonate-isoprenoid

biosynthesis pathways were upregulated in CRC stem cells
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(CSCs), inducing tumor cell growth and proliferation. Targeting

these pathways would probably be helpful in CRC treatment (108).
6 Therapeutic approaches

Until today, various treatment methods have been investigated

for treating CRC. For instance, conventional therapies, such as

surgery, chemotherapy, radiation therapy, targeted therapy, and

immunotherapy, have been used to treat patients with CRC (109,

110). Although the results of these treatment methods are not

satisfactory and the discovery of novel or complementary

approaches can help to increase the effectiveness of the treatment.

In this section, we have summarized available cholesterol-related

therapeutic tactics for treating CRC (Table 1).
6.1 Dietary prevention of colorectal cancer

Since Western diets are associated with a high incidence of

CRC, nutrition interventions may help prevent the disease. Previous

studies showed that even minor modifications in Western diets,

including substituting fats with carbohydrates or saturated fats with

polyunsaturated fats as well as consuming more fruits and fiber,

could not significantly reduce the risk of CRC (111, 112). In these

studies, the total calorie intake was notably the same before and

after the modifications (139). Since obesity, inactivity, and

consumption of red meat have been introduced as the most

critical environmental factors that increase the risk of CRC, it

appears that diets with fewer calories and containing more fruits

and vegetables and less fat and red meat can have a protective role

against CRC (11, 113). An investigation demonstrated that fasting

could affect glucose and cholesterol metabolism in CRC. Fasting

also upregulated the expression of the farnesyl-diphosphate

farnesyltransferase 1 (FDFT1) as a tumor suppressor and

cholesterogenic gene. FDFT1 regulates the pathways of AKT/

mTOR/hypoxia-inducible factor 1 a (HIF1a). Therefore,

decreased expression of FDFT1 is associated with tumor cell

growth and progression and poor prognosis in CRC (114).

However, since this gene plays a role in synthesizing sterols and

cholesterol, its upregulation may increase cholesterol levels and

tumorigenesis. As a result, more studies are required to clarify the

role of this gene in cancer.
6.2 Targeting cholesterol biosynthesis,
metabolism, and absorption

6.2.1 Statins
Statins are HMG-CoA reductase inhibitors, a class of lipid-

lowering drugs used in several cancers, such as esophageal, gastric,

hepatic, and prostatic cancer (115). Statins can suppress tumor cell

growth, invasion, and metastasis via inhibiting isoprenoid

production because they are essential for post-translational

protein modifications (115, 116). Based on available knowledge,

patients with inflammatory bowel disease (IBD) are more
frontiersin.org

https://doi.org/10.3389/fonc.2023.1276654
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2023.1276654
TABLE 1 Cholesterol-related therapies for CRC treatment.

Approach Specifications Mechainsm Ref

Minor modifications in
Western diets

• Substituting fats with carbohydrates or saturated fats with
polyunsaturated fats as well as consuming more fruits and fiber

• Could not significantly reduce the risk of
CRC

(111,
112)

Controlled diet
• Fewer calories and containing more fruits and vegetables and less fat and
red meat

• Protective role against CRC
(11,
113)

Fasting • Stop eating completely for 12-24 h
• ↑ The expression of FDFT1
• ↓ AKT/mTOR/HIF1a pathways
• ↓ Tumor cell growth and progression

(114)

Statins • Inhibition of HMG-CoA reductase

• ↓ Isoprenoid production
• ↓ Tumor growth & proliferation
• ↑ BMP pathway
• ↓ KRAS prenylation
• ↑ Tregs
• ↓ Angiogenesis

(115,
116)
(117,
118)
(119)

Simvastatin + anti-immune
checkpoint therapy

• Inhibition of HMG-CoA reductase & PD-L1

• ↓ PD-L1 expression
• ↑ Anti-tumor immune responses
• ↓ lncRNA SNHG29
• ↓ CRC liver metastasis
• ↓ Cholesterol biosynthesis

(120)
(121)

Nystatin with avasimibe
• Inhibition of HMG-CoA reductase
• SOAT1 inhibitor

• ↓ YAP expression
• ↓ The viability of tumor cells in vitro and in
vivo

(122)

