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Simulating properties of quantum materi-
als is one of the most promising applica-
tions of quantum computation, both near- and
long-term. While real-time dynamics can be
straightforwardly implemented, the finite tem-
perature ensemble involves non-unitary opera-
tors that render an implementation on a near-
term quantum computer extremely challeng-
ing. Recently, Lu, Bañuls and Cirac, PRX
Quantum 2, 020321 (2021) suggested a “time-
series quantum Monte Carlo method” which
circumvents this problem by calculating fi-
nite temperature properties from Monte Carlo
sampling of easily preparable states, where the
Boltzmann weights are extracted from real-
time quantum simulations via Wick’s rotation.
In this paper, we address the challenges asso-
ciated with the practical applications of this
method, using the two-dimensional transverse
field Ising model as a testbed. We demonstrate
that estimating Boltzmann weights via Wick’s
rotation is very sensitive to time-domain trun-
cation and statistical shot noise. To alleviate
this problem, we introduce a technique that
imposes constraints on the density of states,
most notably its non-negativity, and show that
this way, we can reliably extract Boltzmann
weights from noisy time series. In addition,
we show how to reduce the statistical errors of
Monte Carlo sampling via a reweighted version
of the Wolff cluster algorithm. Our work en-
ables the implementation of the time-series al-
gorithm on present-day quantum computers to
study finite temperature properties of many-
body quantum systems.

Calculating finite temperature observables of quan-
tum systems lies at the heart of predicting mate-
rial properties as they determine many experimen-
tally relevant quantities such as the specific heat or
susceptibilities. Moreover, finite temperature phase
transitions separate phases of matter with radically
different properties, with paradigmatic examples in-
cluding the solid-liquid, ferromagnet-paramagnet and
insulator-superconductor transitions. The prediction
of phase transitions requires the solution of a many-
body quantum problem, which in general can not be
done analytically.

Several classical algorithms exist for numerically

Figure 1: Equilibrium properties from quantum dynamics
and the noise-induced infrared catastrophe. Bottom panel:
Energy spectrum of a 12-qubit Ising chain in a transverse
field hx = 0.5. In principle, the spectrum contains sufficient
information to compute properties like thermal phase tran-
sitions. Top panel inset: A quantum computer or simulator
can be used to efficiently compute the Loschmidt amplitude
G(t) = ⟨ψ|e−iHt|ψ⟩ which contains information about the
local density of states via its Fourier transform. In prac-
tice, determining G(t) suffers from shot noise (orange). Top
panel: Collecting data from suitably chosen initial states
yields the density of states D(w). While it is easy to ob-
tain a reasonable estimate for said density (solid lines), one
needs to weight D(w) with a Boltzmann factor (gray dashed)
to obtain thermal observables. Any small error induced by
shot noise is amplified exponentially (dash-dotted orange vs.
blue), leading to significant artefacts when simulating low-
energy physics. The present paper introduces a method to
address this problem.

evaluating thermal observables, including the stochas-
tic series expansion method [1, 2], world line quan-
tum Monte Carlo [3, 4], density matrix quantum
Monte Carlo [5, 6], minimally entangled typical ther-
mal states (METTS) [7, 8], determinantal quantum
Monte Carlo [9, 10], finite temperature auxiliary field
quantum Monte Carlo [11, 12], and finite temperature
density matrix embedding theory [13]. Despite half
a century of progress on these computational meth-
ods, many interesting regimes are still inaccessible.
Most notably, Monte Carlo methods struggle with
frustrated spin models and fermionic systems due to
the sign problem [14, 15].

To overcome such challenges, algorithms for quan-
tum computers have been proposed, such as the quan-
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tum Metropolis algorithm [16, 17], quantum imag-
inary time evolution [18], minimal effective Gibbs
ansatz [19], thermal pure quantum states [20, 21]
and a quantum version of METTS [22]. While
fault-tolerant quantum algorithms have proven im-
proved asymptotic scalings [17, 21, 23–25], they have
punishingly large resource estimates, so their imple-
mentation on current noisy intermediate scale quan-
tum (NISQ) devices has been confined to small sys-
tems [26, 27].

Recently, Ref. [28] proposed a hybrid quantum-
classical Markov chain algorithm for calculating ther-
modynamic properties, which we call time-series
quantum Monte Carlo. The algorithm can be adapted
for calculating observables in either the microcanon-
ical or the canonical ensembles, and it inspired new
classical methods that were further studied in Ref. [29]
(microcanonical) and Ref. [30] (canonical). In this
algorithm, the Boltzmann weights, i.e., the probabil-
ity of sampled states in the thermodynamic ensemble,
are extracted from their real-time dynamics evaluated
on the quantum computer, and thus no sign prob-
lem appears. Ref. [29, 30] suggested that the algo-
rithm works well for large non-integrable spin systems
by showing promising results for long chains of the
transverse-field Ising model. However, Ref. [30] also
pointed out that any small errors, either experimen-
tal or due to numerical imprecision, might spoil the
implementation of the algorithm at finite tempera-
tures. Moreover, the required number of Monte Carlo
iterations, even on a relatively simple spin model, is
very large, meaning the clock time on the quantum
machine is long.

Here, we overcome these limitations of the time-
series algorithm by introducing a noise-robust method
based on non-negative least squares (NNLS) [31] to
extract the Boltzmann weights from the time series.
Moreover, we introduce a cluster update that reduces
the number of required Monte Carlo iterations by or-
ders of magnitude. The structure of the paper is as
follows. We first briefly introduce the time-series al-
gorithm and the transverse field Ising model, which
we use to benchmark our methods. We then discuss
evaluating the Loschmidt echo, the quantity required
for the time-series algorithm via quantum circuits,
and how to efficiently sample product states in the
transverse field Ising model using Wolff’s cluster up-
date algorithm [32]. Next, we systematically investi-
gate how to estimate Boltzmann weights reliably from
Loschmidt echos and study the effect of various pa-
rameters on the error in estimated weights. Finally,
we perform simulations of the complete algorithm at
different temperatures in the presence of shot noise
using IBM’s AerSimulator and discuss its results.

1 Thermal equilibrium observables
from the time-series algorithm
All information about a system in thermodynamic
equilibrium can be obtained from the expectation
value

⟨Ô⟩ = Tr
[
ρ̂ Ô

]
, (1)

where Ô is the operator representing the observable
of interest and ρ̂ is the density operator describing
the statistical ensemble with the specified thermody-
namic constraints. In particular, we are interested in
the canonical ensemble, where the temperature of the
system 1/β is fixed. This is described by the density
operator

ρ̂ = e−βĤ

Tr
[
e−βĤ

] . (2)

In the time-series algorithm [28–30], thermal expecta-
tion values are evaluated using a complete orthonor-
mal basis of states |ψ⟩

⟨Ô⟩ =
∑
ψ ⟨ψ|e−βĤ Ô|ψ⟩∑
ψ ⟨ψ|e−βĤ |ψ⟩

(3)

=
∑
ψWψOψ∑
ψWψ

, (4)

where the Boltzmann weights Wψ and local observ-
ables Oψ are defined as

Wψ(β) := ⟨ψ|e−βĤ |ψ⟩ (5)

Oψ(β) := ⟨ψ|e−βĤ Ô|ψ⟩
⟨ψ|e−βĤ |ψ⟩

. (6)

