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For most CO2 and CH4 satellites, only a small percentage (~10%) of observations
yield successful retrievals, with the remaining ~90% rejected, primarily due to the
effects of clouds. Discarding this large fraction of data is an inefficient strategy
worth reconsidering due to the costs involved in developing, launching and
operating the satellites to make these observations. However, if real-time
cloud data are available together with pointing capability, cloud data can guide
the instrument pointing in an “intelligent pointing” strategy for cloud avoidance. In
this work, multiple intelligent pointing simulations were conducted,
demonstrating the significant advantages of this approach for satellites in a
highly elliptical orbit (HEO), from which nearly the whole Earth disk can be
observed. Multiple factors are shown to contribute to intelligent pointing
efficiency such as the size and shape (or aspect ratio) of the field of view
(FOV). For the current baseline orbit and Imaging Fourier Transform
Spectrometer (IFTS) observing characteristics for the proposed Arctic
Observing Mission (AOM), the monthly fraction of cloud-free observations is
roughly a factor of 2 (ranging from ~1.5–2.5) more than obtained with
standard pointing (in which cloud information is not used). A similar efficiency
is expected in a geostationary orbit (GEO) with an IFTS, however, for a dispersive
instrument in HEO or GEO, the gain is more modest. This result is primarily
attributed to the ~1:1 aspect ratio of the IFTS FOV, since it is more efficient for
cloud avoidance and scanning irregularly-shaped land masses than the long and
narrow slit projection of a typical dispersive spectrometer. These results have
implications for the design of future CO2 or CH4 monitoring satellites and
constellation architectures, as well as other fields of satellite earth observation
in which clouds significantly impact observations.
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1 Introduction

Multiple satellites nowmeasure atmospheric CO2 and/or CH4, withmanymore missions
planned for the future, since these observations enable the quantification of sources and sinks
at scales ranging from individual facilities (e.g., Nassar et al., 2017; 2022; Wang et al., 2018)
and urban areas (e.g., Wu et al., 2020) to regional and continental scales (e.g., Crowell et al.,
2019). Studying these fluxes improves our scientific understanding of processes relevant to
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climate, while also supporting the emerging capability for policy-
relevant emission monitoring in support of climate change
mitigation. However, clouds cover approximately 70% of the
Earth at any given moment (Stubenrauch et al., 2013) and the
retrievals of CO2 and CH4 column-averaged dry air mole fractions
(XCO2 and XCH4) are very sensitive to even small quantities of
cloud in the field of view (FOV) (Taylor et al., 2016), primarily
because the forward model of the retrieval algorithms lack the
detailed physics of clouds due both to its complexity and
computational requirements. As a result, most CO2 and CH4

satellite missions successfully retrieve XCO2 or XCH4 from only
a small percentage of raw observations (e.g., ~7–12% per month for
Orbiting Carbon Observatory 2 or OCO-2 version 8, Crisp et al.,
2017, 9.5% for OCO-2 v10 Taylor et al., 2023), with the remainder
rejected, primarily due to clouds. Discarding this large fraction
(~90%) of data is an inefficient strategy worth reconsidering due
to the costs involved in developing, launching and operating the
satellites to make these observations.

Japan’s Greenhouse Gases Observing Satellite 2 (GOSAT-2)
pioneered Intelligent Pointing (Suto et al., 2021) in which an
onboard camera makes real-time measurements that are used to
develop cloud masks. GOSAT-2’s greenhouse gas (GHG)
instrument, which is equipped with a pointing mechanism, is
then directed to point at cloud-free or less cloudy areas to reduce
the fraction of observations lost to clouds. GOSAT-2 launched in
October 2018 and has since demonstrated that intelligent pointing
from Low Earth Orbit (LEO) yields efficiency gains in partially
cloudy regions, resulting in a factor of 1.8 more cloud-free
observations (Suto et al., 2021).

A geostationary orbit (GEO) is an equatorial orbit with a period
that is synchronized with Earth’s rotation providing a vantage point
for regional observations with the possibility of a much more rapid
revisit rate than LEO. NASA’s Geostationary Carbon Cycle
Observatory (GeoCarb) was planned to launch to GEO to
observe CO2, CH4, CO and Solar Induced Fluorescence (SIF)
over the Americas from ~50°S to 50°N (Moore et al., 2018). Due
to cost overruns and technical and logistical issues, GeoCarb was
cancelled. The GeoCarb instrument completed integration and
following a limited engineering performance test, delivery to
NASA is expected in November 2023 for storage and future
consideration. GEO GHG mission concepts have also been
proposed for Europe (e.g., Burrows et al., 2004; Butz et al., 2015;
Butz et al., 2018) and Asia (Rayner et al., 2014), which could together
function as a virtual constellation covering Earth’s tropical and mid-
latitude land, but viewing geometry limitations prohibit GEO GHG
observations beyond ~50°–55° latitude.

