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Ruminant animals face multiple challenges during the rearing process, including 
immune disorders and oxidative stress. Green tea by-products have gained 
widespread attention for their significant immunomodulatory and antioxidant 
effects, leading to their application in livestock production. In this study, 
we  investigated the effects of Dried Tea Residue (DTR) as a feed additive on 
the growth performance, blood biochemical indicators, and hindgut microbial 
structure and function of Hu sheep. Sixteen Hu sheep were randomly divided 
into two groups and fed with 0 and 100  g/d of DTR, respectively. Data were 
recorded over a 56-day feeding period. Compared to the control group, there 
were no significant changes in the production performance of Hu sheep fed 
with DTR. However, the sheep fed with DTR showed a significant increase in IgA 
(p  <  0.001), IgG (p  =  0.005), IgM (p  =  0.003), T-SOD (p  =  0.013), GSH-Px (p  =  0.005), 
and CAT (p  <  0.001) in the blood, along with a significant decrease in albumin 
(p =  0.019), high density lipoprotein (p =  0.050), and triglyceride (p =  0.021). DTR 
supplementation enhanced the fiber digestion ability of hindgut microbiota, 
optimized the microbial community structure, and increased the abundance of 
carbohydrate-digesting enzymes. Therefore, DTR can be used as a natural feed 
additive in ruminant animal production to enhance their immune and antioxidant 
capabilities, thereby improving the health status of ruminant animals.
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Introduction

Ruminant animals, while having high production capacity, often face issues such as oxidative 
stress and metabolic disorders, primarily due to the high metabolic load and decreased immune 
adaptability (Oh et al., 2017; Gonzalez-Rivas et al., 2020). Natural plants have been recognized 
as potential remedies to improve animal health and maintain metabolic homeostasis (Besharati 
and Taghizadeh, 2009; Ramdani et al., 2023). Due to increasing concerns regarding the side 
effects of antibiotic drugs, their usage has been widely scrutinized and prohibited as feed 
additives (Tang et al., 2017). Tea, a widely consumed plant, contains a significant amount of 
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active compounds such as polyphenols. These compounds possess 
properties that can promote human and animal health (Yan et al., 
2020). In ruminant animals, feeding diets supplemented with 
polyphenol-rich ingredients has shown significant biological effects. 
These effects include improved animal productivity, enhanced quality 
of livestock products, increased immune competence, and reduced 
rumen methane emissions, among others (Jiménez-Ocampo et al., 
2019; Ku-Vera et al., 2020; Suresh et al., 2023). Therefore, plants rich 
in polyphenols and other active compounds have been used in the 
production of ruminants (Maghsoud et  al., 2008; Ramdani et  al., 
2013). Tea, for example, generates a significant amount of byproducts 
during processing, which contain abundant active ingredients such as 
polyphenols, polysaccharides, and catechins. As a result, tea extracts 
and other derivatives are being increasingly applied in the 
pharmaceutical and food industries (Duarah et al., 2023). Polyphenols, 
such as epicatechin and epigallocatechin gallate, are major components 
found in tea. They exhibit various biological activities, including 
antioxidant, anti-inflammatory, and anti-stress properties (Teixeira 
Oliveira et al., 2023).