Because e−βĤ is positive definite for any Hamiltonian
Ĥ, the Boltzmann weights are non-negative numbers
that can be normalized and interpreted as a probabil-
ity distribution

pψ := Wψ∑
ψ′ Wψ′

. (7)

The expression in Eq. (3) is then estimated by sam-
pling M states from this distribution via some Monte
Carlo method and averaging over the local observable
of the sampled states ψi

⟨Ô⟩ ≈ 1
M

M∑
i=1

Oψi . (8)

The error of this estimator is O(1/
√
M). In particu-

lar, the error only scales with the inverse square root
of the number of independent samples and not the size
of the Hilbert space [33]. Nevertheless, when samples
are correlated, the correlation length can generally
depend on the size of the physical system.
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In “classical” quantum Monte Carlo methods [34],
the Boltzmann weights are calculated by splitting the
operator e−βĤ into n smaller pieces e−βĤ/n and in-
serting resolutions of the identity in between. The
resulting terms are then calculated and summed over
also by means of Monte Carlo methods. However,
unlike the original Boltzmann weights, the individ-
ual terms can generally be negative because they in-
volve transition matrix elements between different ba-
sis states ⟨ψ′|e−βĤ/n|ψ⟩, leading to the infamous sign
problem. To avoid this issue, the Boltzmann weights
in the time-series algorithm are instead calculated
by evaluating their real-time counterpart, known as
Loschmidt echos, on a quantum computer

Gψ(t) := ⟨ψ|e−iHt|ψ⟩ (9)

and then numerically performing a Wick’s rotation to
the imaginary-time axis t → −iβ. In practice, this is
done with the help of the local density of states

Dψ(ω) := ⟨ψ|δ(Ĥ − ω)|ψ⟩ , (10)

which is nothing but the Fourier transform of
Loschmidt echos

Dψ(ω) =
∫

dt

2π eiωt Gψ(t). (11)

Boltzmann weights are then calculated as

Wψ =
∫
dω e−βω Dψ(ω). (12)

The last two relations can be readily verified by ex-
pressing each of the quantities in terms of the eigen-
states of the Hamiltonian |n⟩ and their energies En

Dψ(ω) =
∑
n

| ⟨ψ|n⟩ |2 δ(En − ω),

Gψ(t) =
∑
n

| ⟨ψ|n⟩ |2 e−iEnt,

Wψ(β) =
∑
n

| ⟨ψ|n⟩ |2 e−βEn . (13)

The last equation also explicitly shows the positivity
of the Boltzmann weights Wψ(β). Note that as op-
posed to the rotation from the imaginary-time axis
to the real-time axis, known as the analytic continu-
ation problem [35–40], obtaining the density of states
from Loschmidt echos is a well-defined problem since
Fourier transform is just a unitary operation. Never-
theless, obtaining Boltzmann weights from the den-
sity of states remains a difficult problem (see Fig. 1),
as will become evident later. The numerator of the
local observables Oψ can be similarly calculated with
the help of a quantum computer. In the special case
where the basis |ψ⟩ diagonalizes the observable Ô, its
local observables can be directly and efficiently eval-
uated on a classical computer. In this work, we focus
on the latter case.

Propose new state                                                                                                                                |ψ′￼⟩

Submit circuits for evaluating: , Re[Gψ′￼(ti)] Im[Gψ′￼(ti)]

Estimate  from shotsGψ′￼(t)

Wick’s rotate  into Gψ′￼(t) Wψ′￼(β)

Store |ψ⟩

 with probability |ψ⟩ ← |ψ′￼⟩ min (1, Wψ′￼
Wψ

Pψ′￼→ψ

Pψ→ψ′￼)

Quantum Computer

Circuits

Shots

Initialize                                                                                                                                |ψ⟩ ← |ψ0⟩

Post-Processing
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Figure 2: Flowchart of the time-series Monte Carlo algorithm
proposed by Refs. [28] and benchmarked in Refs. [29, 30]
for calculating finite temperature properties with the help of
quantum computers. In this work, we provide improvements
on the highlighted steps of Monte Carlo sampling and Wick’s
rotation.

Directly sampling the states from the Boltzmann
distribution is generally not possible. Instead,
Metropolis-Hastings algorithm is a general Markov
chain method which enables sampling from arbitrary
distributions. The price we pay in Markov chain
methods compared to direct sampling is that these
samples are correlated, and we generally need more
samples to achieve the same level of accuracy. The
Metropolis-Hastings algorithm can start from any ini-
tial state, but it helps to choose a state that already
has a large Boltzmann weight. The algorithm then
repeatedly proposes a new state |ψ′⟩ from the current
one |ψ⟩ using some probability distribution Pψ→ψ′ .
The proposed sample is accepted or rejected using an
acceptance ratio

A := min
(

1, Wψ′

Wψ

Pψ′→ψ

Pψ→ψ′

)
. (14)

If accepted, the current state |ψ⟩ is replaced by the
new one |ψ′⟩. Otherwise, the current state |ψ⟩ is used.
In principle, one can use any proposal strategy as long
as it guarantees ergodicity, i.e., it allows going from
any state to any other state in a finite number of steps.
In practice, one should strive to use a proposal distri-
bution that closely resembles the target distribution,
here the Boltzmann distribution, in order to minimize
the correlation between the samples.

In Fig. 2, we show a flow chart of the full method.
The main loop of the algorithm starts by proposing
a new state. Then it submits circuits for calculat-
ing a time series of its Loschmidt echos to the quan-
tum computer and waits for the resulting shots. From
these shots, Loschmidt echoes are estimated and used
to calculate the Boltzmann weight of the new state.
We then use that to accept or reject the proposed
state. Finally, at the end of an iteration, we store
the state for later post-processing and calculations of
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Figure 3: The two honeycomb lattices explored in this
work. The numbers represent the indices of the sites.
When implementing the time evolution quantum circuits,
the depth is reduced by executing the gates corresponding
to the bonds in each of the three different orientations in
parallel. For example, in the 10-site lattice, the following
sets of bonds can parallelized: {(0, 1), (2, 3), (5, 6), (7, 8)},
{(1, 2), (3, 4), (6, 7), (8, 9)} and {(0, 9), (2, 7), (4, 5)}.

observables. In the rest of this paper, we will discuss
each of these steps in detail, taking the transverse-
field Ising model as a specific example.

2 Test Case: Transverse-Field Ising
Model
The transverse-field Ising model (TFIM) consists of
a set of quantum magnetic dipoles of spin 1/2 on a
lattice with nearest neighbor interactions. The in-
teraction is determined by the spin alignment along
some axis (usually taken to be the z-axis) in addition
to an external magnetic field along a perpendicular
axis (usually the x-axis). Its Hamiltonian on a gen-
eral lattice reads

Ĥ = −J
∑
⟨i,j⟩

ẐiẐj + hx
∑
i

X̂i , (15)

where ⟨i, j⟩ indicates summation over neighboring lat-
tice sites, J is the coupling constant, which we set in
the following to J = 1, specifying ferromagnetic inter-
actions. hx is the strength of the external filed, and Ẑi
and X̂i are Pauli matrices representing, respectively,
the z- and x-components of the spin- 1

2 operator at lat-
tice site i. This model is one of the simplest quantum
spin models exhibiting non-trivial physics that can-
not be described classically. On the other hand, its
dynamics can be relatively straightforward to imple-
ment on gate-based quantum computers, which makes
it an ideal candidate for testing the algorithm. The
observable of interest is the magnetization at differ-
ent temperatures β and different values of the external
field parameter hx.