A highly elliptical orbit (HEO) can be used to make rapid revisit
“quasi-geostationary” observations over higher latitudes, although at
least two satellites are required to cover each circumpolar region.
The Arctic Observing Mission (AOM) is a HEO mission concept
that is under consideration for implementation by Canada with
international partners aiming to launch in the mid-2030s. AOM is
an expanded version of the Atmospheric Imaging Mission for
Northern Regions (AIM-North, Nassar et al., 2019), adding
meteorology and space weather instruments along with GHG and
air quality payloads. In early studies (Phase 0), two different
spectrometer technologies were considered for AOM GHG
observations: a dispersive spectrometer and an imaging Fourier

Transform Spectrometer (IFTS). OCO-2 (Crisp et al., 2017),
OCO-3 (Eldering et al., 2019), TanSat (Yang et al., 2018), the
Tropospheric Monitoring Instrument (TROPOMI, Veefkind
et al., 2012), MethaneSat (Staebell et al., 2021), MicroCarb
(Pasternak et al., 2016), GeoCarb (Moore et al., 2018), the Global
Observing Satellite for Greenhouse gases and Water cycle (GOSAT-
GW, Kasahara et al., 2020), Copernicus CO2 Monitoring Mission
(CO2M, Sierk et al., 2021) and CO2Image (Krutz et al., 2022) are
examples of satellite missions with dispersive spectrometers for CO2

or CH4 observations. GOSAT (Kuze et al., 2009), GOSAT-2 (Suto
et al., 2021) and Feng-Yun-3D Greenhouse gas Absorption
Spectrometer (GAS) (Bi et al., 2022) are examples of CO2 or
CH4 missions that use single-element Fourier Transform
Spectrometers (FTSs). The AOM baseline plan calls for an IFTS,
as formerly proposed for GEO-FTS (Xi et al., 2015). An example of
an IFTS already flying in space for a different application is China’s
Geostationary Interferometric InfraRed Spectrometer (GIIRS)
meteorological instrument, operating in the mid-IR, which will
be joined by a European GEO meteorological IFTS in 2024
(MeteoSat Third Generation Infrared Sounder: MTG-IRS) and a
U.S. GEO meteorological IFTS in the mid-2030s.

Dispersive spectrometers utilize a 2-dimensional (2D) focal
plane array (FPA) detector by allocating one dimension for
spectral information and one for spatial information, such that
spectra are simultaneously observed for a row of pixels in a
duration of seconds or even fractions of a second. In an IFTS,
both dimensions of the FPA are used for spatial information,
simultaneously observing 2D images with an interferogram for
each pixel in which the spectral information is effectively in the
time domain and recovered mathematically by applying a Fourier
Transform. Thus, an IFTS has the advantage of recording a
simultaneous 2D image but obtaining a sufficient signal-to-noise
ratio (SNR) requires staring at the same air column and integrating
the signal substantially longer than for a dispersive spectrometer.
Although this is impractical to do from LEO with a satellite moving
at 7 km/s relative to the ground, it enables new possibilities from
GEO or HEO.

For GOSAT-2 in LEO, intelligent pointing yields an advantage
in partially cloudy situations, but not when the field of regard (FOR)
is entirely cloudy or entirely cloud-free since there is no better/worse
location to point within the FOR. It is expected that from GEO or
HEO, from which nearly the whole Earth disk can be observed, the
benefits of an intelligent, cloud-informed pointing approach would
be greater than from LEO, as there will likely always be some cloud-
free locations within the FOR to observe. Figure 1 shows an
orthographic projection of the Earth as could be seen from HEO,
depicting the number of cloud-free daylight hours per month in
2015, based on NASA Modern Era Analysis for Research and
Applications (MERRA-2, Molod et al., 2015; Gelaro et al., 2017)
cloud fraction data discussed in Section 2.2. Excluding dark
northern winter months (December, January, February), northern
land typically has non-zero values, indicating opportunities for
cloud-free viewing, if a satellite can point at those regions at the
correct time. GEO and HEO can enable flexible viewing capability to
facilitate this strategy, while it is impractical from LEO, especially
from a sun-synchronous LEO, where an overpass time is essentially
fixed. Methods to exploit the flexible viewing advantage of GEO and
HEO in future CO2 and CH4 satellites warrant some consideration.
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In this work, intelligent pointing simulations were conducted for
dispersive and IFTS instruments in HEO, accounting for how the
technologies scan a spatial region in different ways. Section 2 describes
our methodology for generating synthetic observations and the
assumptions about standard pointing and intelligent pointing. Our
simulation results are presented in Section 3 showing significant
advantages for intelligent pointing for satellites in HEO from
which nearly the whole Earth disk can be observed. The
implications of these results including for the design of future
satellite constellations for observing CO2 or CH4 (Crisp et al.,
2018), such as the choice of instrument technology and the use of
different orbit classes: LEO, GEO and HEO are discussed in Section 4.

