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Accurate modeling of decoherence errors in quan-
tum processors is crucial for analyzing and improving
gate fidelities. To increase the accuracy beyond that of
the Lindblad dynamical map, several generalizations
have been proposed, and the exploration of simpler
and more systematic frameworks is still ongoing. In
this paper, we introduce a decoherence model based
on the Keldysh formalism. This formalism allows us
to include non-periodic drives and correlated quantum
noise in our model. In addition to its wide range of ap-
plications, our method is also numerically simple, and
yields a CPTP map. These features allow us to inte-
grate the Keldysh map with quantum-optimal-control
techniques. We demonstrate that this strategy gener-
ates pulses that mitigate correlated quantum noise in
qubit state-transfer and gate operations.

1 Introduction
The ubiquity of decoherence errors in current quantum
computing platforms poses a bottleneck for performing
error-correctable quantum computation [1]. Further reduc-
ing these errors relies on the accurate modeling of them,
which is challenging due to the presence of complicated
drive and noise background. For example, if the quan-
tum system is strongly driven, or the noise (quantum and
classical) is correlated, the widely-used Lindblad master
equation is generally not applicable [2–8].

To obtain more accurate predictions, recent research is
exploring generalizations of the Lindblad master equation,
where the constant damping operators and rates in the orig-
inal form are replaced by time-dependent ones [2–4, 9–15].
Impressively, after a more careful treatment of the bath de-
grees of freedom than that in the Lindblad formalism, the
master equation not only becomes compatible with drives
and correlated noise, but also maintain the property of gen-
erating completely positive and trace-preserving (CPTP)
maps [2, 3, 12–15]. In addition to this route, a formal-
ism based on filter functions has been developed to model
errors caused by correlated noise. This formalism can
predict the sensitivity of the driven system to noise at dif-
ferent frequencies [6, 7, 16–21]. As a comparison, the
filter-function method usually requires fewer integrals, and
Ziwen Huang: zhuang@fnal.gov

has a clearer physical picture of how noise at difference
frequencies contributes differently. However, this method
mostly focuses on classical (or dephasing) noise, and does
not always guarantee the CPTP character of the map.

In this paper, we present a decoherence model which
combines the advantages of the two routes mentioned
above, and is tailored for optimizing gate operations. Our
method belongs to the filter-function category, while the
Keldysh technique [9, 22] used here extends the scope of
the formalism in Ref. [6, 17] to quantum noise. Further-
more, the map derived by this method is guaranteed to be
CPTP, after a special secular approximation to the filter
functions. Such approximation also significantly simpli-
fies the calculation, which further allows us to explore
error-mitigation strategies by integrating our method with
the technique of quantum optimal control [7, 23]. Using a
few examples, we show that such a combination can gen-
erate pulses that suppress decoherence errors induced by
correlated quantum noise.

The paper is structured as follows. In Sec. 2, we outline
the derivation of the Keldysh map. The main results are
summarized in Eqs. (19) and (20). In Sec. 3, we apply
our method to a variety of quantum systems, which not
only reproduces some familiar results, but also extends the
prediction of decoherence errors to several less familiar
situations. In Sec. 4, we integrate the Keldysh method with
the quantum-optimal-control technique, and demonstrate
improvement of gate and state-transfer fidelities via the
optimization of drive pulses.

2 Deriving Keldysh Maps

2.1 Formal Keldysh expansion
We start by deriving the formal map for the qubit density
matrix using the Keldysh expansion. The Hamiltonian of
the full system is

�̂� (𝑡) = �̂�𝑠 (𝑡) + �̂�𝐵 + 𝜖 �̂�𝐼 , (1)

where �̂�𝑠 (𝑡), �̂�𝐵, �̂�𝐼 denote the Hamiltonians for a driven
quantum system, bath, and interaction. The system Hamil-
tonian �̂�𝑠 (𝑡) = �̂�𝑠0 + �̂�𝑑 (𝑡) comprises the static Hamil-
tonian �̂�𝑠0 and the drive operator �̂�𝑑 (𝑡). For simplicity,
we specify the system-bath interaction by �̂�𝐼 = 𝑥𝜂, where
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𝑥 and 𝜂 are the system and bath operators, respectively1.
The small dimensionless parameter 𝜖 is used to keep track
of the order.

In Eq. (1), we assume that the interaction is weak and
can be treated perturbatively. To conveniently perform
the perturbative calculation, we first move to the inter-
action picture with the unperturbed propagator �̂�0 (𝑡) =

�̂�𝑠 (𝑡) ⊗ �̂�𝐵 (𝑡), where the partial propagator for the sys-
tem is �̂�𝑠 (𝑡) = T exp[−𝑖

∫ 𝑡

0 𝑑𝑡
′�̂�𝑠 (𝑡′)] and bath �̂�𝐵 (𝑡) =

exp[−𝑖�̂�𝐵𝑡]. In this rotating frame, the reduced qubit den-
sity matrix at time 𝜏 is:

�̃�𝑠 (𝜏) = Tr𝐵
{
�̃�𝐼 (𝜏) �̃�𝑠 (0)⊗ �̃�𝐵 (0) �̃�†

𝐼
(𝜏)}. (2)

Here, the interaction-picture propagator is given
by �̃�𝐼 (𝜏) = T exp[−𝑖

∫ 𝜏

0 𝑑𝑡𝜖 �̃�𝐼 (𝑡)] and �̃�𝐼 (𝑡) =

�̂�
†
0 (𝑡)�̂�𝐼�̂�0 (𝑡) is the system-bath coupling term in the in-

teraction picture. We use �̃�𝑠 (0) and �̃�𝐵 (0) to denote the
initial partial density matrices for the system and bath.
Note that in this work, we assume that there is no entangle-
ment between the system and bath initially, and the bath is
prepared in its thermal equilibrium �̂�𝐵,eq.

To evaluate this formal expression, we expand �̃�𝐼 (𝜏) =∑
𝜈 �̃�

(𝜈)
𝐼

(𝜏) as a Dyson series, where the 𝜈th term �̃�
(𝜈)
𝐼

(𝜏)
is given by

�̃�
(𝜈)
𝐼

(𝜏)=(−𝑖)𝜈𝜖𝜈
∫ 𝜏

0
𝑑𝑡1�̃�𝐼 (𝑡1)

∫ 𝑡1

0
𝑑𝑡2�̃�𝐼 (𝑡2)

· · · ×
∫ 𝑡𝜈−1

0
𝑑𝑡𝜈�̃�𝐼 (𝑡𝜈). (3)

Inserting this into Eq. (2), we further expand the qubit
density matrix as

�̃�𝑠 (𝜏) =
∑︁
𝜈′ ,𝜈′′

Tr𝐵
{
�̃�

(𝜈′ )
𝐼

(𝜏) �̃�𝑠 (0)⊗ �̃�𝐵 (0) �̃� (𝜈′′ )†
𝐼

(𝜏)}.
(4)

To simplify this expression, we define the 𝜈th-order map
and the sum map as

𝚷(𝜈) (𝜏) · ≡
∑︁

𝜈′+𝜈′′=𝜈
Tr𝐵

{
�̃�

(𝜈′ )
𝐼

(𝜏) [· ⊗ �̃�𝐵 (0)] �̃� (𝜈′′ )†
𝐼

(𝜏)},
𝚷(𝜏) =

∑︁
𝜈∈N

𝚷(𝜈) (𝜏) (5)

which casts Eq. (4) into

�̃�𝑠 (𝜏) = 𝚷(𝜏) �̃�𝑠 (0). (6)

Above, 𝚷(𝜈) (𝜏) only contains terms of order 𝜖𝜈 . For 𝜈 = 0,
we have𝚷(0) (𝑡) = I𝑠 (i.e., the superoperator-identity acting
on density matrices I𝑠 �̃�𝑠 = �̃�𝑠), while higher-order terms
describe the decoherence effects due to the system-bath
coupling.

1In the main text, we focus on time-independent �̂� and �̂� for a concise
description, but the derivation in Sec. 2 can be straightforwardly gen-
eralized to cases where the system operator is time-dependent. Such a
situation becomes important in several experiments, e.g., Refs. [24, 25]

Although we can in principle use Eq. (5) to calculate
the map 𝚷(𝜏) to arbitrary order, it is usually not the most
convenient quantity to extract physical measurables from,
according to the discussion in Refs. [9, 26, 27]. Instead,
we follow the Keldysh theory and define the self-energy

𝚺(𝜏) ≡ ln[𝚷(𝜏)], (7)

where redundant terms in higher-order expansions can be
conveniently identified, and the derivation of quantities
such as relaxation rates is easier [9, 26, 27]. Below, we
will focus on 𝚺(𝜏). Similar to 𝚷(𝜏), the self-energy 𝚺(𝜏)
can be expanded in powers of 𝜖 by 𝚺(𝜏) =

∑
𝜈 𝚺

(𝜈) (𝜏),
where 𝚺(𝜈) (𝜏) can be derived from 𝚷(𝜈) (𝜏) by a Taylor
expansion. For example, the lowest two orders are related
by

𝚺(1) (𝜏) = 𝚷(1) (𝜏), 𝚺(2) (𝜏) = 𝚷(2) (𝜏) − 1
2

[
𝚷(1) (𝜏)

]2
.

These relations can be further simplified, if we assume that
the noise has a zero mean, Tr𝐵{𝜂(𝑡) �̃�𝐵 (0)} = 0. In that
case, the first-order map 𝚷(1) (𝜏) vanishes, resulting in the
following simplified relations

𝚺(1) (𝜏) = 0, 𝚺(2) (𝜏) = 𝚷(2) (𝜏). (8)

2.2 Second-order truncation
For most experiments involving gate operations and state
transfer, it is usually sufficient to estimate the decoherence
error up to leading order. In the following, we focus on the
leading-order self-energy 𝚺(2) (𝜏). Explicitly, the second-
order self-energy takes the form

𝚺(2) (𝜏) �̃�𝑠 (0) =Tr𝐵
{
�̃�

(2)
𝐼

(𝜏) �̃�𝑠 (0)⊗ �̃�𝐵 (0)
+ �̃�𝑠 (0)⊗ �̃�𝐵 (0)�̃� (2)†

𝐼
(𝜏)

+ �̃� (1)
𝐼

(𝜏) �̃�𝑠 (0)⊗ �̃�𝐵 (0)�̃� (1)†
𝐼

(𝜏)
}
.