The TFIM can be solved exactly in 1D, where it
shows a phase transition at zero temperature but

no order at finite temperatures [41]. In higher di-
mensions, the phase diagram is divided by a second-
order critical line into a ferromagnetic ordered region
with ⟨Ẑ⟩ ̸= 0 and paramagnetic disordered one with
⟨Ẑ⟩ = 0 [42]. The endpoints of the critical line are
characterized by the critical temperature βc of the
classical Ising model (i.e., hx = 0) and a critical value
of the field parameter at zero temperature. In this
work, we use a two-dimensional honeycomb lattice
with 10 and 16 sites (see Fig. 3). The classical critical
temperature of this lattice is βc = log (2+

√
3)

2 in the
thermodynamic limit [43, 44]. As a sampling basis
set |ψ⟩, we choose the product states of the Zi op-
erators. These are the easiest states to prepare on a
quantum computer and can be directly implemented
using X gates. Besides, they are the eigenstates of
the magnetization operator; therefore, we can easily
calculate their local magnetization on a classical com-
puter and only need the quantum computer for eval-
uating Loschmidt echos.

3 Quantum Circuits
Calculating the real and imaginary parts of Loschmidt
echos can be achieved using the so-called Hadamard
test. This involves two quantum circuits, one for the
real part and one for the imaginary part, where each
circuit contains one ancilla qubit and a time evolution
circuit controlled by the ancilla as shown in Fig 4. By
measuring the ancilla qubit, the desired real and imag-
inary parts can be calculated as the expectation value
of the observable Ẑancilla, i.e., the difference between
the probability of measuring the value 0 and the prob-
ability of measuring the value 1. Moreover, by addi-
tionally measuring Ẑancilla ⊗Ô, i.e. correlating a mea-
surement of Ô on the system qubits with a measure-
ment of Ẑ on the ancilla, we can obtain ⟨ψ|Ôe−iĤt|ψ⟩
additionally to the Loschmidt echos from the same
shots [28]. This enables the evaluation of Eq. (6) for
arbitrary observables. As mentioned before, here we
focus on the case where this is not necessary, since |ψ⟩
are eigenstates of Ô.

The time evolution circuits are obtained via second-
order Trotterization.

e−iĤt ≈
[
e−iÂt/2ne−iB̂t/ne−iÂt/2n

]n
. (16)

where the Hamiltonian is split into two non-
commuting parts Ĥ = Â + B̂. The first part Â con-
tains the X̂i terms, while the second B̂ contains the
mutually commuting ẐiẐj terms. The time evolution
of each part can be achieved easily using one- and two-
qubit gates. In particular, we add one RZZ(−2Jt) for
each pair of interacting sites and an RX(2ht) gate for
each site. To reduce the depth of the time-evolution
circuits, it is important to order the ẐiẐj terms such
that bonds with disjoint sites can be executed in par-
allel. For the honeycomb lattice, this is achieved
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Im[G (t)] = hẐancillai

<latexit sha1_base64="ZwwwwFhKcuYCb3cuwohm5Cfxzfg="></latexit>

|0i H • H

| i / e�iĤt

<latexit sha1_base64="KcwV/QUPQe2/IY16Uq3cqt1xm68="></latexit>
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Figure 4: Hadamard test circuits for calculating the real
(top) and imaginary (bottom) parts of Loschmidt echo. The
box e−iĤt represents the time evolution circuit (see Fig. 5a),
H is the Hadamard gate and S† is the adjoint of the phase
gate.

by grouping the bonds along each of the directions
0, π/3, 2π/3 (e.g., see the caption of Fig. 3).

The Hadamard test requires controlling the time
evolution circuit, which is achieved by controlling the
RZZ and RX gates. To control an RZZ gate, we first
decompose it into an RZ gate sandwiched between
two CNOT gates and then control only the RZ gate.
CNOT gates do not need to be controlled because
they always come in pairs. The resulting controlled
RX and RZ gates are implemented each using a single
RZZ gate, which is native to ion-trapped quantum
computers, as shown in Fig 5b. Consequently, a single
time slice of Â requires a number of two-qubit gates
that equals the total number of lattice sites, while
implementing a single slice of B̂ requires three times
the number of bonds in the lattice. An example of the
controlled time-evolution circuit is given in Fig. 5a.

To reduce the number of two-qubit gates in the con-
trolled circuit, we rewrite the second-order Trotteri-
zation as following

e−iĤt ≈ e−iÂt/2n
[
e−iB̂t/ne−iÂt/n

]n
eiÂt/2n. (17)

By implementing e−iÂt/2n as part of the state prepa-
ration circuit, Â terms appear only n times in the
controlled time evolution circuit instead of the n + 1
times needed using Eq. (16) . In total, implementing
a single controlled second-order Trotter step requires
43 two-qubit gates for the 10-site lattice and 73 for
the 16-site one.

4 Monte Carlo Sampling
The most straightforward strategy for sampling prod-
uct states of the TFIM is the single spin flip update.
This strategy picks a site randomly from the lattice
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Figure 5: (a) Example of the controlled time-evolution circuit
for the transverse field Ising model. Here is shown a single
second-order Trotter step for a 4-sites ring. (b) Decomposi-
tion of the controlled RZ and RX gates using RZZ gate and
other single-qubit gates.

and reverses its spin. The proposal probability is sym-
metric and equals Pψ′→ψ = Pψ→ψ′ = 1/L. Therefore,
the acceptance ratio is determined solely by the Boltz-
mann weights:

A = min
(

1, Wψ′

Wψ

Pψ′→ψ

Pψ→ψ′

)
= min

(
1, Wψ′

Wψ

)
. (18)

However, the old and new states differ only by one
spin, which means that this local strategy is slow in
exploring the Hilbert space, leading to a high correla-
tion at low and moderate temperatures.

A more effective approach that makes global moves
is Wolff’s cluster update algorithm [32]. It involves
randomly selecting a cluster of aligned spins and flip-
ping all of the spins in the cluster at once. The cluster
is constructed by choosing a random lattice site (the
cluster’s root) and adding with probability 1 − eβJ

each of the neighboring spins that point in the same
direction. The parallel neighbors of the newly added
sites are again added with that probability, and the
cluster keeps expanding stochastically until there are
no new parallel neighbors. An example on a square
lattice is given in Fig. 6.