2 Methods

The pointing simulations in this work involved simulating the
following factors, described below:

1) Position of the satellite in orbit.
2) Instrument viewing characteristics.
3) Solar illumination and viewing geometry.

4) Land mask.
5) Dynamic cloud fields.
6) Observing strategy for each instrument.

2.1 Orbit

Simulation of GEO is trivial from an orbital perspective, since
the satellite is stationary over a certain longitude at the Earth’s
equator. Simulation of satellite positions in HEO is more
complicated. Here we assume the orbital parameters for a Three
Apogee (TAP) orbit as given in Table 1 A figure of this particular
orbit and the hourly locations of a satellite in this orbit is available in
Nassar et al. (2019). The apogee longitudes of 95°W, 25°E and 145°E
are selected for good observational coverage of North America,
Europe and Asia, with the complete ground track of this orbit shown
in Figure 2. A satellite in this orbit spends most of its time in the
northern mid- and high latitudes, in the proximity of the three
apogee locations (northernmost points of the ground tracks). Two
satellites in this orbit, spaced half the orbital period (~8 h) apart, but
in the same orbital plane, were simulated using NASA’s General
Mission Analysis Tool (GMAT, https://software.nasa.gov/software/

FIGURE 1
Distribution maps of the number of cloud-free daylight hours per month based on NASA MERRA-2 data (0.5° × 0.625°) for 2015.
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GSC-17177-1). The GMAT latitude, longitude and altitude for each
satellite was written to file at 1-min intervals and we linearly
interpolate between these points.

HEOs exhibit a drift in the right ascension of the ascending node
(RAAN or Ω). Calculation of the RAAN rate of change or _Ω is
described in Trishchenko and Garand (2011) and Trishchenko et al.
(2011) and for our baseline TAP orbit, _Ω = −10.03°/year and the time of
apogee changes on a cycle of 355.1 days. An implication of this RAAN
drift is that the local time that the satellite reaches apogee also drifts over
this cycle. In this work, each HEO satellite is set to reach apogee at
exactly local noon on July 25 of the first year in orbit and the date of
local noon observation from apogee drifts forward by ~10 days/year.

2.2 Instrument viewing characteristics,
geometry and other considerations

The AOM GHG instrument is an Imaging Fourier Transform
Spectrometer (IFTS). Its design is still preliminary and could change
prior to eventual launch but the current baseline design has 4

near-infrared - shortwave infrared (NIR-SWIR) bands (Table 2), each
with a dedicated focal plane array (FPA). A dispersive spectrometer
would use the bands planned for GeoCarb, which they optimized with
noise considerations for that instrument type (McGarragh et al., 2023).

The instrument configurations simulated in this study are shown
below in Table 3. For each, the instantaneous field of view (IFOV) of the
instrument is given along with the stare time required to integrate for
the observation. For the two IFTS configurations, the stare duration is
60 s, in which each observes a 2D image of pixels. For the dispersive
spectrometer, which observes a 1D IFOVof pixels, 36 rows are observed
over 63 s, which are combined to form a 36 × 480 pixel image, then the
instrument is repointed. For the purpose of this study, we refer to each
~1-min collection as the FOV, acknowledging that this slightly differs
from the typical use of the term. Since the number of stares per minute
multiplied by the IFOV gives us the FOV, the FOV and IFOV are equal
for the IFTS. Combining the integration time and some time for
repointing (IFTS: 6 s, dispersive 4 s), 54 FOVs are observed for each
instrument per 1-h cycle and the resulting number of raw observations
are given in Table 3.