(9)

With the knowledge of the noise spectrum, we can further
expand the right-hand side of Eq. (9). For example, the
first term can be expressed as

Tr𝐵
{
�̃�

(2)
𝐼

(𝜏) �̃�𝑠 (0)⊗ �̃�𝐵 (0)
}

= (−𝑖)2
∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 𝑥(𝑡1)𝑥(𝑡2) �̃�𝑠 (0)

× 𝜖2Tr𝐵{𝜂(𝑡1)𝜂(𝑡2) �̂�𝐵,eq},

= −
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)

∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2

× 𝑥(𝑡1)𝑥(𝑡2) �̃�𝑠 (0)𝑒−𝑖𝜔 (𝑡1−𝑡2 ) , (10)

and the other two can be derived similarly. These integrals
can be conveniently summarized by four Keldysh diagrams,
which we show and explain in Appendix A. In the equation
above, 𝑆𝐵 (𝜔) ≡ 𝜖2

∫ ∞
−∞ 𝑑𝑡Tr𝐵{ �̂�𝐵,eq𝜂(𝑡)𝜂(0)} exp(𝑖𝜔𝑡)
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is the noise spectrum, and the interaction-picture oper-
ators are derived as 𝑥(𝑡) = �̂�

†
𝑠 (𝑡)𝑥�̂�𝑠 (𝑡) and 𝜂(𝑡) =

�̂�
†
𝐵
(𝑡)𝜂�̂�𝐵 (𝑡).

Given the information of the noise spectrum 𝑆𝐵 (𝜔) and
system propagator �̂�𝑠 (𝑡), we can use Eqs. (9) and (10)
to calculate the approximated dynamical map [2, 13–15],
i.e.2,

𝚷(𝜏) ≈ exp
[
𝚺(2) (𝜏)

]
. (11)

This calculation is reminiscent of the filter-function method
shown in Refs. [6, 7, 16–18]. For example, the double
integral

∫ 𝑡

0

∫ 𝑡1

0
𝑑𝑡1𝑑𝑡2𝑥(𝑡1)𝑥(𝑡2) exp[−𝑖𝜔(𝑡1 − 𝑡2)]

is closely related to the filter functions studied there. (See
Appendix B for a detailed discussion of the connection
to these theories.) For comparison, the time ordering of
the two coupling operators 𝜂(𝑡1) and 𝜂(𝑡2) in the Keldysh
expansion resolves the asymmetric noise spectrum for a
non-classical noise source.

However, evaluating the triple integral in Eq. (10) ac-
curately is usually not numerically efficient. In the next
section, we show that appropriate approximations can sim-
plify the calculation.

2.3 Fourier expansion and secular approxima-
tion
Our strategy for solving the aforementioned problem is
based on the Fourier expansion of

𝑥(𝑡) =
∑︁
𝑘

𝑥𝑘 exp(−𝑖𝑘𝜔𝑝𝑡), (12)

where we define the fundamental frequency 𝜔𝑝 = 2𝜋/𝜏.
Inserting it into Eqs. (10) and (9), we find

𝚺(2) (𝜏) �̃�𝑠 (0) = −
∑︁
𝑘𝑘′

𝑥𝑘𝑥𝑘′ �̃�𝑠 (0)
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)𝐼−𝑘,𝑘′ (𝜔)

−
∑︁
𝑘𝑘′

�̃�𝑠 (0)𝑥𝑘′𝑥𝑘
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)𝐼∗𝑘,−𝑘′ (𝜔)

+
∑︁
𝑘𝑘′

𝑥𝑘 �̃�𝑠 (0)𝑥𝑘′ (13)

×
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔) [𝐼∗𝑘,−𝑘′ (𝜔) + 𝐼−𝑘′ ,𝑘 (𝜔)] .

Here, 𝐼𝑘,𝑘′ (𝜔) is the filter function defined by

𝐼𝑘,𝑘′ (𝜔) ≡
∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 𝑒

𝑖 (𝑘𝜔𝑝−𝜔)𝑡1−𝑖 (𝑘′𝜔𝑝−𝜔)𝑡2 . (14)

2For a noise bath initiated as 𝜌𝐵,eq =
∑

𝜇 𝜆𝜇 |𝜇⟩⟨𝜇 | (𝜆𝜇 > 0), the
formal map (11) without any approximation or truncation is already for-
mally CPTP. (The proof of this is analogous to that in [2] for a static
system.) Note that sufficiently accurate calculation of the integrals (13)
may be required toward a numerical CPTP map.

−1

0

1 k = 0, k′ = 0(a)

−1

0

1

I k
,k
′ (
ω

)/
(τ

2
/2

)

k = 1, k′ = 0(b)

−6 −4 −2 0 2 4 6
ω/ωp

−1

0

1 k = −2, k′ = 2(c)

Figure 1: The filter functions 𝐼𝑘,𝑘′ (𝜔). The real and imaginary
parts are shown as solid and dashed curves, respectively. From
(a) to (c), |𝑘 − 𝑘′ | is chosen as 0, 1, and 4, respectively.

(The analytical evaluation of this integral is discussed in
Appendix A.) For 𝑘 = 𝑘 ′ and 𝑘 ≠ 𝑘 ′, the filter functions
𝐼𝑘,𝑘′ (𝜔) behave differently, which is worth careful inspec-
tion.

Diagonal filter functions.– For 𝑘 = 𝑘 ′, the filter functions
𝐼𝑘,𝑘′ (𝜔) can be cast into the following form

𝐼𝑘,𝑘 (𝜔) = 𝐾𝑅 (𝜔 − 𝑘𝜔𝑝) + 𝑖𝐾 𝐼 (𝜔 − 𝑘𝜔𝑝), (15)

where the real and imaginary parts are given by:

𝐾𝑅 (𝜔) = 𝜏2

2
sinc2

(𝜔𝜏
2

)
, 𝐾 𝐼 (𝜔) = − 𝜏

𝜔
[1 − sinc(𝜔𝜏)] .

(16)

We illustrate the behavior of 𝐾𝑅 (𝜔) (solid line) and 𝐾 𝐼 (𝜔)
(dashed line) in Fig. 1. Panel (a) shows the real and imag-
inary parts of 𝐼0,0 (𝜔), respectively. Visibly, the function
𝐾𝑅 (𝜔) has a predominant peak located at 𝜔 = 0. Accord-
ing to Eq. (16), the width of this peak is ∼ 2𝜋/𝜏. Different
from the real part, Im{𝐼0,0 (𝜔)} = 𝐾 𝐼 (𝑢) flips its sign at
𝜔 = 0, showing both a peak and a valley. Compared to
𝐾𝑅 (𝜔) ≲ 2|𝜔 |−2 in the limit |𝜔 | ≫ 𝜔𝑝 , 𝐾 𝐼 (𝜔) decays
more slowly as |𝐾 𝐼 (𝜔) | ∼ 𝜏 |𝜔 |−1.

Off-diagonal filter functions.– The off-diagonal elements
𝐼𝑘,𝑘′ (𝜔) (𝑘 ≠ 𝑘 ′) have three distinctive behaviors: (1)
their amplitudes are smaller, and decrease as |𝐼𝑘,𝑘′ (𝜔) | ≲
𝜏2/(2𝜋 |𝑘 − 𝑘 ′ |) for larger |𝑘 − 𝑘 ′ | (see Appendix A). In the
limit of |𝜔 − 𝑘𝜔𝑝 |, |𝜔 − 𝑘 ′𝜔𝑝 | ≫ |𝑘 − 𝑘 ′ |𝜔𝑝 , they have a
fast |𝜔 − 𝑘𝜔𝑝 |−2 decay. (2) The peaks (valleys) are spread
over a wider frequency range; the width of this frequency
range is approximately |𝑘 − 𝑘 ′ |𝜔𝑝 . (3) The off-diagonal
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filter functions elements have net-zero integrals, namely∫ ∞

−∞

𝑑𝜔

2𝜋
𝐼𝑘,𝑘′ (𝜔) =

∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 𝑒

𝑖𝑘𝜔𝑝 𝑡1−𝑖𝑘′𝜔𝑝 𝑡2𝛿(𝑡1 − 𝑡2)

=
1
2

∫ 𝜏

0
𝑑𝑡1𝑒

−𝑖 (−𝑘+𝑘′ )𝜔𝑝 𝑡1 =
1
2
𝜏𝛿𝑘,𝑘′ .

(17)

All these properties can be observed in Fig. 1 (a)-(c) for
different values of |𝑘 − 𝑘 ′ |.

Based on these three features, we arrive at the following
conclusion: if variations of 𝑆𝐵 (𝜔) are insignificant over
the frequency scale of a few 𝜔𝑝 , the off-diagonal elements
of

𝜙𝑘,𝑘′ ≡
∫ ∞

−∞

𝑑𝜔

2𝜋
𝐼𝑘,𝑘′ (𝜔)𝑆𝐵 (𝜔) (18)

with 𝑘 − 𝑘 ′ ≠ 0 have negligible amplitude. We justify this
claim in three steps. First, for large |𝑘 − 𝑘 ′ |, the amplitudes
of 𝐼𝑘,𝑘′ (𝜔) are small, rendering a negligible 𝜙𝑘,𝑘′ . Second,
for terms with small but nonzero |𝑘 − 𝑘 ′ |, the slow-varying
𝑆𝐵 (𝜔) allows us to treat it as quasi-constant. Third, using
the property of net-zero area in Eq. (17), the integral 𝜙𝑘,𝑘′
vanishes for small but non-zero |𝑘− 𝑘 ′ |. Since 𝜙𝑘,𝑘′ are the
coefficients of terms shown in Eq. (13), we conclude that all
off-diagonal terms are less important than the diagonal ones
in that expansion, if the spectrum is sufficiently smooth at
the resolution determined by 𝜔𝑝 .

After neglecting the terms with off-diagonal filter func-
tions, we simplify Eq. (13) to

𝚺(2) (𝜏) �̃�𝑠 (0) ≈ 𝚺(2)
CP (𝜏) �̃�𝑠 (0) =

∑︁
𝑘∈Z

[
𝑥𝑘 �̃�𝑠 (0)𝑥†𝑘 −

1
2
𝑥
†
𝑘
𝑥𝑘 �̃�𝑠 (0) − 1

2
�̃�𝑠 (0)𝑥†𝑘𝑥𝑘

] [ ∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)2𝐾𝑅 (𝜔 − 𝑘𝜔𝑝)

]

− 𝑖
∑︁
𝑘∈Z

[
𝑥
†
𝑘
𝑥𝑘 �̃�𝑠 (0) − �̃�𝑠 (0)𝑥†𝑘𝑥𝑘

] [ ∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)𝐾 𝐼 (𝜔 − 𝑘𝜔𝑝)

]
(19)

where 𝚺(2)
CP (𝜏) is the simplified second-order self-energy.

This step resembles the secular approximation performed
in the derivation of the Lindblad master equation – in both
cases, small off-diagonal terms are neglected. Since the
coefficient

∫ ∞
−∞ (𝑑𝜔/2𝜋)𝑆𝐵 (𝜔)2𝐾𝑅 (𝜔 − 𝑘𝜔𝑝) is strictly

positive, the self-energy 𝚺(2)
CP (𝜏) has the form of a Lindbla-

dian (up to an extra time dimension) [28]. Then, according
to Ref. [28], the exponential of 𝚺(2)

CP (𝜏) yields a CPTP map

𝚷(𝜏) ≈ exp
[
𝚺(2)

CP (𝜏)
]
. (20)

In the following, we refer to 𝑥𝑘 =

[
∫ 𝜏

0 𝑑𝑡𝑥(𝑡) exp(𝑖𝑘𝜔𝑝𝑡)]/𝜏 and 𝜔𝑘 = 𝑘𝜔𝑝 as the fil-
ter operator and its corresponding filter frequency,
respectively.