Fibrates • Activation of PPAR-a
• ↓ Lipid levels
• ↓ The risk and development of CRC

(123,
124)

BPH1222 and zoledronic
acid

• Interfere with the mevalonate pathway, squalene synthase, and cholesterol
biosynthesis

• ↓ Cell viability dose-dependently in vitro
• ↑ Tumor cells in the S and sub-G1 phases
• Changing the phosphorylation of ERK and
S6
• ↓ Tumor growth in KRAS mutant xenograft
mouse

(8)
(125)

T0901317 • LXR inhibition

• ↓ b-catenin transcriptional activity in
HCT116 cells
• ↓ SREBP pathway
• ↓ Tumor growth

(126)

GW3965 • LXR inhibition
• ↓ SREBP pathway
• ↓ Tumor growth proliferation

(127)

R048-8071 • Lanosterol synthase inhibiton
• ↓ The phosphorylation of AKT
• ↓ Tumor growth and metastasis

(128)

Docosahexaenoic acid &
ursodeoxycholic acid

• Inhibition of HMG-CoA reductase, NPC1, and SREBF2 • ↓ Tumor growth proliferation
(129,
130)

TASIN • Selective toxic compounds for APC mutations of CRC

• ↓ EBP
• ↓ DHCR7
• ↓ DHCR24
• ↓ Post-squalene cholesterol synthesis
pathway
• Depleting downstream sterols
• ↓ Tumor growth proliferation

(131)

Terbinafine • SQLE inhibitor

• ↓ CRC cell growth and proliferation in
organoids and xenograft animal models
• ↓ Calcitriol and activating the CYP24A1-
mediated MAPK pathway
• ↓ Tumor growth proliferation

(132)

Metformin • AMPK activator

• ↓ CSCs
• ↓ Mevalonate pathway and cholesterol
biosynthesis,
• ↑ p-AMPK
• ↓ mTOR expression

(133)

(Continued)
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susceptible to developing CRC. It has been reported that treating

IBD patients with statins reduced the risk of CRC (140). Other

clinical studies showed that patients receiving statins for a long time

have a 47% lower risk of CRC than non-statin subjects (129). A

large population-based cohort also reported that treating CRC

patients with statins prolonged the survival rate of the studied

patients (141). Statins may activate the bone morphogenetic protein

(BMP) pathway because these drugs are more effective in SMAD

family member 4 (SMAD4)-expressing cancers but not KRAS

mutant tumors (117, 118). In CRC, statins are thought to act via

changes in KRAS prenylation. However, this would be expected to

alter CRC proportion via induction of mutations in KRAS (142).

Evaluation of the effects of statins on immune system components

in CRC showed that the frequency and infiltration of regulatory T

cells (Tregs) into the CRC TME significantly increased following

statin therapy in advanced stages of CRC. In the early stages of

CRC, statins inhibited angiogenesis, but they could not considerably

affect transforming growth factor-beta 1 (TGF-b1) levels in tumor

tissue. This study suggested that infiltrating Tregs into the TME by

statins might decrease tumor aggressiveness in the advanced stages

of CRC (119). Regarding the dual role of Tregs in cancer, these

results could be controversial and require further investigations

based on the types and stages of cancers (143).
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On the other hand, several meta-analyses disclosed that statins

had little impact (about 10%) on reducing the risk of CRC (144).

However, because CRC is a heterogeneous tumor, finding an

effective treatment in all cases is challenging. Statins were more

effective in treating CRC than lipid-lowering agents, such as fibrates.

In this regard, an investigation showed that fibrate administration

could not affect CRC incidence, whereas statins were more efficient

(145). Fibrates decrease lipid levels by activating peroxisome

proliferator-activated receptor alpha (PPAR-a) and, in this way,

can reduce the risk and development of CRC (123, 124). Therefore,

reducing the risk of CRC by statins and fibrates as modificators of

cholesterol metabolism may depend on their impacts on KRAS

prenylation or the PPAR-a pathway.

