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T cells have an essential role in adaptive immunity against pathogens and cancer,

but failure of thymic tolerance mechanisms can instead lead to escape of T cells

with the ability to attack host tissues. Multiple sclerosis (MS) occurs when

structures such as myelin and neurons in the central nervous system (CNS) are

the target of autoreactive immune responses, resulting in lesions in the brain and

spinal cord which cause varied and episodic neurological deficits. A role for

autoreactive T cell and antibody responses in MS is likely, andmounting evidence

implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we

discuss antigen specificity of T cells involved in development and progression of

MS. We examine the current evidence that these T cells can target multiple

antigens such as those from pathogens including EBV and briefly describe other

mechanisms through which viruses could affect disease. Unravelling the

complexity of the autoantigen T cell repertoire is essential for understanding

key events in the development and progression of MS, with wider implications for

development of future therapies.
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Introduction

MS is the second most common cause of neurological disability amongst young adults

after trauma affecting approximately 2.8million people globally (1). MS is more common in

females with onset generally between 20 to 40 years of age, and occurs due to the formation

of focal inflammatory demyelinating lesions in the CNS. Initial disease has a predominantly

inflammatory component and approximately 85% of cases present with a relapsing-

remitting phenotype, but over time accumulated damage and neurodegenerative

mechanisms can lead to permanent disability. Genetic aetiology is estimated to be

around 20-30% for MS with the remaining risk lying with stochastic events and

environmental factors such as obesity, smoking, low serum vitamin D and EBV (2).
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The brain and spinal cord, once thought to be an immune

privileged compartment (3), are surveyed by patrolling T cells

which guard against infection and also have roles in brain

development and behaviour (4–8). However, the CNS is sensitive

to inflammation-mediated damage and therefore, under healthy

conditions, a carefully controlled balance is maintained between

protection from infections and prevention of injurious

inflammation. Loss or impairment of such CNS T cell

immunosurveillance leads to an increased risk of CNS infections

or malignancies (9).

Focal CNS lesions in early MS disease show widespread

inflammatory infiltrates which contain a variety of immune cells

including CD4+ T cells, CD8+ T cells B cells and monocytes.

Genome-wide association studies (GWAS), as well as clinical

therapeutic observations, indicate that T cells and B cells

alongside innate immune cells have a key roles in MS

neuroinflammatory mechanisms (10–15). The majority of MS-

associated genes have functions in antigen presentation, cytokine

production, proliferation, T helper (TH) cell differentiation, co-

stimulation, signal transduction and function. Associated

polymorphisms have been identified in the human leukocyte

antigen (HLA) locus as well as in IL-2Ra, IL-7Ra, CXCR5, CD40,
CD86, STAT3 and many other genes (15–17). However, the

strongest known genetic risk factor associated with MS is the

HLA-DRB1*15:01 allele with an odds ratio (OR) of approximately

3 (15–18), and has also been shown to interact with multiple other

environmental risk factors to increase risk further (19–24). The

HLA locus also contains several other class II alleles which confer

risk for developing MS and several identified HLA class I alleles

which protect from disease such as HLA-A*02:01 (17, 25). CD4+ T

cells recognise peptides presented in the context of HLA class II

molecules, whereas CD8+ T cells recognise class I-presented

peptides. Given that the function of HLA is to present peptides to

T cells for recognition via T cell receptors (TCR), the association of

HLA-DRB1*15:01 with MS development suggests a role for class II-

presented peptides and autoreactive CD4+ T cell responses and has

led to substantial investigation of the autoantigens responsible for

priming of pathogenic responses.

Early research established in particular the role of CD4+ T cells

which target these antigens due to several observations, such as the

presence of CNS-infiltrating CD4+ T cells in MS brain lesions,

genetic risk conferred by HLA-DR and HLA-DQ alleles, increased

experimental autoimmune encephalomyelitis (EAE) susceptibility

of transgenic mice expressing MS-associated HLA class II

molecules, and it is likely that CD4+ T cells also contribute to MS

pathogenesis via their influence on both adaptive and innate

immune processes such as antibody production by B cells and

CD8+ T cell maturation.

To prevent production of T cells which can target self-tissues

and trigger autoimmunity, T cells undergo central tolerance

mechanisms in the thymus during their maturation, where cells

expressing T cell receptors (TCRs) that bind strongly to peptide:

HLA complexes on thymic epithelial cells and dendritic cells are

negatively selected, and those that do not bind at all die by neglect

(26). Additional mechanisms in the periphery also act to remove

self-reactive T cells which escape central tolerance (27). Due to
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control and bind foreign antigens generally have high affinity for

their cognate antigen, however some responses may also have the

ability to bind other peptides presented on HLA at different affinity

which could include those from self-antigens. The classical view of

T cells is that a single TCR expressed at the cell surface allows them

to bind one peptide:HLA complex but the reality is that a single

TCR can likely bind multiple peptides, and possibly also different

HLA molecules (28). This existence of cross-reactivity might be an

evolutionary advantage of a limited genome-encoded TCR

repertoire against the myriad of possible peptide combinations

which can occur in nature, estimated to be around 1015 possible

peptides (29, 30). This T cell degeneracy indicates a potential for

TCRs which were originally selected during exposure to prior

foreign antigens to also bind self-peptides presented by HLA, and

therefore the pathogens which we encounter throughout life shape

both the memory T cell repertoire as a whole and also its

autoreactive potential.

As well as T cells, there is strong evidence supporting a role for

B cells in MS development, in particular due to the dramatic

therapeutic effect of anti-CD20 therapies (11, 12). The reasons for

which include B cell antigen presentation to T cells, production of

pro-inflammatory cytokines, elimination of Epstein-Barr virus

(EBV), and finally production of pathogenic autoantibodies – not

in prime focus for this review. This review will discuss the current

knowledge surrounding T cell specificity in MS, evaluating the

existing evidence that CNS autoreactive responses may originally

have been generated in response to non-self antigens and briefly

describing other mechanisms through which viruses could

affect disease.
Selected evidence for the role of T
cells in MS

For many years CD4+ T cells have been considered an

important cell type involved in MS pathogenesis due to early

observations in experimental autoimmune encephalomyelitis

(EAE) – the animal model for MS – that CNS demyelinating

disease can be transferred by adoptive transfer of myelin-reactive

CD4+ T cells (31, 32), and further evidenced by the observation that

EAE cannot be transferred by antibodies alone. The role of CD4+ T

cells in MS has been further demonstrated by the strongest genetic

susceptibility conferred by HLA class II alleles (15), susceptibility of

HLA class II-carrying mice to demyelinating disease (33–36),

presence of CD4+ T cells in inflammatory brain lesions (37), and

the involvement of CD4+ T cells in several other arms of adaptive

immunity such as antibody production and CD8+ T

cell maturation.

TH1 and TH17 CD4
+ T cells have been linked to MS disease with

identification of these specific subsets in MS brain lesions and

correlation of TH1 cytokine-producing cells in peripheral blood

with MS relapses (38–41). Further studies have also demonstrated a

role for a unique intermediate population of TH1-like TH17 CD4
+ T

cells in MS which are associated with relapse, predominant in the
frontiersin.org
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CSF of early disease pwMS and can be isolated from MS brain

lesions (42, 43). High avidity CD4+ T cells with specificity for

selected myelin antigens have also been shown to produce

interferon-g (IFNg) and have a TH1 phenotype in persons with

MS (pwMS) (44–47). A clinical trial of a myelin basic protein

(MBP) altered peptide ligand (APL) showed exacerbations in some

MS patients, and further investigation showed cross-recognition

between the APL and MBP driven by CD4+ T cells which were

skewed towards a TH1 phenotype (45). In addition to TH1, CD4
+ T

cells with a TH17 phenotype have also been detected in MS brain

lesions and have been shown to be necessary for the development of

EAE (48, 49). Follicular helper CD4+ T cells (TFH) cells provide help

to B cells for their maturation, affinity maturation and antibody

production, and germinal centre formation, and this essential link

between humoral and cellular immunity makes them of key interest

in MS pathology due to the involvement of B cells in disease.