According to the justification of the secular approxima-
tion, the map (20) tends to be more accurate for smoother
noise spectrum spectra. However, we observe that even
for an 𝑆𝐵 (𝜔) that exhibits strong peaks, the magnitude of
the terms in Eq. (13) with diagonal filter functions can still
dominate those with the off-diagonal ones. As a result, the
secular map (20) is found to qualitatively agree with the
full map for many common noise spectra, including those
showing strong peaks. This is illustrated in Sec. 3.3 for the
example of 1/ 𝑓 noise. Therefore, although we find it chal-
lenging to quantify the magnitude of the approximation
error for arbitrary noise spectra, we still adopt Eq. (20) for
an estimation if an extreme spectrum is considered; then,
the agreement between the secular and full maps can be
checked for validation.

We append two remarks to compare our method with
several existing ones. First, although our method is not
a differential equation, the derived map is reminiscent
of the dynamical map generated by the Lindblad equa-
tion [28, 29]. Specifically, the first and second lines in
Eq. (19) resemble the damping terms and Lamb shift in
the master equation, respectively. A difference is that, our
map considers noise contributions from the frequency set
{𝑘𝜔𝑝 |𝑘 ∈ Z}, while the Lindblad master equation only
includes noise at system transition frequencies. For a more
intuitive comparison, we illustrate the decoherence chan-
nels for an undriven and driven qubit in Fig. 2 (a) and (b),
respectively (see a detailed description of the qubit in the
caption). While three damping operators fully describe
the decoherence processes in an undriven qubit according
to the Lindblad master equation, more damping terms are
relevant for a driven one according to Eq. (19). In fact, we
show in Sec. 3.1 that the Lindblad map is a special case of
the dynamical maps derived by our method.

Second, the form of Eq. (19) is also reminiscent of the
coarse-grained master equation [2, 3]. We understand this
similarity as follows: the second-order secular Keldysh
expansion used here is comparable to the coarse-graining
step detailed in Refs. [2, 3]. Differently, our framework fo-
cuses on a single map of the reduced density matrix from
𝑡 = 0 to 𝜏, rather than its full evolution during 𝑡 ∈ [0, 𝜏].
The calculation of the Fourier series of 𝑥(𝑡) can also be
easily carried out numerically, e.g., using the method of
fast Fourier transformation. Therefore, our model tends to
require less computational resource due to fewer compu-
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x̃(t) =
∑
k

x̃ke−i2πkt/τ

x̃(t)

x̃(t)

x̃(t) = υxσ̂−e−iωq t + υxσ̂
+eiωq t + υz σ̂z

Figure 2: A cartoon comparing the decoherence channels of an
undriven and driven qubit. The qubit Hamiltonian is given by
�̂�𝑠 (𝑡) = 𝜔𝑞�̂�𝑧/2 + �̂�𝑑 (𝑡), where �̂�𝑑 (𝑡) describes an arbitrary
drive on the qubit. This qubit is coupled to the bath via the
operator 𝑥 = 𝜐𝑧 �̂�𝑧 + 𝜐𝑥 �̂�𝑥 , and the bath spectrum is denoted
by 𝑆𝐵 (𝜔). Panels (a) and (b) illustrate the qubit decoherence
channels if the qubit is undriven or driven, respectively. In (a), the
three terms in the decomposition 𝑥(𝑡) = ∑

± 𝜐𝑥 �̂�± exp(±𝑖𝜔𝑞 𝑡) +
𝜐𝑧 �̂�𝑧 result in the damping operators D[�̂�±] and D[�̂�𝑧], which
describe the excitation, decay, and pure-dephasing channels of
the qubit, respectively [29]. In (b), because an arbitrary drive is
applied on the qubit, the previous simple decomposition of 𝑥(𝑡)
no longer holds; instead, one can use Eq. (12) to perform the
frequency decomposition over the time period 𝑡 ∈ [0, 𝜏]. As a
result, the decoherence channels for a driven qubit are given by
the first line of the self-energy (19).

tational steps, if the map is only needed for one final time
𝜏.

2.4 Total decoherence error

Using the map (20), we can conveniently derive the pro-
cess infidelity for a noisy quantum processor. Following
Ref. [30], this error is expressed as

𝐸gate = 1 − 1
𝑁2
𝑠

Tr
{
V†

tgV𝑠 (𝜏)𝚷(𝜏)
}
. (21)

Above, 𝑁𝑠 is the dimension of the system Hilbert space,
Vtg ≡ �̂�tg⊗�̂�†

tg denotes the target superoperator, where �̂�tg
is the target unitary, and V𝑠 (𝜏) is the closed-system map
defined by V𝑠 (𝜏) ≡ �̂�𝑠 (𝜏) ⊗ �̂�

†
𝑠 (𝜏).

If we only focus on the decoherence contribution to
𝐸gate, we can neglect the possible coherent errors by setting

𝑈tg = 𝑈𝑠 (𝜏), and reduce Eq. (21) to

𝐸dh = 1 − 1
𝑁2
𝑠

Tr{𝚷(𝜏)}

≈ 1
𝑁𝑠

∑︁
𝑘

(
Tr𝑠{𝑥†𝑘𝑥𝑘} −

1
𝑁𝑠

��Tr𝑠{𝑥𝑘}
��2) Re{2𝜙𝑘,𝑘}.

(22)

Above, we have used the leading-order approximation
𝚷(𝜏) ≈ I𝑠 +𝚺(2)

CP (𝜏). The trace Tr{·} is for the superopera-
tor for the system density matrix, while Tr𝑠{·} denotes the
usual trace for regular system operators3. This approxima-
tion evaluates 𝐸dh to the order 𝜖2. Up to this order, only
the real part of 𝜙𝑘,𝑘 contributes.

We interpret the sum in the second line of Eq. (22)
as follows. The total decoherence error 𝐸dh is a sum of
contributions by noise from frequency bands indexed by
𝑘 . The 𝑘th band has the approximate bandwidth ∼ 𝜔𝑝

and is centered at 𝜔𝑘 [see the filter function in Fig. 1 (a)].
The total noise amplitude over this bandwidth is given by
the integral 2Re{𝜙𝑘,𝑘}. The driven qubit, however, is not
equally sensitive to noise from all these frequency bands
– according to Eq. (22), we can quantify the sensitivity by
the filter strength

𝑀𝑘 ≡ Tr𝑠
{
𝑥
†
𝑘
𝑥𝑘
} − 1

𝑁𝑠

��Tr𝑠{𝑥𝑘}
��2, (23)

which satisfies the conservation rule
∑

𝑘 𝑀𝑘 = Tr𝑠
{
𝑥2} −��Tr𝑠{𝑥}

��2/𝑁𝑠 for a time-independent coupling operator 𝑥.
The conservation rule implies that, if only white noise is
present, i.e., the noise spectrum 𝑆𝐵 (𝜔) = 𝛾 is a constant
over frequency, the decoherence error is

𝐸dh ≈ 1
𝑁𝑠

(
Tr𝑠

{
𝑥2} − 1

𝑁𝑠

��Tr𝑠{𝑥}
��2)𝛾𝜏, (24)

which increases with 𝜏 but is independent of the shape of
drive applied during 𝑡 ∈ [0, 𝜏] up to order 𝜖2.

For non-Markovian noise [𝑆𝐵 (𝜔) is not a constant], how-
ever, Eq. (24) does not hold. In this case, different drives
generally result in different magnitudes of 𝐸dh. To re-
duce decoherence errors, one should design pulses such
that 𝑀𝑘 is suppressed where the integrated noise ampli-
tude Re{2𝜙𝑘,𝑘} is large. In the following sections, most
strategies discussed for reducing decoherence are centered
around this strategy.

3 Applications
In this section, we demonstrate the power of our framework
by a few examples from a wide range of applications. Our
framework not only reproduces some of the established
conclusions, but also extends the prediction to situations
that have not been carefully studied by previous theories.

3For a superoperator �̂� ⊗ �̂�†, the two types of traces are related by
Tr{ �̂� ⊗ �̂�†} = Tr𝑠 { �̂�}Tr𝑠 { �̂�†}, where �̂� and �̂� are regular system oper-
ators.
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3.1 Static quantum systems
We first apply our method to an undriven system, with the
main purpose of reproducing the dynamical map derived by
the Lindblad master equation. In this case, we set the drive
�̂�𝑑 (𝑡) = 0 in Eq. (1), which makes the system Hamiltonian
�̂�𝑠 (𝑡) = �̂�𝑠0 time-independent.

Following the procedure described in Sec. 2, we first
derive the interaction-picture coupling operator 𝑥(𝑡), and
use it to find the filter operators 𝑥𝑘 needed in the deriva-
tion of the self-energy (19). For the undriven system, the
propagator is given by

�̂�𝑠0 (𝑡) = exp[−𝑖𝐻𝑠0𝑡], (25)

which yields the coupling operator in the interaction picture

𝑥(𝑡) =
∑︁
𝜔𝐿 ∈F

𝑥(𝜔𝐿)𝑒−𝑖𝜔𝐿 𝑡 . (26)

Above, the frequencies 𝜔𝐿 associated with different terms
are contained in the frequency set F = {𝐸 𝑗 − 𝐸 𝑗′ | 0 ≤
𝑗 , 𝑗 ≤ 𝑁𝑠}. For this expression, 𝑁𝑠 is the dimension of
the system Hilbert space, and 𝐸 𝑗 is the eigenenergy of the
𝑗 th eigenstate for �̂�𝑠 . We refer to the elements in F as the
transition frequencies, and the corresponding 𝑥(𝜔𝐿) as the
damping operator. (Note that 𝜔𝐿 = 0 is also included in
this transition-frequency set F.)

Using Eq. (12), we obtain the 𝑘th filter operator

𝑥𝑘 =
1
𝜏

∫ 𝜏

0
𝑑𝑡′𝑥(𝑡′)𝑒𝑖𝑘𝜔𝑝 𝑡

′
=

∑︁
𝜔𝐿 ∈F

𝑄(𝜔𝐿 , 𝑘𝜔𝑝)𝑥(𝜔𝐿),

(27)

where we define 𝑄(𝜔𝐿 , 𝜔) ≡ [𝑒𝑖 (𝜔−𝜔𝐿 )𝜏 − 1]/[𝑖(𝜔 −
𝜔𝐿)𝜏]. Inserting the expansion (27) into Eq. (19), we
obtain the self-energy for the undriven system as

𝚺(2)
CP (𝜏) =

∑︁
𝑘

Re{2𝜙𝑘,𝑘}D
[∑︁
𝜔𝐿 ∈F

𝑄(𝜔𝐿 , 𝑘𝜔𝑝)𝑥(𝜔𝐿)
]

+ Lamb shifts, (28)

where we define the damping operator D[�̂�] �̃� ≡ �̂� �̃� �̂�† −
[�̂�† �̂� �̃� + �̃� �̂�† �̂�]/2. Inserting it into Eq. (20), we obtain
the dynamical map for the undriven system. In deriving
this map, we only specify a time-independent Hamiltonian,
but do not make further assumptions such as those usually
required by the Lindblad master equation.