One of the most important challenges in cancer therapy is the

immunosuppressive milieu in the TME. Infiltration of

immunosuppressive cells, as well as expression of inhibitory

molecules, such as programmed death-1 (PD-1), programmed

death ligand 1 (PD-L1), and V-domain immunoglobulin

suppressor of T-cell activation (VISTA), could modulate

antitumor immune responses (146). Immune checkpoint

inhibitors, including anti-PD-1 and anti-PD-L1 monoclonal

antibodies (mAbs), are a promising therapeutic approach for

cancer therapy. Nevertheless, early clinical trials revealed
TABLE 1 Continued

Approach Specifications Mechainsm Ref

C1 & C2
• Binding to b-catenin, which inhibited the formation of b-catenin/BCL9
complex

• ↓Wnt activity
• ↓ The expression of the Wnt/b-catenin
signature
• Interrupted cholesterol homeostasis
• ↓ Tumor cell growth and proliferation

(134)

Knockdown of SREBP1 or
SREBP2

• SREBP-dependent metabolic regulation

• ↓ Glycolysis
• ↓ Mitochondrial respiration, and fatty acid
oxidation
• Cell metabolism alteration, reduced fatty acid
levels
• ↓ Cell proliferation
• ↓ Tumor spheroid formation
• ↓ Tumor growth in xenograft models of
colon cancer
• ↓ The expression of cancer stem cell-
associated genes

(45)

Aptamer PL1 + siRNA
• Aptamer PL1 specifically binds to PD-L1
• siRNA that targets PCSK9

• ↑ The effectiveness of anti-immune
checkpoint therapy
• ↑ The expression of IFN-g and granzyme B
• ↓ Tumor growth proliferation

(135)

HCE
• Antineoplastic and anti-inflammatory properties
• Cholesterol biosynthesis inhibition

• Selective cytotoxic effect of HCE on tumor
cells
• ↓ The Notch pathway
• ↓ Cholesterol biosynthesis
• ↓ Tumor growth proliferation

(136)

Curcumin • Via Ca2+/PPARg/SP-1/SREBP-2/NPC1L1 signaling and TRPA1
• ↓ Tumor cell proliferation
• ↓ Cholesterol absorption in Caco-2 cells
• Benefit the primary CRC prevention

(137)

FE & HFE
(Saponins or sapogenins)

• Inhibitio of lipid metabolism

• ↓ Aerobic glycolysis and mitochondrial
oxidative phosphorylation
• ↓ The expression of TYMS1 and TK1
• ↓ Intracellular lipid concentrations.

(138)
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ineffective immune checkpoint inhibitors in CRCs. An investigation

reported that simvastatin could suppress PD-L1 expression and

promote anti-tumor immune response by downregulating lncRNA

SNHG29 expression. SNHG29 targets YAP and inhibits its

phosphorylation and ubiquitination, accelerating the decrease in

the expression of PD-L1 transcript. Therefore, the administration of

simvastatin can suppress lncRNA SNHG29-mediated YAP

activation and induce anti-tumor immune responses by hindering

the expression of PD-L1 (120). Simvastatin can also inhibit CRC

liver metastasis by reducing cholesterol biosynthesis because

hepatocyte growth factor (HGF) released from the liver induces

SREBP2 and activates the c-Met/PI3K/AKT/mTOR axis in tumor

cells to increase the cholesterol biosynthesis (121).

Sterol O-acyltransferase 1 (SOAT1) converts intracellular free

cholesterol to cholesteryl ester (147). These cholesteryl esters can be

stored as lipid droplets via SOAT1-mediated esterification. It has

been shown that SOAT1 targeting could upregulate the expression

of YAP through increasing cellular cholesterol concentrations in

colon cancer cells. In addition, under SOAT1 suppression,

sequestrating cholesterol by nystatin significantly repressed YAP

expression. Combining nystatin with avasimibe as a SOAT1

inhibitor could reduce the viability of tumor cells in vitro and in

vivo (122). Together, statins can be somewhat effective in treating

CRC by disrupting cholesterol metabolism and biosynthesis.