Activated TFH cells have been shown to be increased in peripheral

blood, their frequency correlated with disability and are detectable

in brain lesions in MS (50–52).

The role of CD8+ T cells is less clear though several observations

suggest their involvement in MS such as high abundance in MS

lesions, low or transient expression of HLA class I molecules on the

surface of microglia, oligodendrocytes and neurons (53, 54), and

observations that EAE does not develop in B2-microglobulin

knockout mice (55). Several HLA class I associations with MS

have also been identified, such as the strongest known protective

alleles HLA-A*02:01 and HLA-B*38:01 (25) mentioned above,

although untangling HLA associations with disease is notoriously

difficult due to linkage disequilibrium and also other factors such as

killer-immunoglobulin receptor (KIR) type, which can have a

significant effect on immune activation in natural killer (NK) cell

subsets (56). In addition, HLA-A*02:01 protection against MS may

be related to actions in the type I interferon system rather than

peptide binding and activation of CD8+ T cells (57). Myelin-reactive

CD8+ T cells have also been characterised – although to a lesser

extent than CD4+ T cells – and have been isolated from both pwMS

and healthy individuals. Studies of brain-infiltrating CD8+ T cells in

MS have shown their TCR repertoire to be oligoclonal, suggesting

antigen-specific migration or expansion within the CNS (58, 59),

and other studies have directly enumerated autoantigen-specific

CD8+ T cells from peripheral blood of pwMS (60, 61).
Mechanisms of pathogenic
cross-reactivity

A long array of infectious agents have been associated with MS

however the strongest evidence lies with EBV and – to some extent

– human herpesvirus 6A (HHV-6A) (2, 62–65). In addition to this,

the long-list of MS-associated autoantigens has grown in recent

years which has broadened the focus of research in this area and led

to some debate on which antigens and pathogens are pathologically

relevant in neuroimmunological demyelinating disease (66–72).

The association of these viruses and other pathogens in the
Frontiers in Immunology 03
context of the molecular mimicry with CNS autoantigens in MS

will be discussed in this review.

MS has long been associated with previous EBV infection (73)

and, while the exact mechanism remains to be fully characterised,

the different theories have been summarised previously (65) (Figure

1). Despite uncertainty surrounding the sequence of events which

eventually lead to MS, it has been established that EBV infection

almost always precedes disease development. There is in fact a delay

between infection and onset of neurological symptoms and also a

lack of neurological symptoms in individuals with acute

symptomatic EBV infection, also known as infectious

mononucleosis (IM) (73–76). This interval between infection and

neurological disease onset could potentially reflect a time delay

between initial priming of pathogenic immune responses and

epitope spreading within antigens or to new ones, which over

time leads to inflammatory demyelinating disease. In support of

this view, altered adaptive immune responses to EBV antigens have

been identified in MS (77–80) and some have been found to cross-

react with human proteins, leading researchers to conclude that

molecular mimicry may have a key role in MS development.

Despite many links between viruses and MS, direct evidence that

viruses can trigger molecular mimicry leading to initial CNS

autoimmune demyelinating disease is lacking in humans. However,

proof of concept was shown in an EAE model using recombinant

Theiler’s murine encephalomyelitis virus (TMEV) expressing a

naturally occurring proteolipid protein (PLP) molecular mimic

from H. influenzae. Early onset EAE could be induced in SJL/J

mice by TMEV infection, but disease was not triggered when the

same peptide was used to vaccinate in complete Freud’s adjuvant,

suggesting that virus activation of antigen presenting cells (APC) is

necessary for disease development in this model (81). An additional

study by Ji et al. used a recombinant Vaccinia virus expressing myelin

basic protein (MBP) to trigger autoimmunity in Rag2-/- mice

expressing an MBP-specific CD8+ TCR (82). Disease was also

triggered in mice after infection with the wild type Vaccinia vector

which did not contain MBP but immunisation with peptide plus

adjuvant only did not trigger disease, indicating that viral infection

was necessary to break tolerance to CNS antigens in these models. A

further study investigating the role of CD8+ T cells used a mouse

model where oligodendrocytes expressed ovalbumin (OVA) and

showed that even high numbers of high avidity OVA-specific

CD8+ T cells could not induce EAE, and that these cells were in

fact deleted from the immune repertoire to prevent autoimmunity

under normal non-infected CNS conditions or during peripheral

infection with OVA-expressing Listeria bacteria. In contrast, when

mice were intracerebrally infected, OVA-specific CD8+ T cells

destroyed oligodendrocytes and induced demyelination (83).

These examples from EAE indicate that autoreactive T cell

responses to myelin antigens are not solely sufficient to initiate CNS

autoimmunity and that additional triggers are required to break

tolerance, such as virus-mediated activation of APC or a blood-

brain barrier permeabilisation event. In support of this view is the

observation that myelin-specific T cells can be detected in healthy

individuals (84, 85), however it could be that activation of these

autoreactive T cells in the periphery through molecular mimicry to
frontiersin.org
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foreign antigens skews them towards a pathogenic phenotype

capable of migrating to and targeting CNS tissue (Figure 1).
Particular examples of cross-reactivity
between CNS and foreign antigens
in MS

A general problem with most descriptions of molecular

mimicry T cell specificities is to know if these indeed have

pathogenic roles or whether they represent innocuous

epiphenomena, which is difficult to prove in humans. However,

for some, there is epidemiological evidence for an association to
Frontiers in Immunology 04
disease and in the following paragraphs we discuss a set of

autoantigen mimicry suspects. A full list of the foreign antigen

cross-reactivity with CNS proteins discussed in this article is

summarised in Table 1.
EBNA1 as a source of mimicry
epitopes to Anoctamin-2, a-crystallin
B and Glial cell adhesion molecule

Several studies have shown that elevated antibody responses to

certain antigens from EBV are elevated in MS, in particular

immunoglobulin G (IgG) responses to the EBNA1380-440 region
FIGURE 1

Schematic of the immunopathology of multiple sclerosis. Environmental and genetic factors affect development of neuroinflammatory mechanisms in
MS. Exposure to foreign antigens primes humoral and cellular immune responses with cross-reactivity to self-antigens in the CNS. Human leukocyte
antigen (HLA) – HLA-DRB1*15:01 – on the surface of APC present foreign or autoantigen peptides and shape the CD4+ T cell repertoire via central
tolerance mechanisms in the thymus. Infections such as EBV and HHV-6A are associated with increased MS risk and drive elevated antibody responses
to viral proteins which have been observed in pwMS, such as increased EBNA1-specific antibodies. The role of the EBV-infected memory B cell
compartment in MS is not fully understood, but may be attributed to several factors which could predispose to autoimmunity such as: providing a
source of molecular mimicry epitopes throughout life which can prime pathogenic and cross-reactive CD4+ T cell and antibody responses, processing
and presentation of antigens to prime T cells, production of proinflammatory cytokines, rescuing of autoreactive B cells from apoptosis and/or
modulation of innate and adaptive immune mechanisms via expression of viral immune evasion proteins. Gut microbiota associated with MS such as
Acinetobacter calcoaceticus and Akkermansia muciniphila may influence CNS autoimmunity by providing molecular mimicry epitopes or driving a
proinflammatory milieu which could lead to breakdown of immune tolerance via bystander activation of autoreactive T and B cells. (1) Priming of T cells
and B cells with reactivity to foreign antigens and/or autoantigens in the periphery, autoproliferation is driven via interactions between T cells and B cells
in pwMS and leads to clonal expansion. Elevation of antibodies with reactivity to viral and/or autoantigen in the periphery. (2) Blood-brain barrier
alterations lead to migration of lymphocytes to the CNS where they mediate inflammation. (3) CD4+ T cells interact with B cells and activated microglia
in the CNS, CD8+ T cells interact with neurons and oligodendrocytes via HLA class I molecules. (3) Antibodies and cytokines are released driving
inflammation and lesion formation. (4) Breakdown of myelin sheaths leads to neuronal axonal damage and demyelination over time. CNS, central
nervous system; HLA, human leucocyte antigen; EBV, Epstein-Barr virus; HHV-6A, Human herpesvirus 6A; IFNg, interferon-g; IL-2Ra, interleukin-2
receptor a; IL-17, interleukin-17; GM-CSF, granulocyte macrophage stimulating factor. Created with BioRender.com.
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have a MS odds ratio of approximately 8 and have also been shown