If we do enforce these assumptions, then our framework
reproduces the Lindblad dynamical map. In detail, these
conditions are:

① the difference between the transition frequencies is
much larger than 𝜔𝑝 , i.e., |𝜔𝐿 − 𝜔′

𝐿
| ≫ 𝜔𝑝 for

𝜔𝐿 , 𝜔
′
𝐿
∈ F, 𝜔𝐿 ≠ 𝜔′

𝐿
.

② the system evolution time 𝜏 is sufficiently long such
that the spectral variation in 𝑆𝐵 (𝜔) is negligible over
the small frequency scale 𝜔𝑝 = 2𝜋/𝜏;

These two conditions can be translated to the following
two more familiar statements: ① the system’s characteristic
time 𝜏𝑆 ∼ 1/min{𝜔𝐿−𝜔′

𝐿
|𝜔𝐿 , 𝜔

′
𝐿
∈ F, 𝜔𝐿 ≠ 𝜔′

𝐿
} is much

shorter than the system evolution time 𝜏 of interest, which
usually has a similar timescale as the system relaxation
time 𝜏𝑅; ② the bath correlation time 𝜏𝐵 is also much shorter
than the evolution time 𝜏 ∼ 𝜏𝑅 (see Appendix C for a more
detailed explanation). Under ① and ②, the fundamental
frequency 𝜔𝑝 is by far the smallest frequency scale. This
allows us to consider the limit 𝜔𝑝 → 0, and perform the
following three approximations.

First, we approximate the function 𝐾𝑅 (𝜔) ≈ 𝜋𝜏𝛿(𝜔)
and 𝐾 𝐼 (𝜔) ≈ −𝜏 P(1/𝜔), where 𝛿(𝑥) is the Dirac delta
function and P denotes the Cauchy principal value. Using
the approximated 𝐾𝑅/𝐼 (𝜔), we simplify the integral 𝜙𝑘,𝑘
and obtain

Re{2𝜙𝑘,𝑘} ≈ 𝜏𝑆𝐵 (𝑘𝜔𝑝), Im{𝜙𝑘,𝑘} ≈ 𝜏𝑆𝐵 (𝑘𝜔𝑝),
(29)

where we define

𝑆𝐵 (𝜔) ≡ −P
∫ ∞

−∞

𝑑𝜔′

2𝜋
𝑆𝐵 (𝜔′)
𝜔′ − 𝜔 . (30)

Second, the infinitesimal 𝜔𝑝 also justifies the replace-
ment of the summation over 𝑘 by an integral over 𝜔. This
step transforms the self-energy in Eq. (19) to an integral

𝚺(2)
CP �̃�𝑠 (0)=

∫ ∞

−∞
𝑑𝜔

{
𝑆𝐵 (𝜔)D[𝑥𝜔] �̄�𝑠 (0)

− 𝑖𝑆𝐵 (𝜔) [𝑥†𝜔𝑥𝜔 , �̃�𝑠 (0)]
}
, (31)

where we define 𝑥𝜔 ≡ 𝑥⌊𝜔/𝜔𝑝 ⌋/
√
𝜔𝑝 .

Third, using the expansion (26) for the undriven system
and the definition of 𝑥𝜔 , we find the approximation

𝑥†𝜔𝑥𝜔 ≈ 𝜏

2𝜋

∑︁
𝜔𝐿

∑︁
𝜔′

𝐿

𝑄∗ (𝜔𝐿 , 𝜔)𝑄(𝜔′
𝐿 , 𝜔)𝑥† (𝜔𝐿)𝑥(𝜔′

𝐿)

≈
∑︁
𝜔𝐿

𝑥† (𝜔𝐿)𝑥(𝜔𝐿)𝛿(𝜔 − 𝜔𝐿). (32)

A similar delta-function approximation holds for 𝑥†𝜔 ⊗ 𝑥𝜔
in D[𝑥𝜔]. Inserting these approximations into the inte-
gral Eq. (31) and carrying out the integral over the delta
functions, we finally arrive at the self-energy

𝚺(2)
CP (𝜏) �̃�𝑠 (0)= 𝜏

∑︁
𝜔𝐿 ∈F

{
𝑆𝐵 (𝜔𝐿)D[𝑥(𝜔𝐿)] �̄�𝑠 (0)

− 𝑖𝑆𝐵 (𝜔𝐿)
[
𝑥† (𝜔𝐿)𝑥(𝜔𝐿), �̃�𝑠 (0)

]}
.

(33)

The secular CPTP map (20) generated by the self-energy
above is identical to that predicted by the Lindblad master
equation.

As a minimal example, we apply the map above to a
static qubit that is described by the Hamiltonian

�̂�𝑠0 =
1
2
𝜔𝑞�̂�𝑧 , (34)
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where 𝜔𝑞 is the qubit frequency. The transition-frequency
set for this qubit is F = {0,±𝜔𝑞}. If it is transversely cou-
pled to a bath through the operator 𝑥 = �̂�𝑥 , the expansion
(26) is given by

𝑥(𝑡) = �̂�−𝑒−𝑖𝜔𝑞 𝑡 + �̂�+𝑒𝑖𝜔𝑞 𝑡 . (35)

Then, following the steps described above, we find the
self-energy under conditions ① and ② approximated as

𝚺(2)
CP (𝜏) �̃�𝑠 (0) ≈ 𝜏

∑︁
±
𝑆𝐵 (±𝜔𝑞)D[�̂�∓] �̃�𝑠 (0) + Lamb shifts.

(36)

If the coupling operator is 𝑥 = �̂�𝑧 , we instead have 𝑥(𝑡) =
�̂�𝑧 , which yields the approximated self-energy

𝚺(2)
CP (𝜏) �̃�𝑠 (0) ≈ 𝜏𝑆𝐵 (0)D[�̂�𝑧] �̃�𝑠 (0) + Lamb shifts. (37)

3.2 Weakly driven systems
Although the derivation of the Lindblad dynamical map
[29] assumes no drive on the system, in the literature, weak
drives are sometimes naively added to the master equation
with the damping rates and operators unaffected. Differ-
ent from the Lindblad method, our framework rigorously
includes the drive in the derivation. Below, we use the
Keldysh framework to investigate the change of the deco-
herence map (20) if a weak drive is added. Because the
specific noise spectrum may vary in different experiments,
here we choose to focus on the filter operators 𝑥𝑘 , which
determine the map (20) up to the specific noise spectrum.

We start by considering a general system, which is de-
scribed by the Hamiltonian �̂�𝑠 (𝑡) = �̂�𝑠0 + 𝜆�̂�𝑑 (𝑡). This
Hamiltonian consists of the static part �̂�𝑠0 and a sufficiently
weak driving term 𝜆�̂�𝑑 (𝑡) (𝜆 is a small dimensionless pa-
rameter). Due to the small amplitude of the latter term,
we can perturbatively calculate �̂�𝑠 (𝑡) using the Magnus
expansion [31]:

�̂�𝑠 (𝑡) = �̂�𝑠0 (𝑡)�̂�𝑑 (𝑡), �̂�𝑑 (𝑡) = exp[−𝑖Ω̂(𝑡)], (38)

where �̂�𝑠0 (𝑡) is the propagator for the undriven system
given in Eq. (25), and Ω̂(𝑡) is the Magnus exponent. To
leading order of 𝜆, this exponent is approximately

Ω̂(𝑡) ≈ 𝜆
∫ 𝑡

0
𝑑𝑡′�̂�†

𝑠0 (𝑡′)�̂�𝑑 (𝑡′)�̂�𝑠0 (𝑡′). (39)

By inspecting Eq. (38) and the definition of 𝑥(𝑡), we
note that: if Ω̂(𝑡) is small, 𝑥(𝑡) can be approximated as

𝑥(𝑡) ≈
∑︁
𝜔𝐿 ∈F

{
𝑥(𝜔𝐿) − 𝑖[𝑥(𝜔𝐿), Ω̂(𝑡)]

}
𝑒−𝑖𝜔𝐿 𝑡 , (40)

which is only slightly modified from Eq. (26). In the limit
|Ω̂(𝑡) | → 0, the filter operator 𝑥𝑘 can still be approximated
by the undriven expansion (27). Therefore, the noise chan-
nels and the resulting dynamical map (20) should also
approach those obtained in the undriven case. By contrast,

if the condition of negligible Ω̂(𝑡) is not satisfied, such
approximation may be invalid.

In the following, we will use a concrete example to con-
cretely demonstrate both scenarios. We consider a qubit
driven by a sinusoidal tone. The Hamiltonian of this driven
system is given by

�̂�𝑠0 =
𝜔𝑞

2
�̂�𝑧 , �̂�𝑑 (𝑡) = 𝑑

2
(�̂�+𝑒−𝑖𝜔𝑑 𝑡 + �̂�−𝑒𝑖𝜔𝑑 𝑡 ). (41)

The coupling operator for this qubit is taken to be 𝑥 = �̂�𝑥 ,
which corresponds to the transverse coupling between the
qubit and the noise bath. The drive strength 𝑑 is assumed to
be weak, i.e., 𝑑 ≪ 𝜔𝑞 . In that case, the Magnus expansion
of the qubit propagator is applicable, with the exponent
given by

Ω̂(𝑡) = 𝑑

2𝛿𝑞
sin(𝛿𝑞𝑡)�̂�𝑥 + 𝑑

𝛿𝑞
sin2

(
𝛿𝑞𝑡

2

)
�̂�𝑦 +𝑂 (𝑑2),

(42)

where the detuning is defined by 𝛿𝑞 ≡ 𝜔𝑞 − 𝜔𝑑 .
From Eq. (42), we find that the Magnus exponent has a

negligible magnitude, i.e., |Ω̂(𝑡) | ≲ 4|𝑑/𝛿𝑞 |, if the drive
is off-resonant (𝑑 ≪ |𝛿𝑞 |). For such off-resonant drive,
Eq. (40) predicts that the expansion of 𝑥𝑘 can be approx-
imated by Eq. (35). To verify this, we numerically [32]
calculate 𝑥𝑘 and the resulting filter strength 𝑀𝑘 for both
undriven (red coloring) and off-resonantly driven (blue col-
oring) qubits. The resulting filter strengths 𝑀𝑘 versus filter
frequencies 𝜔 = 𝑘𝜔𝑝 are shown in Fig. 3 (a). [We only
focus on the frequency range𝜔 ≈ 𝜔𝑞 as an example, where
noise induces energy decay in the qubit. For qubit excita-
tion, the discussion is analogous.] As shown in the plot,
the filter strengths for the driven qubit only insignificantly
differ from those for the undriven qubit. The filter op-
erator associated with the most prominent filter strength
is approximately �̂�− , which is the decay operator for the
undriven qubit (red peak).