However, tumor profiling may lead to recognizing a molecular

subtype of tumors that are more sensitive to statins to increase

targeted therapies’ effectiveness.

6.2.2 Bisphosphonates
Bisphosphonates used to treat bone disorders can also interfere

with the mevalonate pathway, squalene synthase, and cholesterol

biosynthesis (125). In CRC, long-administrating bisphosphonates

may have a protective role and reduce the risk of CRC; however,

several studies believe these drugs are not more effective than statins

in treating CRC (148, 149). Recently, the antitumor effects on RAS-

mediated signalization of lipophilic bisphosphonate (BPH1222) and

zoledronic acid were investigated on several human CRC cell lines.

The findings showed that these bisphosphonates could decrease cell

viability dose-dependently in vitro. In addition, BPH1222 and

zoledronic acid affected the cell cycle by increasing the frequency

of tumor cells in the S and sub-G1 phases. These drugs also changed

the phosphorylation of ERK and S6 proteins. Further studies on

KRAS mutant xenograft mouse model showed an inhibitory effect

on the growth of treated CRC tumor cells with the lipophilic

bisphosphonates (8). Therefore, even though these drugs are not

designed to treat cancer, they can inhibit the growth of tumor cells

in different ways and can also be used to treat KRAS mutants CRC.

6.2.3 LXR targeting in colorectal cancer
The nuclear receptors liver-X-receptors (LXRs) play a pivotal

role in regulating the homeostasis of lipids and intracellular

cholesterol (150). Oxysterols are ligands of LXRs and suppress the

SREBP pathway and cell proliferation. It has been revealed that

27HC (an oxysterol) treatment inhibits cell proliferation in CRC

tumor cells; however, this inhibitory effect is mediated by reducing
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the phosphorylation of AKT compared with activating LXR (102).

Other oxysterols, including 5a-cholestane-3b,6b-diol, 7-

ketocholesterol, and cholestane-3b-5a-6b-triol exert their

inhibitory effects through arrest in the cell-cycle progression and

inducing apoptosis in tumor cells (151). However, according to the

tumor context, oxysterols can play a dual-edged sword in cancer

(129). Moreover, LXRa activation can affect lipid metabolic

pathways and increase cholesterol efflux through some membrane

proteins, such as ATP binding cassette subfamily A member 1

(ABCA1) and ABCG5/G8, in the intestine (126). Upregulation of

the activated LXRa also can repress CRC cell proliferation in vitro

and in vivo. Consequently, designing agonists of LXR might be a

hypothetical therapeutic method for CRC treatment (152). As an

LXR agonist, T0901317 can suppress b-catenin transcriptional

activity in HCT116 cell lines (colon cancer) in vitro (126).

Additionally, another investigation demonstrated that the

upregulation of the nuclear receptor subfamily 1 group H

member 3 (NR1H3) gene, which encodes LXRa, could induce

inhibitory effects of GW3965 as an LXRs agonist on the

proliferation of tumor cells in CRC. NR1H3 is also able to

suppress the activity of the epidermal growth factor receptor

(EGFR) promoter , reduc ing tumor ce l l g rowth and

proliferation (127).
6.2.4 Other effective drugs
R048-8071 or (4-bromophenyl)[2-fluoro-4-[[6-(methyl-2-

propenylamino)hexyl]oxy]phenyl]-methanone is a subclass of

benzophenones and an oxidosqualene cyclase (OSC) inhibitor.

OSC converts 2,3-oxidosqualene to lanosterol, and its inhibition

by Ro 48-8071 leads to inhibit the growth, migration, and metastasis

of tumor cells in CRC (153). Using R048-8071 also can reduce cell

proliferation and induce tumor cell apoptosis (129). Targeting

lanosterol synthase (LSS) by R048–8071 represses the

phosphorylation of AKT and inhibits the growth and metastasis

of both pancreatic cancer and CRC (128).