There have been previous reports indicating that tea and its 
byproducts can serve as a source of protein, fiber, secondary 
metabolites, and minerals in ruminant diets. They can be used as 
natural feed additives for ruminant animals and have the advantage of 
reducing methane emissions and minimizing resource wastage (Zebeli 
and Ametaj, 2009; Sezmis et al., 2023). In the study conducted by 
Chowdhury et  al. (2022), it was reported that dried green tea 
byproducts can improve protein digestibility in goats and increase 
plasma glucose concentrations. Furthermore, the abundant 
polyphenols found in green tea can reduce oxidative stress in ruminant 
animals. For example, it significantly lowers somatic cell counts in 
periparturient cows and decreases concentrations of triglycerides, 
reactive oxygen species, malondialdehyde, and hydrogen peroxide 
(Ma et al., 2021). It also increases the concentrations of glutathione 
peroxidase, superoxide dismutase, and total antioxidant capacity. 
Additionally, it upregulates the concentrations of IL-6 and IL-10 in 
plasma while downregulating the concentrations of TNF-α, IL-1β, 
IL-2, IL-8, and IFN-γ (Ma et  al., 2021). These effects help reduce 
oxidative stress in cows and improve their lactation performance and 
overall health status. The polyphenols present in green tea can also 
inhibit the expression of TGF-β1 in bovine mammary glands, thereby 
reducing the phosphorylation of p38 and JNK. This leads to a 
significant decrease in the expression of inflammatory cytokines 
IL-1β, IL-6, and TNF-α (Xu et  al., 2022). Additionally, green tea 
polyphenols can alleviate oxidative stress, inflammation, and cell 
apoptosis in bovine mammary epithelial cells induced by hydrogen 
peroxide. This effect is achieved through the activation of the ERK1/2-
NFE2L2-HMOX1 pathway (Ma et  al., 2022). Indeed, green tea 
compounds can also alter the fermentation in the rumen of ruminant 
animals and the composition of their intestinal microbiota (Qiu et al., 
2021; Gao et  al., 2022). These reports indicate that green tea can 
be utilized as an antioxidant additive and a microbial modulator in 
ruminant animals production.

The active effects exerted by tea are mainly determined by its 
major constituents and their metabolism within ruminant animals. 
Tea polyphenols and EGCG are the most significant active 
components. For instance, tea polyphenols can have beneficial effects 
on the cellular redox balance of animals, reducing oxidative stress-
related damage and potentially serving as antioxidants in animal 
antioxidant defense against oxidative stress (Ma et al., 2018; Xu et al., 

2021). On the other hand, it is documented that the interaction 
between the gastrointestinal tract of ruminant animals and 
polyphenols plays a crucial role in mediating the promotion of host 
health by plant-derived polyphenols. For instance, these interactions 
can influence the structure and community of the gastrointestinal 
microbiota, promoting beneficial bacteria and inhibiting harmful 
bacteria (Yu et al., 2023). The gut microbiota of ruminant animals can 
further metabolize active substances such as polyphenols, thereby 
enhancing their bioavailability and utilization (Bhat et  al., 1998). 
Consequently, the active substances produced through these 
metabolisms may improve oxidative stress and inflammatory 
responses in ruminant animals, regulate gastrointestinal function, and 
ultimately enhance microbial growth and the overall health status of 
the animals.

The immune status and gut health of sheep significantly influence 
their growth performance and milk production capacity. Previous 
studies have indicated that tea leaves and tea waste have the ability to 
regulate rumen fermentation, reduce methane emissions, and improve 
immune status in animals (Qiu et al., 2021; Chowdhury et al., 2022). 
However, there is limited research on the effects of tea-related 
substances on blood metabolism and the composition and 
functionality of the hindgut microbiota in sheep. Gaining a better 
understanding of the microbial community and their functional 
responses to tea components can help develop mechanisms for 
manipulating the gut microbiota using natural plant compounds, 
thereby improving the growth status and health of sheep. 
We hypothesize that adding dried tea waste to the diet can improve 
the immune and antioxidant status of sheep by modulating the gut 
microbiota. We aim to study the effects of tea waste on sheep’s gut 
functionality using metagenomics and other related methods, evaluate 
its impact on blood antioxidant and immune indicators, and uncover 
the mechanisms by which tea waste influences the sheep’s hindgut and 
improves their overall health status.

Materials and methods

Source of dried tea residue

The dried tea residue we selected is derived from the by-products 
remaining from the production process of Anji white tea in Anji 
County. The main components of this by-product are tea polyphenols 
(18.10%), L-theanine (4.09%), catechin (14.75%), and epigallocatechin 
gallate (EGCG) ester of gallic acid (13.00%).

Animals and treatments

The 16 male Hu sheep weighing 29.80 ± 0.91 kg at 3 months of age 
were randomly divided into a control group and a treatment group, with 
eight Hu sheep in each group. The control group was fed a basal diet 
(CON), while the treatment group was fed 100 g/d of dried tea residue 
(DTR). The dosage of DTR was determined based on the results of an in 
vitro experiment (unpublished). The basal diet (Supplementary Table 1) 
was a complete mixed ration with a concentrate-to-roughage ratio of 7: 
3, meeting the requirements of the Chinese Sheep Feeding Standards 
(NY/T816-2004). The Hu sheep in the experiment were individually 
housed in a pen and were fed twice a day (at 8:00 and 17:00 h). They had 
free access to feed and water, and daily feed intake was recorded. Initial 
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and final body weights were recorded. The entire experiment lasted for 
56 days, including a 14-day adaptation period and the formal 
experimental period was 42-day. On the last day of the experiment, 2 h 
before morning feeding, blood samples were collected via jugular vein 
puncture, and feces were collected.