to interact with HLA-DRB1*15:01 to increase disease risk further

(19, 24, 64). In addition, elevated serum neurofilament levels have

been shown to positively correlate with EBNA1 IgG in MS,

indicating that there is a relationship between CNS injury and

humoral responses to EBNA1 which occurs before disease onset

(73). However it is not fully understood what is causing elevated

EBNA1 antibody responses in MS and, as this elevation is specific to

MS and interacts with HLA-DRB1*15:01, may suggest that

molecular mimicry with CNS antigens are driving the EBNA1

antibody response. In support of this view, several epitopes within

the MS-associated EBNA1 region have been identified with similar
Frontiers in Immunology 05
amino acid sequences to CNS autoantigens (68, 69, 139, 153). On

the other hand, increased EBNA1 antibody responses in MS may be

due to a frustrated EBV-specific immune response, where HLA-

DRB1*15:01 is a poor class II allele in the context of EBV immune

control. In one study humanised mice that were immune

reconstituted from HLA-DRB1*15:01+ donors had increased

steady state activation of CD4+ and CD8+ T cells and poor virus

control evidenced by high EBV viral loads, compared to mice which

were reconstituted with an allele not associated with increased MS

risk (155). These findings suggests a synergistic interaction between

EBV infection and HLA-DRB1*15:01 which primes a hyperactive

adaptive immune compartment, leading to poor viral control and
TABLE 1 Selected molecular mimicry between foreign and host CNS antigens in MS.

Autoantigen Human T
cell
response

Human B
cell/anti-
body
response

EAE T cell molecular mimicry B cell/anti-
body
molecular
mimicry

Myelin
oligodendrocyte
glycoprotein
(MOG)

(45, 85–92) (87, 93–97) (98–103) Human NFM (104) Butyrophilin (105,
106), HERV-W (in
vitro only) (107),
Influenza-A virus
haemagglutinin
(108), Acinetobacter
sp. 3-oxo-adipate-
CoA-transferase
subunit A (EAE)
(93)

Proteolipid
protein (PLP)

(45, 47, 109–
113)

(94, 113–
116)

(117, 118) Human coronavirus 229E (119), Human coronavirus OC43 (119), A.
castellanii (EAE model) (120), H. influenzae (EAE model) (81, 121),
S.cerevisae (CD8+) (122)

-

Myelin Basic
protein (MBP)

(45, 46, 123–
129)

(93, 94, 97,
116, 128,
130, 131)

(36, 102,
103, 132–
134), HBV
polymerase
molecular
mimicry
(135)

EBV BALF5 (136–138), Herpes simplex UL15 (136), Herpes simplex
DNA polymerase (136), Adenovirus type 12 ORF (136), Pseudomonas sp.
phosphomannomutase (136), HPV type 7 L2 (136), Influenza type A HA
(136), Reovirus type 3 sigma 2 protein (136), EBV EBNA1 (EAE) (139),
EBV LMP1 (EAE) (140), HHV-6 U24 (141), Human coronavirus 229E
(119, 142), Human coronavirus OC43 (119), human and bacterial
GDPLFS (70), Vaccina virus (EAE) (82), large T antigen JC virus (EAE)
(143), Herpesvirus saimiri (EAE) (144), Cpn0483 C. pneumoniae (EAE,
rat MBP) (145).

EBV EBNA1 (139,
146), EBV LMP1
(140, 147),
Acinetobacter sp. 4-
CMLD (EAE) (93),
P. aeruginosa g-
CMLD (93)

a-crystallin B
(CRYAB)

(69, 148) (69, 94, 97,
149, 150)

Priming in
EAE (69)
(103, 151),

– EBV EBNA1 (69,
152)

Glial cell
adhesion
molecule
(GlialCAM)

(153) (153) (153) – EBV EBNA1 (153)

Anoctamin-2
(ANO2)

– (67, 68) - – EBV EBNA1 (68)

RAS guanyl
releasing protein
2 (RASGRP2)

(71, 72) - - HLA-DR (71), EBV BPLF1 (71), EBV BHRF1 (71), A. muciniphila (71),
HLA-DR-derived self-peptides (71)

-

GDP-L-fucose
synthase
(GDPLFS)

(70, 92) - - Bacterial GDPLFS (70), MBP (70) -

HLA-DR-derived
self-peptides

(71) – – RASGRP2 (71), EBV BHRF1 (71), EBV BPLF1 (71), A. muciniphila (71) –

Myelin-associated
glycoprotein
(MAG)

- (94, 97, 154) (102) – Bovine casein (154)
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facilitating the generation of cross-reactive pathogenic T

cell responses.

Α-crystallin B (CRYAB) is a small heat shock protein which is

expressed in oligodendrocytes and has been shown to have paradoxical

roles in MS: both in protection from harmful inflammatory innate

immune mechanisms via chaperone activity and also conversely as the

target of adaptive T cell responses in a proinflammatory environment

(148–150, 156). This multifaceted role somewhat confounded the MS

field and cast doubt on CRYAB’s role as an autoantigen in MS,

however antibody responses to CRYAB were recently revisited in a

large Swedish cohort and showed 27.6% of pwMS and 16.9% of

controls to have IgG responses to CRYAB peptides with homology

to EBNA1, and were associated with MS (OR=1.98) (69). Risk was

further increased with an OR of 8.99 when combined with high

EBNA1 IgG responses in individuals. Reciprocal blocking

experiments showed that CRYAB IgG responses were blocked when

the homologous EBNA1 epitope was spiked into sera, and the core

homologous epitope between these antigens was mapped to a RRPFF

motif at CRYAB11-15 and EBNA1402-406. Similarly, another group

identified cross-reactive antibodies targeting the RRPFF motif in

oligoclonal bands of pwMS (152), and interestingly the CRYAB

sequence contains a PxxP motif similar to that found in MBP and

several antigens from herpesviruses discussed later in this review. In

addition, the high frequencies of EBNA1- and CRYAB-specific T cells

observed in natalizumab-treated pwMS produced IFNg and

immunisation of mice with CRYAB or EBNA1 protein elicited T cell

responses to the reciprocal antigen, also indicating cross-reactivity on

the T cell level (69). The role of CRYAB as an autoantigen is complex

and autoantibodies such as those that target intracellular antigens may

not be directly pathogenic, however generation of high affinity

antibodies depends on T cell help, and therefore they could be

markers of a T cell response which is able to target intracellular

antigens in autoimmune disease. In support of this view, B cells have

been shown process and present epitopes from the antigen that they

have Ig specificity with greater efficiency to T cells which have TCRs

that respond to the same antigen (157). In addition, LMP1 expression

has been shown to enhance antigen presentation and co-stimulation in

EBV-transformed B cells via CD70, OX40 ligand and 4-1BB, which

may have a role in priming of pathogenic autoreactive T cell

responses (158).