The nominal pixel size for all instruments compared here is 4 ×
4 km2, but actual pixel sizes differ for two reasons. Firstly, for either
GEO or HEO, off-nadir observations result in pixel growth in one or
both dimensions for geometrical reasons. This view zenith angle
(VZA, sometimes also called the sensor zenith angle) effect is
accounted for in these simulations. Secondly, for HEO, the altitude
of the satellite changes throughout an orbit and the instrument’s
angular FOV remains constant, without compensating for this effect.
So for HEO, the nominal pixel size is obtained at 40,000 km in
altitude, while pixels can becomemuch smaller for lower altitudes and
up to ~4.7% larger for higher altitudes near apogee (41,887.7 km). The
selection of a 4 × 4 km2 pixel threshold was influenced by the study by
Hill and Nassar (2019) for potential anthropogenic CO2 emission
quantification applications.

Due to the low shortwave infrared (SWIR) albedo of diffuse
reflectance over bodies of water, only observations over land will
yield sufficient signal for successful retrievals, unless glint geometry
is used. However, glint viewing opportunities from GEO and HEO
are very limited, thus are not planned for AOM nor were they
planned for GeoCarb. Therefore, a pre-determined scan pattern to
cover land within the area of interest is the simplest approach.
Figure 3 is an example of an AOM pointing grid, which covers the
primary area of interest, which is ice-free land from ~45 to 80°N, but
the grid reaches ~42°N in eastern North America to include the
southernmost portion of Canada. A new HEO pointing grid is
defined for each 1-h pointing cycle since the FOV dimensions on the
Earth’s surface change due to altitude and VZA as mentioned. Since
HEO satellites are in position to observe the area of interest with an
adequate VZA for about 2/3 of an orbit, there are 11 1-h cycles
during a 16-h orbit. For simplicity, we assume symmetry for cycles
1 and 11, 2 and 10, 3 and 9, etc. (neglecting small changes in satellite
longitude) giving 6 unique grids for each apogee for a total of 18.

A standard step-and-stare pointing approach, as was proposed for
GEO-FTS (Xi et al., 2015), would involve pointing at each of the FOV
locations in the pointing grid, 125 locations in this example, although
even more FOVs are needed for apogees over Eurasia. At 54 stares/h,
this would require 2, 3 h to cover, i.e. 2, 3 h revisit period. Depending
on the season, some fraction of these FOV locations would be in
darkness or at a solar zenith angle (SZA) too large for proper

FIGURE 2
Ground track for a Three Apogee (TAP) orbit with e = 0.50 and
apogee longitudes of 95°W, 25°E and 145°E.

TABLE 1 Orbital parameters for AOM applied in simulations.

Orbital parameter (symbol) Value

Period (T) 15.9551 h

Eccentricity (e) 0.50

Inclination (i) 63.345°

Semi-major axis (a) 32,175.231 km

Apogee altitude (za) 41,884.7 kma

Perigee altitude (zp) 9,709.5 kma

aAssuming a spherical Earth with radius (re) = 6,378.1 km.
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observation. On average, about half the area would be sunlit, although
more in the Arctic summer and less in the winter. Excluding the dark
areas reduces the summer revisit rate to slightly under 2 h, but
excluding areas of thick cloud makes hourly revisit of the less
cloudy areas possible over most of the year, an unprecedented
revisit rate for greenhouse gas observations from space.

For cloud information to guide pointing decisions, our
simulations use cloud fractions from the NASA’s MERRA-2
reanalysis (0.5° × 0.625°, 72 levels, 3-h average, Molod et al.,
2015; Gelaro et al., 2017), which are interpolated to hourly. To
simplify our simulations, we do not trace the incoming and reflected
sunlight through a 3D atmospheric cloud field. Instead, the highest
cloud fraction (CF) value for any level is treated as the column value,
which is used to make a 2D CF field. To account for the increased

impact of clouds for longer paths through the atmosphere, we
determine an effective cloud fraction (ECF). To calculate ECF,
first we calculate the airmass = 1/cos (SZA) + 1/cos (VZA),
which is a minimum of 2 when both SZA = VZA = 0° and a
maximum of 7.76 for VZA = 60° (AOM) and SZA = 80°. Then:

ECF � CF x airmass/2

and a certain number observations are assumed to penetrate through
the ECF field according to Table 4. To test the realism of this simulated
cloud loss method, we applied it to raw OCO-2 observation locations
and times and obtained excellent agreement in terms of the total
number of post-filtered observations per month and the latitudinal
distribution of observations per month (not shown).

TABLE 2 Spectral bands for the AOM IFTS instrument.

Species Wavelength range (nm) Wavenumber range (cm-1) Spectral sampling
(cm-1)

Spectral sampling at band center (nm)

O2 758–772 12,953–13,192 0.25 0.0146

CO2 1598–1618 6180–6258 0.25 0.0650

CO2 2042–2079 4810–4897 0.25 0.1063

CO, CH4 2301–2380 4195–4345 0.25 0.1371

TABLE 3 Instrument observing characteristics.