This algorithm is designed to sample from the
Boltzmann distribution of the classical Ising model,
and it was shown to be efficient even near the critical
temperature [32]. Here, we adapt this algorithm by
using it as a proposal strategy within the Metropolis-
Hastings algorithm. To this end, we need the ratio
of the proposal probabilities, which is equal to the
ratio of the classical Boltzmann weights of the new
and old states (see Eq. (6) of Ref. [32]). Given that
the energies of the product states in the classical Ising
model are the same as those of TFIM, this ratio can
be written as

Pψ′→ψ

Pψ→ψ′
= e−β⟨ψ|Ĥ|ψ⟩

e−β⟨ψ′|Ĥ|ψ′⟩
, (19)
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Pick random site Check parallel neighbors Add each neighbor with 
probability 1 − e−2Jβ

Check parallel neighbors

of new Sites

Add Each neighbor with 
probability 1 − e−2Jβ

Check parallel neighbors

of newly added sites

Stop adding when there are 
no new parallel neighborsFlip all sites in cluster

Figure 6: Example of a cluster update step taken by Wolff’s
algorithm. Arrows represent sites of spin up or down, and
black ones denote those already added to the cluster. Dashed
boxes designate the most recently added sites, while gray
boxes designate new neighbors with the same spin as the
cluster.

which involves only energies of the product states and
can be calculated efficiently on the classical computer.
We want to emphasize here that using the cluster up-
date as a proposal strategy does not affect the correct-
ness of the Monte Carlo simulations. As a direct ap-
plication of the Metropolis-Hastings algorithm, these
simulations satisfy the detailed balance condition for
the quantum TFIM. In the Metropolis-Hastings algo-
rithm, the detailed balance condition is satisfied as
long as the proposed samples are accepted with the
proper acceptance ratio (Eq. (14)). One is then free
to choose any ergodic proposal strategy as long as the
correct ratio of proposal probabilities is used in the
acceptance ratio. When using the cluster update, the
acceptance ratio reads

A = min
(

1, Wψ′

Wψ

e−β⟨ψ|Ĥ|ψ⟩

e−β⟨ψ′|Ĥ|ψ′⟩

)
. (20)

In Fig. 7, we compare the single flip update with
the cluster update for the 16-site honeycomb lattice
with hx = 0.5 at the classical critical temperature βc.
The plot demonstrates how the cluster update ther-
malizes almost instantly, while the single flip update
needs hundreds of iterations and suffers from much
longer correlation times. The efficiency of the cluster
update depends on the strength of the field hx and
inverse temperature β, because the classical Boltz-
mann distribution, which is used to propose samples
in the cluster update, deviates more from the target
quantum Boltzmann distribution at lower tempera-
tures and higher hx. This can be seen by expanding
classical and quantum Boltzmann weights as a func-
tion of inverse temperature

e−β⟨ψ|Ĥ|ψ⟩ = 1 − β ⟨ψ|Ĥ|ψ⟩ +
∞∑
n=2

(−β)n

n! ⟨ψ|Ĥ|ψ⟩
n
,

⟨ψ|e−βĤ |ψ⟩ = 1 − β ⟨ψ|Ĥ|ψ⟩ +
∞∑
n=2

(−β)n

n! ⟨ψ|Ĥn|ψ⟩ .

(21)
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Figure 7: Evolution of the average squared magnetization
using different proposal strategies. Each point represents the
average of the chain up to the specified iteration. The first
50 iterations (burn-in period) are excluded. Both chains start
with the all-spin-down state.

When hx ̸= 0, the classical and quantum moments of
product states do not match ⟨ψ|Ĥ|ψ⟩

n
̸= ⟨ψ|Ĥn|ψ⟩

for n ≥ 2, and the difference is proportional to hnx .
Consequently, sampling with the cluster update be-
comes less efficient for lower temperatures and higher
hx.

5 Wick’s Rotation
Wick’s rotation is the most crucial component of the
time-series Monte Carlo algorithm. The procedure
for performing it is formally straightforward: Com-
pute the local density of states Dψ(ω) via Fourier
transform of Loschmidt echos [cf. Eq. (11)], then inte-
grate it with e−βω factor to get Boltzmann weights [cf.
Eq. (12)]. In practice, however, obtaining Boltzmann
weights reliably is difficult, especially for lower tem-
peratures. The problem comes from the exponential
factor e−βω, which makes Boltzmann weights sensi-
tive to the errors made in estimating the local density
of states. Therefore, we need to find a way to obtain
the Fourier transform with a high accuracy using only
a limited number of noisy data points.

In this section, we first discuss the issue of only hav-
ing a limited number of data points using the method
of Gaussian filtering introduced by Ref. [30]. We pro-
pose an automatic way of determining its parame-
ters and study its error behavior. We then introduce
the non-negative least squares (NNLS) method, which
gives superior results, especially for a small number of
data points. Next, we address the issue of statistical
shot noise which is present in any quantum computer
(even a fault-tolerant one) and show how to stabi-
lize NNLS in the presence of this noise. Finally, we
benchmark our recipe using the 10-site TFIM.

5.1 Effect of Time-Series Truncation
Given that the spectrum is bounded, then according
to the Nyquist–Shannon theorem [45], we only need
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to calculate Loschmidt echos at discrete times spaced
at an interval

∆t ≤ π

max {|Ei|}
. (22)

The spectral bound max {|Ei|} depends on the sys-
tem under study. For example, the 10- and 16-sites
TFIM with hx = 1 has the following values 13.4478
and 22.6223, respectively. Obtaining the exact value
of this bound requires solving for the lowest and high-
est eigenenergies of the Hamiltonian Ĥ, which is a
difficult problem in general. However, in many cases,
one can already obtain an upper bound analytically.
For example, for the TFIM, we find the following up-
per bound

max {|Ei|} = max
|ψ|2=1

| ⟨ψ|Ĥ|ψ⟩ |

≤ max
|ψ|2=1

|J |
∑
⟨i,j⟩

⟨ψ|ẐiẐj |ψ⟩ + |hx|
∑
i

| ⟨ψ|X̂i|ψ⟩ |

≤ |J |Nbonds + |hx|Nsites

(23)

where Nbonds is the number of lattice bonds and Nsites
is the number of lattice sites.

Although it is sufficient to sample Loschmidt echo
at the finite rate of Eq. (22), we still need, in princi-
ple, to evaluate them at an infinite number of times
points. Otherwise, truncating the time series at a
maximum time Tmax is equivalent to convoluting its
Fourier transform with a sinc function

DTmax
ψ (ω) =

∫
dω′ Dψ(ω − ω′) sin(Tmax ω

′)
πω′ . (24)

An illustrative example is shown in Fig. 8. This con-
volution is problematic for three reasons. On the one
hand, the new truncated density DTmax

ψ is not band
limited, so we need to choose δt smaller in order to
evaluate its values at higher |ω|. On the other hand,
even with a full knowledge of DTmax

ψ , the integral of
the Boltzmann weights will not converge because 1/ω
decays much slower than the exponential increase of
e−βω for large negative frequencies. Finally, even
for integrals that do converge analytically, e.g., when
β = 0 or for the microcanonical algorithm [28], the os-
cillations of the sin function make detecting the con-
vergence numerically more challenging.

5.2 Gaussian Filter Method
To circumvent these issues, Ref. [30] proposed to mul-
tiply the time series by an (unnormalized) Gaussian
function of width 1/δ ≪ Tmax

Gψ,δ(t) = Gψ(t) e−δ2t2/2. (25)

This is equivalent to convolving its Fourier transform
with a Gaussian of the reciprocal width δ

Dψ,δ(ω) = 1
δ
√

2π

∫
dω′ Dψ(ω − ω′) e−ω′2

2δ2 . (26)
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Fourier Transform - Truncated Exact Series

Figure 8: Illustration of the effect of truncating the time
series on its Fourier transform. The top panel shows the time
series of the all-spin-up state of 10-sites TFIM with hx = 1.
The bottom panel shows in blue its Fourier transform when
sampled at a rate 1/∆t = 64/π and truncated at Tmax = 4π.
The exact density of states, a linear combination of delta
functions located at the eigenenergies, is plotted in black.
For ease of visualization, the delta functions are replaced
by Gaussians whose width equals the grid spacing ∆ω =
1/8. Note the negative component of the density of states
obtained from the truncated time series.

