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Abstract 

Background

The management of medical waste is a complex task that necessitates 
effective strategies to mitigate health risks, comply with regulations, 
and minimize environmental impact. In this study, a novel approach 
based on collaboration and technological advancements is proposed.

Methods

By utilizing colored bags with identification tags, smart containers 
with sensors, object recognition sensors, air and soil control sensors, 
vehicles with Global Positioning System (GPS) and temperature 
humidity sensors, and outsourced waste treatment, the system 
optimizes waste sorting, storage, and treatment operations. 
Additionally, the incorporation of explainable artificial intelligence 
(XAI) technology, leveraging scikit-learn, xgboost, catboost, lightgbm, 
and skorch, provides real-time insights and data analytics, facilitating 
informed decision-making and process optimization.

Results

The integration of these cutting-edge technologies forms the 
foundation of an efficient and intelligent medical waste management 
system. Furthermore, the article highlights the use of genetic 
algorithms (GA) to solve vehicle routing models, optimizing waste 
collection routes and minimizing transportation time to treatment 
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centers.

Conclusions

Overall, the combination of advanced technologies, optimization 
algorithms, and XAI contributes to improved waste management 
practices, ultimately benefiting both public health and the 
environment.
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Introduction
Medical waste management (MWM) is a critical aspect of healthcare facilities that necessitates effective strategies to
mitigate health risks, comply with regulations, and minimize environmental impact. Improper management and
inadequate disposal of medical waste can lead to harmful outcomes for public health and the environment.1 This
underscores the urgent requirement for innovative methods aimed at improving the efficiency, safety, and sustainability
of MWM systems.

Various scientific articles have emphasized the importance of advanced technologies in MWM. For example, a study
conducted by Ref. 2 explored the application of radio-frequency identification (RFID) technology in MWM and
highlighted its positive influence on waste disposal. The research revealed that integrating RFID technology with
video monitoring and cloud storage can significantly mitigate the risk of medical waste loss or unauthorized recycling.
Similarly, the study3 investigated waste generation and management practices in the healthcare sector in Colombo, Sri
Lanka, with the aim of reducing pollution. It emphasized the significance of positive attitudes, awareness, capabilities,
and technology in improving waste management processes, encouraging healthcare organizations to invest in this area.
Additionally, another study4 highlighted the importance of blockchain technology in MWM and identified various
clusters such as waste generation, storage, collection, treatment, and disposal. Building upon these technological
advancements, a different study introduced a waste management innovation model called the “Four Joins of Power”,
which emphasized community engagement, knowledge-sharing, collaboration, and network expansion as key pillars in
effective waste management.5 By employing a four-phase approach, including situation analysis, innovation develop-
ment, trial, and assessment, the implementation of the “Four Joins of Power” innovation resulted in increased community
knowledge and positive changes in waste management behavior among participants. These articles provide valuable
insights into the potential of advanced technologies to improve the effectiveness and efficiency of MWM processes.

In this context, our article proposes a novel approach that integrates collaboration and technological advancements to
optimize waste sorting, storage, and treatment operations. By harnessing advanced technologies such as sensor-based
systems, Global Positioning System (GPS)-enabled vehicles, and explainable artificial intelligence (XAI) technology,
this work aims to revolutionize the field of MWM. The study showcases the efficiency, safety, and environmental
compliance achieved through the implementation of this smart MWM system. Furthermore, the article briefly mentions
the use of vehicle routing models to optimize waste collection routes and minimize transportation time to treatment
centers.

The article is structured as follows: the related work section provides relevant scientific literature on MWM and
supporting evidence for the use of advanced technologies in waste management. The methods section presents a concise
description of how the study was conducted. The proposed solution section details the algorithms and technologies
employed, presents the findings of the study, and is followed by a discussion that analyzes and interprets the results.
Finally, the conclusion section summarizes the key findings and highlights the significance of the study’s contributions to
the field of MWM.

REVISED Amendments from Version 1

This version of the article incorporates significant improvements based on the valuable feedback received during the peer
review process. The key differences between this version and the previously published one are as follows:

• Use of GA Algorithm: Additional content has been included to clarify the complexity of our model and the suitability of
the Genetic Algorithm (GA) approach in addressing the Time-Dependent Vehicle Routing Problem with Time Windows
(TDVRPTW) for Medical Waste Management (MWM).

• Figure 11 Update: Figure 11 has been revised to include “node 10” in the title, providing a clearer reference to the
specific content depicted.

• LiteratureReviewEnhancement:Acomprehensive literature reviewon TDVRPTW forMWM isnow integrated into the
paragraph discussing the TDVRPTW model with two sub-models for MWM. This addition enhances the context and
understanding of the research.

• Equations Enhancement: Equations (7), (8), (26), and (27) have been modified to include the condition “for all k in K,”
and equations (15), (16), (17), (34), (35), and (36) have been adjusted with the condition “for all p in P,” ensuring a more
comprehensive and accurate representation of the mathematical model. Additionally, new equations have been
introduced, further enhancing the completeness of the mathematical model.

These modifications enhance the clarity, comprehensiveness, and overall quality of the article, positioning it as a valuable
contribution to the field of MWM.

Any further responses from the reviewers can be found at the end of the article
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Related work
This study is based on a comprehensive literature search, focusing on three specific areas, namely (a) MWM System
(MWS), (b) Intelligent MWS, and (c) XAI applied to MWM. An extensive literature review is presented in this section,
outlining the existing gaps and the motivation behind this study.

MWM process
Medical waste, which includes materials that are infectious or contain toxic chemicals, can be harmful to people and the
environment. Hospitals and health centers generate a significant amount of this waste each year, and it is essential to
manage it properly to ensure the safety of patients, healthcare workers, and the community.6

Improper MWM can pose serious health and environmental risks, including contamination, pollution, and exposure to
hazardousmaterials. It is therefore crucial to handle, treat, and dispose ofmedical waste safely to protect public health and
the environment.

MWM encompasses various practical components, including waste collection, waste separation, waste recovery, and
waste scheduling. Furthermore, the development of efficient strategies and methodologies is crucial in establishing an
effective framework for waste management within MWM.7 These aspects have been extensively explored and analyzed
in the relevant literature.

In the referenced study,8 the focus is on investigating the sustainability challenges associated with MWM in developing
countries across Africa. The authors specifically analyze various aspects, including the proper handling of waste within
hospitals and health facilities, as well as the transportation and storage of medical waste. In addition, they examined the
impact of underfunded health systems, inadequate training, and lack of awareness of MWM policies and legislation.
They proposed a management plan considering policy and fiscal aspects, collaboration between different institutions, the
use of cost-effective and sustainable treatment methods, the establishment of an efficient supply chain and adequate
storage.

In a related vein, researchers in Ref. 9 conducted a comprehensive meta-analysis that examined medical and healthcare
waste management practices across 78 countries. Their findings indicated a noteworthy association between the rate of
medical waste generation and factors such as the human development index, life expectancy, and health expenditure.
Conversely, they discovered a negative correlation between medical waste generation and the environmental perfor-
mance index. Furthermore, the study underscores the significance of promoting awareness amongworkers regarding best
practices in waste management.

Although some authors use the latest technologies to address the risks of MWM, for example the authors of Ref. 10
proposed a decentralized blockchain-based system to automate medical waste processes and makes it transparent.
Their solution consists of four components: medical equipment and supplies, waste centers, recycling plants and sorting
factories.