Serum sampling and analysis

After collecting the blood samples from the jugular veins of the 
Hu sheep using non-anticoagulant vacuum tubes before morning 
feeding, the samples were centrifuged at 3,000 × g for 10 min at 4°C to 
collect the serum. Subsequently, the serum was frozen at −80°C until 
analysis. The concentrations of total superoxide dismutase (T-SOD), 
glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), 
catalase (CAT), malondialdehyde (MDA), total protein content (TP), 
albumin (ALB), high density lipoprotein (HDL), low density 
lipoprotein (LDL), glutamic pyruvic transaminase (GPT), glutamic-
oxalacetic transaminase (GOT), nonesterified fatty acid (NEFA), 
triglyceride (TG) and total cholesterol (TCH) were determined using 
the appropriate commercial assay kits (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) and microplate reader 
(Multiskan FC; Thermo Fisher Scientific, Waltham, MA, USA) 
analyzer. And were analyzed using commercial ELISA assay kits 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China), 
following the instructions provided by the supplier. All ELISA data 
were recorded using a microplate reader (Multiskan FC; Thermo 
Fisher Scientific, Waltham, MA, USA).

Hindgut microbial analysis by 
metagenomic sequencing

Microbial DNA was extracted from feces samples. The 
concentrations of Immunoglobulin A (IgA), Immunoglobulin G 
(IgG), and Immunoglobulin M (IgM) using the E.Z.N.A.® stool DNA 
Kit (Omega Bio-tek, Norcross, GA, U.S.) according to manufacturer’s 
protocols. Metagenomic shotgun sequencing libraries were 
constructed and sequenced at Shanghai Biozeron Biological 
Technology Co. Ltd. In briefly, for each sample, 1 μg of genomic DNA 
was sheared by Covaris S220 Focused-ultrasonicator (Woburn, MA 
USA) and sequencing libraries were prepared with a fragment length 
of approximately 450 bp. All samples were sequenced in the Illumina 
NovaSeq 6000 instrument with pair-end 150 bp (PE150) mode.

The quality control of each dataset was performed using Fastp 
(version 0.20.0, https://github.com/OpenGene/fastp). This involved 
trimming the 3′-end and 5′-end of reads, cutting low-quality bases 
(quality scores <20), and removing short reads (<50 bp) and “N” 
records. The reads were then aligned to the host genome1 using BWA 
(version 0.7.17, http://bio-bwa.sourceforge.net/) to filter out host 
DNA. The filtered reads were de novo assembled for each sample 
using Megahit (Li et  al., 2015; version 1.1.2, https://github.com/
voutcn/megahit). Prodigal2 was employed to predict open reading 
frames (ORFs) from the assembled contigs with a length > 100 bp. The 

1 https://ensembl.org/index.html

2 https://github.com/hyattpd/Prodigal

assembled contigs were then pooled, and non-redundant sequences 
were generated based on identical contigs using CD-HIT (Fu et al., 
2012; version v4.6.1, http://weizhongli-lab.org/cd-hit/) with 90% 
identity. To determine the gene abundance information in each 
corresponding sample, the high-quality reads of each sample were 
compared with the non-redundant gene set using SOAPaligner (Li 
et al., 2009; http://soap.genomics.org.cn/; default parameters: 95% 
identity).