For the resonantly-driven qubit, however, the exponent
Ω̂(𝑡) can grow significantly, even in the limit 𝑑 ≪ 𝜔𝑞 .
Choosing 𝛿𝑞 = 0 as an example, we find that the exponent

Ω̂(𝑡) = 𝑑

2
𝑡�̂�𝑥 , (43)

grows linearly with time. This exponent leads to the ex-
pression for the coupling operator

𝑥(𝑡) = �̂�†
𝑠 (𝑡) [�̂�+𝑒𝑖𝜔𝑞 𝑡 + �̂�−𝑒−𝑖𝜔𝑞 𝑡 ]�̂�𝑠 (𝑡) (44)

= �̂�𝑥 cos(𝜔𝑞𝑡) − [�̂�𝑦 cos(𝑑𝑡) − �̂�𝑧 sin(𝑑𝑡)] sin(𝜔𝑞𝑡).

Certainly, Eq. (44) cannot be approximated by Eq. (26),
rendering the previous approximation of 𝑥𝑘 by Eq. (27)
invalid. The difference in 𝑥𝑘 between the driven and un-
driven cases causes distinctive behaviors of𝑀𝑘’s, as shown
in Fig. 3 (b). Compared to the plot of 𝑀𝑘 for the undriven
qubit (red coloring), the plot for the driven qubit (blue col-
oring) exhibits two additional peaks located at frequencies
𝜔 = 𝜔𝑞 ± 𝑑. These extra peaks imply additional deco-
herence channels, rendering the qubit sensitive to noise at
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frequencies 𝜔𝑞 ± 𝑑 in addition to its transition frequency
𝜔𝑞 . These additional damping channels are missed by
the standard Lindblad method [Eq. (36)], but can be cross-
checked by a Golden-rule type of calculation in the rotating
frame [33], or the Floquet theory [5]. (In Appendix D, we
explain the appearance of the side peaks in the framework
of the Floquet master equation.) In summary, the filter
operators 𝑥𝑘 for the driven system in general differ from
those in the undriven case. This further results in different
dynamical maps (20). The approximation of one set of 𝑥𝑘
by the other is possible if the drive is off-resonant such that
|Ω̂(𝑡) | is sufficiently small4.

Finally, we use a third example to demonstrate the pre-
dictive power of our method in more complicated situations
involving non-periodic drives. For example, we calculate
𝑥𝑘 and 𝑀𝑘 for a qubit driven by a pulse with a hyperbolic
envelope [see inset of Fig. 3 (c)]. Compared to the plot
of filter strengths in (b), the ramping up and down of the
drive result in two wider side peaks that are not centered at
the maximal driving strength, as shown in (c). Such dis-
tinctive feature implies the difference in the decoherence
processes between systems with periodic and non-periodic
drives. The latter case is thought to go beyond the descrip-
tion by the rotating-frame analysis or the Floquet theory,
but is conveniently captured by the Keldysh method.

3.3 Ramsey, echo and 1/ 𝑓 noise

Along with the introduction of Eq. (19) in Sec. 2.3, we
claim that the secular approximation is applicable even for
spectra that show strong variation within the frequency
scale characterized by 𝜔𝑝 . Here, as a supporting example,
we study the state evolution of a qubit which is coupled
to a 1/ 𝑓 noise source, whose spectrum is strongly peaked
at 𝜔 ≈ 0. Particularly, we compare the prediction by the
secular CPTP map (20) and the full-wave version (13) for
this example.

We consider a qubit longitudinally coupled to a noise
bath and subject to a transverse drive. The Hamiltonian for
this qubit is �̂�𝑠 (𝑡) = 𝜔𝑞�̂�𝑧/2 + 𝑑 (𝑡)�̂�𝑥 , and the coupling
operator is 𝑥 = �̂�𝑧 . The 1/ 𝑓 noise spectrum is given
by 𝑆𝐵 (𝜔) = 2𝜋A2

𝑓
/|𝜔 |, where we set an infrared cutoff

frequency 𝜔ir to regularize the singularity at 𝜔 = 0.
We first calculate the map (20) for the simple case of an

undriven qubit [𝑑 (𝑡) = 0], which is relevant for a Ramsey
experiment [34]. Different from the discussion in Sec.
3.1, the presence of the strong peak in the noise spectrum
violates condition ②, rendering the Lindblad prediction
(37) invalid. This difficulty, instead, can be overcome
by our Keldysh framework, which takes advantage of the
filter functions [6]. To perform the Keldysh calculation,
we first derive the filter operator for the undriven qubit
𝑥𝑘 = 𝛿𝑘,0�̂�𝑧 , meaning that 𝑥𝑘=0 is the only non-vanishing
filter operator. Such decomposition enables the analytical
evaluation of both Eqs. (19) and (13), which predicts the

4If only white noise is present, however, the total decoherence errors
in the driven and undriven cases equal. See discussion around Eq. (24).
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Figure 3: Filter strength 𝑀𝑘 for a driven qubit described by
Hamiltonian Eq. (41). In (a)-(c), the horizontal axis shows the
filter frequency 𝜔𝑘 = 𝑘𝜔𝑝 , and the vertical shows the filter
strength 𝑀𝑘 [Eq. (23)]. The widths of the columns are given
by the fundamental frequency 𝜔𝑝 = 2𝜋/𝜏. The parameters are
chosen as follows. The drive amplitudes for all three simulations
are chosen as 𝑑/𝜔𝑞 = 0.02, and the frequency 𝜔𝑑 used for each
plot is given in each figure. The duration is set as 𝜏 = 200 ·2𝜋/𝜔𝑞

for all three simulations. For (a) and (b), we choose sinusoidal
drives with a constant amplitude; the results of 𝑀𝑘 for the driven
qubit are shown in blue, while those for an undriven qubit are
shown in red for reference. For (c), the sinusoidal drive used for
(b) is multiplied by a hyperbolic envelope F (𝑡) = [1 + tanh[(𝑡 −
𝑡mid1)/𝜋𝑡ramp]] [1 + tanh[(𝑡mid2 − 𝑡)/𝜋𝑡ramp]]/4, as shown in the
inset. (𝑡mid1,2 and 𝑡ramp are used to tune the location and duration
of the ramps.)

same self-energy exponent

𝚺(2) (𝜏) =
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)2𝐾𝑅 (𝜔)D[�̂�𝑧]

≈ 2A2
𝑓 𝜏

2 ln
(

1
2𝜋𝜔ir𝜏

)
D[�̂�𝑧] . (45)

The log-quadratic scaling of the self-energy implies a well-
known sub-Gaussian dephasing profile [34, 35], which dif-
fers from the exponential one predicted by the Lindblad
map (37).

As the secular and full-wave maps agree well for the
undriven qubit, we next check whether that agreement ex-
tends to the driven case. We focus on a qubit undergoing
a spin echo. This protocol uses a 𝜋-pulse to help refocus
the phase of the qubit and, as a result, mitigate the qubit
dephasing due to 1/ 𝑓 noise.

For this simulation, we choose the drive such that a finite-
width 𝜋 pulse is applied at the middle of the whole echo
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Figure 4: Evolution of �̃�𝑒𝑔 (𝜏) for a qubit during a spin echo
experiment. The blue solid and red dashed curves correspond to
the predictions by Eq. (20) and Eq. (11), respectively. The sketch
of the echo pulse used for this simulation is plotted by the gray
dashed curve. The two insets show the filter strengths 𝑀𝑘 as
functions of the filter frequencies 𝜔𝑘 , at the middle and end of
the echo duration. Along with the filter strengths, the 1/ 𝑓 noise
spectrum used for simulation is also sketched.

duration 𝑇 (gray curve in Fig. 4). Due to the application
of the pulse, the filter strengths for different 𝜏 ∈ [0, 𝑇]
differ characteristically. For example, we calculate 𝑥𝑘 for
𝜏 = 𝑇/2 and 𝜏 = 𝑇 , and show the corresponding filter
strength 𝑀𝑘 in the insets of Fig. 4. For 𝜏 = 𝑇 , the filter
strength 𝑀𝑘=0 vanishes, and the most prominent peaks of
𝑀𝑘 are located at 𝑘 = ±1. By contrast, for 𝜏 = 𝑇/2, the
only prominent filter strength is 𝑀𝑘=0, indicating strong
sensitivity to noise from 𝜔 ≈ 0.

Using the filter operators and the 1/ 𝑓 noise spectrum,
we further calculate the decoherence maps predicted by
both Eq. (11) and Eq. (20), with 𝜏 varied over 𝜏 ∈ [0, 𝑇].
Note that since this framework is not based on a differ-
ential equation, each �̃�𝑠 (𝜏) with 𝜏 ∈ [0, 𝑇] is calculated
separately rather than recursively. Then, we evaluate the
off-diagonal matrix element �̃�𝑒𝑔 (𝜏), which is plotted in
Fig. 4. The magnitude of this matrix element indicates the
phase coherence of the qubit [36], if the qubit is initially
prepared in an equal superposition state.

Visibly, the two calculations show qualitative agreement,
while a small deviation exists as the consequence of ne-
glecting the off-diagonal filter functions in Eq. (19). The
comparison suggests that, even for a non-trivial decom-
position 𝑥𝑘 and a highly structured noise spectrum, the
secular approximation can still be applicable5.

Besides the agreement between the two sets of simula-
tions, we also observe the interesting rebound of the matrix
element | �̃�𝑒𝑔 (𝜏) |. Specifically, | �̃�𝑒𝑔 (𝜏) | decreases during
the first half of the echo period and then increases after the
pulse is applied. [For the first half period, the evolution of

5For numerical simplicity, we can always choose to truncate the ex-
pansion in Eq. (13) by only keeping terms with |𝑘 − 𝑘′ | smaller than a
certain integer, since those with a larger |𝑘 − 𝑘′ | are less important due
to their diminishing amplitude according to Eq. (55). But one should be
alerted that such calculation has the risk of generating a non-CPTP map.

�̃�𝑒𝑔 (𝜏) indeed shows the sub-Gaussian dephasing behav-
ior predicted by Eq. (45).] Such “inverse dephasing” of
the qubit implies a negative decoherence rate, which is de-
scribed in more detail by a time-local master equation intro-
duced in Ref. [4]. This behavior also sends another useful
message: although the map 𝚷(𝜏) ≈ exp[𝚺(2)

CP (𝜏)] is guar-
anteed to be CPTP, the intermediate map 𝚷(𝜏) [𝚷(𝜏′)]−1

(0 < 𝜏′ < 𝜏) is not necessarily so. Noticing this, one
may naturally ask whether it is possible to follow the pro-
cedure in Sec. 2 to derive a CPTP map from 𝑡 = 𝜏′ to 𝜏
(0 < 𝜏′ < 𝜏), if the system and bath are initialized at 𝑡 = 0;
however, we point out that the basis for such derivation
may not hold – for 𝑡 = 𝜏′ > 0, the two subsystems may
already be entangled, while the derivation starting from
Eq. (2) requires isolation between them. (See discussion
of the relation between initial entanglement and the CPTP
character of the map in Ref. [37].)