Furthermore, the performance of MWM system has been recently interrupted and encountered a very serious situation
due to the epidemic outbreak of the Coronavirus disease 2019 (COVID-19).11 And the disposal of this new category of
biomedical waste (COVID-19 waste) is a major global concern for public health and environmental sustainability, given
the significant risk of pandemic spread. This article12 reviews the technologies for disinfecting COVID-19 waste, from
separate collection to the various physical and chemical treatment steps. The authors proposed chemical disinfection
using a 1%NaOCl solution in situ, as well as microwave disinfection is to disinfect personal protection equipment (PPE)
and wipes that can be recycled and reused, while incineration is useful to treat a larger volume of COVID-19 waste.

Moreover, to properly manage COVID-19 medical waste, the authors13 designed a reverse logistics network to control
the spread of the virus. In this regard, this study presented a tri-objective mathematical model to minimize the total cost,
the risk associated with the network operations, and the maximum amount of uncollected waste. Also, this work14

analyzed the existing MWM system in Korea and proposed measures to establish effective management of Covid-19
waste. The authors proposed the use of effective medical waste classification, reduction of medical waste generation and
diversification of treatment methods as areas for improvement.

Within the cited literature, multiple studies have proposed various MWM systems. However, the absence of a
standardized evaluation framework for assessing these systems remains evident. Addressing this gap, the research
presented in Ref. 15 introduces an assessment framework forMWMbased on guidelines established by theWorld Health
Organization (WHO). The framework incorporates multi-criteria decision making (MCDM) techniques to model
and evaluate the effectiveness of MWM practices. To demonstrate its applicability, the framework was implemented

Page 4 of 47

F1000Research 2023, 12:1060 Last updated: 29 NOV 2023



in eight private and public hospitals inMyanmar, enabling an assessment of their respective MWMpractices. The results
of this study show the urgent need for specificMWM laws and regulations, technology, expertise, and funding, as well as
the need for risk awareness among health care staff. The authors also recommend the implementation of new
environmentally friendly technologies and the encouragement of collaboration between public and private institutions.
In addition, an analytical hierarchy process (AHP) methodology was used in this paper16 to help each hospital unit to
verify its environmental situation, as well as to specify the areas and processes that should be improved towards
environmental sustainability.

To summarize, most of the literature cited above suggests sensitizing stakeholders to best practices in MWM and
associated risks, collaborating among institutions to optimize resource utilization, and developing a comprehensive
management framework from waste production to treatment. Our work will address these issues by proposing practical
and environmentally friendly solutions.

Smart waste management
Most cities aim to transform their infrastructure based on sustainability guidelines and practices. Specifically, smart
technologies such as the Internet of Things (IoT) and blockchain are being used tomaximize economic and social benefits
and minimize environmental issues.17–19 For instance, several research propose an IoT-based connected environment to
better manage waste.20

Firstly, the MWS which relies on sensors and other smart devices, is potentially more efficient in sorting waste. In this
context,21 exploit various types of sensors (proximity sensor, humidity sensor, gas sensor, and ultrasonic sensor, among
others) to collect and sort waste. Indeed, they propose a waste segregator that can identify the type of waste and sort it
into bins automatically. Also, the authors of Ref. 22 have proposed an IoT solution to sort medical waste. Their solution
encompasses five-steps: waste image capture, data preprocessing, median filtering, contrast enhancement and segmen-
tation. There is also an “iWASTE” solution based on cameras in waste bins cans for the detection and classification of
medical waste using video recordings.23 Moreover,24 proposes a system encompassing real-time waste tracking sensors
such as RFID, GPS, etc., cloud computing for data storage and transmission, mobile application for monitoring and
tracking. As well as a fuzzy method based categorization is performed to classify the waste according to specific criteria.

Secondly, there are solutions using robotics to optimize MWM. For example,25 proposes a solution based on a robotic
arm for waste sorting,26 proposes a self-supporting vehicle with robotic hands used to collect waste.

In general, several models have been proposed for waste tracking and management, including smart bins,27,28 a cloud-
based data encryption and decryption method for a secure waste management system.29 In Ref. 30 they propose a waste
management platform with unique bin identifier and real-time tracking of waste levels, this platform is intended to
facilitate waste tracking by multiple parties, such as government agencies and hospitals. Where Ref.31 proposes an IoT
infrastructure system incorporating more than data collection, data processing as well as management application
integration for waste optimization.

The IoT is essential for MWM since it integrates the required technologies such as identification technologies, data
acquisition, spatial technologies and communication technologies, in addition it must also integrate Artificial Intelligence
(AI) methods allowing decision support.32 However, in the related literature, the use of smart cities models in terms of
medical waste is limited, with most work focusing on municipal waste management.

Our contribution goes beyond the use of IoT for waste sorting and tracking, as we have developed a comprehensive
smart solution that covers the entire waste management process from generation to disposal. Our approach includes the
deployment of smart devices in the hospital, external warehouse, transport vehicle, and waste processing unit, while
leveraging AI and big data to optimize efficiency. Additionally, we have proposed a collaboration system among all
stakeholders to ensure the success of the solution. Furthermore, to promote transparency and understanding among the
involved parties, we have integrated XAI in our solution.

XAI for medical waste
AI is becoming more and more prevalent in our daily lives, with intelligent systems being used for a variety of
purposes such as recommending content and products, providing news, managing social media, delivering healthcare,
and providing other public services.33 However, the inner workings of these AI systems are not always transparent, and
often do not provide enough information about how decisions are made.34 Indeed, only the programmers of the AI
algorithm understand how the system works.35 Therefore, XAI is essential to allow end users to make effective decisions
in different contexts, especially critical use cases to rely on the system.36
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Several works6,37–54 have studied XAI in various domains and perspectives, e.g. healthcare, media and entertainment,
education, transportation, finance, e-commerce, digital assistant, etc.

In healthcare, researchers are using XAI for disease diagnosis and health-related recommendation systems.37,38 For
media and entertainment, involves personalized recommendation systems, based on collected personal information.39–42

Uses of XAI in education encompass smart tutoring systems, university admission decisionmaking, and grade estimation
systems.43–45 The transportation domain includes navigation systems, applications for autonomous cars and flight
planning for the aviation industry.46–48 Financial applications of XAI research include the area of insurance, the
possibility of financial fraud detection and loan application management.49,50 For E-commerce, XAI is used as a useful
marketing tool, or explained online purchase recommendations.51–53 For digital assistants, there are applications of XAI-
based interactive agents that are trustworthy and more user-centered.54

In general XAI are widely used across different fields, but in MWM, there is no research in this direction, only our latest
work6 which is to propose an intelligent solution based on XAI so that stakeholders trust the choice of waste treatment,
collection schedule, treatment methods, etc.

Literature gap and contributions of this research
The literature review revealed that majority of the works for MWMdo not integrate a comprehensive solution containing
the different parties involved, eachwork deals with the problem from the point of view of either hospital, or treatment unit
or waste collection and transportation. On the other hand, the research objective ofmanagementmodels formedical waste
is to provide sound policy decisions and suggest operational strategies for designing the system in a cost-effective and
environmentally sound manner. However, to the best of our knowledge, no research has been conducted to design a
transparent, smart system for the management of medical waste and the resulting health risks. To fill the gaps in the
literature, this work proposes an integrative model for effective management of medical waste.

The main objectives of this research are summarized as follows:

• Propose a model that integrates all the different parties involved in MWM, from waste generation to disposal.

• Incorporate smart technologies, AI, and big data into the proposed solution.

• Ensure transparency and explainability of the proposed solution by integrating XAI, so that all parties involved
can understand the decision-making process.

• Optimize the vehicle routing problem for the collection and distribution of medical waste.

Methods
The approach employed in our work aligns with the methodology outlined in this section (see Figure 1), which
encompasses the process of addressing our research question, elucidating the implementation steps, substantiating the
chosen experimental design, and detailing the analysis of obtained results.