Since the endoplasmic reticulum (ER) is the primary site for

cholesterol biosynthesis, oxidation, and esterification, ER

cholesterol concentrations are associated with the activation of

SREBP2. Hence, ER stress may affect cholesterol metabolism. It

has been reported that the administration of docosahexaenoic acid

enhanced ER stress in the CRC cell line, SW620. Docosahexaenoic

acid can upregulate the expression of key genes in cholesterol

metabolism, such as HMG-CoA reductase, NPC intracellular

cholesterol transporter 1 (NPC1), and SREBF2 (129).

Ursodeoxycholic acid also could be an effective and well-tolerated

chemopreventative method to treat CRC (130). However, it has

been reported that a high dose of ursodeoxycholic acid in primary

sclerosing cholangitis leads to an increase in the risk and

development of CRC, and this challenge has limited its

application (154).

Truncated APC-selective inhibitors (TASIN) are selective toxic

compounds for APCmutations of CRC. An investigation found that

TASINs could suppress the emopamil binding protein (EBP), 7-

dehydrocholesterol reductase (DHCR7), and DHCR24 enzymes

involved in the post-squalene cholesterol synthesis pathway. In
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spite of the fact that all three of these enzymes are necessary for

cholesterol biosynthesis, inhibiting EBP led to the death of tumor

cells by depleting downstream sterols (131).

SQLE can affect cholesterol biosynthesis, and it has been

revealed that this enzyme is upregulated in CRC in vitro and in

vivo and is associated with poor prognosis in patients with CRC.

Furthermore, SQLE inhibition reduces the calcitriol (the active form

of vitamin D3) levels and CYP24A1. In addition, SQLE inhibition

can increase intracellular Ca2+ levels. Afterward, the MAPK

pathway is suppressed, inhibiting CRC cell growth and

proliferation (132). One of these SQLE inhibitors is terbinafine

which can suppress CRC cell growth and proliferation in organoids

and xenograft animal models (132). Therefore, by accumulating

calcitriol and activating the CYP24A1-mediated MAPK pathway,

SQLE promotes CRC, suggesting that SQLE could be a probable

therapeutic target for CRC treatment.

Metformin is an AMPK activator and inhibits cancer stem cells

(CSCs) in several malignancies. A study showed that metformin, via

affecting the mevalonate pathway and cholesterol biosynthesis,

could reduce the CSC population in both DLD-1 and HT29 CRC

cell lines. This study reported that metformin therapy could amplify

p-AMPK and decrease mTOR expression. Moreover, the

mevalonate addition reversed these suppressive effects. These

findings indicate that in CRC, metformin suppresses CSC

through AMPK activation and mevalonate pathway inhibition,

which is related to AMPK activation (133). A recent study also

showed that dysregulation of the Wnt/b-catenin pathway could be

involved in the pathogenesis of CRC. This study used a novel

compound capable of binding to b-catenin, which inhibited the

formation of b-catenin/BCL9 complex in CRC cell lines. The

compound also suppressed Wnt activity, reduced the expression

of the Wnt/b-catenin signature, interrupted cholesterol

homeostasis, and remarkably decreased tumor cell growth and

proliferation in CRC in vitro and in vivo (134). Therefore, the

Wnt/b-catenin could be involved in cholesterol metabolism, and

targeting this pathway can help treat CRC by inhibiting the

production of cholesterol and the growth of cancer cells.

6.2.5 Targeting essential genes in cholesterol
metabolism and biosynthesis

Several studies on various human malignancies demonstrated that

Krüppel-like factors (KLFs) are involved in developing cancer. KLF13

transcriptionally suppresses HMG-CoA synthase and cholesterol

biosynthesis. In CRC, KLF13 is downregulated, and functional

experiments revealed that knockdown of the KLF13 induced the

growth, proliferation, and colony formation in CRC cell lines (HT-

29 and HCT116). Moreover, the upregulation of KLF13 could induce

cell cycle arrest at G0/G1, reduce 5-ethynyl-2’-deoxyuridine (EdU)

incorporation, and suppress HCT116 cell growth in nude mice.