The presence of CRYAB IgG in only a subset of pwMS suggests

involvement of other autoantigens in the non-responders, and a

recent study by Lanz et al. identified clonally expanded plasmablasts

in the CNS of pwMS and identified their target epitope as a

sequence shared between EBNA1 and glial cell adhesion molecule

(GlialCAM) (153). These antibodies bound a core epitope within

the MS-associated region of EBNA1 at residues 394-399 which is

directly next to the CRYAB homologous epitope and cross-reacted

with GlialCAM377-383, again both sequences contain PxxP motifs. In

addition to this, the authors noted that affinity for the GlialCAM

epitope was increased with the phosphorylation of the serine

residue at position 376, and increased antibody reactivity to these

core epitopes was also demonstrated in the plasma of pwMS

compared to controls. SJL/J mice which were initially immunised

with EBNA1386-405 peptide had a worse EAE disease course

compared to a scrambled peptide control and the mice developed
Frontiers in Immunology 06
antibody responses to GlialCAM indicating generation of cross-

reactive responses. Also similar to CRYAB, GlialCAM is expressed

by oligodendrocytes and astrocytes in the CNS and is also present in

chronic active lesions of MS (159, 160). Whilst no study so far has

investigated both GlialCAM and CRYAB responses in individuals,

it would be interesting to understand whether pwMS have

responses to both antigens or whether these are restricted by

different HLA. It is possible that the close proximity of these

epitopes could lead them to be differentially processed and

presented on surface HLA, or it could lead to their restriction by

the same HLA.

Anoctamin-2 (ANO2) is a calcium-activated chloride channel with

8 membrane-spanning domains which is predominantly expressed in

neurons and glial cells in the CNS, and also has high expression in the

retina and in MS lesions (67). ANO2 was identified as a target of

autoantibodies in MS in a large screening study and responses were

found to be positively associated with HLA-DRB1*15:01, with an

adjusted OR of 17.3 (67). Furthermore, combination of several risk

factors including ANO2 IgG positivity, high EBNA1 IgG, presence of

HLA-DRB1*15:01 and absence ofHLA-A*02:01, produced a combined

OR of over 26 (68). A later study went on to confirm the association of

ANO2 IgGwithMS in a larger cohort of almost 16,000 individuals, and

identified cross-reactivity of ANO2140-149 antibody responses with

EBNA1431-440 which is also in the MS-associated region (68). In

addition to HLA-DRB1*15:01, 14 other HLA alleles were found to be

associated with ANO2 IgG levels, indicating that epitopes from ANO2

can be presented by multiple different HLA and providing indirect

evidence that there may also be ANO2 T cells in MS. Interestingly the

strongest HLA effect on ANO2 IgG levels was a protective effect for

HLA-DRB1*04:01, which the authors speculate could be due to

increased elimination of high affinity ANO2-specific T cells in the

thymus; the same effect was also observed for EBNA1 IgG levels, again

indicating potential cross-reactivity on the T cell level.

Given that EBNA1-specific antibodies have now been reported

in several studies to cross-react with multiple human proteins

including MBP (discussed later in this review), CRYAB,

GlialCAM and ANO2 (68, 69, 139, 146, 153), all of which were

found to be elevated in pwMS and were associated with disease,

what evidence is that EBV infection may have triggered these

responses? Tengvall et al. showed that ANO2 IgG responses could

be detected in a pre-MS cohort (68), indicating that responses

appear before clinical onset of disease, an observation that has also

been published for EBNA1 IgG (73). Additionally, it is very rare to

detect antibody responses to ANO2, GlialCAM and CRYAB in

individuals without evidence for a prior EBV infection, particularly

EBNA1 IgG, indicating that EBV infection may be a prerequisite for

the development of these autoantibodies and implying that

molecular mimicry may be driving development of these

responses. Presence of a CRYAB IgG response was also shown to

be negatively correlated with ANO2 IgG in individuals, suggesting

that these autoantibodies likely do not develop in the same

individuals which could be due to factors such as HLA type (69)

and that different autoantigens lead to MS disease in individuals.

However, the autoantibodies with cross-reactivity to EBNA1

described above were each only detected in a relatively small subset

of pwMS, suggesting that these cross-reactive antibodies are not
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necessary for disease in all patients. It is likely that further

undiscovered autoantigen cross-reactivity exists or it could be that

the cross-reactive antibodies are not themselves pathogenic in the

majority of MS cases, but are instead biomarkers for a T cell

response which is responsible for mediating autoimmune damage,

as has been observed for other autoimmune diseases such as

Addison’s disease and diabetes mellitus (161, 162). Additionally,

GlialCAM and ANO2 epitopes are both within intracellular

domains and CRYAB is expressed intracellularly and are

therefore not exposed, making it difficult to assume direct

autoantibody-mediated damage to the CNS; although this cannot

necessarily be excluded as several examples exist of pathogenic

autoantibodies which bind intracellular targets such as GAD65,

proinsulin and IA-2 in diabetes (163). Plasmapheresis is only

therapeutically effective in a subset of MS patients (164) which

suggests that it is not the antibodies themselves that are responsible

for MS disease but the pathogenic T cell responses that they mark.

Although positive responses to plasmapheresis in patients with

histological lesion patterns type I and II, and particularly in

individuals who showed signs of a humoral response, could

indicate that autoantibodies drive disease in some individuals

(165). In addition to this, evidence for T cell responses to EBNA1

mimics has been shown both in EAE immunisation models and in

humans (69, 139, 153) and, although no direct evidence for cross-

reactivity on the single T cell level has been so far shown, this is

likely to be present, although the potential relevance of these

responses to MS development and progression remains to

be determined.

Other scant reports of further antibody cross-reactivity between

EBV proteins and autoantigens have been described such as that

of EBNA1 IgG with heterogeneousnuclear ribonucleoprotein

L (HNRNPL) (166), although these were not found to be

increased in the plasma of pwMS compared to controls. Antibody

cross-reactivity has also been reported for BFRF3 with septin-9 and

BRRF2 with the mitochondrial protein dihydrolipoyllysine-residue

succinyltransferase (DLST), although again these responses were

only in a subset of patients and need to be confirmed in larger

cohorts (167). As with most of these reports, validation in large

cohorts are required to identify the frequency of these responses in

patients and their relevance to neuroinflammatory disease, however

the mounting reports of cross-reactivity between EBV and self-

antigens suggest that there are multiple disease relevant

autoantigens in MS and that each individual may have specific

profiles of reactivity.

Another potential consideration is the promotion of tolerance

breakdown and molecular mimicry by EBV-mediated immune

dysregulation. EBV encodes several viral mimics of human

proteins with essential roles in immunity and have evolved over

thousands of years to facilitate viral escape from the immune

system, and one such example is the viral CD40 mimic latent

membrane protein 1 (LMP1). CD40 is a co-stimulatory molecule

expressed on APC and is particularly essential for B cell activation

via its function as a co-receptor for the B cell receptor (BCR),

interaction with CD40 ligand (CD40L) on T cells and amplification

of innate mechanisms such as TLR signalling (168–172). LMP1 has
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signalling in B cells with promote activation, germinal centre

formation and production of cytokines and antibodies (173). One

study of a transgenic mouse model which constitutively expressed

the cytoplasmic tail of LMP1 showed that animals were prone to

autoantibody production and immune dysregulation but had no

signs of clinical disease (174). However, when these animals were

immunised with EBNA1, they showed markedly increased

inflammatory cellular and humoral responses compared to

animals without LMP1 with T cells producing IFNg and IL-17

cytokines. Additionally, expression of LMP1 was shown to drive

molecular mimicry between EBNA1 and the systemic lupus

erythematosus-associated autoantigen Sm (174). Incidentally, the

Sm-homologous epitope is at EBNA1398-404 and overlaps almost

identically with the region reported to contain homology to

GlialCAM and CRYAB in MS (69, 153). Whilst the authors do

not report increased neurological symptoms in these animals, it

would be pertinent to also investigate whether transgenic

expression of LMP1 also facilitates molecular mimicry with

CNS autoantigens.