Figure 1. Overview of the methodology employed in this work.
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Current MWM process
We begin by providing a detailed overview of the actual MWM process in the context of Morocco as an example.
This includes a step-by-step description of activities such as sorting and packaging, storage, transport, treatment, and
disposal. We also highlight the key challenges associated with each stage, such as health risks, storage time limitations,
maintenance of appropriate storage conditions, management of flows and vehicle capacity, and compliance with
regulations.

Proposed smart solution
After identifying the challenges related to MWM that require attention, we embark on exploring a wide array of
technologies and smart solutions applicable to this field. Our aim is to consider emerging trends and innovations that have
the potential to enhance current MWM practices. Additionally, we conduct an in-depth analysis of the perspectives of
various stakeholders involved in MWM, including healthcare facilities, waste disposal agencies, warehouses, environ-
mental experts, and regulatory authorities. This invaluable insight enables us to propose an approach that emphasizes
fostering collaboration among all these stakeholders.

Based on the comprehensive problem analysis, literature review, and valuable inputs from stakeholders, wemeticulously
craft a detailed proposal for a smart solution tailored toMWM.Within this proposal, we outline the key components of the
solution, such as incorporating smart containers, waste tracking systems, automation, and advanced treatment methods.

Moreover, we conduct a comparative study, pitting our proposed smart solution against the existing MWM process.
This enables us to highlight the potential benefits our solution offers, including improved efficiency, cost savings,
positive environmental impact, and enhanced compliance with relevant regulations. The comparative analysis showcases
the advantages that our smart solution brings to the table, reaffirming its potential to revolutionize MWM practices.

XAI dashboard for MWM
One of the key contributions of our article is the proposal of XAI solution for MWM. To achieve this the methodology
used is as follows:

Problem identification

We begin by identifying the challenges in MWM and recognizing the lack of transparency in AI models. This step is
essential to understand the significance of XAI in enhancing end-user confidence.

Medical waste bin filling prediction:

The case chosen for XAI implementation is the AI model for predicting the filling level of medical waste bins. By
accurately predicting the filling level of medical waste bins, healthcare facilities can plan waste collections more
efficiently, optimizing the use of resources such as transportation and personnel.55 This can lead to cost savings and
reduce the environmental footprint of waste management processes. Additionally, the proper management of medical
waste is essential to prevent public health risks. If waste bins are not collected frequently enough and overflow, it can lead
to contamination and the spread of diseases. On the other hand, if bins are collected too often, it can result in excessive fuel
use and high collection costs. The AI model helps strike the right balance and ensures that waste disposal is timely and
efficient. Moreover, medical waste can contain hazardous materials that can be harmful to both humans and the
environment if not handled properly. By accurately predicting the filling level of waste bins, healthcare facilities can
better manage the disposal of hazardous waste, reducing the risk of environmental contamination.

The data used in our study is based on declarations from the WHO, which provides reliable information on the average
quantity of hazardous waste generated per hospital bed per day (0.5 kg per bed per day).56 This information helps us
model the waste generation accurately and create a predictive model that can assist in optimizing waste management
practices.

We specifically focused on hospitals in the Casablanca region of Morocco as examples to demonstrate the effectiveness
of our AI model in a real-world scenario. The availability of such data57 allows us to develop and test our XAI solution,
ensuring its relevance and applicability to MWM in this specific region.

XAI library selection

The solution employs various Python libraries for enhancing the XAI model’s functionality57:

Page 7 of 47

F1000Research 2023, 12:1060 Last updated: 29 NOV 2023



Scikit-learn [RRID:SCR_002577] is instrumental in our XAI implementation, serving multiple essential functions.
Firstly, we use it for data preprocessing, handling data cleaning, feature scaling, and imputing missing values in the
dataset. Secondly, we employ its feature selection technique, Recursive Feature Elimination (RFE), to identify the most
relevant features that significantly contribute to the prediction task. Lastly, scikit-learn is used for model training, where
we utilize Decision trees algorithm to create a tree-like model that makes decisions based on feature values at different
nodes. Additionally, we leverage random forests to combine multiple decision trees, leading to more accurate predictions
and reducing overfitting.

The main focus of our XAI solution is on model interpretability, which is why we opt for Decision trees due to their
hierarchical structure. This enables clear understanding of decision-making at each node based on feature values, making
them ideal for our XAI solution. This approach empowers stakeholders to comprehend the factors influencing predictions
in MWM.

In summary, scikit-learn’s data preprocessing capabilities enable us to handle data cleaning and feature scaling, while its
feature selection techniques help us identify the most relevant features. The use of decision trees and random forests
ensures we build interpretable and accurate models for predicting medical waste bin filling levels, providing transparent
and reliable insights for waste management.

Furthermore, we enhance our XAI model’s performance and accuracy by incorporating xgboost [RRID:SCR_021361],
catboost [RRID:SCR_021694], and lightgbm [RRID:SCR_021697] libraries. Xgboost is employed to build multiple
weak learners (decision trees) and combine them into a strong predictive model. This boosting technique corrects
errors from previous models, improving predictive performance. By integrating Xgboost with decision trees and random
forests, we achieve a balance between interpretability and accuracy in our XAI solution, maintaining transparency and
reliability while accurately predicting medical waste bin filling levels.

To tackle the challenges of categorical feature handling in waste management data, we turn to Catboost.57 In this domain,
data often contains categorical variables like types of waste, hospital locations, or waste disposal methods, which require
numerical representations for modeling. Catboost’s categorical feature support and advanced optimization techniques
address this issue, enhancing accuracy and interpretability in our XAI model.

In the MWM process, data involves diverse features and observations from various healthcare facilities. Lightgbm’s
“leaf-wise” tree growth strategy allows it to create deeper and more complex trees compared to traditional approaches,
capturing intricate relationships within the data effectively. Moreover, the histogram-based binning reduces memory
usage and speeds up computations, making Lightgbm efficient for processing vast amounts of waste management data
while maintaining model interpretability.

By incorporating these high-performance gradient boosting libraries (Xgboost, Catboost, Lightgbm), our XAI model
ensures accurate and reliable predictions for MWM tasks.

Throughout development, we prioritize transparency and reproducibility by using specific version numbers for each
library, including scikit-learn (v0.16.1),58 xgboost (v1.7.6),59 catboost (v1.2)60 and lightgbm (v4.0.0).61 Adhering to
these version numbers guarantees consistency and facilitates easy replication for future studies or real-world applications.

Interactive dashboard

Our XAI model generates an interactive dashboard that explains the inner workings of each deployed machine learning
model. This dashboard presents the results of the following techniques.

The feature importance analysis technique provides insights into the significance of each input feature in the AI model’s
predictions. This process is vital to understandwhich features (distance between hospitals, hospital size, vehicle capacity,
and distance between hospital and warehouse) have the most substantial influence on the model’s performance and how
they contribute to the predictions.

To calculate feature importance, we utilize decision trees and random forests. These algorithms assign importance scores
to each feature based on their ability to split the data and make accurate predictions.
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This process helps us identify the key variables that significantly impact the filling level of medical waste bins, enhancing
the interpretability and efficiency of our AI model. We gain a clear understanding of which features drive the predictions
and can make informed decisions in waste management strategies.

Additionally, we incorporate the SHAP (SHapley Additive exPlanations) approach to further enhance the interpretability
of our machine learning model, which includes decision trees and random forests. The SHAP values, based on
cooperative game theory, attribute the contribution of each feature to the model’s prediction for a specific sample. This
empowers us to discern which features have the most significant impact on the filling level of medical waste bins. For
example, if the model predicts a higher filling level for a particular medical waste bin, SHAP values help us understand
which features contributed positively to this prediction andwhich features had a negative impact. This knowledge enables
stakeholders in MWM to identify critical factors influencing predictions and make informed decisions to optimize waste
collection, resource allocation, and waste management practices.