Inserting this ansatz into Eq. (12), we find that the
effect of this broadening on the Boltzmann weights is
simply a multiplication by a scale factor

Wψ,δ(β) :=
∫
dω e−βωDψ,δ(ω) = eβ

2δ2/2 Wψ(β).
(27)

Since this scale factor is independent of the spe-
cific state |ψ⟩, the normalized Boltzmann weights
pψ stay invariant. While the broadened density in
its exact form produces an equivalent result, it is
more amenable to approximations. For large enough
δ ≫ 1/Tmax, the Gaussian filter smoothens out the
oscillations in the region of interest in Dψ,δ(ω), which
allows cutting off the remaining artificial oscillations
in the tail. Ref. [30] proposes setting to zero all den-
sity values below a certain positive cutting threshold
Dcut
ψ . However, it does not discuss how to choose such

a threshold or what error the truncation introduces in
the resulting Boltzmann weights.

Ideally, we want to choose the minimum cut such
that it filters out the artificial oscillations but nothing
more. Determining this value exactly is hard because
it requires disentangling the original peaks from the
artificial ones. Instead, we propose, as a heuristic, to
use the maximum absolute value of the negative part
of the density to determine the magnitude of those
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Figure 9: Schematic plot of premature truncation and in-
terference effects. Using a finite sampling frequency π/∆t,
the Fourier transform is a periodic summation of the orig-
inal density (green) with period 2π/∆T . As δ increases,
the broadened Fourier transform (red) inside the window
[−π/∆t, π/∆t[ increasingly deviates from the true broad-
ened density (blue) due to interference with shifted copies
outside this window. The finite sampling frequency π/∆T ,
thus, puts a practical limit on the width of the Gaussian fil-
ter.

oscillations. We then choose the cut proportional to
this value

Dcut
ψ = Ccut × max{|Dψ(ω)| : Dψ(ω) < 0} . (28)

We found that using Ccut = 2 gives stable results in
all examined cases.

The next question to address is choosing the param-
eter δ given a fixed maximum time Tmax. If we know
the truncated time series analytically (i.e., knowing its
values to infinite precision at all times prior to Tmax),
then higher values of δ are always better, and the
truncation error of the Gaussian filter will decrease
monotonically. In practice, however, there are two
limitations. The first limitation is that, unlike the
original density Dψ, the broadened one Dψ,δ is not
band limited but decays as a Gaussian. Therefore,
one must choose a large enough ω window outside
which the weight is negligible. This window increases
as δ increases, and thus to maintain the same level
of accuracy, we need to decrease the time step ∆t.
Failing to do so will lead to premature truncation of
the density and an interference with shifted copies of
itself (see Fig. 9).

The second limitation is the precision of floating-
point arithmetic. For small enough 1/δ, the tail of the
Gaussian filter becomes numerically zero, such that
the filtered time series Gψ,δ is effectively truncated
even further instead of being reweighted. Therefore, a
limit to α := δTmax is determined by the floating-point
precision. To show this effect, we plot in Fig. 10a the
relative error in estimating Boltzmann weights as a
function of δ for the time series of Fig. 8. The error
decays exponentially with increasing δ up to a point
α = 8, after which the error plateaus or increases
(depending on temperature). In Fig. 10b, we show the
exact same calculation with single-precision floating
numbers. In this case, the optimal value of α reduces
to α = 5. The increase in the error after that point
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Figure 10: Dependence of the relative error on the Boltzmann
weights of the Gaussian filter method on the product δTmax
for the time series of Fig. 8. The time series was sampled at
a rate 1/∆t = 64/π up to maximum time Tmax = 4π. Cal-
culations were performed using double-precision (top panel)
and single-precision (bottom panel) floating-point represen-
tations.

is attributed to the aforementioned reduction in the
effective maximum time Tmax.

The dependence of the relative error on Tmax while
fixing α is shown in Fig. 11a. From this plot, we see
that the error decreases exponentially with increasing
1/Tmax until it plateaus when hitting numerical ac-
curacy. Finally, in Fig. 11b, we show the error as a
function of inverse temperature β, which exhibits a
similar exponential increase with β. The dependence
of the error on the different parameters can be sum-
marized in the limit of large α as follows:

Rel. Err. ∼ O

exp
(

−α2 [C − β/Tmax]2 /2
)

√
2π α [C − β/Tmax]


(29)

where C is some positive constant. This expres-
sion, derived from some simplified assumptions in Ap-
pendix A, is only valid when β/Tmax < C and matches
the observed behavior in the previous plots. An inter-
esting observation is the duality between temperature
and maximum time, where lowering the temperature
requires increasing the maximum time proportionally
to maintain the same level of accuracy. Another im-
portant observation is that using a fixed α = δT , the
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Figure 11: Dependence of the relative error of the Gaussian
filter method for estimating the Boltzmann weights on the
maximum time Tmax (top panel) and inverse temperature β
(bottom panel) for the time series of Fig. 8. The calculations
were performed using double precision. The time series were
sampled at a rate 1/∆t = 64/π, and the filter parameter δ
was chosen such that α = δTmax = 8.

error does not vanish even in the limits Tmax → ∞ or
β → 0. However, by choosing the appropriate value
of α, values close to the numerical accuracy can be
reached, as evident from Figs. 11a and 11b.

It should be emphasized that the results discussed
so far used a sampling frequency much higher than
the Nyquist frequency in order to minimize the afore-
mentioned interference effects on the broadened den-
sity. When the sampling frequency is relatively low,
we cannot set δ to its optimal value Tmax/α. Instead,
it should be chosen such that δ ≪ π/∆t−max {|Ei|},
which increases the error significantly as illustrated
in Fig. 12. In practice, the need for high sampling
frequency puts yet an additional burden on the quan-
tum resources required for an accurate reconstruction
of Boltzmann weights.

5.3 Non-Negative Least Squares
In the previous section, we have shown how to system-
atically reduce the error of the Gaussian filter method
by increasing both the maximum time and the sam-
pling frequency. When either is low, however, it re-
mains problematic to extract Boltzmann weights, es-
pecially at relatively low temperatures.
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Figure 12: Same calculations as Fig. 11 but using time series
sampled at the lower rate 1/∆t = 16/π. To limit the effect of
this low sampling rate on the broadened density (cf. Fig. 9),
a cap is put on the filter parameter: δmax = (π/∆t−E0)/2,
where E0 = −13.477(8) is the ground state energy. Note
that curves of Tmax = π and Tmax = 2π are on top of each
other.

In the following, we introduce the main contribu-
tion of our work: a method for obtaining much better
results using the same limited data set. The critical
idea is using the fact that physical densities of states
must be non-negative. So instead of taking the time
series and directly computing its Fourier transform,
we look among the non-negative densities for the one
whose inverse Fourier transform best fits the time se-
ries. This can be found using the non-negative least
squares (NNLS) method, written formally as:

DNNLS
ψ (ω) = arg min

Dψ(ω)≥0
χ2[Dψ(ω)]. (30)

where χ2 measures how well the density fits the time
series:

χ2[Dψ(ω)] :=
nt∑
i=1

∣∣∣∣G(ti) −
∫
dω e−iωtiDψ(ω)

∣∣∣∣2 ,
(31)

where nt is the number of time points. In prac-
tice, we construct a frequency grid in the interval
[−π/∆t,+π/∆t[ with enough points to resolve the de-
tails of the density, and we use it to build the inverse
Fourier transform matrix Mi,j = e−iωjti . Then we
solve the linear system G = MD under the constraint
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Figure 13: Fourier transform of the time series of Fig. 8 us-
ing non-negative least squares method. For ease of compar-
ison, both the exact density and NNLS are convoluted with
a Gaussian whose width equals the grid spacing ∆ω = 1/8.