Additionally, the knockdown of HMG-CoA synthase repressed

cholesterol biosynthesis and the proliferation of silenced KLF13

tumor cells in CRC (136). Accordingly, KLF13, as a tumor

suppressor factor, negatively regulates the HMG-CoA synthase-

mediated cholesterol biosynthesis in CRC, and its knockdown

cannot benefit the treatment.
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Another investigation reported that the knockdown of SREBP1 or

SREBP2 through decreasing glycolysis, mitochondrial respiration, fatty

acid oxidation, and cell metabolism alteration reduced fatty acid levels.

Furthermore, cell proliferation and the ability of tumor spheroid

formation by cancer cells were significantly reduced following

SREBP1/SREBP2 knockdown. In addition, the knockdown of

SREBP1/SREBP2 could suppress tumor growth in xenograft models

of colon cancer and downregulate the expression of cancer stem cell-

associated genes. As a result of these findings, the molecular basis of

SREBP-dependent metabolic regulation has been established, and

targeting lipid biosynthesis may prove to be a promising therapeutic

approach in colon cancer (45).

PCSK9 can bind to LDL receptors, resulting in their degradation in

the liver. It has been revealed that PCSK9 inhibition increases LDL

receptors and decreases blood levels of LDL (155). Upregulation of

PCSK9 is associated with an unpromising survival rate in APC/KRAS-

mutant CRC patients. Moreover, depleting PCSK9 inhibits the growth

of APC/KRAS-mutant CRC cells in vitro and in vivo. However,

overexpression of PCSK9 is associated with tumorigenesis.

Interestingly, PCSK9 decreases cholesterol uptake while promoting

de novo synthesis and geranylgeranyl diphosphate (GGPP)

accumulation. GGPP, a critical PCSK9 downstream metabolite, can

activate the KRAS/MEK/ERK pathway. It has been revealed that

PCSK9 inhibitors, especially in combination with statins, repress the

growth of APC/KRAS-mutant CRC cells. These data suggest that

PCSK9 induces APC/KRAS-mutant CRC through the GGPP-KRAS/

MEK/ERK pathway, and its targeting may be a therapeutic method in

treating CRC (15, 156). Recently, a study designed an aptamer PL1

which specifically binds to PD-L1. This study showed that combining

aptamer PL1 and a siRNA that targets PCSK9 synergistically increased

the effectiveness of anti-immune checkpoint therapy via upregulating

the expression of interferon-gamma (IFN-g) and granzyme B (135).

6.2.6 Natural compounds
It has been demonstrated experimentally that herbal extracts

and isolated herbal compounds such as curcumin, matairesinol, and

resveratrol can reduce resistance to cancer therapies and exert

chemoprotective effects when combined with antitumor drugs

(157). Hibiscus. syriacus callus extract (HCE) is one of these

natural compounds with antineoplastic and anti-inflammatory

properties. An investigation explored HCE effects on CRC cell

lines (HT-29) and thymus-deficient mice bearing xenografts.

Outcomes obtained from cell viability and colony formation

assays showed a notable and selective cytotoxic effect of HCE on

tumor cells. HCE cytotoxic effects were associated with inhibiting

the Notch pathway, positively contributing to cholesterol

biosynthesis in vitro and in vivo without systemic toxicity (136).

Moreover, it has been shown that curcumin via the Ca2+/PPARg/
SP-1/SREBP-2/NPC1L1 signaling and also through stimulating the

transient receptor potential ankyrin 1 (TRPA1) can suppress tumor

cell proliferation and reduce cholesterol absorption in Caco-2 cells.

These data indicate that curcumin as a dietary supplement may

benefit primary CRC prevention (137).

Saponins or sapogenins)aglycone form of saponins) are known

as bioactive agents with anticancer features (158). It is widely
frontiersin.org

https://doi.org/10.3389/fonc.2023.1276654
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2023.1276654
recognized that metabolic reprogramming is a hallmark of cancer

and that altered lipid metabolism, hypercholesterolemia, increased

aerobic glycolysis, and glutaminolysis are essential to cancer

development and progression (159). Using saponin-rich extracts

from fenugreek (FE) and its hydrolyzed extract (HFE) as sapogenin-

rich extracts showed that HFE inhibited aerobic glycolysis and

mitochondrial oxidative phosphorylation. The expression of

thymidylate synthase (TYMS1) and thymidine kinase 1 (TK1)

also downregulate following combining treatment with FE and

drug 5-fluorouracil (5-FU). Additionally, HFE could inhibit lipid

metabolism targets, reducing intracellular lipid concentrations

(138). Thus, saponins and sapogenins alone or combined with

chemotherapeutic agents may reduce tumor metabolism

reprogramming and inhibit tumor cell growth and progression.
7 Challenges and limitations of
therapeutic strategies