3.4 Floquet qubits
We designate this final subsection to test the Keldysh
method in studying the Floquet qubit [5, 24, 38–40]. This
type of qubit uses the Floquet states of a periodically
driven system to store and manipulate quantum informa-
tion, which can offer advantages such as increased coher-
ence times and more convenient gate operations than the
static qubits. Although the open-system Floquet theory is
developed to calculate the decoherence rates in such sys-
tems, its applicability is limited to the idle Floquet qubit.
In the following, we show that the Keldysh method not only
reproduces some results by such theory, but also explores
situations that are beyond its application.

We start by studying an idle Floquet qubit, where the
drive �̂�𝑑 (𝑡) in Eq. (1) is periodic, i.e., �̂�𝑑 (𝑡 +𝑇𝑑) = �̂�𝑑 (𝑡)
(𝑇𝑑 = 2𝜋/𝜔𝑑 is the drive period). In this case, the closed-
system propagator can be expressed as

�̂�𝑠 (𝑡) =
∑︁
𝑗

|𝑤 𝑗 (𝑡)⟩⟨𝑤 𝑗 (0) |𝑒−𝑖 𝜀 𝑗 𝑡 , (46)

where |𝑤 𝑗 (𝑡)⟩ and 𝜀 𝑗 are the 𝑗 th independent Floquet state
and its corresponding quasi-energy. In the interaction pic-
ture, the coupling operator is transformed as

𝑥(𝑡) =
∑︁
𝑗 , 𝑗′

|𝑤 𝑗 (0)⟩⟨𝑤 𝑗′ (0) | × ⟨𝑤 𝑗 (𝑡) |𝑥 |𝑤 𝑗′ (𝑡)⟩𝑒−𝑖 (𝜀 𝑗′−𝜀 𝑗 )𝑡

=
∑︁
𝜔𝐿 ∈F

𝑥(𝜔𝐿)𝑒−𝑖𝜔𝐿 𝑡 , (47)

where the set F = {𝜀 𝑗 − 𝜀 𝑗′ + 𝑙𝜔𝑑 | 0 < 𝑗, 𝑗 ≤ 𝑁𝑠 , 𝑙 ∈ Z}
contains all possible quasi-energy differences; the opera-
tors 𝑥(𝜔𝐿) are damping operators in the basis of Floquet
states (time-independent in the interaction picture), rather
than the eigenstates of the undriven qubit discussed in Sec.
3.1.

With these preparations, we next show how our Keldysh
method reproduces the prediction of the decoherence pro-
cess via the Floquet theory in Ref. [5]. In that instance,
a Floquet qubit is coupled to both the 1/ 𝑓 flux-noise bath
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and dielectric noise bath. The spectrum of the former has
a strong peak at𝜔 ≈ 0, and that of the latter has a smoother
spectrum.

Similar to the steps in that reference, we first disregard
the peak at 𝜔 = 0 in the spectrum, and then correct the re-
sulting dynamical map with a more careful consideration
of the peak. For the first step, both conditions ① and ② are
satisfied if we assume a sufficiently large evolution time 𝜏.
If so, the map takes on the same form as Eq. (33), while the
operators 𝑥(𝜔𝐿) are updated according to Eq. (47). Such
map reproduces that generated by the Markovian Floquet
master equation [29]. Then, to address the strong peak
at 𝜔 = 0 due to the 1/ 𝑓 spectrum, we carefully evaluate
the coefficient Re{2𝜙0,0} =

∫ ∞
−∞ (𝑑𝜔/2𝜋)2𝐾𝑅 (𝜔)𝑆𝐵 (𝜔),

which is found to be approximately 2A2
𝑓
𝜏2 ln |2𝜋𝜔ir |. This

coefficient should replace 𝜏𝑆𝐵 (𝜔𝐿 = 0) multiplying the
damping term D[𝑥(𝜔𝐿 = 0)] in Eq. (33). After these two
steps, the decoherence map derived in Ref. [5] is repro-
duced exactly.

The discussion above focuses on an idle Floquet qubit.
For gate operations and readout on a Floquet qubit, non-
periodic control is required, and the Floquet theory is no
longer applicable. Remarkably, the Keldysh method is still
useful in predicting the decoherence map, since the knowl-
edge of the Floquet states and their quasi-energies are not
prerequisites for our numerical calculation of the Fourier
expansion of 𝑥(𝑡). Below, we show one such example,
where a Floquet qubit undergoes an adiabatic evolution
from a dynamical sweet spot to an unprotected static work-
ing point. (This previously has been used for readout of
Floquet qubits [24, 39, 41].)

For a concrete simulation, we reuse the qubit model and
parameters in Ref. [5] [Fig. 3 (b) and (c) of that reference].
Specifically, we consider a fluxonium qubit with its external
flux 𝜙𝑒 biased slightly away from the half-flux-quantum
sweet spot. Under a periodic drive that is carefully tuned,
the qubit can be operated at a so-called dynamical sweet
spot, where the derivative 𝜕𝜀01/𝜕𝜙𝑒 vanishes. This leads
to the first-order insensitivity of the qubit to the 1/ 𝑓 flux
noise. (See more details in the caption of Fig. 5 in the
current paper.)

As references, we first calculate the filter operators 𝑥𝑘
for the dynamical sweet spot (initial) and the static point
(final), and plot the resulting 𝑀𝑘 in (a) and (b), respec-
tively. At the dynamical sweet spot, the qubit is to the
first order insensitive to 1/ 𝑓 noise, as shown by the van-
ishing filter strength 𝑀𝑘=0 with the corresponding filter
frequency 𝜔𝑘 = 0. In turn, it is sensitive to noise at other
Floquet transition frequencies contained in F [the locations
of these frequencies are pointed to by pink arrows in Fig. 5
(a)]. By contrast, the qubit at the static working point is
strongly sensitive to 1/ 𝑓 noise, as indicated by the large
filter strength 𝑀𝑘=0. In addition, the qubit is also sensitive
to noise at the qubit frequencies ±𝜔𝑞 . These frequencies
are marked by the blue arrows in Fig. 5 (b). We note that
the plots for 𝑀𝑘 in both (a) and (b) are reminiscent of the
plot for the filter weights in Ref. [5] [Fig. 3 (b) and (c) of
that reference]. In fact, the resulting dynamical maps re-

0

1

ε01−ε01 ωd−ωd

(a)

0

2

F
il
te

r
S

tr
en

gt
h

No drive

ωq−ωq 0

(b)

−1.0 −0.5 0.0 0.5 1.0

ωk/ωq

0.0

0.5
(c)

Figure 5: Filter strength 𝑀𝑘 for a Floquet qubit [5]. The qubit
Hamiltonian is given by �̂�𝑠 (𝑡) = [Δ�̂�𝑥+(2𝐴 cos𝜔𝑑 𝑡+𝐵)�̂�𝑧)]/2,
where the parameters are chosen as 𝜔𝑑/Δ = 1.17 and 𝐵/Δ =

1.37. The static qubit frequency is 𝜔𝑞 =
√
Δ2 + 𝐵2. The evolu-

tion time is set as 𝜏 = 20 · 2𝜋/𝜔𝑑 for all three plots. For (a), we
set 𝐴/Δ = 2.27. The filter strength 𝑀𝑘=0 vanishes, which corre-
sponds to a dynamical sweet spot. For (b), the qubit is undriven
(𝐴 = 0). In this case, the filter strength 𝑀𝑘=0 is predominant,
implying strong sensitivity to 1/ 𝑓 noise. For (c), the drive used
in (a) is continuously switched off according to a hyperbolic en-
velope F (𝑡) = [1 + tanh[(𝑡mid − 𝑡)/𝜋𝑡ramp]]/2, as shown in the
inset (𝑡mid and 𝑡ramp are used to tune the starting time and du-
ration of the switch-off, respectively). The resulting plot of 𝑀𝑘

differs from those in both (a) and (b). In (a)-(c), the noise spectra
assumed in Ref. [5] is also plotted in gray.

produce those obtained in Ref. [5], as long as the evolution
time 𝜏 is taken to be sufficiently large.

Finally, we calculate 𝑀𝑘 for the adiabatic process con-
necting the two working points, and show the results in
(c). For this case, the plot of 𝑀𝑘 differs from those from
both (a) and (b). Interestingly, the locations of the peaks
in (c) overlap with those from both (a) and (b). [We mark
the peak locations with arrows with different coloring to
indicate their apparent origin.] This feature suggests that,
the qubit undergoing the adiabatic evolution is subjected to
a combination of decoherence channels from both the Flo-
quet and static regimes. Such a feature cannot be predicted
by the open-system Floquet theory.

The examples used in this and the previous subsections
are limited to qubits with only two energy levels, while
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the theory developed in Sec. 2 applies to general quantum
systems. In Appendix E, we apply this framework to de-
rive the dynamical map for an arbitrarily driven harmonic
oscillator as an example.

4 Quantum optimal control

Above, we have introduced the secular CPTP map and
applied it in studying a variety of driven systems. Besides
predicting the decoherence maps, the framework can also
be used to design drive pulses that mitigate decoherence
errors, once it is combined with the technique of quantum
optimal control [7, 17, 18, 42–49].

Optimal-control techniques utilize computer-aided opti-
mization of pulses to minimize state-transfer or gate infi-
delities. For open-system optimization, the widely used de-
coherence model is the Lindblad master equation [43, 44].
Besides this model, Refs. [7, 17, 18, 46–49] have used
the filter-function approach to reduce the error in quantum
operations induced by correlated classical noise.

In the following, we implement our Keldysh decoher-
ence model and extend the filter-function-aided optimiza-
tion to the mitigation of quantum noise. The optimization
with our method is also relatively simpler. In fact, once the
total evolution time 𝜏 is set, the integrals for evaluating the
coefficients 𝜙𝑘,𝑘 can be precalculated, which are indepen-
dent of the form of the drives. The CPTP maps (20) also
avoid the risk of optimization over unphysical maps. In the
following, we use two examples to showcase the capability
of the Keldysh-assisted quantum optimal control.

4.1 State transfer in the presence of Ohmic
noise

We first study the state transfer in a qubit coupled to a typ-
ical quantum-noise bath, an Ohmic noise. The spectrum
of such noise is 𝑆𝐵 (𝜔) = A𝑜𝜔Θ(𝜔) [assuming zero tem-
perature; see inset of Fig. 6 (a) for the spectrum], where
A𝑜 denotes the noise strength and Θ(𝜔) is the Heaviside
function. The qubit coupled to this bath is described by
the Hamiltonian �̂�𝑠 (𝑡) = 𝜔𝑞�̂�𝑧/2 + 𝑑 (𝑡)�̂�𝑥 , where 𝑑 (𝑡)
denotes the drive field. The coupling operator is set as
𝑥 = �̂�𝑥 .