D ≥ 0, where G and D are vector representations
of the time series and the density, respectively. The
solution is obtained numerically using the active set
algorithm by Lawson and Hanson [31].

In Fig. 13, we show the NNLS solution of the time
series in Fig. 8, and the result matches the exact
density on the specified ω grid. This is a signifi-
cant improvement over the direct Fourier transform
and translates into several orders of magnitude reduc-
tion in the error when calculating Boltzmann weights.
In Fig. 14, we show the relative error of NNLS as a
function of maximum time and temperature. These
results were obtained using the lower sampling rate
1/∆t = 16/π and are superior to the ones obtained
from the Gaussian filter method using the same data
(cf. Fig. 12).

When obtaining Boltzmann weights from NNLS
densities, we recommend to additionally use a very
mild Gaussian filter of width proportional to the spac-
ing of the frequency grid. Without it, NNLS has
to choose between two neighboring frequencies when
placing a delta function (or a very narrow peak). This
makes low-temperature results sensitive to how close
one of the grid points is to the exact location of the
delta function. Using the suggested filter, the broad-
ened density is easier to represent on the discretized
grid. It should be emphasized that, unlike in the orig-
inal Gaussian filter method, the role of the broadening
is only to regularize the effect of frequency discretiza-
tion and can be made arbitrarily small using a finer
ω grid.

5.3.1 Influence of shot noise on NNLS: Quantile Filter
and Discrepancy Principle

The discussion so far has been about limited but
numerically exact data. Using quantum computers,
however, the time series are estimated by averaging
over a finite number of shots from the quantum cir-
cuits. As a result, the time series contains statistical
noise that scales as 1/

√
Nshots. In particular, the shot

noise on the real and imaginary parts of Loschmidt
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Figure 14: Dependence of the relative error of the non-
negative least squares method on the maximum time Tmax
(top panel) and inverse temperature β (bottom panel) for
the time series of Fig. 8. The time series were sampled at a
rate 1/∆t = 16/π as in Fig. 12.

echo G have zero mean and variances

Var[ℜ(G)] = [1 − ℜ(G)2]
Nshots

,

Var[ℑ(G)] = [1 − ℑ(G)2]
Nshots

.

(32)

The effect of this noise on the NNLS density is in-
troducing small, randomly placed peaks with a total
weight proportional to the noise level as illustrated
in Fig 15. When these spurious peaks occur at a
frequency lower than the first true peak, they intro-
duce a disproportionally larger error in the Boltzmann
weights, especially at low temperatures.

The first step in amending the effect of noise is re-
defining the fit function χ2 of NNLS in Eq. (31) such
that each term is weighted by the inverse of its vari-
ance:

χ2[Dψ(ω)] :=
nt∑
i=1

ℜ
[
G(ti) −

∫
dω e−iωtiDψ(ω)

]2
Var[ℜ(G(ti)]

+
nt∑
i=1

ℑ
[
G(ti) −

∫
dω e−iωtiDψ(ω)

]2
Var[ℑ(G(ti)]

.

(33)

This drives NNLS to fit accurate data points better
than noisier ones. For example, Loschmidt echo at
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Figure 15: Fourier transform of a noisy version of the time
series of Fig. 8 using non-negative least squares method. The
shot noise is approximated as Gaussian noise of zero mean
and variances given by Eq. (32). Here Nshots = 1000 is used.

t = 0 is known exactly and corresponds to the nor-
malization constraint G(0) =

∫
dωDψ(ω) = 1. This

constraint can then be approximately enforced dur-
ing NNLS by using a relatively large weight for G(0)
terms in the fit function.

To limit the effect of the noise on the Boltzmann
weights, we introduce, as a post-processing step, a
quantile filter where the density outside a specific
quantile range [q, 1 − q] is truncated. The quantile of
a normalized density function is defined as Qψ(q) =
CFD−1

ψ (q), where CDFψ(ω) =
∫ ω

−∞ dω′ Dψ(ω′) is its
cumulative distribution function (CDF). If value of q
is chosen appropriately, leading and trailing spurious
peaks will be eliminated. The main advantage of the
quantile filter, as opposed to the simple cutting pro-
cedure used by the Gaussian filter, is that the proper
value of q is relatively stable regarding the broadening
of the density.

The optimal truncation value q can be determined
automatically using the discrepancy principle [46, 47].
According to this principle, the truncation level is cho-
sen such that the truncated density D̃q

ψ(ω) fits the
time series up to the expected amount of noise on
that series. When Nshots is large, the shots noise is
approximately Gaussian, and thus the reweighted fit
function of Eq. (33) follows the chi-squared distribu-
tion with 2nt degrees of freedom, where nt is the num-
ber of time points. The mean value of this distribution
equals its degrees of freedom, so the discrepancy prin-
ciple suggests choosing the quantile value q such that
χ2[D̃q

ψ(ω)] = 2nt. A larger value can be used to avoid
accidental over-fitting of the noise or if other sources
of systematic error are expected (e.g., Trotter error).

In Fig. 16, we plot the relative error in Boltzmann
weights as a function of the number of shots for the
time series of Fig. 8. We simulated the effect of shot
noise using Gaussian random variables of appropriate
variances given by Eq. (32). The density was then re-
constructed using NNLS and truncated with a quan-
tile filter, where the truncation level was determined
automatically using the discrepancy principle. The
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Figure 16: Dependence of the relative error of the non-
negative least squares method on the number of shots for
the time series of Fig. 8. The time series were sampled at a
rate 1/∆t = 16/π with maximum time Tmax = 4π.

plot shows that using the quantile filter in combina-
tion with the discrepancy principle effectively regu-
larizes the impact of shot noise and allows systemati-
cally improvable results. The error on the Boltzmann
weights scales linearly with the error on the time se-
ries, and thus it scales as 1/

√
Nshots. In particular, no

additional hyperparameter is introduced as the algo-
rithm only takes the number of shots as an additional
input parameter.

5.3.2 Benchmarking NNLS

To test the overall effectiveness of our Wick’s ro-
tation strategy (NNLS + quantile filtering + dis-
crepancy principle), we calculate the exact Boltz-
mann weights W ⋆

ψ for all the states of the 10-sites
TFIM and compare them with the weights Wψ esti-
mated via Wick’s rotation of the time series of these
states. As a global measure of the error made dur-
ing Wick’s rotation, we need a statistical distance
quantifying how different the estimated Boltzmann
distribution pψ := Wψ/

∑
ψ′ Wψ′ is from the exact

one p⋆ψ := W ⋆
ψ/
∑
ψ′ W ⋆

ψ′ . One option, which we em-
ploy here, is the relative entropy (also known as Kull-
back–Leibler divergence) of the estimated Boltzmann
distribution with respect to the exact one

KL(p||p⋆) =
∑
ψ

pψ log
(
pψ
p⋆ψ

)
. (34)

It is worth noting that we also checked the L1-distance
(also known as Kolmogorov distance) and it shows
similar trends to the entropy, so we restrict the dis-
cussion below to the later.