The diverse therapeutic approaches discussed for treating CRC offer

promise and challenges. While non-invasive and cost-effective, dietary

interventions face limitations in consistently producing significant

reductions in CRC risk (160, 161). Statins, known for their potential

to inhibit cholesterol biosynthesis and impact immune responses, have

demonstrated promise in reducing CRC risk and improving survival

rates in clinical studies, yet their effectiveness remains a topic of debate

(144). Originally designed for bone disorders, bisphosphonates may not

be as potent in CRC treatment as statins, highlighting their primary role

in non-cancer therapy (162, 163).

Moreover, targeting LXRs appears advantageous due to their

impact on lipid metabolism and cholesterol efflux, but the complex

dual role of oxysterols in cancer and treatment outcomes necessitates

further investigation (164). Strategies focused on regulating essential

genes, such as KLF13 and SREBP1/SREBP2, can suppress cell

proliferation and tumor growth but may only universally apply to

some molecular subtypes of CRC (45, 165). Natural compounds like

curcumin and saponins show potential in reducing treatment

resistance and exerting chemoprotective effects when combined with

traditional therapies, but their optimal doses and potential side effects

require further research (166). The major challenge in CRC treatment

lies in its heterogeneity, necessitating personalized approaches, and the

complex immunosuppressive TME, which complicates the

effectiveness of immune checkpoint inhibitors (167). As the

interactions between cholesterol metabolism, cancer, and therapy are

intricate, thorough investigation and clinical trials are imperative to

address these challenges and maximize the utility of cholesterol-related

tactics in CRC treatment.
8 Concluding remarks and
future directions

Almost all therapeutic methods and anticancer drugs have

advantages and disadvantages mentioned in various studies. In

the case of cholesterol-lowering drugs, in addition to the different
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side effects observed, other items should be considered. For

instance, tumor cells can categorize as statin-sensitive and statin-

resistant cells. Therefore, statins could not be effective in all cancers.

To overcome this challenge, combining statins with polyamine

metabolism inhibitors, purine metabolism inhibitors, glycolytic

system inhibitors, and pentose phosphate pathway inhibitors may

improve the anticancer impacts of statins (168). Another example is

metformin, which in addition to its remarkable anticancer

properties, one of the significant challenges of its prescribing in

cancer therapy is fast renal clearance (169). The use of drugs that

intervene in the biosynthesis and metabolism of cholesterol in

treating CRC has resulted in low effectiveness, which can be

caused by different mutants or non-responder tumor cells to

these compounds.

Additionally, the inhibitory tumor microenvironment (TME),

tumor escape mechanisms, chemoresistance, hypoxic condition,

infiltration of immunosuppressive cells, and inhibitory molecules

are considered fundamental challenges in treating all solid tumors,

such as CRC (170–172). On the other hand, considering cholesterol

is an essential precursor for synthesizing several hormones and cell

components, how much does its inhibition to reduce the growth

and development of tumor cells affect normal cells and

physiological mechanisms? It is considered a fundamental

question in cholesterol targeting.

On the other hand, regarding the unique features of cholesterol,

it can be used in nanosystems to increase the efficiency of cancer

therapy. For instance, a cholesterol-coated PLGA nanoparticle has

been designed to improve the encapsulation and delivery of

oxaliplatin and retinoic acid in CRC. The findings showed that

the cell viability and proliferation of CRC cell lines decreased

following using this nanosystem (173).

Generally, it can be proposed that the synthesis and metabolism of

cholesterol and the components involved in these pathways can be

good targets for treatment. Although monotherapy may not

significantly affect cancers with high heterogeneity, such as CRC,

their combination with other anticancer approaches may be beneficial.
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