Other EBV-encoded mimics of host antigens include BCRF1

which contains homology to interleukin-10 (IL-10) and BHRF1

which is a mimic of Bcl-2, proteins which limit host immune

responses to pathogens and promote survival of infected B cells

respectively (175, 176). In addition to this, multiple EBV proteins

have been shown to modulate antigen processing and presentation in

infected B cells, suggesting even further ways in which the virus may

shape adaptive immune responses to mimicry epitopes (176–179),

and this is an avenue in which there has been very little research in

the context of autoimmunity. Given these observations, one can easily

imagine how high expression of EBV-encoded immune mimics and

modulators such as LMP1 during acute infection or IMmay facilitate

the breakdown of tolerance, and indeed history of IM has been

demonstrated to increase MS risk (19, 22, 23). Of further relevance to

MS immunopathology is how EBV-mediated modulation of

immunity differs throughout life from childhood to adolescence

given the increased risk of developing MS with delayed EBV

primary infection (62). For example, studies in mice have shown

that a specific population of early-differentiated natural killer (NK)

cells expand prior to CD8+ T cells and is involved in virus control

during early infection (180, 181). Further study of the analogous

population in humans showed that early differentiated NK cells

diminished with age and may be involved in protection of children

from EBV infection and IM (182). Furthermore, proliferative and

cytokine production of CD56BRIGHT NK cell have been demonstrated

to be diminished in pwMS (183) indicating that this population may

also be impaired in its response against EBV, but further study of NK

cell function in pwMS are needed to establish their relevance.

It is evident that cross-reactivity occurs between CNS and viral

antigens, however the time and space of exposure to virus antigens

may be one of the key determinants for developing MS. Indeed,

does EBV’s unique life cycle and persistence in the B cell

compartment throughout life mean that this virus is uniquely

positioned to trigger CNS autoimmunity? Evidence for this could

be derived from observations that the T cell and antibody response
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to EBNA1 only emerge 3-6 months post primary infection (184)

and the delay also exists between seroconversion and development

of MS in individuals (74).
Myelin basic protein

Proof of concept that virus peptides could induce CNS

autoimmunity to was shown by Fujinami and Oldstone in 1985,

where rabbits immunised with either MBP or a homologous peptide

from Hepatitis B virus (HBV) polymerase developed EAE (135).

Since then, multiple studies in both human and animal models have

demonstrated the ability of T cells generated against MBP to target

other antigens.

T cell molecular mimicry between myelin and EBV antigens in

humans was first reported by Wucherpfenning and Strominger who

isolated T cell clones which responded to MBP85-99 (136). Amongst

the epitopes which activated the MBP85-99-specific T cell clones was a

peptide from EBV DNA polymerase (BALF5627-641) in the context of

MS-associated alleles HLA-DRB1*15:01 and HLA-DRB5*01:01

respectively, and these clones were subsequently tracked to the

cerebrospinal fluid (CSF) of patients and the TCR:peptide-HLA

structure solved (137, 138). This cross-recognition of BALF5 and

MBP peptides in the context of differentHLAmolecules demonstrated

that TCRs can even recognise different complexes as long as there is

similar overall structure and charge of residues. Interestingly, the same

study showed that MBP85-99-specific T cell clones were also activated

by multiple other viral and bacterial epitopes – some of them with no

clear amino acid homology to the original MBP peptide – including

peptides from human papilloma virus (HPV), herpes simplex virus

and influenza A virus amongst others (136).

The long-established association of elevated EBNA1 IgG with

MS suggests that this response may have a role in disease pathology.

Early research by Bray et al. discovered two homologous epitopes in

EBNA1 and MBP and isolated antibodies with specificity for the

MBP-homologous EBNA1 epitope from oligoclonal bands in the

cerebrospinal fluid (CSF) of 85% pwMS in their cohort (146). This

provided early evidence that, rather than simply biomarkers,

elevated EBNA1-specific IgG responses may target myelin and

have a role in MS disease mechanisms. A later study identified

antibody responses to EBNA1411-426 which were specific to

untreated MS-patients and were also able to bind MBP205-224
(139). Whilst the study cohort was small, IgG responses to

EBNA1411-426 were higher in untreated pwMS but low/no

responses could be detected in individuals undergoing interferon-

b therapy. Furthermore, mice immunised with EBNA1411-426
amounted both T cell and antibody responses to MBP, despite

low amino acid sequence homology between these two regions

(139). Whilst this data from a mouse model is intriguing and

suggests T cell cross-reactivity, there are currently no examples of

dual-reactive human EBNA1-specific T cells which have been

investigated on the single cell level. It is also important to note

that oligoclonal bands in MS have been shown to contain

specificities for multiple viruses in addition to EBV EBNA1, and

therefore there is some debate around their role in CNS
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for molecular mimicry.

Sequence similarity between MBP and the EBV latent antigen

LMP1 was also identified by a small study which used phage display

to recreate clones from B cells in peripheral blood of pwMS (147).

Reverse engineering of sequences from MBP-specific antibody

variable domains showed similarity to previously identified

LMP1-specific antibody sequences, and were subsequently found

to bind recombinant LMP1 by Western blot. Further in vivo

analysis showed that MBP- or LMP1-immunised mice produced

antibody responses to the reciprocal antigen, and comparison of

responding B cell repertoire clonality was suggestive of greater

epitope spreading in the LMP1-immunised animals (140). CD4+ T

cells from LMP1-immunised mice also showed proliferation

following in vitro MBP re-stimulation suggesting cross-priming of

T cell responses in vivo (140). Despite these findings, no obvious

amino acid homology exists between MBP and LMP1 antigens,

however this does not necessarily exclude the presence

of structurally similar epitope/s as has been previously shown

(186). However, as for EBNA1 T cell responses, comprehensive

analysis of LMP1-specific adaptive responses in MS cohorts is

needed to determine the relevance of this cross-reactivity for

disease pathogenesis.

Epidemiological evidence has also linked HHV-6A to increased

risk for developing MS, and antibody responses to immediate early

protein 1 (IE1) from HHV-6A in a pre-MS cohort showed an

increased MS risk with an OR of 2.22 (63). Interestingly, this effect

was only observed for IE1 IgG responses to HHV-6A and not for the

HHV-6B strain which was instead negatively associated with disease

(OR=0.74) (63). As the study used sequence variation in IE1 to

distinguish between infection with HHV-6A and 6B, it is so far not

known whether the risk associated with HHV-6A IE1 IgG responses

is due to the IE1 response itself or the virus that it marks. However, a

previous study by Tejada-Simon et al. identified dual-specific T cell

responses with reactivity to MBP96-102 epitope and HHV-6 U244-10
which share 6 out of 6 identical amino acids across a PxxP motif

(141). Approximately 50% of T cells which responded to MBP also

responded to this HHV-6 U24 epitope and produced predominantly

TH1 cytokines and patients with dual-specific responses also had

increased antibody titres to both peptides, indicating a direct link

between dual-specific cellular and humoral responses to the same

epitopes (141). HHV-6A and B strains share over 90% sequence

identity and the U24 PxxP amino acid motif which is relevant for

cross-recognition with MBP is conserved between both A and B

strains. However, different phosphorylation patterns in the MBP-

homologous U24 region may affect immune recognition of this

epitope or interaction with cellular proteins (187). Alternatively, the

difference in MS risk between these strains could be due to increased

susceptibility to HHV-6A infection of KIR2DL2-carrying MS

patients or to U24-mediated disruption of MBP-Fyn interactions

which stabilise myelin (188, 189), and further research is needed to

elucidate the exact mechanisms of HHV-6A in MS.