The non-redundant gene set was subjected to a comparison with the 
NR database using DIAMOND (Buchfink et al., 2015) software, with the 
comparison type set to BLASTP. Species annotations were obtained from 
the taxonomic information database corresponding to the NR database.3 
The abundance of species in each samples were counted at each 
taxonomic level, including domain, family, genus, and species, to 
construct an abundance profile at the corresponding taxonomic level. 
Principal Coordinate Analysis (PCoA) based on the Bray-Curtis 
similarity matrix was conducted at the species level. Contigs were 
annotated using DIAMOND against the KEGG database (Kanehisa, 
2000; Kyoto Encyclopedia of Genes and Genomes, http://www.genome.
jp/kegg/) with an E-value of 1e-5. Furthermore, the non-redundant gene 
set was compared with the CAZy database4 using the corresponding tool 
hmmscan from the CAZy database to obtain annotation information of 
carbohydrate-active enzymes corresponding to the genes. The 
abundances of KEGG Orthology (KO), pathway, KEGG enzyme, and 
CAZymes were normalized into counts per million reads (cpm) for 
further analysis. For downstream analysis, at least 50% of the animals in 
each group were used. KEGG modules, pathways, KEGG enzymes, and 
CAZymes with cpm > 5 were considered for the analysis.

The complete set of assembled and filtered raw sequence data has 
been submitted to the NCBI Sequence Read Archive, and it is now 
available under bioproject PRJNA1002066.

Statistical analysis

The data for growth performance and blood parameters were 
analyzed using SPSS 21.0 software (SPSS Inc., Chicago, IL, 
United States). After testing for normal distribution, a double-tailed 
t-tests was employed for analysis. The p-value ≤ 0.05 was considered 
as indicating a significant difference, while p-value > 0.05 indicated no 
significant difference.

Results

Growth performance

Table  1 reports the variations in the productive performance 
indicators of Hu sheep in the experiment. There were no significant 
differences observed in the initial weight and terminal weight between 
the CON and DTR groups during the course of the study (p > 0.05). 
Additionally, no significant differences were found in average daily 
feed intake, average daily gain, and Feed/Gain in this research 
(p > 0.05).

3 https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/

4 http://www.cazy.org/
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Serum index

Table 2 describes the differences in biochemical indicators in the 
serum of Hu sheep after the addition of DTR. It can be observed that 
the concentrations of IgA (p < 0.001), IgG (p = 005), IgM (p = 0.003), 
T-SOD (p = 0.013), GSH-Px (p = 0.005), and CAT (p < 0.001) in the 
serum of Hu sheep were significantly higher in the DTR group 
compared to the CON group, indicating that DTR has the function 
of enhancing the immunity and antioxidation of Hu sheep. 
Additionally, the concentrations of ALB (p = 0.019), HDL (p = 0.050), 
and TG (p = 0.021) in the serum were significantly lower in the DTR 
group compared to the CON group after DTR supplementation. 
After the addition of DTR, there were no significant changes 
observed in the indicators T-AOC, MDA, TP, LDL, GPT, GOT, 
NEFA, and TCH (p > 0.05).

Metagenome profiling

Metagenomic sequencing of the total DNA from 16 rumen fluid 
samples generated a total of 1,866,654,428 reads, with an average of 
116,665,901 ± 3,567,761 (mean ± SD) reads per sample. After quality 
control and removal of host contamination, 1,850,381,554 high-
quality reads were generated, with 115,648,847 ± 35,201,440 reads 
per sample. A total of 11,249,270 contigs were generated by the de 
novo assembly (the N50 length of 1,561 ± 258 bp), with 
703,079 ± 221,496 reads for each sample. The rumen metagenome 
contains 98.39% bacteria, 0.97% eukaryota, 0.59% archaea, and 
0.05% viruses. The PCoA plot visually showed the distinct separation 
of bacteria between CON and DTR based on the Bray-Curtis 
distance, eukaryota, archaea, and viruses have no significantly 
change (Figures 1A–D). At the domain level, the relative abundance 

TABLE 1 Effects of DTR supplementation on growth performance of Hu sheep.

Item Treatments SEM p-value

CON DTR

Initial weight, kg 30.19 29.41 0.23 0.092

Terminal weight, kg 40.68 40.08 0.78 0.708

Average daily feed intake, g 1447.48 1514.57 69.11 0.644

Average daily gain, g 205.88 209.19 14.26 0.912

Feed/Gain 7.26 7.38 0.22 0.808

TABLE 2 Effect of TEA on the serum index of sheep.