By leveraging the SHAP approach with decision trees and random forests, we gain a comprehensive understanding of the
contribution of each feature to individual predictions for medical waste bin filling levels. This knowledge is essential for
stakeholders in waste management to comprehend the factors influencing predictions and make informed decisions to
optimize waste collection and resource allocation.

Furthermore, we incorporate the confusion matrix and performance metrics as essential components of our interactive
dashboard, to evaluate the performance of our machine learning model, particularly for classification tasks, such as
predicting whether a medical waste bin will reach a certain filling level or not.

The confusion matrix is a table that presents a detailed breakdown of the model’s predictions compared to the actual
ground truth. It consists of four components:

• True positive (TP): The number of correct predictionsmade by themodel for waste bins that are actually filled to
the expected level. In the context of MWM, this means the bins that are correctly identified as being filled to the
appropriate capacity.

• False negative (FN): The number of instances where the model predicted the bins to be not filled to the expected
level, but in reality, theywere filled. InMWM, FN could be critical, as theymay lead tomissing hazardouswaste
situations, potentially causing environmental and health risks.

• False positive (FP): The number of instances where the model predicted the bins to be filled to the expected
level, but they were not actually filled. In our case study, FP could lead to unnecessary waste collection efforts
and resource wastage.

• True negative (TN): The number of correct predictions made by the model for bins that are not filled to the
expected level. These are bins that the model correctly identifies as not requiring immediate attention.

Using the values from the confusion matrix, we can calculate various performance metrics:

• Accuracy: It measures the overall correctness of the model’s predictions. Higher accuracy indicates a more
reliable model.

Accuracy¼ TPþTN
TPþFPþTNþFN

(1)

• Precision: Also known as positive predictive value (PPV), it indicates the model’s ability to correctly identify
positive instances.

Precision¼ TP
TPþFP

(2)

• Recall: Also known as sensitivity or true positive rate (TPR), it assesses the model’s ability to correctly identify
positive instances among all actual positive instances.

Recall¼ TP
TPþFN

(3)
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In the context of hazardous waste management, high recall is of paramount importance to avoid FN. FN represent cases
where the model fails to detect potentially hazardous situations, which can lead to adverse consequences. By ensuring
high recall, our XAI solution aims to detect and address hazardous waste situations promptly, contributing to more
effective waste management practices and minimizing potential environmental risks.

In summary, the confusionmatrix and performance metrics in our XAI dashboard provide a comprehensive evaluation of
our machine learning model’s performance. These metrics offer insights into the model’s ability to correctly classify
positive and negative instances, enabling stakeholders in MWM to make informed decisions and optimize waste
collection and disposal strategies effectively.

Moreover, we employ the AUC-ROC curve (area under the curve (AUC) of the receiver operating characteristic (ROC)),
and PR AUC curve (area under the precision-recall), as essential evaluation measures to assess the performance of our AI
model for predicting the filling level of waste bins.

• The ROC curve is a graphical representation that illustrates the model’s TP rate (recall) against the FP rate at
various classification thresholds. We use this curve to illustrate the trade-off between sensitivity (correctly
identifying filled bins) and specificity (correctly identifying non-filled bins). By plotting these rates, we can
visualize how the model’s performance changes as we adjust the classification threshold.

• The AUC is a single numerical value that summarizes the performance of the ROC curve. It represents the area
under the ROC curve, with a higher AUC indicating better discrimination between the two classes (filled and
unfilled waste bins). A perfect classifier would have an AUC value of 1, while random guessing would result in
an AUC of 0.5.

• We also consider the PR-AUC. This metric is particularly useful when dealing with imbalanced datasets, where
one class (e.g., filled waste bins) is more prevalent than the other. The PR curve represents the trade-off between
precision (positive predictive value) and recall (true positive rate) at different classification thresholds. It
demonstrates our model’s ability to correctly identify positive instances while minimizing FP.

Additionally, we use the lift curve to assess the performance of our machine learning model in identifying the level of
filling of waste bins. Indeed, this curve identifies howmuch better our model is at capturing positive instances compared
to a random model.

To calculate the lift, we divide the percentage of filled bins correctly identified by the model at a given percentile by the
overall percentage of filled bins in the dataset. This gives us a measure of how much our model is lifting the filled bins’
detection compared to random chance. We plot the lift curve using the lift values calculated at different percentile points.
The x-axis represents different percentile points, while the y-axis represents the lift values. The curve shows how the lift
changes as we move through the sorted predictions.

The lift curve analysis helps us identify the most suitable classification threshold for making predictions. It allows us to
determine the point at which our model is most efficient in detecting filled bins, guiding our decision-making for waste
management efforts. By utilizing the lift curve, we can prioritize the identification of filled bins accurately, reducing
potential risks and environmental impact in MWM.

Furthermore, we utilize the contribution graph to represent the SHAP values, showing the impact of individual features
on the model’s predictions. Positive and negative contributions indicate whether a feature increases or decreases the
prediction, respectively. The contribution graph helps stakeholders easily grasp how changes in different features
influence the model’s decision-making process.

We also use the partial dependency graph to demonstrate how the target variable’s prediction changes as a specific feature
varies while holding other features constant. This provides insights into non-linear patterns and interactions between
features, allowing us to gain a deeper understanding of how different features affect themodel’s predictions in the context
of medical waste bin filling levels.

In conclusion, the proposed XAI solution for MWM addresses transparency and interpretability issues in AI models.
It leverages various libraries and evaluation measures to provide reliable and understandable predictions for medical
waste bin fill levels. The interactive dashboard empowers stakeholders to make informed decisions and optimize waste
management practices based on transparent and trustworthy insights from the XAI model.
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TDVRPTW with two sub-models for MWM
Our article presents also a solution for the TDVRPTWspecifically tailored forMWM, the primary objective is to optimize
the collection and transportation of medical waste while considering time constraints and ensuring efficient resource
utilization. To achieve this, we propose a novel approach that involves the development and testing of two sub-models:
one focused on waste collection process from various hospitals and the other dedicated to waste transportation to
treatment centers.

Problem description

We begin by describing the problem for each sub-model. In the waste collection sub-model, we aim to find the most
efficient schedules for waste pickup from different hospitals, considering constraints such as time windows, vehicle
capacity limits, and known waste quantities. Similarly, in the waste transportation sub-model, our objective is to
determine the optimal routes for transporting the collected waste to treatment centers while adhering to time windows
and vehicle capacity constraints.

Assumptions

After describing the problem, we will define and justify the key assumptions made during the model development.
These assumptions are essential to simplify the problem and enable a more manageable approach while still capturing
important real-world considerations. Each assumption serves a specific purpose in themodel, facilitating the optimization
process and ensuring practicality in addressingMWMchallenges. By acknowledging these assumptions, we can develop
a comprehensive and efficient solution that lays the groundwork for further refinement and adaptation to real-world
scenarios with more complex factors.

Constraints and objective function

We will define the constraints and the objective function for each sub-model based on the problem descriptions.
These constraints are crucial for ensuring the practicality and feasibility of the proposed solution. By incorporating
constraints such as respecting timewindows forwaste pickup and delivery, vehicle capacity limitations, and knownwaste
quantities, the model can effectively address real-world operational considerations. Additionally, the objective function
will be formulated to minimize the traveling cost, taking into account various factors such as distance, time, and resource
utilization. This objective function aligns with the goal of optimizing waste collection and transportation processes to
reduce costs and enhance overall efficiency.