In Fig. 17, we plot the error for different val-
ues of Nshots at hx = 1 and different β. We
find a slight improvement of these results when
enforcing constraints on the first few moments of
the density, in this case, the mean energy Eψ :=
⟨ψ|H|ψ⟩ =

∫
dωDψ(ω)ω, and the energy variance

⟨ψ|(H − Eψ)2|ψ⟩ =
∫
dωDψ(ω)(ω−Eψ)2. These mo-

ments can be calculated efficiently and accurately on
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Figure 17: Dependence of the relative entropy error on the
number of shots for 10-sites TFIM with hx = 1. The time
series were sampled at a rate 1/∆t = 16/π with maximum
time Tmax = 4π.
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Figure 18: Temperature dependence of the number of shots
needed for achieving the labeled relative entropy for 10-sites
TFIM with hx = 1. The time series were sampled at a rate
1/∆t = 16/π with maximum time Tmax = 4π.

the classical computer for product states. The trun-
cation performed by the quantile filter will generally
violate these constraints. However, they can be rein-
troduced by shifting and rescaling the truncated den-
sity to fix its moments to their exact values. The plot
shows the relative error in Boltzmann weights using
adjusted moments which makes a slight but notice-
able improvement for low numbers of shots and high
temperatures.

Fig. 18 shows the number of shots required to reach
a specific level of accuracy in the Boltzmann distri-
bution for different temperatures. The number of
shots scales exponentially with the inverse temper-
ature. This exponential scaling comes from the fact
that errors in the estimated density gets amplified by
the Boltzmann factor e−βω which itself scales expo-
nentially with the inverse temperature.

In Fig. 19, we also show the dependence of the rel-
ative entropy error on the strength of magnetic field
parameter hx. As hx increases, Wick’s rotation be-
comes more difficult. This can be explained by the
fact that the density of states gets broader with in-
creasing hx (the energy variance equals h2

x times the
number of sites). With wider support, more of the
shot noise is located inside the main body of the den-
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Figure 19: Dependence of the relative entropy error on the
strength of magnetic field for 10-sites TFIM with Nshots =
10000. The time series of hx = 0.25, 0.5, 1, 2, 4 were sam-
pled at rates 1/∆t = 12π, 12π, 16/π, 24/π, 48/π, respec-
tively, with maximum time Tmax = 4π. The sampling rates
were chosen such that the Nyquist condition of Eq. (22) is
satisfied.

sity and is not removed by the quantile filter, which
cuts only the tails. This observation suggests that
sampling entangled states (instead of simple product
states) with lower energy variances can lower the ef-
fect of noise on Boltzmann weights. Note that in the
limit when the sampled states are eigenstates (e.g.
hx = 0), moments-adjusted densities can become ex-
act even in the presence of shot noise. This is a result
of enforcing the moments of the density by hand and
contingent on using exact values of the eigenenergies.
If the moments themselves, however, contain errors,
then these errors will be reflected in the Boltzmann
weights and scale exponentially in inverse tempera-
ture. For example, let ψ1, ψ2 be two eigenstates with
energies E1, E2, respectively. Then the ratio of their
Boltzmann probabilities is e−β(E2−E1). If an error ϵ is
made in estimating E2 −E1, then the relative error in
the ratio is |1 − e−βϵ|, which is exponential in inverse
temperature.

Finally, we investigate the effect of Trotterization
on Wick’s rotation. We expect that once the Trotter
error is below the statistical shot noise, Trotterization
has no noticeable effect on Boltzmann weights. We
used a Trotter step δt := ∆t/nTrotter, where nTrotter
represents the number of Trotter steps per sampling
period ∆t. The results are plotted in Fig. 20 for dif-
ferent numbers of shots and confirm our expectations.
For a high number of shots, the time series is accurate
enough such that increasing the number of Trotter
steps systematically decreases the error in Boltzmann
weights. On the other hand, using a relatively low
number of shots using one Trotter step per sampling
period is already enough.

6 Simulation Results
To demonstrate the robustness under the combined
effects of Trotter error, shot noise and Monte Carlo
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Figure 20: Dependence of the relative entropy error on the
number of Trotter steps nTrotter for 10-sites TFIM with hx =
1. The time series were sampled at a rate 1/∆t = 16/π with
maximum time Tmax = 4π. Note that nTrotter represents the
number of Trotter steps per sampling period ∆t, so that the
total number of Trotter steps for time t is nTrotter × (t/∆t).

sampling errors, we implemented the whole algorithm
using quantum circuits simulated via the IBM’s Aer-
Simulator with no hardware errors. We performed
calculations for the 16-sites TFIM with hx/J = 1 at
different temperatures. Loschmidt echoes were eval-
uated on nt = 8 times points equally spaced between
zero (excluded) and JTmax = 1 (included). We used a
variable Trotter step with a maximum value of 0.25.
This implies that the first two time points use one
Trotter step, the third and fourth points use two steps
and so on. We sampled the output of each circuit us-
ing 10000 shots. With this number of shots, Trotter
error is still appreciable compared to the shot noise.
To regulate its effect on the density D(ω), we ap-
plied the discrepancy principle with a higher value
χ2[D̃q

ψ(ω)] = 5nt.
We used four Monte Carlo chains for each temper-

ature value, each with 512 samples and a different
random seed. Two chains started from the all-spin-up
state, and the other two started from the all-spin-
down state. We discarded the first 32 samples of each
chain as a burn-in period. To save on the number of
executed quantum circuits, we implemented a caching
mechanism that allows reusing the shots when the
same quantum state is proposed again. The savings
gained from this trick depends on the length of the
Markov chain and the temperature. At lower tem-
peratures, most samples are low energy states, while
at high temperatures, the Boltzmann distribution is
more uniform with a lower probability of repeated
sampling. The ratio of unique states for βc/3 chains
was around 94%, for βc was around 63%, and for
8βc/3 was around 23%.

In Fig. 21, we show how the average squared mag-
netization evolves with iterations of different Monte
Carlo chains at βc. The exact result falls within two
standard deviations from the final estimated aver-
age. On the other hand, the classical result (i.e., for
hx = 0) is well outside the error bars, so we could not
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Figure 21: Evolution of average squared magnetization for
four different Monte Carlo chains of the 16-site TFIM with
hx = 1 and β = βc using noisy Loschmidt echos via Aer-
Simulator. Each colored point represents the average of the
chain up to the specified iteration. The first 32 iterations
(burn-in period) are excluded. The classical refers to the
value of the equivalent Ising model (i.e., with hx = 0).

have obtained these results by simply using the classi-
cal Boltzmann weights e−β⟨ψ|Ĥ|ψ⟩. This comparison is
relevant because the quantile filter truncates the tails
of the density of states, making it look closer to the
density of states of the classical Ising model (which is
a delta function at the mean energy). Therefore, in
the presence of noise, the estimated quantum Boltz-
mann weights tend to get biased towards the classical
Boltzmann weights, and the results here show that,
at this temperature, the truncation does not signifi-
cantly bias the estimates towards the classical model.