In this setup, the spectrum exhibits clear asymmetry
between the amplitudes of noise at positive and negative
frequencies, which implies distinctive excitation and decay
rates in the idle qubit [see Eq. (36)]. Because of this, if the
decay rate overwhelms the excitation rate, one can leverage
the natural system-bath interaction to realize the |𝑒⟩ →
|𝑔⟩ transfer; for the reverse transfer, however, such decay
should instead be carefully mitigated. We note that the
usual filter-function formalism is not designed to resolve
such asymmetry in the noise spectrum, which is a difficulty
we can overcome using our method.

For our example, we consider the more difficult |𝑔⟩ →
|𝑒⟩ transfer. To mitigate the error caused by the energy

decay, we program the optimizer to minimize the infidelity

𝐸st = 1 −
���Tr

[
�̂�†

𝑠 (𝜏) �̂�𝑒�̂�𝑠 (𝜏)𝚷(𝜏) �̂�𝑔
] ���2. (48)

Above, �̂�𝑠 (𝜏) is the closed-system propagator, 𝚷(𝜏) is the
CPTP map (20), and the two density matrices are �̂�𝑒 (𝑔) ≡
|𝑒(𝑔)⟩⟨𝑒(𝑔) |. The implemented optimization algorithm is
Gradient Ascent Pulse Engineering, which is commonly
used in quantum optimal control [23, 50].

For comparison, we first optimize the pulse assuming
that the noise is absent. In this case, the optimizer chooses
a pulse reminiscent of a typical resonant Rabi drive [red
curve in Fig. 6 (a)], whose amplitude is almost constant.
(The step-like structure of the pulse is a result of our re-
quirement of the piecewise-constant drive.) For a closed-
system simulation, the pulse induces a smooth increase of
the excited-state population, resulting in a negligible state-
transfer error (< 10−6) at the end of the pulse. However,
for the open-system simulation including the noise bath,
the calculation by Eq. (20) predicts a much higher error
(𝐸st = 8.8 × 10−2), which is caused by the interaction be-
tween the qubit and the Ohmic noise bath. Especially, the
smooth increase in population renders the qubit prone to
the energy loss for the whole state-transfer duration [red
dashed curve in (b)].

We next optimize the pulse with the noise included in
Eq. (48). The optimized pulse is shown by the blue curve
in Fig. 6 (a). Different from the closed-system version, the
amplitude of the open-system optimized drive is held close
to zero until the latter half of the duration, where the ampli-
tude is ramped up rapidly. In this way, the qubit stays in the
excited state for a shorter time than in the previous version.
Such behavior of the excited-state population reduces the
decoherence error [see the comparison between blue and
red curves in Fig. 6 (b)], yielding a 4.4× reduction in the
state-transfer infidelity (𝐸st = 2.0 × 10−2).

We note that a similar result is obtained by Ref. [44],
where the optimization is based on quantum trajectories.
For comparison, that optimization presumed the knowledge
of the damping rates and operators, which is derived for an
idle qubit using the Lindblad equation rather than a driven
system [see discussion in Sec. 3.2]. From this aspect, our
optimization method tends to be more accurate, since it
avoids the potential inaccuracy in the damping rates and
operators.

4.2 Avoiding two-level-system losses in gate
operations
Besides state transfer, the Keldysh-assisted optimizer can
also help improve gate fidelities. Especially, if the fideli-
ties of certain intuitive gates are limited by one or several
resonance peaks in the noise spectrum, our optimizer can
offer solutions that reduce the system sensitivity to noise
associated with those peaks.

To demonstrate this, we consider a noise bath that con-
sists of one Ohmic bath and a few two-level systems (TLSs)
[51, 52] [see gray curve for the spectrum of the bath in
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Figure 6: Optimization of the state-transfer fidelity for a qubit
coupled to an Ohmic noise bath. (a) shows pulses from both
the closed-system (red) and open-system (blue) optimizations.
The spectrum of the Ohmic noise is given in the inset. In (b),
we simulate the evolution of the excited-state populations during
the |𝑔⟩ → |𝑒⟩ transfer using the two pulses, respectively. The
solid curves show the open-system evolution of the population,
and the dashed one shows the closed-system evolution. For this
simulation, we choose the amplitude of the Ohmic noise as A𝑜 =

0.001.

Fig. 7 (b)]. These discrete-level defects have been widely
believed to limit the coherence times of many solid-state
qubits [52]. Therefore, their mitigation is currently an
indispensable task.

For the concrete simulation, we choose the same Hamil-
tonian and coupling operator as in the previous case. We
consider a situation where the qubit has a fixed frequency
but is accidentally in close resonance with the TLSs. For
this setup, the gate operations enabled by idling or weakly
driving the qubit should suffer significantly from the TLS
loss, because the locations of the peaks of 𝑀𝑘 overlap with
those of the resonance peaks (see Fig. 3). This situation
motivates us to explore pulses that can mitigate the TLS
loss.

Toward this goal, we use the Keldysh-assisted optimal-
control technique to optimize the pulse 𝑑 (𝑡), with the cost
function set as the gate infidelity given in Eq. (21). In
the following, we focus on optimizing the identity gate as
an example, which is the key for the quantum-information
storage and multi-qubit operations [53]. For the simple
identity gates enabled by idling the qubit, the interaction
between the qubit and the TLSs limits the fidelity of such
operation to 𝐸gate = 7.0 × 10−2 over the duration 𝜏 =

40 ·2𝜋/𝜔𝑞 [see the overlap of the filter-strength peak of the
idle qubit (red) and noise resonance peaks in Fig. 7 (b)].
The Keldysh-assisted optimizer, by contrast, proposes to
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Figure 7: Optimization of the identity gates for a qubit cou-
pled to a few near-resonant TLSs. (a) shows the pulse obtained
by the Keldysh-assisted optimal control (blue) and the result-
ing evolution of the excited-state population (purple) with the
qubit initialized in the excited state. (b) plots the filter strengths
for the free-induced identity gate (red) and Keldysh-optimized
(blue) version. The noise spectrum used for the simulation is also
plotted in gray, which is the sum of an Ohmic noise spectrum
(A𝑂 = 3 × 10−4) and those of three transversely coupled TLSs.
(See the form of the spectral function of TLSs in Ref. [51].) The
frequencies of the TLSs are chosen to be close to that of the qubit
(0.980, 0.995, and 1.020 𝜔𝑞), and their relaxation times are cho-
sen as 10 · 2𝜋/𝜔𝑞 . (c) compares the fidelities of the two identity
operations after they are each repeated multiple times.

drive the qubit strongly [𝑑 (𝑡)/𝜔𝑞 ∼ 0.25] according to
the solid curve shown in Fig. 7 (a). As a result of the
application of this drive, the populations in the two qubit
states oscillate over the whole gate period, and return to the
original values at the end of the pulse [see dashed curve
in (a) for the excited-state population]. These oscillations
lead to the appearance of multiple peaks in 𝑀𝑘 located
away from qubit frequency 𝜔𝑞 [blue plot in (b)], while
the values of 𝑀𝑘 at the TLS resonance frequencies are
suppressed. As a result, the error in the identity operation
is reduced by 3.2× to 𝐸gt = 2.2 × 10−2.

For a clear visual comparison between the two schemes,
in (c) we show the identity fidelities after multiple such op-
erations are applied. One can observe that the optimized
gate yields much higher fidelity for such repeated applica-
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tions, which corresponds to a longer effective coherence
time in the qubit. We also perform optimization for 𝑋 and
phase gates, and find improvement of a similar magnitude.

5 Conclusion and outlook

In conclusion, we introduce a decoherence model for evalu-
ating errors in a noisy driven system subjected to correlated
quantum noise. The second-order Keldysh expansion and
the secular approximation lead to a simple CPTP map (20)
for the system density matrix. Using this map, we study
decoherence errors in a variety of quantum systems with
both periodic and non-periodic drives. The clear physical
picture of the noise sensitivity described by 𝑀𝑘 provides
useful information for developing noise-mitigation strate-
gies, especially if the noise spectrum is only qualitatively
understood but cannot be accurately measured. The sim-
plicity of the map after the secular approximation makes
this decoherence model suitable to be integrated with the
quantum-optimal-control technique. Using the examples
of both state-transfer and single-qubit gate, we show that
the combination can help mitigate non-classical and corre-
lated noise in state transfers and gate operations.

In the future, one may consider using the technique de-
veloped in Ref. [54] for calculating �̂�𝑠 (𝑡) for an even more
numerically efficient optimization, since that technique is
also based on a Dyson series (also the basis for our Keldysh
calculation). For capturing higher-order decoherence ef-
fects, it is also useful to explore a higher-order CPTP map
[27]. Finally, our analytically simple map (20) can pro-
vide hints for studying decoherence processes for more
complicated systems, e.g., nonlinear oscillators [55] and
composite system in the ultrastrong-coupling regime [56].
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A Full second-order expansion and
filter functions

We present more details about the expansion of Eq. (9) and
the filter functions 𝐼𝑘,𝑘′ (𝜔) in this appendix.

(a)

(c)

(b)

(d)

x̃(t1)x̃(t2)

0 t2 t1 τ

ρ̃s(0) ρ̃s(τ)

Figure 8: Second-order Keldysh diagrams. They describe how
the noisy environment perturbs the evolution of the system density
matrix �̃�𝑠 (𝜏). (a) and (b) correspond to the integrals Eqs. (49)
and (50), respectively, while (c) and (d) together represent the
integral Eq. (51) (note the time ordering in the diagrams). The
dashed lines in these diagrams represent the noise correlation
functions.

In terms of 𝑥(𝑡) and 𝜂(𝑡), Eq. (9) can be expressed as

𝚺(2) (𝜏) �̃�𝑠 (0) = (−𝑖)2
∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 𝑥(𝑡1)𝑥(𝑡2) �̃�𝑠 (0)

× 𝜖2Tr𝐵{𝜂(𝑡1)𝜂(𝑡2) �̃�𝐵 (0)} (49)

+ (𝑖)2
∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 �̃�𝑠 (0)𝑥(𝑡2)𝑥(𝑡1)

× 𝜖2Tr𝐵{ �̃�𝐵 (0)𝜂(𝑡2)𝜂(𝑡1)} (50)

+ (𝑖) (−𝑖)
∫ 𝜏

0
𝑑𝑡1

∫ 𝜏

0
𝑑𝑡 𝑥(𝑡1) �̃�𝑠 (0)𝑥(𝑡2)

× 𝜖2Tr𝐵{𝜂(𝑡1) �̃�𝐵 (0)𝜂(𝑡2)}. (51)

The integrals Eqs. (49)-(51) can be conveniently repre-
sented by the Keldysh diagrams in Fig. 8 (see caption for
more explanation). These diagrams are useful for col-
lecting integrals in the expansion of 𝚺(𝜏), especially the
high-order contributions [27].