Mathematical model

With the constraints and objective function defined, we construct the mathematical model for both sub-models. This
model represents the optimization problem in amathematical framework, allowing us to apply optimization algorithms to
find optimal solutions efficiently.

Algorithm used

To address the TDVRPTW in both sub-models ofMWM, we employ a genetic algorithm (GA) due to its effectiveness in
exploring complex solution spaces and finding near-optimal solutions. The GA follows essential steps:

• Chromosome definition: The definition of chromosomes is a crucial step in the GA, as it determines the set of
possible solutions that the algorithm will consider. In our case “optimizing the collection of medical waste”, a
chromosome represents a possible schedule for waste collection, including the order in which different nodes
are visited, the routes taken, and the quantities of waste collected at each hospital (see Figure 2).

• Initialization: The initialization is the first step in the GA, in our case it is generated randomly of 100 chromo-
somes. Each of these chromosomes is evaluated and assigned a fitness score based on how well it solves the
problem (In term travelling cost of collecting medical waste). The best-performing solutions are then selected
for reproduction. Indeed, we use the tournament selection to select a subset of schedules from the population,
and evaluating each schedule based on its fitness score (the objective function). The schedule with the highest
fitness score in that subset is then selected as a parent for the next generation.
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• Crossover: Selected chromosomes undergo crossover using the random sequence insertion based crossover
method (RSIX). The RSIX is a variation of the single-point crossover method that is designed to preserve the
order of genes in the chromosome. In our case “optimizing the collection of medical waste”, this crossover
method might be used to combine schedules from two parent solutions to create a new schedule for the next
generation while preserving the order of the sites to be collected.

The RSIX operates in the following manner:

1. Choose two parent solutions from the current population.

2. Select a random position along the chromosome of one of the parents.

3. Choose a random subset of the genes (i.e., collection sites) to the right of the selected position in the first parent.

4. Insert the randomly selected subset of genes into the same position in the second parent, maintaining the order of
the genes in the second parent.

5. Remove any duplicates that may have resulted from the insertion process.

6. The resulting offspring is tested for fitness value and then added to the next generation population.

• Mutation:The next step in theGA after the crossover operation is themutation operation. Themutation involves
randomly changing two sites in a given schedule to a different time to improve chromosome. This step is used to
explore new regions of the solution space and to prevent premature convergence to a suboptimal solution.

• Iterative process: The selection, crossover, and mutation steps are iteratively performed across multiple
generations until a stopping criterion is met. The criterion could be reaching a maximum number of generations
or achieving a satisfactory solution. The best candidate solution with the lowest traveling cost is selected as the
optimal schedule for waste collection and transportation.

In this study, our primary focus is on proposing a comprehensive TDVRPTW model that involves three entities:
hospitals, warehouses, and treatment centers. While we do not contribute a novel algorithm, we implement a GA from an
existing paper.62 The GA is designed to handle multiple vehicles with varying capacities and travel times between
different nodes, making it well-suited for tackling complex vehicle routing scenarios.

To evaluate the performance of the algorithm used, we conducted simulations using different sets of parameters.
Moreover, we conduct a performance comparison with another existing algorithm for TDVRPTW, developed by
Ref. 63. This comparison is carried out using the ANOVA (analysis of variance) test and Tukey post-hoc analysis.
These statistical tests are performed using Minitab software (RRID:SCR_014483) (version 18.1),64 and the results can
also be obtained using Python or R. The aim of these tests is to identify any significant differences in the distances traveled
by the algorithms in MWM scenarios.

Figure 2. Representation of chromosome.
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TDVRPTW simulation

The proposed method for evaluating the TDVRPTW model involves conducting simulations with different parameter
sets. The simulations are performed using a GA to find solutions for the TDVRPTW instances. The model’s performance
is assessed based on various metrics, such as the total distance traveled by vehicles, the total travel time, the number of
trucks used, and the simulation runtime. The effectiveness and robustness of the GA are evaluated by considering
variations in cluster structures, random aspects, and scheduling horizons. The algorithm’s adaptability to diverse
conditions and its efficiency in resolving vehicle routing problems with time windows are also studied, with a particular
focus on handling instance diversity and addressing real-world time constraints and operational conditions.

Parameter sets: Each parameter set includes values for various parameters that influence the behavior of the GA used to
solve the TDVRPTW model. The parameters include:

• ts_prob: Probability of applying time-dependent search operators

• x_prob: Probability of applying crossover

• m_prob: Probability of applying mutation

• w_t: Time window penalty factor

• mng: Maximum number of generations

• pop_size: Population size

• init_method: Initialization method (e.g., random sample)

• cache_gran: Cache granularity

Instances: The instances represent specific scenarios of the TDVRPTW model, each denoted by abbreviations (e.g.,
C101, C102, R101, RC101, etc.). For each instance, the simulation results provide the following metrics:

• Score: A measure of efficiency or optimization quality obtained for that instance.

• Distance: Total distance traveled by the vehicles in the solution.

• Travel Time: Total travel time for the vehicles in the solution.

• Runtime (Sec): The time taken for the GA to complete the simulation.

• Vehicles: The number of vehicles used in the optimized solution for that instance.

Simulation results: For each instance, the simulation results are presented side by side, comparing two different parameter
sets’ performance. The results highlight the performance of the GA in finding solutions for the TDVRPTWunder various
parameter combinations. The goal is to assess how different parameter settings affect the efficiency and quality of the
solutions produced by the algorithm.

By conducting these simulations and analyzing the results for different instances and parameter sets, the effectiveness,
adaptability, and robustness of the TDVRPTW model can be evaluated.

Statistical tests

ANOVA Test

TheANOVA test is used to analyze the variation observed between themeans of two ormore groups. Its primary purpose
is to test the hypothesis of whether these group means are equal or not. In our study, we are interested in comparing the
performance of two algorithms: the algorithm utilized in this specific research62 and a widely adopted TDVRPTW
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algorithm commonly used in practice.63 The comparison will be based on the distance traveled across six distinct classes.
The ANOVA model can be written as:

Yij ¼ μþAiþB jþ ϵij (4)

WhereYij represents the observed response of the j th observation in the i th treatment group, μ is the overall mean,Ai is the
effect of the i th level of factor A (problem class), B j is the effect of the j th level of factor B (algorithm used), and ϵij is the
random error.

The null hypothesis is that there is no difference between the means of the groups, which can be written as
H0 : μ1¼ μ2¼…¼ μk. The alternative hypothesis is that at least one group mean is different from the others.

The ANOVA test is based on three main assumptions:

• Normality: The distribution of the errors should be normal (conditional residual value charts are used to check
the assumptions of normality and homoscedasticity in the ANOVA model.

• Homogeneity of variance: The variance of the errors should be equal across all groups.

• Independence: The observations should be independent of each other.

If these assumptions are met, we can use the F-test to determine if there are significant differences between the means of
the groups. The F-statistic is calculated as the ratio of the between-group variance to the within-group variance, and
follows an F-distribution with k-1 and n-k degrees of freedom, where k is the number of groups and n is the total sample
size. When the computed F-value exceeds the critical value, we reject the null hypothesis and infer that there exists a
noteworthy distinction between the means of the groups.

Tukey test

In the study, we analyze the performance of two algorithms for TDVRPTW: the “GA used” algorithm62 and the ALNS
algorithm.63 To conduct a comprehensive comparison, we divide the problem instances into six distinct classes, each
representing a different scenario:

C1: Clustered instances with a short scheduling horizon.

C2: Clustered instances with a long scheduling horizon.