In Fig. 22, we compare the estimated values of
squared magnetization using AerSimulator (plotted in
green) with the exact ones (plotted in black) at inverse
temperatures βc/3, 2βc/3, ..., 8βc/3. We see that the
bias is limited to 7.4% even below the critical point at
inverse temperature 4βc/3. As expected, the bias gets
more prominent as the temperature decreases. To dis-
entangle the source of this bias, we also performed
simulations using Loschmidt echos obtained numeri-
cally via QuSpin Python package. These Loschmidt
echos were calculated at the same time points as in the
Aer simulations, but they are numerically exact, i.e.,
without Trotter error or shot noise. Accordingly, the
Boltzmann weights were estimated using NNLS with-
out requiring the quantile filter. The results using
these exact Loschmidt echos (plotted in blue) show
no observable bias beyond the statistical error bars.
This indicates that the bias in AerSimulator results
can be mainly attributed to Trotter error and the shot
noise. Reducing the bias involves taking more shots
and smaller Trotter steps. We also notice that statis-
tical error bars get larger for lower temperatures. This
is explained by the lower efficiency of the cluster up-
date at lower temperatures, which has been discussed
earlier at the end of Sec. 4. Reducing these error bars
is a matter of taking more Monte Carlo samples.
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Figure 22: Average squared magnetization of the 16-site
TFIM with hx = 1 at different inverse temperatures β.
Estimates refer to the simulation results of the time-series
Monte Carlo algorithm using either noisy Loschmidt echos
(via AerSimulator) or exact ones (via QuSpin). Error bars
represent 95% confidence (two standard deviations). The
classical curve represents the values for the equivalent Ising
model (i.e., with hx = 0).

7 Summary and Outlook
Time-series quantum Monte Carlo is a promising hy-
brid algorithm for calculating the thermal properties
of quantum materials. The algorithm relies on calcu-
lating quantum Boltzmann weights via Wick’s rota-
tion of real-time dynamics to imaginary time. In this
work, we studied in detail how to calculate Boltzmann
weights from noisy and truncated time series. We re-
visited the Gaussian filter method and discussed an
automatic way of determining its cut parameter. Un-
der simplified assumptions, we derived an asymptotic
of the error made on Boltzmann weights and found
that lower temperatures require proportionally longer
times to maintain the same level of accuracy. We
then proposed to use the non-negative least squares
method, which enforces the non-negativity of the den-
sity of states. We found it to reduce the error in
the Boltzmann weights by several orders of magni-
tudes compared to the Gaussian filter method using
the same data. Numerical results suggest that the
duality between maximum time and temperature still
holds using this method.

To regularize the effect of shot noise, we suggested
using a quantile filter for truncating noisy tails of
the density. The amount of truncation is determined
automatically via the discrepancy principle. Bench-
marking results show that the number of shots re-
quired to maintain a specific level of accuracy scales
exponentially with inverse temperature. It also sug-
gests that entangled states with lower energy vari-
ances can be less susceptible to shot noise. To test the
robustness of the recipe in realistic settings, we fully
implemented the time-series quantum Monte Carlo
algorithm for the two-dimensional TFIM, including
quantum circuits and an improved sampling strategy
based on the cluster update algorithm. The simula-
tions indicate that, despite the aforementioned sensi-

tivity to shot noise, the algorithm is able to obtain rel-
atively accurate results up to the critical temperature
using affordable resources. Hardware errors aside, the
parameters used in these simulations are within the
capabilities of the current hardware. This demon-
strates that the method can be of practical use on
current NISQ devices.

While the ferromagnetic TFIM model investigated
here is relatively easy to solve on classical computers,
the improvements made in Wick’s rotation are gen-
eral. In particular, we expect the method to be useful
for frustrated quantum spin models, e.g., the anti-
ferromagnetic Heisenberg model on a kagome lattice,
which is hard to simulate classically. Also, the pro-
posed reweighted cluster update can be similarly ap-
plied in that situation by proposing samples from an
efficient classical sampling algorithm, e.g. the KBD
algorithm [48, 49], and reweighting with the ratios of
quantum to classical Boltzmann weights. Whether
the reweighted algorithm remains efficient at relevant
low temperatures and large system sizes remains to
be investigated.
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A Error Scaling in Gaussian Filter
Method
There are various sources of error in the estimation
of Boltzmann weights in the Gaussian filter method.
First, there is an interference error resulting from the
finite sampling frequency π/∆t because the broad-
ened density has infinite support (see Fig. 9). There
is also a quadrature error associated with perform-
ing the integral numerically with a finite number of ω
points. These two sources of error are controlled by
using finer time and frequency grids, and we assume
that ∆t and ∆ω are chosen small enough to make the
resulting errors negligible. More importantly, there
is an error introduced by cutting values below Dcut

ψ

and errors on the other values remaining from having
a finite maximum time Tmax. These errors are dom-
inated by the error resulting from setting the values
at the lowest frequencies to zero. Let ωcutoff be the
smallest frequency below which all values of the den-
sity are truncated. That error can then be calculated
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as

Ecut
ψ,δ =

∫ ωcut

−∞
dω e−βωDψ,δ(ω). (35)

To simplify the analysis, we focus on the case where
the exact density is a single delta function at fre-
quency ω0 and discuss implications for the general
case later. In this simple case, the broadened density
is a Gaussian and the exact value of its Boltzmann
weight is Wψ,δ = exp(β2δ2/2 − βω0). The relative er-
ror can then expressed in terms of the error function
as following:

Ecut
ψ,δ/Wψ,δ = 1

2

[
1 + erf

(
βδ2 + ωcut − ω0√

2δ

)]
(36)

The distance between the peak and cutoff frequency
ωcut − ω0 will depend on the maximum time Tmax
and broadening parameter δ and can be estimated as
follows. The density of the truncated time series reads

DTmax
ψ,δ (ω) = 1

2π

∫ +Tmax

−Tmax

dt e−t2δ2/2 eit(ω−ω0)

= ie−a2

2
√

2πδ
[erfi(a− ib) − erfi(a+ ib)] (37)

where erfi is the imaginary error function and we de-
fined a := (ω − ω0)/(

√
2δ) and b := δ Tmax/

√
2 for

compactness. In the limit b ∝ δ Tmax → ∞, we can
use the expansion of erfi(z) at positive and negative
infinities to order O(z−3ez

2) and write

DTmax
ψ,δ (ω) ≈ e−a2

√
2πδ

[
1 + ea

2−b2 a sin(2ab) − b cos(2ab)√
π (a2 + b2)

]
(38)

The first term gives the exact density of the full time
series, while the second one approximates the error
made due to the time-series truncation. The oscilla-
tions start to dominate when the exponential factors
ea

2
and eb

2
have similar magnitudes. This allows us

to infer how the frequency cut ωcut scales

a2 = Cb2 ⇒ ωcut − ω0 = −Cδ2Tmax (39)

where C is some positive constant of order 1. Substi-
tuting back in Eq. (36), the relative error reads

Ecut
δ /Wψ,δ = 1

2

[
1 + erf

(
δ Tmax√

2

[
β

Tmax
− C

])]
(40)

In the same limit as above, δ Tmax → ∞, and as-
suming β < CTmax, we can expand the error function
erf(z) at negative infinity to order O(z−3e−z2) and
approximate the relative error as

Ecut
δ /Wψ,δ ≈

exp
(

−δ2 T 2
max [β/Tmax − C]2 /2

)
√

2π δ Tmax [C − β/Tmax]
.

(41)
Setting α := δ Tmax, Eq. (29) is obtained.

Now we discuss the general case of a linear combi-
nation of delta functions. Let µ be the mean of the
density and σ is its standard deviation. Assuming δ is
much larger than the spacing between the lowest and
highest frequencies, for the sake of error scaling, the
broadened density could be approximated by a Gaus-
sian of width σ+δ and mean µ. With this assumption,
the previous error analysis holds by setting ω0 to the
mean µ and replacing δ by the extended width σ+ δ.
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