Item Treatments SEM p-value

CON DTR

IgA, μg/ml 1117.83b 1566.26a 293.24 <0.001

IgG, mg/ml 4.02b 4.99a 0.75 0.005

IgM, μg/ml 142.57b 296.4a 40.33 0.003

T-SOD, U/ml 59.31b 76.18a 3.61 0.013

GSH-Px, U/ml 111.51b 128.75a 3.34 0.005

T-AOC, U/ml 3.24 3.62 0.14 0.190

CAT, U/ml 2.68b 2.92a 0.04 <0.001

MDA, nmol/ml 3.23 3.29 0.09 0.757

TP, g/L 68.49 69.50 0.49 0.317

ALB, g/L 27.70a 23.90b 0.85 0.019

HDL, mmol/L 0.45a 0.30b 0.04 0.050

LDL, mmol/L 1.00 1.01 0.02 0.889

GPT, U/L 29.65 29.37 1.77 0.941

GOT, U/L 126.77 127.27 0.14 0.072

NEFA, μmol/L 138.50 142.27 5.46 0.743

TG, mmol/L 0.47a 0.37b 0.02 0.021

TCH, mmol/L 1.26 1.10 0.09 0.414

T-SOD, total superoxide dismutase; GSH-Px, glutathione peroxidase; T-AOC, total antioxidant capacity; CAT, catalase; MDA, malondialdehyde; TP, total protein content; ALB, Albumin; 
HDL, high density lipoprotein; LDL, low density lipoprotein; GPT, glutamic pyruvic transaminase; GOT, glutamic-oxalacetic transaminase; NEFA, nonesterified fatty acid; TG, triglyceride; 
TCH, total cholesterol.  
Values in the same row with the same or no small letter superscripts mean no significant difference (p > 0.05), while with different letter superscripts mean significant difference (p ≤ 0.05).
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of bacteria, eukaryota, archaea, and viruses were no significantly less 
in the hindgut of DTR sheep compared with CON (Figure 2). At the 
level of microbial phylum, Firmicutes, Bacteroidota, Proteobacteria, 
Spirochaetota, Cyanobacteria, Verrucomicrobiota, Fibrobacterota, 
Methanobacteriota, Campylobacterota, and Desulfobacterota, 
Evosea are the main phylum (Supplementary Figure S1). At the 
genus level, the dominant microbiota were Cryptobacteroides, 
followed by Succiniclasticum Alistipes, Faecousia, Phocaeicola, 
RF16, Treponema, Succinivibrio, HGM04593, HGM20899 and 
UBA4372 (Supplementary Figure S2).

The comparison of the hindgut microbial taxa at the phylum and 
genus levels between the CON and DTR groups was focused on 
bacteria and archaea. The analytical results of the top 10 bacterial 
phyla obtained by the Wilcoxon rank-sum test are shown in Figure 2. 
The phyla BSAR324 exhibited higher abundances (p = 0.041) in the 
hindgut of the DTR sheeps (Figure 3A). No differences were observed 

in the top five phyla within archaea between two groups (Figure 3B). 
The top 50 differential bacterial genera are shown in Figure 4A. The 
relative abundances of 51 genera including Polymorphum, 
Amylolactobacillus, Abiotrophia, Phyllobacterium, Desulfoscipio, 
Schneewindia, Ethanoligenens, Lawsonibacter, and Sporosarcina were 
greater (p < 0.05) in the DTR sheeps, whereas the relative abundances 
of nine genera, including UBA2922, 43-108, UBA3839, and RGIG8745 
were greater (p < 0.05) in the CON sheep. The archaea genera of 
JAHIMK01, FT1-020, Aciduliprofundum, and Halovenus showed a 
high abundance (p < 0.05) in the DTR sheep, whereas the genera 
Hydrothermarchaeum, JAHLMNO1, and BIN-L-1 were low abundant 
(p < 0.05) in the CON sheep (Figure  4B). The virus genera of 
Svunavirus and Vieuvirus showed a low abundance (p < 0.05) in the 
DTR sheep, whereas the genera Copernicusvirus was more abundant 
(p < 0.05) in the DTR sheep compared with the CON sheep 
(Figure 4C).