Proof that a virus peptide with homology to a myelin antigen

with a core of only 5 amino acids could induce disease in EAE was

first demonstrated in by Gautam et al. in 1998, where a PxxP motif
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peptide from Herpesvirus Saimiri with amino acid homology to

MBP1-11 was able to induce disease in EAE (144). PxxP amino acid

motifs can be found in MBP and multiple other proteins from

herpesviruses such as HHV-6 U24, Human Herpesvirus 7 (HHV-7)

U24, human Cytomegalovirus (HCMV) UL25 and UL42, Varicella

Zoster Virus (VZV) ORF0, Herpes Simplex Virus-1 (HSV-1) UL56

and EBV LMP2A – the latter of which contains four PxxP motifs

(189). These viruses are all in the Herpesviridae family and persist

in the human host throughout life, although they have vastly

different cell tropisms and immune evasion mechanisms which

may affect the availability of antigens to prime responses. As

previously mentioned, several of these viruses are associated with

MS risk – with EBV and HHV-6A showing increased odds ratios

(62, 63, 190) whilst CMV is associated with protection (191, 192).

So far, T cell molecular mimicry has only been identified between

HHV-6 U24 andMBP in humans, and it is possible that sequence of

infection with these viruses throughout childhood and early

adulthood shapes the T cell repertoire, predisposing some

individuals to CNS autoimmunity through cross-reactivity.

Further research is needed to establish the relevance of cross-

reactive MBP PxxP motifs with viral antigens, and in particular

how this might develop throughout challenge with multiple

homologous epitopes from viruses.

It seems evident that multiple virus infections have the potential

to induce immune responses which cross-recognise MBP, however

this may be in part due to pre-existing T cells in the periphery with

low to moderate avidity for MBP which escape thymic tolerance

mechanisms, despite some expression of MBP in the thymus (193,

194). The escape of MBP-specific T cells from negative selection

during central tolerance may be due to the generally lower avidity

with which MBP peptides bind to HLA-DRB1*15:01 rendering

them unstable, and peptides from MBP have also been reported

as promiscuous binders to multiple HLA class II alleles (123, 195,

196). One study demonstrated the ability of an MBP-specific TCR

to bind peptide:HLA with a wide range of orientation angles which

is possibly due to the scarcity of hydrogen bonds between at the

TCR:peptide interface, and this low affinity interaction may explain

TCR degeneracy and escape from thymic negative selection (197).

MBP-specific T cells can also be detected in healthy individuals

which suggests that they occur naturally but are less frequent, have a

less pathogenic phenotype, do not gain access to the CNS or are

prevented from causing disease by regulatory or other mechanisms

under normal conditions (46, 124, 198–202). Differences in MBP

peptide immunodominance have also been identified between

pwMS and controls (40, 124) although other studies have found

no changes in peptides targeted (109, 203, 204). However, it is

plausible that environmental exposure to pathogens which contain

molecular mimics to MBP – such as to Herpesviruses – could prime

or skew responses to different epitopes with higher potential to

cause CNS inflammation leading to MS development; so far there is

only sero-epidemiological evidence supporting for a role for EBV in

MS and to some extent HHV-6A.

More recently, microbiome studies in MS cohorts have led

researchers to investigate elevated antibody responses to some

bacterial species – such as Acinetobacter calcoaceticus, Akkermansia

muciniphila and Pseudomonas aeruginosa – for potential molecular
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mimicry (205, 206). These studies showed that antibodies from pwMS

with reactivity to MBP43-57 could bind to epitopes from both A.

calcoaceticus and P. aeruginosa 4- and g-carboxymuconolactone

decarboxylase (CMLD) respectively (93). A similar homology

between myelin oligodendrocyte glycoprotein (MOG) and 3-oxo-

adipate-CoA-transferase subunit A from Acinetobacter species was

identified (93), however only the MOG43-57-immunised animals

showed any sign of disease activity in ABH mice and disease could

not be induced by immunisation with the homologous bacterial

peptides. On the other hand, molecular mimicry is not the only

mechanism through which these bacteria have been suggested to play

a role in MS, and studies have shown that A. calcoaceticus and

A.muciniphila species are increased in the gut microbiota of pwMS.

Mice which are mono-colonised with these bacterial species have a

more severe EAE disease course and produce more proinflammatory

adaptive immune responses with fewer IL-10-producing regulatory T

cells (TREG) (207). In theory, induction of a proinflammatory

environment by these bacteria in the MS host could help to skew

pre-existing molecular mimicry responses to a pathogenic phenotype

which could lead to or influence progression of CNS autoimmunity.
Proteolipid protein

PLP is the most abundant protein in myelin and has two main

isoforms: the full-length version which is almost exclusively

expressed in the CNS, and the slightly shorter DM20 variant

which is missing a loop of 35 amino acids and is only expressed

in the periphery, thymus and lymph nodes (208, 209). The sequence

excluded from the thymus-expressed DM20 variant contains the

immunodominant PLP139-151 epitope which is a strong

encephalitogen in some EAE models such as SJL/J (117, 210).

SJL/J is a mouse model which is strongly predisposed to develop

EAE with epitope spreading during subsequent relapses to other

PLP epitopes and to MBP (117, 210). PLP139-151 is a frequent target

of high avidity T cells in MS (45) – most likely due to its exclusion

from thymic tolerance mechanisms – but several other

encephalitogenic PLP peptides have been identified in humans

such as PLP104−117, PLP142−153, PLP184−199, and PLP190−209, all of

which can be presented by the MS risk allele HLA-DRB1*15:01 (47,

109). PLP is also the target of antibody responses, with up to 58% of

pwMS in some studies showing antibody responses which are

sensitive to protein conformation (114, 115).

Although fewer examples of CNS cross-reactivity between PLP

and non-self antigens have been reported than for MBP, homology

between human coronaviruses (HCoV) and PLP led to the isolation

of several T cell clones from pwMS with dual-specificity for PLP and

HCoV 229E and OC43 strains. Clonality and TCRVb chain usage

off cross-reactive T cell clones was confirmed, although the study

did not enumerate frequency of these cells in peripheral blood of

pwMS (119). The relevance of HCoV T cell molecular mimicry with

CNS antigens is not certain and so far no further studies have

replicated these findings with no large-scale sero-epidemiological

studies have been presented. However, several reports globally of

new MS cases and disease exacerbations following severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or
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vaccination could suggest that exposure to SARS-CoV-2 antigens

may trigger autoimmune attack on the CNS in some individuals

(211), although there is currently no published functional evidence

to support this. However, a recent in silico study showed that the

nucleocapsid protein from SARS-CoV-2 shares significant overlap

with several MS-associated myelin proteins including PLP (212),

although this has not yet been investigated in vitro. On the other

hand, increased numbers of MS cases following SARS-CoV-2

exposure could be attributed to bystander activation of pre-

existing myelin-reactive T cells, or simply chance occurrences due

to the immense number of people who were infected or vaccinated

during the global Covid-19 pandemic. Further investigation is

warranted to determine if cross-reactivity between coronavirus

and neuronal antigens occurs in vivo.

As for MBP, sequence similarity between PLP and bacterial

antigens have been reported, and one study demonstrated that EAE

could be induced by both immunisation with PLP139-151 peptide or

with homologous epitopes from Haemophilus influenzae and

Acanthamoeba castellanii (81, 120, 121). The homologous peptide

from A. castellanii was able to induce EAE in SJL/J mice and

interestingly adoptive transfer of A. castellanii-specific T cells from

female mice could also induce disease, however the same T cells

derived from males could not (120). Further investigation of the

PLP-homologous epitope fromH. influenzae showed that induction

of EAE required delivery of the pathogenic epitope in a

recombinant Theiler’s encephalomyelitis virus (TMEV) vector,

suggesting that CNS autoimmunity requires virus-specific

activation of innate immune mechanisms in APCs such as Toll-

like receptors (TLR) to fully break immune tolerance and lead to

disease (81). In addition, further study of this model showed that

mice infected with the recombinant H. influenzae TMEV had a TH1

CD4+ response to the homologous PLP139-151 peptide but no

epitope spreading to PLP178-191. This was in contrast to the

PLP139-151 TMEV, where epitope spreading to PLP178-191 could be

detected and marked initial disease relapse in the SJL/J model (213).