Instrument IFOV Stare time (s) Stares/FOV Repoint time (s) FOVs/hr Raw Observations/hr

AOM IFTS 128 × 128 60 1 6 54 884,736

AOM Dispersive 1 × 480 1.75 36 4 54 933,120

AOM mini-IFTS 84 × 84 60 1 6 54 381,024

FIGURE 3
Example of an IFTS pointing grid from apogee at 95°W and an example of FOVs selected for cloud avoidance in one viewing cycle (June 2, 22:
00 UTC) under an intelligent pointing approach.
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Based on the location of the satellite in orbit, the VZA to any
location within the FOR is also calculated. In this work, only
observations with SZA ≤80° and VZA ≤60° over land are accepted.
A 0.1° × 0.1° landmask is used to remove observations over the oceans,
lakes, and other bodies of water. Old snow and ice also have very low
SWIR albedo (e.g., Nassar et al., 2014), so observations over
Greenland are essentially excluded, while those over areas of
seasonal snow are included, but will have poorer precision than
observations over other land cover types. To account for dark
surfaces and the spatial distribution of albedo at this wavelength in
general, we use Moderate Resolution Imaging Spectroradiometer
(MODIS) Level 3 monthly-averaged surface Band 6 albedo
(1628–1652 nm, Schaaf and Wang, 2021) and reject observations
where this albedo is <0.02. Dense aerosols also result in the loss of
observations, but this is typically confined to a much smaller region
than clouds. We apply Terra Multi-angle Imaging SpectroRadiometer
(MISR) Aerosol Optical Depth (AOD) (Diner et al., 2005) and reject
observations where AOD >0.3 (e.g., O’Dell et al., 2012).

2.3 Intelligent pointing vs standard pointing

The AOM IFTS would observe 128 × 128 pixels in 60 s, then
requires 6 s to repoint. In standard pointing, the IFTS would point at
all sunlit locations in the pointing grid (e.g., Figure 2) then repeat the
cycle. For intelligent pointing, a cloud mask would guide the pointing
to observe only the clearest regions. This is accomplished by ranking
FOVs in the grid with those having low cloud, good solar illumination
and a northerly location ranking as a higher observing priority. Using
the cloud fractions for each FOV calculated earlier, we define the
priority of the FOV related to cloud as follows:

pcloud � 1 − cloudfraction

where the overbar represents a mean across all the pixels in the FOV.
Thus pcloud = 0 corresponds to the worst viewing conditions and
pcloud = 1 corresponds to the best. Other priority factors are also
normalized to the 0–1 range, with 0 being the worst and 1 the best.

The second priority factor is the airmass, with a lower airmass
receiving higher priority. A low airmass corresponds to the pixels of
the FOV being less stretched, the Sun being higher in the sky and
results in less loss of data due to cloud, so:

pairmass � airmassmax − airmass

airmassmax − airmassmin

AOM coverage for greenhouse gas observations extends from
~42 to 80°N, giving some overlap with potential future geostationary

coverage; however, high latitudes are still the priority, so we add a
priority related to the central latitude φ of the FOV:

platitude � φ/90°

The final priority factor relates to the viewing history of the
satellite, so that infrequently viewed areas are given a higher priority
than areas that have already been viewed frequently. Since the FOV
grid changes throughout an orbit, history is recorded on a 5° × 5°

latitude/longitude grid of the Northern Hemisphere instead. As
observations are made, they are binned on this grid like a 2D
histogram of the previous observations. New observation locations
are binned on the same grid, and a history value determined by:

hnew � ∑N
i�1hiwi

∑N
i�1wi

N is the number of history grid squares that the new FOV has
pixels in, hi is the history value for each grid-square and wi is the
number of pixels from the new FOV that lie in each history grid-square.
The history value for the new FOV is a weighted average of the histories
of the grid-squares it occupies. The priority related to history is:

phistory � 1 − hnew/hmax

hmax is the value of the history grid-square with the most
observations. If hmax = 0 (i.e., the first set of observations) all
FOVs get a phistory value of 1. One final caveat to the history
priority is that whether this term is used or not depends on the
position of the FOV. If the latitude of the FOV is less than 60°N, then
in order for the history term to be applied, the FOV longitude must
be within 45° of the sub-satellite longitude. This helps prevent the
satellite from looking at lower latitude regions far from its main
focus area. In this way, the history term becomes a bonus term when
the satellite points close to its orbit path, in addition to accounting
for the viewing history of the satellite.