R1: Random instances with a short scheduling horizon.

R2: Random instances with a long scheduling horizon.

RC1: Random and clustered instances with a short scheduling horizon.

RC2: Random and clustered instances with a long scheduling horizon.

These classes are formed based on various characteristics of the problem instances, such as the spatial distribution of
hospitals (clustered or random) and the time horizon for scheduling (short or long). By categorizing the problem instances
into these classes, we can assess how each algorithm performs under different conditions and gain insights into their
strengths and limitations.

After conducting the ANOVA test to determine if there are overall significant differences in the algorithms’ performance,
we employ the Tukey test as a post-hoc analysis. The Tukey test allows us to perform specific pairwise comparisons
between the means of each class for both algorithms. By doing so, we can identify which classes exhibit significant
differences in terms of distance traveled for each algorithm. This in-depth analysis helps us understand how the
algorithms fare in different problem scenarios and enables us to make informed decisions about their suitability for
solving real-world MWM problems.
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For statistical analysis, a significance level of 0.05 is set to determine statistical significance, ensuring that any observed
differences in algorithm performance are reliable and not merely due to chance.

By conducting these rigorous statistical tests and comparing the algorithms’ performance across different problem
instances, we can confidently recommend the most effective algorithm for optimizing medical waste transportation,
ultimately contributing to efficient and sustainable waste management practices in healthcare facilities.

Data definition

To assess the effectiveness of our proposed model, we employ two distinct datasets for testing and validation. The first
dataset, known as the Synthetic Dataset (Solomon Instances), comprises benchmark instances commonly used for testing
vehicle routing problems. These benchmark instances are well-established and can be referenced from academic sources
and previous research in the field of vehicle routing optimization.65

On the other hand, the second dataset, referred to as the Real-World Dataset (Average Medical Waste Generation per
Bed),57 is based on declarations from the WHO. The WHO provides reliable information on the average quantity of
hazardous waste generated per hospital bed per day, allowing us to accurately model waste generation and create a
predictive model to optimize waste management practices. It is important to note that the data from the WHO provides
valuable insights into real-world medical waste generation scenarios, making our model more practical and applicable to
healthcare settings.

For this study, we specifically focused on hospitals in the Casablanca region ofMorocco, taking into account their unique
characteristics and waste generation patterns. By tailoring our approach to this specific region, we can address the
particular challenges and requirements of MWM in Casablanca and provide targeted solutions for enhancing waste
collection and transportation processes in the area.

Problem resolution using GA

Finally, we apply the GA to both sub-models to find the most optimal solutions for waste collection and transportation.
The GA iteratively explores different schedules and routes, considering the defined constraints and objective function,
until satisfactory solutions are obtained.

By following these steps for both sub-models, we ensure a systematic and comprehensive approach to optimizingMWM
operations, leading to efficient waste collection and transportation while minimizing associated costs and meeting the
specified constraints.

Optimizing MWM through cross-docking: A simulation-based study in the Casablanca region
The objective of this studywas to illustrate the benefits of awarehouse for cross-docking inMWMand evaluate its impact
on various waste management strategies. To achieve this, we utilized a simulation modeling approach implemented in
Simul8 (v 3.0)66 (For an open-source alternative it may be possible to use SimPy). The simulation aimed to replicate real-
world MWM scenarios while thoroughly testing the influence of cross-docking with waste sorting.

To ensure the reliability of the simulation, we conducted a significant number of runs, totaling 100 runs for two waste
management scenarios. The first scenario involved waste distribution without prior sorting, where medical waste was
directly transported from hospitals to treatment centers without any intermediate sorting process. The second scenario
involved setting up a warehouse for cross-docking with waste sorting, where medical waste from hospitals was first
transported to a centralized cross-docking center, sorted according to its treatment type, and then sent to specialized
processing centers accordingly. By running multiple simulations for each of these two scenarios, we were able to gather
substantial data and effectively assess the system’s behavior under various conditions. Consideringmultiple runs allowed
us to reduce the impact of random variations and enhance the overall reliability of the simulation results for both waste
management strategies.

Throughout the simulation runs, we meticulously recorded and analyzed various performance indicators, such as
processing costs, processing times, transport costs, environmental impacts, and initial investment costs. This extensive
data collection facilitated a thorough comparative analysis between the two waste management strategies: waste
distribution without sorting and cross-docking with waste sorting.
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Data used in our simulation:

Number of medical waste produced per day: 500 kg

Percentage of recyclable waste: 40%

Number of workers needed to sort waste: 3

Hourly cost of a worker: €20

Cost per kilogram of waste treatment: €0.50

Initial investment cost for setting up the cross-docking warehouse: €50,000

Transport cost per kilometer: €1/km

Distance between the waste production center and processing center: 20 km

Processing time per kilogram of waste: 2 minutes

Cross-contamination rate in the case of distribution without sorting: 25%

Cross-contamination rate in the case of cross-docking warehouse with sorting: 5%

In this simulation, we focused on the Casablanca region of Morocco in terms of size and waste management practices.

By conducting this simulation and thoroughly analyzing the performance indicators, we aimed to provide valuable
insights into the advantages of cross-docking with waste sorting and make data-driven decisions to optimize MWM
practices in the Casablanca region. The simulation results provided comprehensive information on processing costs,
processing times, transport costs, and environmental impacts, enabling us to identify the most efficient waste manage-
ment strategies for healthcare centers and hospitals in the region.

Proposed solution
Smart MWM system
TheMWMprocess involves several essential steps: sorting and packaging, storage, transport, treatment, and disposal, as
depicted in Figure 3.6 However, this process faces numerous challenges, including the need to address health risks, adhere
to storage time limits, and maintain appropriate storage temperatures. It is also crucial to manage waste flows, optimize
vehicle capacity in relation to waste generation, and mitigate risks during transportation. Moreover, strict compliance

Figure 3. The current MWM process.
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with regulations, cost control of outsourcing services, andminimizing environmental impact are key considerations at the
treatment unit.

To address these challenges effectively, we propose a smart solution that promotes collaboration among all stakeholders,
as illustrated in Figure 4. Our proposed process begins with the initial sorting of medical waste into colored bags, each
equipped with an identification tag. The sorted waste is then transported to designated secure sites. At these sites,
specialized smart containers are utilized for storing each type of waste, ensuring proper segregation and management.

The smart containers used in our proposed solution are equipped with advanced sensors and actuators to perform various
essential functions. These include humidity and temperature sensors to monitor storage conditions, a level sensor to
prevent exceeding the maximum storage capacity, an actuator for automated container closure after filling, and an object
recognition sensor to ensure proper sorting compliance. When a container reaches its defined maximum capacity
(determined based on transport arrival time and filling frequency), a notification is sent to the transport unit to arrange
for timely collection. Additionally, if a container reaches two-thirds of its capacity before the transport’s arrival, it will
automatically close.

Upon the transport’s arrival, the containers are sent to the warehouse for final sorting. This stage involves identifying
waste suitable for recycling and waste that requires appropriate disposal (with further sorting based on the specific
disposal methods). The warehouse sorting process employs intelligent conveyor belts integrated with object recognition
sensors.

Figure 4. The proposed smart medical waste management system.
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Subsequently, the waste is reloaded and transported to designated treatment units based on the recommended treatment
type. Throughout the treatment operations, adherence to regulations and environmental considerations are crucial.
To ensure compliance, we propose the implementation of real-time air and soil control sensors, generating data to inform
decision-making and enforce necessary measures.

In our approach, we have opted to outsource the entire waste treatment process, enabling specialized units to focus on this
critical task while allowing hospitals to concentrate on providing essential healthcare services. This centralization of
waste treatment helps minimize the environmental impact by confining it to specific areas.