FIGURE 1

Hindgut microbial structure analysis at the domain level. The compositional profiles of bacteria (A), eukaryota (B), archaea (C), and viruses (D) based on 
PCoA.
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FIGURE 2

Comparison of microbial domains between CON and DTR sheep. Significantly different domains were tested by Wilcoxon rank-sum test.

FIGURE 3

Comparison of the main hindgut microbial taxa at the phylum level between the CON and DTR sheeps based on the Wilcoxon rank-sum test. (A) The 
top 10 phyla within bacteria. (B) The top five phyla within archaea.
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Comparisons of the taxa at the different levels were performed 
using LEfSe with the non-parametric factorial Kruskal–Wallis and 
Wilcoxon rank-sum tests. A total of seven species, four genes and one 
phylum were more abundant in the CON sheep compared to the DTR 
sheep (LDA > 2.5 and p < 0.05; Figure 5), whereas 32 species, 9 genes 
and 3 phyla were significantly enriched in the CON sheep (LDA > 2.5 
and p < 0.05; Figure 5).

Functional analysis of the microbiome

Due to the fact that carbohydrates are degraded by multiple 
enzymes, we focused on the differences in the profiles of CAZymes 
between the CON and DTR sheep. As shown in Figure  6, the 
CAZymes community consisted of glycoside hydrolases (GH; 
48.85%), glycosyltransferases (GT; 23.26%), carbohydrate esterases 
(CE; 12.77%), carbohydrate-binding modules (CBM; 8.67%), 
polysaccharide lyases (PL; 2.16%), Cellulosome (3.19%), and exhibited 
auxiliary activities (AA; 1.12%). At the class level, there is no 
significant variation of CAZy between the CON and DTR groups 
(Supplementary Figure S3), and PCoA also shows no apparent 
separation at the Class level (Supplementary Figure S4). Among the 
CAZymes that participated in degrading carbohydrates, three families 
(2 of CBMs, and 1 of GT) were enriched in the CON sheep, whereas 
13 families (4 of CBMs, 7 of GHs and 2 of PLs) were enriched in the 
CON cows (Supplementary Table 2).

Figure 7 displays the main functions of KEGG in 16 sheep, which 
primarily include five pathways: Cellular Processes, Environmental 
Information Processing, Genetic Information Processing, Metabolism, 

and Organismal Systems. The PCoA plot based on the Bray-Curtis 
distance showed a clear separation of two groups at pathway level 2 
(Supplementary Figure S5). We considered 348 endogenous third-
level metabolic pathways as hindgut microbial pathways in the KEGG 
profiles for the further analysis. As shown in Supplementary Table 3, 
compared to the CON group, there were 31 upregulated metabolic 
pathways (including methane metabolism, propanoate metabolism, 
microbial metabolism in diverse environments, purine metabolism, 
carbon metabolism, starch and sucrose metabolism, pentose 
phosphate pathway, and glycerolipid metabolism, among others, 
p < 0.05) and 23 downregulated metabolic pathways (including Dorso-
ventral axis formation, bile secretion, sphingolipid signaling pathway, 
growth hormone synthesis, secretion and action, cGMP-PKG 
signaling pathway, fcepsilon RI signaling pathway, and calcium 
signaling pathway, among others, p < 0.05).

Discussion

Under normal circumstances, adding food or industrial 
by-products to an animal’s diet may not significantly affect the 
animal’s performance. This could be because the content of various 
active or nutritional components in the by-products does not reach 
concentrations that have a noticeable effect (Sarker et  al., 2022; 
Khurana et al., 2023). Previous studies have indicated that the use of 
tea and its by-products in monogastric animals can significantly 
improve their production performance, such as increasing egg 
production rate, egg weight, and other factors (Wang et al., 2018; 
Chen et al., 2023). However, in this study, no significant impact of 

FIGURE 4

Differential hindgut microbial taxa at the genus level between the CON and DTR sheeps based on the Wilcoxon rank-sum test. (A) Heatmap of the 
top 50 differential genera within bacteria. (B) All differential genera within archaea. (C) All differential genera within viruses.
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DTR on sheep’s production performance was observed, which may 
be attributed to the unique rumen fermentation characteristic of 
ruminant animals. Kolling et al. (2018) used green tea extract as an 
additive in dairy cow production and found that it did not affect the 
production performance of dairy cows. However, it promoted the 
health and rumen fermentation pattern of the cows. However, in 
Acharya et al.’s (2020) research report, it was indicated that adding 
green tea extract could increase milk production in periparturient 
cows. This may be attributed to the specific physiological state of 
periparturient cows, and the enhanced production performance of 

these cows after adding green tea extract might be due to the potent 
antioxidant effects of green tea. In conclusion, the application of 
green tea by-products as a feed resource or feed additive in sheep’s 
diet will not have negative effects on sheep’s production.