A weighted average of the four priority factors (cloud, airmass,
latitude, history) determines FOV priority:

p � ∑4
i�1piwi

∑4
i�1wi

The optimal values of the weights for each factor is still very
much an open question that requires future study. Setting the cloud
weight very high and the others low leads to the most observations
overall, but with poor high latitude coverage. Weights in the present
work are: cloud = 3, airmass = 10, latitude = 20, history = 4, which
balances the overall number of observations with good coverage
north of 60°N.

TABLE 4 Percentage of successful observations for different effective cloud fraction ranges.

Effective cloud fraction (ECF) Percentage of incident observations passing (%)

ECF <0.1 100

0.1 ≤ ECF <0.5 50

0.5 ≤ ECF <0.8 20

ECF ≥0.8 0
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Finally, the order in which FOVs are observed is optimized to
give the best SZA conditions in each stare using the center of each
FOV at both the beginning and end of each hourly viewing cycle of
the observation period. The difference between these two values will
determine the order of the FOVs:

ΔSZA � SZAi − SZAf

where SZAi is the SZA at the start of the cycle and SZAf is the SZA at
the end of the viewing cycle. If ΔSZA <0, viewing conditions worsen
over the course of the cycle, and if ΔSZA >0, they improve so the
viewing sequence is determined by this value. If there are fewer
unique FOVs than the maximum number per cycle, then the highest
priority FOVs are observed more than once in the cycle, with the
multiple observations still sequenced by the ΔSZA.

2.4 IFTS vs dispersive and FOV size

Standard pointing and intelligent pointing were simulated for
3 HEO configurations: 1) AOM 128 × 128 pixel IFTS with a 1-min

stare time, 2) AOMDispersive Spectrometer (36 × 480 pixels in 63 s)
and the AOM 84 × 84 pixel mini-IFTS with a 1-min stare time.
These comparisons will serve to investigate the impact of the FOV
size and aspect ratio on intelligent pointing efficiency. The
hypothesis is that a smaller FOV and approximately 1:1 aspect
ratio should yield the biggest gain from intelligent pointing.

3 Results

The simulations conducted confirm that intelligent pointing
increases the proportion of cloud-free observations from HEO, but
the extent of the gain depends on observing characteristics, primarily
the shape of the FOV. Figures 4, 5 show the number of observations
per 1° × 1° grid box from the 128 × 128 pixel IFTS using standard
pointing and intelligent pointing. Although the observations appear
denser at lowermidlatitudes compared with higher latitudes, it should
be noted that to a large extent, this is an artifact of our approach, since
a 1° × 1° grid box has a larger area for lower latitudes, and therefore
more observations would occur for the same density. (This was
verified by remaking some figures with observations per

FIGURE 4
Monthly coverage for the 128 × 128 pixel FOV using standard pointing showing the number of observations per 1° × 1°.
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10,000 km2 rather than 1° × 1°, not shown.) Figure 6 shows a difference
plot, which best illustrates the added observational coverage from
intelligent pointing. Figures 7, 8 show the added observational
coverage from intelligent pointing for the dispersive spectrometer
with a 1 × 480 IFOV and the 84 × 84 pixelmini-IFTS. Figure 9 shows a
histogram of the ratio of the number of observations from intelligent
pointing vs standard pointing for these three FOV configurations.
Figure 10 shows a histogram for the absolute number of successful
observations from the 128 × 128 pixel IFTS and the dispersive
spectrometer with and without intelligent pointing applied.

The monthly difference map for the number of IFTS observations
with intelligent pointing minus standard pointing (Figure 6) clearly
illustrates the gains that result from intelligent pointing, which reach
or even exceed 20,000 additional observations per 1° × 1° grid box over
large areas. Very limited areas show a reduction in observations and
these could be eliminated if prioritization weighting was relaxed from
favoring more northerly regions or low VZA. For the dispersive
spectrometer, broad areas reaching ~20,000 additional observations
per 1° × 1° grid box are also observed, but these dense increases are less
extensive, while June and July show an area of significant decrease in
central Asia. The decreases seem to be centered between the ground

tracks near the southernmost part of the area of interest, which can be
explained by the low prioritization for southern observations and high
VZA observations with intelligent pointing. The 84 × 84 mini-IFTS
yielded the largest increases due to intelligent pointing, despite a
smaller number of raw observations by more than a factor of two. The
monthly ratios in Figure 9 in the winter months, specifically
December, January and February are less meaningful since they
deal with few observations over a limited area, as shown in the
distribution maps. The ratios indicate that intelligent pointing
typically yields a factor of 1.5–3.0 more observations than standard
pointing since fewer observations are lost due to clouds. The highest
ratios (~3) were observed for the 84 × 84 pixel mini-IFTS during the
sunny northern hemisphere summer months of June and July.