To maintain appropriate transport conditions, vehicles are equipped with a GPS and identification system to track waste
during transportation. Additionally, humidity and temperature sensors are installed to monitor and maintain optimal
conditions throughout the transport process.

The current and proposed solutions follow the same basic process of sorting, storing, transporting and treating/
disposing of medical waste. However, the proposed solution uses a more sophisticated and technologically advanced
approach to ensure proper management of medical waste (see Table 1). The proposed solution includes the use of
different colored bags equipped with tags to facilitate the sorting of medical waste, as well as smart containers equipped
with sensors to monitor the storage conditions and capacity of each container. In addition, we use object recognition
sensors to help sort the waste and direct it to the appropriate treatment units. The proposed solution also includes
outsourcing waste processing to allow hospitals to focus on core healthcare services. Air and soil monitoring sensors are
used to ensure that environmental regulations are met and that medical waste processing is done in a safe and responsible
manner. In conclusion, the proposed solution is more technologically advanced and allows for more efficient and safe
MWM while complying with environmental regulations.

As discussed in the previous section, a smart MWM system can improve the efficiency and safety of waste management.
However, the management of medical waste is a complex process that involves multiple stakeholders and requires real-
time monitoring and decision-making. This is where an XAI dashboard can be useful. By integrating AI and machine
learning algorithms, an XAI dashboard can provide hospitals and waste management companies with real-time insights
and data analytics to help them make better decisions and optimize their waste management processes.

XAI dashboard for MWM
AImodels are widely used effectively for different applications, however these models lack transparency due to the black
box mechanism of AI. In order to gain end-user confidence in AI applications, they must be supported by reliable and
unbiased decision results or convincing rationalization and justification, which is the role of XAI.

In our solution, we use the XAI library67 to enable the relevant stakeholders to analyze the end-to-end solution and
identify discrepancies that may result in sub-optimal performancewith respect to the required objectives.More generally,
the proposed XAI model is designed based on three steps: data analysis, model evaluation and production monitoring.

Figure 5 provides a visual overview of XAI in MWM.

The case that we will approach for XAI implementation is the AI model for the prediction of the filling level of medical
waste bins. We have chosen this component because of its importance for their management as it allows to plan the

Table 1. A comparative study: evaluating the current solution versus the proposed solution.

Steps Current solution
(Moroccan context)6

Proposed solution

Sorting Manual sorting of waste Use of different colored bags equipped with tags and object
recognition sensors and Smart Warehouse for final sorting according
to the type of treatment needed

Storage Regular containers Smart containers with sensors

Transport Conventional methods Use temperature and humidity sensors and a GPS and identification
system

Treatment/
disposal

Internal and external
processing

Outsourcing with environmental monitoring sensors
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collections in a more efficient way and to optimize the use of the resources. If bins are collected too often, it can lead to
excessive fuel use and high collection costs. Conversely, if bins are not collected often enough, theymay overflow, which
can lead to public health risks and additional costs for cleaning and disinfection. Forecasting the fill level ofmedical waste
bins also allows for better management of human resources by assigning collection tasks at the most efficient times and
avoiding unnecessary wait times. Finally, better management of medical waste bins can help reduce environmental
impact by minimizing the amount of waste transported and optimizing collection routes.

Our solution is designed with a strong focus on interpretability, ensuring that it is not limited to data scientists but also
accessible and understandable to end users, indeed the decisions and predictions generated by our XAI model are
presented in a manner that can be easily understood and trusted by individuals whomay not have a deep understanding of
the underlying machine learning algorithms.

We prioritize the transparency of our model’s decision-making process, enabling users to comprehend the factors
influencing the outcomes and fostering trust in the system.

We propose an interactive dashboard that explains the inner workings of each deployed machine learning model. This
allows us to open the “black box” and show users, stakeholders, how our smart system generates its predictions. This
dashboard includes:

• “Feature importances” to explain the selection of appropriate features (distance, hospital size, vehicle capacity,
and distance between hospital and warehouse) of the AI model,

• “SHAP” approach to explain the output of our machine learning model.

• “Confusion Matrix, Lift Curve and Cumulative Accuracy” to compare the actual target values with those
predicted by our machine learning model (bin fill status), which gives us an overview of the performance of our
classification model and the types of errors it makes,

• Analyze the prediction of each node (Hospital), and explain how each feature contributed to this prediction
“Contribution Graph”, and how this prediction changes if we change a feature “Partial Dependency Graph”.

• “Feature dependencies” to identify the relationship between the feature value and the SHAP value

• “Decision trees” inside a random forest.

To predict the level of filling of bins in hospitals, it is essential to take into account specific features that will have a larger
effect on our learning model. To do this, our XAI model uses feature importance techniques that compute a score for all
input features, these scores simply explain the importance of each feature (see Figure 6).

Figure 5. Explainable artificial intelligence (XAI) in medical waste management system.
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The feature importance allows the end user and stakeholders to understand the relationship between the features
(Distance, Hospital Size, Capacity of vehicle and Accumulation rate) and the target variable (Filling of bins), also
identify which features are irrelevant for our model. In addition, the highest scores are usually kept and the lowest scores
are ignored as they are not important for the model. This not only simplifies the model, but also speeds up its execution,
which ultimately improves the performance of the model. In our case, the vehicle capacity is fixed regardless of the
hospital and does not affect the performance of our algorithm.

To compare the target values with those predicted by our machine learning model, we implement a confusion matrix in
our dashboard. This gives us a holistic view of how well our prediction model is performing and what kinds of errors it is
making (see Figure 7). From the confusion matrix, we identify the accuracy of our model, as well as the precision and
recall.

According to these results (see Table 2), we can see that “Precision” 80% of the correctly predicted cases actually turned
out to be positive. Whereas “Recall” 100% of the positives were successfully predicted by our model.

Figure 6. Average impact on bin fill predictions (average absolute value of SHapley Additive exPlanations
(SHAP)).

Table 2. Prediction model performance metrics.

Model performance metrics

metric Score

Accuracy 0.917

Precision 0.8

Recall 1

f1 0.889

roc_auc_score 1

pr_auc_score 1

log_loss 0.394

Figure 7. Confusion matrix.
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Recall is important in MWM (especially hazardous waste) where it is unimportant to generate a false alert, but actual
positive cases should not go unnoticed. In our example, recall would be a better measure than precision, because we don’t
want to increase the risk of hazardous waste, which would spread contagious germs.

Another evaluation measure considered in our dashboard is the AUC-ROC curve. For our model, the AUC score is equal
to 1, which means that the classifier can correctly distinguish all points in the positive and negative classes (see Table 2).
Similarly to ROCAUC, there are also the PRAUC, which combines PPV and TPR in a single visualization. This method
explains at which recall our precision starts to fall fast, can help us to choose the threshold and deliver a better model. In
Figures 8 and 9, we observe that for the negative class, the high precision and recall are maintained in almost the entire
range of thresholds.

To recap, the XAI proposal includes precision and recall measures show that the model correctly predicts positive cases
with an 80% precision and 100% recall. The AUC-ROC curve and PR AUC are also considered and show that the model
can correctly distinguish all points in the positive and negative classes, with high precision and recall maintained
throughout most of the range of thresholds.

In addition, we evaluate our model using the lift curve to compare its performance to that of a random model. The
elevation curve shows the percentage of positive classes when selecting only observations with scores above the
threshold compared to random selection of observations. In Figure 10, we see that our model’s performance is best
from 30% of the population, which we can define as the threshold for optimal classification.