Green tea is rich in various active compounds, which are high-
quality immune modulators. These active compounds can stimulate 
the activation of macrophages and B cells, promoting the formation 
of antibodies (Ding et al., 2018). The active compounds in tea, such 
as catechins and EGCG, can modulate the activity of immune cells, 
promoting the activation of macrophages and lymphocytes, and 

FIGURE 5

Differential rumen microbial taxa at the different levels between the CON and DTR sheep based on LEfSe.
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enhancing their proliferation and secretion of immunoglobulins 
(Yahfoufi et al., 2018). Immunoglobulins are antibody-active animal 
proteins secreted by plasma cells and play a crucial role in both 
specific and non-specific immunity. In this experiment, DTR 
significantly increased the concentrations of IgA, IgG, and IgM in 
sheep, indicating that DTR exerted a significant immunomodulatory 
effect in sheep. This finding is consistent with the results of Yuan 
et al.’s (2023) study. In production, oxidative stress is considered a 
major factor leading to animal diseases. Green tea and its 
by-products have been shown to enhance the antioxidant status in 
animals (Lu et al., 2014). For example, in dairy cows (Ma et al., 2021) 
and laying hens (Ling et al., 2022), the polyphenolic compounds in 
green tea can scavenge various oxygen free radicals, including 
superoxide anion, singlet oxygen, peroxynitrite, and hypochlorous 
acid (Severino et al., 2009). They can also achieve antioxidant effects 
by reducing the expression of redox-sensitive transcription factors 
such as NF-κB and activator protein-1, inhibiting the activity of 
“pro-oxidant” enzymes, and increasing the activity of antioxidant 
enzymes such as GSH-Px (Frei and Higdon, 2003). In this study, the 
addition of DTR significantly increased the concentrations of 
T-SOD, GSH-Px, and CAT, indicating that DTR has significant 
antioxidant activity in sheep. This finding is similar to the research 
results of Ma et al. (2021). This may be attributed to the abundant 
polyphenols and EGCG content in DTR. However, the specific 
mechanism by which DTR exerts antioxidant activity in sheep needs 

further investigation. ALB and HDL are important “regulatory” and 
“transport” functional indicators in animal blood. They play crucial 
roles in the metabolism of substances like glycerol. The decrease in 
ALB and HDL after the addition of DTR may be due to the enhanced 
metabolism of lipid substances in sheep, which is also related to the 
strengthened Glycerolipid metabolism pathway observed in the 
experiment. The significant decrease in TG supports this 
observation. The changes in these indicators are also significantly 
correlated with the enhancement of sheep’s immunity and 
antioxidant capacity. However, the specific mechanisms have not 
been studied yet.

In this study, the consumption of DTR by sheep had the greatest 
impact on bacteria, with the most pronounced changes observed at 
the phylum level for SAR324 and Eisenbacteria. Among them, 
SAR324 is a widely distributed bacterial group on earth, and its 
metabolic characteristics are mainly reflected in genes that encode a 
novel particulate hydrocarbon monooxygenase (pHMO), degradation 
pathways for corresponding alcohols and short-chain fatty acids, 
dissimilatory sulfur oxidation, formate dehydrogenase (FDH), and 
nitrite reductase (NirK). It is primarily associated with lithotrophy, 
heterotrophy, and alkane oxidation, among other metabolic functions 
(Sheik et al., 2014; Boeuf et al., 2021). This also explains one of the 
reasons why the addition of DTR leads to an increase in methane 
metabolism pathways. However, there is limited knowledge about 
Eisenbacteria and their potential involvement in carbohydrate 