Amino acid substitution in the primary contact residue of PLP139-

151 removed the ability of the virus to induce early EAE and

therefore indicated that this residue was necessary for induction

of pathogenic CD4+ T cell responses which drive early disease (121).

Together these data indicate the strong adjuvant effect of viruses on

autoreactive responses which are able to induce pathogenic TH1

CD4+ responses with rapid onset disease when combined with

molecular mimics to myelin antigens. However, in this model

epitope spreading readily occurred between PLP epitopes and

mediated disease relapse and/or progression but this was not

achieved between the foreign peptide and PLP. This suggests that

further factors may be needed to sustain chronic CNS

autoinflammation and long-term disease in this setting.

Although current evidence suggests a more important role for

CD4+ T cells in MS pathogenesis, the high abundance of CD8+ T

cells in MS lesions and oligoclonal TCR repertoires suggest that

these expand and may be antigen-specific (58, 59). However, other

studies have also shown myelin-specific CD8+ T cells to be present

in peripheral blood at the same frequency in pwMS as in healthy

individuals (214). The generally higher avidity of CD8+ TCR

interactions with peptide:HLA and lower degeneracy of CD8+ T
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features which perhaps emerged via evolution in order to limit

cross-reactive responses with the ability to bind peptide:HLA class I

complexes that are expressed almost ubiquitously on nucleated

cells. However, examples of CD8+ T cell cross-reactivity do occur

and Honma et al. described a HLA-A*03:01-restricted CD8+ T cell

clone with specificity for PLP45-53 that could cross-recognise a

peptide from Saccharomyces cerevisae in the context of HLA-

A*02:01 (122). Although infrequent reports of myelin-reactive

CD8+ T cell degeneracy may be in part due to the focus on CD4+

T cells in the MS research field. However, evidence from TCR

sequencing of blood, CSF and MS lesions all suggest a clonal

expansion of the CD8+ compartment in MS which may indicate

migration of antigen-specific CD8+ T cells to the CNS during

disease (58, 59), although the targets remain to be characterised

and these could equally have a regulatory or suppressive phenotype.

Interestingly, acute EBV infection – also known as infectious

mononucleosis (IM) – is also characterised by enormously

expanded oligoclonal CD8+ T cell repertoires directed against

EBV antigens which subside over several weeks to months (216–

218), however how these compare to the CD8+ compartment of MS

patients remains to be determined.

Even though few examples exist of direct mimicry between PLP

and foreign antigens, PLP remains one of the strongest

encephalitogens, and in vivo inter- and intramolecular epitope

spreading from initial PLP epitope responses is well-characterised

in some EAE models as is described above (117, 210, 219). Further

studies have shown EAE to be dependent on B cell presentation of

PLP and MOG antigens to CD4+ T cells (220, 221), and efficacy of B

cell depletion therapy in MS is thought to be partially due to

removal of the antigen-presenting function of B cells. In contrast,

fewer examples of epitope spreading from an initial PLP response

have been reported for MS, however there are reports of spreading

from MBP epitopes to PLP, and it is likely that each patient has a

unique sequence of responses which develop through disease

depending on their HLA type and other factors (222). However,

this does not discount the possibility that an immunodominant T

cell response to PLP139-151 in humans could, under the right

circumstances, lead to an inflammatory event causing breakdown

of the blood-brain barrier and lesion formation, after which epitope

spreading to other CNS autoantigens may occur. These events are

extremely difficult to investigate in humans due to the long

prodromal phase of MS and also the difficulty and ethical barriers

to sampling the affected tissue, ie. the brain and spinal cord.
Myelin oligodendrocyte glycoprotein

MOG is a minor myelin component and is a transmembrane

protein of the Ig superfamily. Overall, it constitutes less than 0.05%

of myelin and is located in the outer membrane, and this location

contributes to its relevance as an autoantigenic target as it is readily

accessible by autoantibodies targeting its extracellular domain (223,

224). MOG was identified as a candidate autoantigen following

observations that immunisation induces EAE and also the presence

of MOG-specific autoantibodies and T cell responses in MS (45, 85–
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87, 94, 95, 98). In the EAE model, MOG-specific autoantibodies

work synergistically with T cells to induce an inflammatory

demyelinating disease which replicates observations from MS

pathology (99, 225). An additional factor is MOG’s almost

undetectable expression in the thymus (208), leading to escape of

MOG-specific T cells from central tolerance mechanisms and which

also partly accounts for the detection of MOG-specific T cells in

some healthy controls as well as pwMS (85). MOG-reactive T cells

retained in the immune repertoire may then become activated by

environmental antigens with homology, which could lead to CNS

inflammation and disease.

Mode and situation of cross-reactivity has been demonstrated

to be important for priming of pathogenic cross-reactive responses,

such as that demonstrated for cross-reactivity between MOG and

the milk protein butyrophilin (BTN). BTN is a protein expressed in

mammary tissue and is a major component of milk fat globules and

has homology to MOG76-87 in its extracellular IgV-like domain.

Immunisation of rats with MOG76-87 caused disseminated CNS

inflammation characterised by infiltration of macrophages and

CD4+ T cells, but interestingly this could be ameliorated by

administration of the homologous BTN peptide either

intravenously or intranasally with animals showing markedly

decreased clinical scores (105). This amelioration is potentially

due to induction of TREG cells by the homologous BTN peptide,

and this protective effect could in theory also occur in humans who

consume bovine milk products into adulthood. However, further

studies have shown that mechanisms of oral tolerance are poorly

developed in babies, and tolerance may only be maintained when

oral exposure is continued past a certain age – as has been

demonstrated for oral tolerance to MBP in EAE (226). On the

other hand, consumption of dairy products has also been linked to

MS (227) and, although this finding remains controversial, cross-

reactivity of antibodies which could bind homologous epitopes

from both BTN and MOG were detected in the blood and CSF of

pwMS (106). In addition to BTN, animals immunised with bovine

casein were demonstrated to develop severe spinal cord pathology

and demyelination which was attributed to induction of antibodies

which bind to casein and cross-react with myelin associated

glycoprotein (MAG) (154). The authors also noted increased

antibody responses in pwMS compared to other neurological

disease controls, suggesting that loss of tolerance to casein and

molecular mimicry with MAG could contribute to disease in a

subset of patients. However, the contribution of dietary milk

proteins to MS pathogenesis remains to be fully elucidated in

large cohort studies.

In addition to dietary antigens, sequence similarity has been

identified between MOG and the human endogenous retrovirus W

(HERV-W) envelope protein. This led to the finding that MOG

autoantibodies could bind HERV-W protein (107) and one study

used a nanotechnology approach to show a proof of principle that

antibodies raised against MOG could cross-react with HERV-W

(107). HERV are remnant genetic material left in the human

genome following infection with retroviruses and constitute

around 7% of the human genome (228). Initial investigation of

HERV-W in MS brains was driven by isolation of HERV-W protein

from sera, CSF and brain samples of affected individuals (229). It
Frontiers in Immunology 11
has also been demonstrated that HERV can also lead to activation of

innate immune mechanisms through activation of Toll-like

receptor 4 (TLR4) in APC and contributing to a proinflammatory

milieu by driving TH1 responses. However, under these conditions,

it is also possible that autoreactive cells could become activated via

bystander mechanisms, and therefore the biological relevance of

this MOG cross-reactivity with HERV-W remains to be verified in

an MS cohort. Further studies by Sutkowski et al. demonstrated that

the env protein of HERV-K18 – a superantigen capable of activating

T cells expressing TCRVB13 – can become transcriptionally

activated by EBV (230, 231). This activation of TCRBV13+ T

cells was HLA-dependent but not restricted and may be involved

in autoproliferative mechanisms in MS.