4 Discussion and conclusion

In this work, we simulate greenhouse gas observations with
standard pointing and intelligent pointing for the current AOM
baseline IFTS instrument (128 × 128 pixels), a dispersive
spectrometer and a mini-IFTS (84 × 84 pixels), all observing

FIGURE 5
Monthly coverage for the 128 × 128 pixel FOV with intelligent pointing showing the number of observations per 1° × 1°.
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from a three apogee (TAP) highly elliptical orbit (HEO). Even
though the IFTS made fewer raw observations than the
dispersive spectrometer, it yielded more successful observations
in standard or intelligent pointing mode. The increase in
observations even with standard pointing results from the better
efficiency of the square FOV to scan irregularly-shaped land masses.

However, multiple factors contribute to intelligent pointing
efficiency such as the speed of observation and the size and shape
or aspect ratio of the Field of View (FOV). A demonstrated advantage
is found for a ~1:1 aspect ratio FOV for cloud avoidance. For the
baseline observing parameters under consideration for AOM, the
fraction of cloud-free observations is a factor of ~2 more than in the
absence of intelligent pointing. The fraction varies depending on the
month due to seasonal variations in the size of the observable area
primarily linked to the seasonal cycle of solar illumination for the
northern high latitudes, and to a lesser extent, actual seasonal changes
in cloud cover. Preliminary simulations suggest that our conclusions
for HEO are also entirely applicable to GEO, which is in many ways,
an even better vantage point for GHG observations by an IFTS.

Intelligent pointing yields improvements in the number ofmonthly
observations by a factor of about ~1.5–2.1 for the dispersive

spectrometer, ~1.5–2.5 for the 128 × 128 pixel baseline AOM IFTS
and ~1.5–3.0 for the 84 × 84 mini-IFTS, demonstrating that intelligent
pointing is most efficient with a 1:1 aspect ratio and small FOV,
followed by a 1:1 and larger FOV, then the dispersive spectrometer with
its unbalanced aspect ratio and FOV shape that is poorly-suited for
scanning irregularly shaped land masses or observing through the gaps
in clouds. Although the small 84 × 84 FOV gave a greater relative
increase as a result of intelligent pointing, the most overall observations
of any instrument in this comparison were obtained with the AOM
128 × 128 pixel IFTS using intelligent pointing.

These first HEO intelligent pointing simulation results were
obtained with fixed pointing grids and without optimization of the
priority weights for factors such as cloud, airmass, latitude and
history for each instrument configuration. One can envision further
efficiency improvements without fixed grids where each individual
FOV can be optimally placed in a cloud gap to cover the cloud free
areas with a minimum number of FOVS. One can also envision
further efficiency improvements via optimization of the priority
weights through some iterative process or even application of
machine learning algorithms/artificial intelligence, which we
intend to explore in future work.

FIGURE 6
Monthly coverage difference (Intelligent–Standard Pointing) for the 128 × 128 pixel FOV showing the difference in the number of observations per
1° × 1°.
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Implementation of intelligent pointing on any satellite mission will
require cloud information in the form of cloud masks that correspond
to the field of regard (FOR). The focus of this manuscript is on the
benefits of intelligent pointing from a data yield perspective, but some
comments on implementation are also given here. GOSAT-2 uses a
CMOS (complementary metal oxide semi-conductor) video camera
with 608 × 1024 pixels that covers an area of ~30 × 50 km2 at ~0.1 km
spatial resolution. The camera has red, green and blue (RGB) detection
and 8-bit digitization. An algorithm is applied to utilize output from
the 3 color bands of this camera to convert it to a cloud mask in 0.2 s
(Suto et al., 2021). For HEO, a key difference is that the satellite is
moving much more slowly with respect to the Earth, so sub-second
processing to derive a cloud mask like with GOSAT-2 is not required.
The early plan for intelligent pointing from AIM-North (Nassar et al.,
2019) included a small dedicated 4-kg cloud imager that used a 1280 ×
1024 pixel IndiumGalliumArsenide (InGaAs) focal plane array (FPA)
covering 0.4–1.7 microns to observe the full Earth disc with a pixel size
of ~10× 10 km2 from 40,000 km altitude. This proposed cloud imagery
would be coarser than individual XCO2 or XCH4 pixels, since it would
only be required to locate the clearest sky regions to point the 512 ×
512 km2 FOV. AIM-North’s scope was expanded to include