Then, inserting �̃�𝐵 (0) = �̂�𝐵,eq and the Fourier transfor-
mation

𝜖2Tr𝐵{ �̂�𝐵,eq 𝜂(𝑡1)𝜂(𝑡2)}=
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔) exp[−𝑖𝜔(𝑡1 − 𝑡2)]

(52)
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into Eqs. (49)-(51), we further transform 𝚺(2) (𝜏) into

𝚺(2) (𝜏) �̃�𝑠 (0) = −
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)

∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2

× 𝑥(𝑡1)𝑥(𝑡2) �̃�𝑠 (0)𝑒−𝑖𝜔 (𝑡1−𝑡2 )

−
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)

∫ 𝜏

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2

× �̃�𝑠 (0)𝑥(𝑡2)𝑥(𝑡1)𝑒−𝑖𝜔 (𝑡2−𝑡1 )

+
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝐵 (𝜔)

∫ 𝜏

0
𝑑𝑡1

∫ 𝜏

0
𝑑𝑡2

× 𝑥(𝑡1) �̃�𝑠 (0)𝑥(𝑡2)𝑒−𝑖𝜔 (𝑡2−𝑡1 ) . (53)

In Sec. 2.3, Eq. (53) is further transformed into Eq. (13),
which is based on the filter function 𝐼𝑘,𝑘′ (𝜔) defined in
Eq. (14). Carrying out the double integral in Eq. (14), we
find

𝐼𝑘,𝑘′ (𝜔) = 𝑒−𝑖𝜔𝜏 − 1
(𝜔 − 𝑘𝜔𝑝) (𝑘 ′𝜔𝑝 − 𝜔)
− 𝑖𝜏

(𝜔 − 𝑘𝜔𝑝) 𝛿𝑘,𝑘
′ . (54)

Note that the apparent poles in this expression are all re-
movable. For 𝑘 = 𝑘 ′, Eq. (54) is reduced to Eq. (15), which
has been studied in detail in Sec. 2.3. For off-diagonal ones,
we find the inequality

|𝐼𝑘,𝑘′ (𝜔) | < 𝜏2

2𝜋
(
|𝑘 − 𝑘 ′ | − 1

2

) (55)

by inspecting the first line of Eq. (54). This inequality is
referenced in Sec. 2.3 for justifying the secular approxima-
tion.

B Connection to Ref. [17]
We use this appendix to connect our theory to previous
filter-function research. Particularly, we show that if only
classical noise is present, the map Eq. (11) can reproduce
some of the formulas used in Ref. [17].

For classical noise, the correlation function 𝐶 (𝑡1, 𝑡2) ≡
Tr𝐵{ �̂�𝐵,eq 𝜂(𝑡1)𝜂(𝑡2)} is real-valued, i.e.,

𝐶 (𝑡1, 𝑡2) = 𝐶∗ (𝑡2, 𝑡1) = 𝐶 (𝑡2, 𝑡1). (56)

This relation implies that the noise spectrum is symmetric,
i.e., 𝑆𝐵 (𝜔) = 𝑆𝐵 (−𝜔). Then, if we insert Eq. (56) into
Eqs. (49)-(51), we find the self-energy

𝚺(2) (𝜏) �̃�𝑠 (0) = −
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 𝑥(𝑡1)𝑥(𝑡2) �̃�𝑠 (0)𝐶 (𝑡1, 𝑡2)

−
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2 �̃�𝑠 (0)𝑥(𝑡2)𝑥(𝑡1)𝐶 (𝑡1, 𝑡2)

+
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡

0
𝑑𝑡2 𝑥(𝑡1) �̃�𝑠 (0)𝑥(𝑡2)𝐶 (𝑡1, 𝑡2).

(57)

Inserting this quantity into the approximated map 𝚷(𝜏) ≈
𝚷(0) (𝜏) +𝚺(2) (𝜏), we recover the noise-averaged quantum
process in Ref. [17].

C Bath correlation time and spectral
variation
In this appendix, we investigate the relation between the
variation of 𝑆𝐵 (𝜔) and the bath correlation time. Such a
relation is useful for interpreting condition ② as a com-
parison between the bath correlation time and the system
evolution time.

The variation of 𝑆𝐵 (𝜔) can be roughly quantified by the
second-order derivative of the spectrum. Specifically, we
define the spectral roughness 𝑅(𝜔) by

𝑅(𝜔) ≡ |𝑑2𝑆𝐵 (𝜔)/𝑑𝜔2 |
|𝑆𝐵 (𝜔) | . (58)

To relate this quantity to the correlation time, we insert
the inverse Fourier transform of 𝑆𝐵 (𝜔) into the expression
𝑅(𝜔) and express it as

𝑅(𝜔) =

��� ∫ ∞
−∞ 𝑑𝑡 𝐶 (𝑡, 0)𝑡2 𝑒𝑖𝜔𝑡

����� ∫ ∞
−∞ 𝑑𝑡 𝐶 (𝑡, 0)𝑒𝑖𝜔𝑡

�� . (59)

The right-hand side of Eq. (59) appears to be related to
the bath correlation time. To understand this expression
more clearly, we consider a two-level-system defect as an
example. The time-domain correlation function of such a
two-level system (at zero temperature) has the form [51]

𝐶 (𝑡, 0) = 𝐶 (0, 0)𝑒−𝑖𝜔𝑡 𝑡−𝑡/𝑇𝑡 , (60)

where𝜔𝑡 and𝑇𝑡 are its resonance frequency and coherence
time (usually considered as its correlation time), respec-
tively. For this function, the right-hand side of Eq. (59) is
evaluated as��� ∫ ∞

−∞ 𝑑𝑡 𝐶 (𝑡, 0)𝑡2 𝑒𝑖𝜔𝑡
����� ∫ ∞

−∞ 𝑑𝑡 𝐶 (𝑡, 0)𝑒𝑖𝜔𝑡
�� =

���2/𝑇2
𝑡 − 6(𝜔 − 𝜔𝑡 )2

���[
1/𝑇2

𝑡 + (𝜔 − 𝜔𝑡 )2
]2 , (61)

which equals 2𝑇2
𝑡 for 𝜔 = 𝜔𝑡 .

Therefore, it is reasonable to define a frequency-
dependent bath correlation time

𝜏𝐵 (𝜔) =

√√√√��� ∫ ∞
−∞ 𝑑𝑡 𝐶 (𝑡, 0)𝑡2 𝑒𝑖𝜔𝑡

���
2
�� ∫ ∞

−∞ 𝑑𝑡 𝐶 (𝑡, 0)𝑒𝑖𝜔𝑡
�� . (62)

Such a definition leads to the relation

𝑅(𝜔) = 2𝜏2
𝐵 (𝜔), (63)

which indicates that more significant variations in 𝑆𝐵 (𝜔)
correspond to longer bath correlation times.

D Floquet master equation for a
weakly driven qubit
In this appendix, we use the Markovian Floquet master
equation to explain the appearance of the side peaks in Fig.
3 (b).
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The two Floquet states for the weakly driven qubit are

|𝑤± (𝑡)⟩ = 1√
2

[
|𝑔⟩ ± |𝑒⟩𝑒−𝑖𝜔𝑞 𝑡

]
,

and their quasi-energies are 𝜀± = ±𝑑/2 − 𝜔𝑞/2. Inserting
them into Eq. (47), we can again find the expression of the
rotated coupling operator Eq. (44).

Following the derivation of the Floquet master equation,
we extract the transition frequencies 𝜔𝐿 and their corre-
sponding damping operators 𝑥(𝜔𝐿) from Eq. (44). Then,
the Lindbladian for the Markovian Floquet master equation
is given by

L = 𝑆𝐵 (𝜔𝑞)D
[ �̂�𝑥

2

]
+
∑︁
±
𝑆𝐵 (𝜔𝑞 ± 𝑑)D

[∓�̂�𝑧 − 𝑖�̂�𝑦

4

]

+ 𝑆𝐵 (−𝜔𝑞)D
[ �̂�𝑥

2

]
+
∑︁
±
𝑆𝐵 (−𝜔𝑞 ∓ 𝑑)D

[∓�̂�𝑧 + 𝑖�̂�𝑦

4

]
+ Lamb-shift terms. (64)

The damping terms present in this map indeed capture the
noise channels predicted in Fig. 3 (b).

E Driven harmonic oscillator
In the main text, the examples we present are limited to
qubits with only two levels. Here, we demonstrate the
applicability of our framework in a quantum harmonic os-
cillator, which has infinite levels.

The system Hamiltonian of this oscillator is specified by

�̂�𝑠 (𝑡) = 𝜔𝑟 �̂�
†�̂� + 𝑑 (𝑡) (�̂�† + �̂�), (65)

and the coupling operator for the oscillator is 𝑥 = �̂� + �̂�†.
For this linear system, the closed-system propagator can be
analytically derived as [57]

�̂�𝑠 (𝑡) = 𝑒𝛼(𝑡 ) �̂�†−𝛼∗ (𝑡 ) �̂�𝑒−𝑖𝜔𝑟 �̂�
† �̂�𝑡𝑒−𝑖Φ(𝑡 ) , (66)

where the displacement 𝛼 is calculated by

𝑖 ¤𝛼(𝑡) = 𝜔𝑟𝛼(𝑡) + 𝑑 (𝑡), (67)

and the additional phase acquired is given by

Φ(𝑡) = −
∫ 𝑡

0
𝑑𝑡′

[
𝜔𝑟 |𝛼 |2 + 1

2
𝑖(𝛼 ¤𝛼∗ − 𝛼∗ ¤𝛼)

]
. (68)

In the interaction picture, the coupling operator is trans-
formed as

𝑥(𝑡) = [�̂�𝑒−𝑖𝜔𝑟 𝑡 + 𝛼(𝑡)] + H.c., (69)

which leads to only two frequency components, 𝑥(𝜔𝑟 ) =

�̂� + 𝛼 and 𝑥(−𝜔𝑟 ) = 𝑎† + �̄�∗. We note that the c-numbers
𝛼(𝑡), 𝛼∗ (𝑡) in 𝑥(±𝜔𝑟 ) only contribute to the Lamb-shift
terms to the map (20), which we choose to omit due to the
weak noise strength.

Then, if we again assume that the two conditions ① and
② in Sec. 3.1 hold, the self-energy is given by

𝚺(2)
CP (𝜏) = 𝜏

{
𝑆𝐵 (𝜔𝑟 )D[�̂�] + 𝑆𝐵 (−𝜔𝑟 )D[�̂�†]

}
, (70)

identical to the prediction by the Lindblad master equation.
The message sent by such analysis is that, the Lindblad map
is a good approximation for the harmonic oscillator under
arbitrary linear drives, as long as 𝜏𝐵 and 𝜏𝑆 ∼ 2𝜋/𝜔𝑟 are
much smaller compared to 𝜏 ∼ 𝜏𝑅. Such a conclusion
is in clear contrast to those in Sec. 3.2 and 3.4 for the
driven qubits. Note that this conclusion may be invalid
if nonlinearity in the cavity is induced by its coupling to
qubits [55]. This conclusion may also be invalid if the
drive also affects the noise bath [58], which results in a
varying 𝑆𝐵 (𝜔) during the drive time.
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