FIGURE 6

Cazy composition diagram at class level. Glycoside hydrolases (GH), glycosyltransferases (GT), carbohydrate esterases (CE), carbohydrate-binding 
modules (CBM), polysaccharide lyases (PL), and exhibited auxiliary activities (AA).
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metabolism and methane metabolism (Poghosyan et al., 2020). At the 
bacterial genus level, we  observed a significant increase in the 
abundance of bacteria such as Ammylolactobacillus, Phyllobacterium, 
Ethanoligenens, Lawsonibacter, Staphylococcus, Desulfosudis, etc., 
after adding DTR. This increase may be related to lactate fermentation 
(Zheng et  al., 2020), lipid metabolism (Zamlynska et  al., 2017), 
hydrogen and ethanol production fermentation (Li et  al., 2019), 
butyric acid production (Sakamoto et  al., 2018), and immune 
metabolism (Vaskevicius et al., 2023). However, the specific functions 
associated with the significantly decreased bacterial genera at the 
genus level have not been reported yet. At the level of archaea and 
viruses, the specific effects of DTR on microbial changes are yet to 
be further explored. However, overall, DTR does not have a negative 
impact on the microbial structure in the sheep’s hindgut. This is 
consistent with previously reported research findings (Ramdani 
et al., 2013).

The degradation of carbohydrates by gut microbiota requires 
various enzymes, including GH, PL, CE, GT, AA, Cellulosome, and 

CBM. The addition of DTR significantly affects the distribution of 
various CAZy in the gut, with most of these changes belonging to 
the GH family, which are polysaccharide-degrading enzymes 
produced by fiber-degrading bacteria. The addition of DTR 
significantly affects the distribution of various CAZy in the gut, with 
most of these changes belonging to the GH, which are 
polysaccharide-degrading enzymes produced by fiber-degrading 
bacteria (Flint et al., 2012). The increase in GH abundance may 
be due to changes in bacterial composition. For instance, the GH1 
family plays a crucial role in carbohydrate degradation within 
organisms, breaking down complex polysaccharides into simpler 
sugar molecules, and participating in the degradation of cellulose, 
galactosides, polysaccharides, and oxalates to provide energy 
metabolism and other biological processes (Cota et  al., 2015; 
Strazzulli et  al., 2019). GH3 is involved in the degradation of 
β-glucoside substrates and drug metabolism. Regarding GH, GH25, 
GH27, GH112, GH120, and GH154 enzymes show higher 
abundance after the addition of DTR, indicating that supplementing 

FIGURE 7

Functional features profiling at KEGG pathway.
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DTR can enhance microbial digestion and absorption of food. 
Similarly, the changes of CBM (Arai et al., 2003) and PL (Yang et al., 
2021) are also related to fiber digestion and starch digestion. In 
general, the addition of DTR enhances the ability of fiber digestion 
in the hindgut.

With the changes in the hindgut microbial structure, there are 
differences in the KEGG functional profiles between the CON 
group and the DTR group. The addition of DTR significantly 
enhances pathways such as methane metabolism, propanoate 
metabolism, purine metabolism, starch and sucrose metabolism, 
and glycerolipid metabolism. The enhancement of methane 
metabolism may be  related to the improved fiber digestion, as 
mentioned earlier in the changes in the abundance of fiber-
digesting enzymes (Li et al., 2022). The alterations in propanoate 
metabolism, purine metabolism, and glycerolipid metabolism 
pathways also indicate the effectiveness of DTR in enhancing 
carbohydrate metabolism (Hong et  al., 2022). The changes in 
glycerolipid metabolism may also be  related to the significant 
decrease in TG observed in this study. After the addition of DTR, 
the sphingolipid signaling pathway significantly decreases, which 
may be related to DTR’s regulation of animal lipid metabolism and 
alteration of the animal’s gastrointestinal microbiota (Yuan 
et al., 2023).

Conclusion

This study provides new insights into the application of DTR in 
sheep production. Supplementing DTR significantly improves the 
sheep’s immune and antioxidant indicators and promotes their fiber 
digestion capability. This is of great significance to the feeding system 
for sheep. DTR is a promising natural additive that has positive effects 
on animal health and the environment. Further exploration of DTR’s 
effects on rumen fermentation, microbial communities, and fiber 
metabolism will contribute to its further development and application 
in ruminant animals.
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