meteorological observations from an Advanced Baseline Imager
(ABI, https://www.goes-r.gov/spacesegment/abi.html, Schmidt et al.,
2017). ABIs fly on the National Oceanic and Atmospheric
Administration (NOAA) Geostationary Operational Environmental
Satellite (GOES) R, S, and T satellites along with slight variations of the
ABI (differing only by one band) on Korean and Japanese GEO
satellites. The ABI is a large (~350-kg) radiometer with 3 FPAs that
are used to observe radiance in 16 bands from ~0.47–13.3 micron and
scans the full Earth disk with 0.5–2.0 km pixels every 5–15 min. Details
of the method to derive cloud masks from the ABI to be used in
pointing decisions for theAOMIFTS remains to be determined. A very
simple approach would be to use the radiance in band 2 (0.59–0.
69 micron) to make cloud masks, however, this visible band would
poorly distinguish between cloud and snow. Adding information from
a SWIR band, such as band 4 (1.3705–1.3855 micron) and/or band 5
(1.58–1.64 micron), should enable more robust cloud/snow
distinction. Although pixel-by-pixel cloud detection is the most
straightforward approach, performance improvements have been
reported in the literature when deep learning is used in cloud
detection algorithms that find spatial patterns in satellite imagery
(Jeppesen et al., 2019).

FIGURE 7
Monthly coverage difference (Intelligent–Standard Pointing) for the dispersive spectrometer (36 × 480 pixels/minute) showing the difference in the
number of observations per 1° × 1°.
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Another decision with respect to implementation is whether to
process the required cloud data from the ABI onboard the satellite (e.g.,
Thompson et al., 2014; Gorr and Silva, 2021) and provide the pointing
commands to the IFTS directly, or whether downlink of the cloud data
to the ground, processing to derive the cloud mask and determine
pointing locations, followed by uplink of the pointing commands is
more practical. For LEOmissions with the satellite moving rapidly and
the pointing decision required immediately, onboard processing is a
necessity for intelligent pointing. For HEO or GEO, the near-real-time
downlink of the ABI radiances for meteorology applications will
already occur with a latency of minutes (or less) enabling
processing the data into cloud masks on the ground. Uplink of the
small volume of data for pointing commands could occur with a
comparatively relaxed schedule, such as once per hour, like the length
of a pointing cycle for simulations in this paper.

As stated in the introduction, current LEO CO2 and CH4 satellites
only retain a small fraction of their observations (~7–12%) relative to
their raw observations, primarily due to loss of data due to clouds.
Intelligent pointing on GOSAT-2 has shown an increase in yield of
cloud-free data by a factor or ~1.8. Our simulations for HEO

demonstrate gains ranging from ~1.5 to 3.0 depending on the size
and aspect ratio of the FOV, with room for further improvement related
to possibilities for optimization. For GEO, preliminary work suggests
that gains will resemble those of HEO since in both cases, the full Earth
disk is viewed. This potential for a greater fraction of cloud-free
observations from HEO and GEO warrants further consideration of
these complementary orbits in the planning of future CO2 and CH4

satellite missions and constellation architectures (Crisp et al., 2018). As
a subsequent step to simulations like this one, we are also undertaking a
more complete Observing System Simulation Experiment (OSSE) to
evaluate the ability of such observations to quantify Artic and Boreal
CO2 fluxes from vegetation (forests, tundra) and permafrost thaw in
comparison with and in combination with LEO missions.

We have also conducted limited studies on the application of
intelligent pointing for air quality observations. Since these
simulated observations were made with a dispersive spectrometer
with a 545 × 27 FOV aspect ratio, which is significantly different
than 1:1 and furthermore since AQ retrievals are typically less
sensitive to cloud in the FOV, only modest gains were observed
compared with the GHG IFTS. However, our findings

FIGURE 8
Monthly coverage difference (Intelligent–Standard Pointing) for the 84 × 84 pixel FOV showing the difference in the number of observations per
1° × 1°.
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demonstrating the advantage of intelligent pointing for GHG
observations could have implications for other fields of satellite
Earth observation in which clouds are problematic. Ocean color
observations (Coakley et al., 2023) or infrared sounding
observations in the NOAA Geostationary and Extended
Observations (GeoXO) program, are some other areas that could
also benefit by studying, developing and implementing an intelligent
pointing approach.
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