Although several factors likely contribute to epitope spreading

as was discussed above for EAE, T cells isolated in response to the

encephalitogenic epitope MOG35-55 have also been characterised as

polyreactive to a similar sequence in neurofilament medium protein

(NFM15-35) in mice (104). Both epitopes share the same TCR

contact residues and could therefore potentially contribute to

epitope spreading in disease. However, observations from EAE

showed that NFM peptide did not expand MOG-specific T cells

to a sufficient threshold to induce disease and NFM knockout mice

had identical EAE disease to wild type animals indicating that,

although NFM is immunogenic at the polyclonal level, it fails to

expand high affinity MOG-specific T cells necessary for EAE

induction (104).
Guanosine diphosphate-L-fucose
synthase, RAS guanyl releasing protein
2 and HLA-DR

Reactivity to guanosine diphosphate (GDP)-L-fucose synthase

(GDPLFS) was first identified by systematically screening brain-

infiltrating CD4+ T cell clones from MS patients for reactivity to a

peptide library (70). T cell clones which responded to this antigen

secreted TH2 cytokines and were identified in the CSF and brain of

HLA-DRB3*02:02 positive individuals. Interestingly, GDPLFS

clones were found to cross-recognise a number of bacterially-

derived antigens as well as epitopes from other autoantigens such

as MBP, PLP and MOG (70). T cell clones which reacted to

GDPLFS could also respond to the dominant MBP83-99 epitope,

with other clones showing reactivity to PLP139-154. Given the dual

reactivity with bacterial epitopes, secretion of TH2 cytokines by the

cross-reactive GDPLFS T cell clone is interesting as TH2 cells have a

role in chronic inflammation and tissue repair (232). Given that the

T cell clones respond to bacterial epitopes it is possible that they

were initially primed in the gut. Also intriguing is that they were

isolated from an individual with pattern II lesion pathology which is

characterised by autoantibodies and complement deposition (233,

234), and an interesting avenue of future investigation would be to

characterise whether the organ in which they were primed affects

pathogenic T cell phenotype or subsequent lesion pathology in MS.

Auto-proliferation is defined as a spontaneous in vitro T cell

proliferation without stimulus and is an observed feature of MS
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patient peripheral blood mononuclear cells (PBMC) in several

studies (72, 235). Thorough examination of this phenomenon in

pwMS was performed by Jelcic et al. who identified that there was a

significant overlap of TCRVb sequences from brain-infiltrating T

cells in lesions and the auto-proliferating CD4+ T cell compartment

in peripheral blood (72). T cell clones were isolated from the auto-

proliferating blood compartment and their TCRVb sequence was

compared to those recovered from active lesions of the same HLA-

DRB1*15:01 homozygous MS patient. The authors were then able to

investigate specific clones which had infiltrated the brain and map

their the antigen specificity using combinatorial peptide libraries.

The cognate peptide from one T cell clone was mapped to a

sequence from RAS guanyl-releasing protein 2 (RASGRP2), a

previously unidentified MS autoantigen which is expressed in B

cells, striatal neurons and cortical grey matter in the brain but is not

a constituent of myelin, indicating that autoantigenic targets in MS

do not necessarily need to be myelin proteins (72).

Identification of this situation in MS pathogenesis identifies a

crucial link between peripheral activation of autoreactive CD4+ T

cells by B cells and their subsequent infiltration into the CNS. In this

scenario, B cells expressing high levels of HLA-DR present self-

peptides from autoantigens such as RASGRP2 and stimulate auto-

proliferative and auto-aggressive CD4+ T cells which subsequently

enter the brain. After their infiltration into the CNS, these cells

recognise RASGRP2 peptides presented in neuronal tissue and

mediate inflammation. However, in this case the activating

autoantigen in the periphery is the same as the target in the CNS,

indicating that there should in theory be removal of autoreactive T

cells via central tolerance mechanisms if the specified autoantigen is

expressed in the thymus. RASGRP2’s expression in the thymus is

not completely certain and it was not detected in thymic epithelial

cells (71, 236). However, RASGRP2 expression was detected in

some APCs in the thymus, indicating that RASGRP2-reactive T

cells may be negatively selected from the repertoire via interaction

with B cells and plasmacytoid dendritic cells (pDC) in the

thymus (236).

Evidence that RASGRP2 autoreactivity could be stimulated by

foreign antigens was demonstrated by Wang et al. who showed that

peptides from MS associated pathogens EBV and A. muciniphila

could also stimulate RASGRP2-specific CD4+ T cell clones in vitro

(71). Interestingly, the cross-reactive EBV peptide sequences were

derived from two lytic cycle antigens BHRF1 and BPLF1 which are

expressed at high levels during acute infection where their functions

are as a viral Bcl-2 homologue and a tegument deubiquitinase

respectively (175, 237). No responses were observed to peptides

from human HCMV or the bacterium Prevotella histicola, two

pathogens have been negatively associated with MS (191, 206, 238).

RASGRP2-specific T cell clones could also recognise HLA-derived

self-peptides (HLA-SP) from HLA-DRB1 albeit with lower avidity,

indicating that self-derived peptides are also partial agonists for

CD4+ T cells targeting RASGRP2 and may help to maintain these T

cells in the peripheral tissues via molecular mimicry (71). Some

RASGRP2-specific T cell clones were shown to have an IFNg+ TH1

phenotype, although the clone which was stimulated by EBV and A.
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muciniphila peptides had a TH2 phenotype and was isolated from a

MS patient with type II lesion pathology (71, 72). Ex vivo analysis of

T cell responses to peptides from RASGRP2, EBV and A.

muciniphila showed these to be targets of responses in

natalizumab-treated MS patients, indicating responses that had

been primed in vivo and supporting their pathological relevance

in this setting (71).

These data together suggest that HLA-DRB1*15:01-restricted

RASGRP2-specific T cells can become activated in the periphery via

both self-antigens and foreign peptides derived from EBV and A.

muciniphila, and also that these CD4+ T cells specifically infiltrate

the brain where they can be found in active lesions. This supports

the hypothesis in MS that CNS autoimmunity is either initiated or

maintained by pathogenic CD4+ T cell responses which are initially

primed by exogenous antigens but can respond to autoantigens,

leading to their recruitment to the brain where they mediate

inflammatory tissue damage. These data are striking, and further

investigation of RASGRP2 in large MS cohorts to establish the

frequency of responses to this autoantigen are warranted.
Conclusion

It is clear that cross reactivity between a variety of microbial agents

and host CNS autoantigens has been demonstrated, though in most

cases of unclear relevance forMS pathogenesis due to experiments with

low numbers of T cell clones or in artificial experimental animal

models. However, in large sero-epidemiological studies, EBV – and to

some extent HHV-6A – stand out. Especially for EBV, clear evidence

for molecular mimicry epitopes has been demonstrated and antibody

responses directed against these epitopes strikingly associate to

an increased risk for MS. This strongly supports their role in

MS pathogenesis, perhaps as markers for a concomitant T

cell autoimmunity.

These observations make a case for therapeutic intervention, in

particular if EBV drives the chronicity of the disease, perhaps with

EBV-specific low molecular antiviral agents, or vaccination of

individuals at risk for MS or at onset of disease. However, due to

the multiple CNS autoantigen mimics now identified in EBNA1390-

440, development of future EBV vaccines or adoptive T cell therapies

which include this antigen should either be designed with extreme

caution or avoided altogether lest MS disease be triggered or

exacerbated. The MS research field has reached an exciting stage,

however further extensive research is needed to fully elucidate the

role of foreign antigens which mimic autoantigens in the

development and progression of CNS demyelinating disease.
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