Furthermore, our XAI model can also shows the contribution of each individual feature to the prediction of bin fill. This
allows us to explain exactly how each individual prediction was constructed from all the individual ingredients of the
model for each hospital. For example, for node 10, the distance from the hospital to the warehouse, the accumulation rate,
and the size of the hospital are the features that have the greatest effect on the prediction of bin filling (see Figure 11).
We can also show how the model’s prediction would change if a particular feature were changed. Figure 12 shows the
average effect (gray plot) and the effect of changing the feature for a single hospital (blue plot).

In conclusion, ourXAI proposal addresses the need for transparency and interpretability inAImodels.We have explained
the importance of XAI in gaining end-user confidence by providing reliable and unbiased decision results. Our focus has
been on the implementation of XAI in the prediction of medical waste bin fill levels.

Figure 8. Receiver operating characteristics, area under the curve.
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Figure 9. Precision-recall area under the curve.

Figure 10. The lift curve.

Figure 11. The feature contribution to our prediction (node 11).
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By utilizing the XAI library and following a three-step process of data analysis, model evaluation, and production
monitoring, we have developed an interpretable and user-friendly solution. Our interactive dashboard allows stake-
holders to understand the inner workings of the machine learning models and provides various insights.

The feature importance analysis helps identify the relevant features for the model, such as distance, hospital size, vehicle
capacity, and accumulation rate. The confusionmatrix provides an overview of themodel’s performance, while precision
and recall measures demonstrate its ability to predict positive cases accurately, particularly in hazardous waste
management where false alerts should be minimized. The AUC-ROC curve confirms the model’s ability to distinguish
between positive and negative classes, while the lift curve compares its performance to a random model.

Furthermore, our XAI model allows for a granular analysis of predictions for each hospital, showcasing the contribution
of each feature and demonstrating how changing a feature affects the prediction of bin fill. This comprehensive approach
provides stakeholders with a clear understanding of the model’s decision-making process.

In summary, our XAI proposal not only ensures transparency and interpretability but also delivers reliable predictions for
medical waste bin fill levels. By incorporating various evaluation measures and providing insightful visualizations, our
solution empowers stakeholders to make informed decisions and optimize waste management practices.

TDVRPTW for MWM
The issue of medical waste recycling can be considered as a specific instance of the Vehicle Routing Problem
with Time Windows (VRPTW), a problem known to be NP-hard.68 In this context, Ahlaqqach et al.1 proposed a model
for hospital waste management. They optimized vehicle routing for both the upstream and downstream of a central
warehouse, acting as a hub between healthcare facilities and incineration sites. They employed a genetic algorithm to
optimize a multi-objective (MO) VRPTW model, taking into account the fleet's heterogeneity. Addressing the inherent
risk associatedwithmedical waste, alongwith routing costs, made their model complex and justified the use of the genetic
algorithm (GA).

Another approach involved the use of a particle swarm optimization (PSO) algorithm to optimize the collection of
biomedical waste in Coimbatore while minimizing the overall collection time.69 Similarly, another model proposed two
phases to address medical waste collection with time windows.70 The first phase aimed to determine the optimal waste
collection routes, while the second phase focused on allocating resources from separation facilities to recovery plants or
landfills, with the goal of minimizing transportation costs and maximizing recycling revenue.

The literature also includes studies that deal with routing vehicles to prevent and reduce risks associated with medical
waste management (MWM). For instance, in Ref. 71, authors proposed a model for collecting various products while
minimizing the risk of exposure to hazardousmaterials and associated transportation costs. Ref. 72 considered routing for
multi-cycle medical waste recycling vehicles with time windows to mitigate risks related tomedical waste transportation.
Furthermore, in Ref. 73, a bi-objective mathematical model was presented to address the transportation of infectious and
non-infectious medical waste, taking into account stochastic contamination emissions during the transport process.

Figure 12. Partial dependence plot (node 10).
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The literature review revealed a limited number of studies using vehicle routing models to solve theMWMproblem, with
a notable absence of consideration for the requirement that medical waste must be fully treated within 48 hours.

In this context, our proposed model addresses the challenges of MWM by optimizing the collection routes (first sub
model) and minimizing the transportation time to the treatment centers (second sub model). It accounts for the time-
sensitive nature of medical waste treatment, as medical waste must be fully treated within 48 hours. It also considers the
capacity of the collection vehicles and the treatment centers, and the regulations and policies related to MWM. In
summary, this article presents a smart model forMWM that enhances the efficiency ofwaste collection and transportation
while ensuring compliance with regulations and policies, and timely treatment of medical waste.

The smart routing problem for the collection of medical waste is based on the use of real-time data regarding the filling
level of waste bins in hospitals, to define dynamic routes. This problem can be defined as follows: given a set of m
hospitals with n waste bins, a set of v homogeneous vehicles, and a depot (where all vehicles start and end their routes),
with distances dij for each edge i, jð Þ. Each bin i has a maximum capacity Ci.

To tackle this problem, we follow a three-step approach that involves first clustering hospitals, selecting those to be
visited within a predetermined time frame, and finally applying a TDVRPTWmodel for the collection of medical waste.
Indeed, in each sub-zone, we collect data from waste bins, then we calculate the number of bins that have exceeded their
maximum capacity or the acceptable storage time of waste AST . If this number exceeds the desired service level (φ, the
tolerance for exceeding storage limits, depending on the type of waste), this hospital must be selected and added to the
group of nodes to be visited. Then, we repeat this operation for each hospital for a predefined duration. This duration is
calculated based on the fill level of the waste bins of each hospital, the acceptable storage time, and the travel time of the
vehicles (in our case study, estimated at 4 hours). If the duration of hospital selection reaches the defined value, the
TDVRPTW model for the collection of medical waste must be applied to the selected group of nodes (see Figure 13 &
Algorithm 1).

The outcomes of our algorithm are illustrated in Figure 14. The current level of service for each hospital is displayed,
which indicates the number of non-full bins as a proportion of the total number of bins. If the current level of service falls
below the desired level of service within the tolerance, an alert is issued to apply the TDVRPTW model to the selected
nodes. Based on the results of our algorithm, the first route requires the collection of six waste bins.

To collect the bins designated by Algorithm 1, we will apply a TDVRPTWmodel that we will discuss in the next section.
This model will optimize the collection of medical waste while taking into account the constraints of time windows,
vehicle capacity, and travel time between nodes. By applying this model to the selected nodes, we can ensure that the
collection process is efficient and timely. The results obtained by our algorithm will enable hospitals to maintain a high
level of service while minimizing the impact of medical waste on the environment.

First sub-module: The collection of medical waste

In this section, the mathematical model of the first sub model is discussed in detail. Let G¼ V,Að Þbe a graph where
A¼ vi,v j

� �
: i 6¼ j

� �
is an arc set and the vertex (node) set is V ¼ v0,v1,…,vnþ1ð Þ, v0 and vnþ1 denote the warehouse (see

Figure 15). Each hospital has a quantity of waste to be collected and a time window within which the visit can be made.
Vehicles have a limited capacity and must leave the depot to collect waste while minimizing the total distance travelled
and respecting the time windows of each node.

To simplify the waste collection process, the assumptions made for this first sub-model are the following:

• The amount of waste to be collected for each hospital is known in advance through the proposed intelligent
solution and cannot be split between several vehicles.

• The time windows of each node must be respected.

• The vehicles have a maximum capacity.

• The capacity of the warehouse is not limited (since it must be sized according to the sum of the average
production of all the hospitals involved).
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Algorithm 1. Notification algorithm for medical waste collection.

Input: List of hospitals,Maximumcapacity ofwaste binsCi , Acceptablewaste storage time AST , Desired service level
φ, Predefined duration of operation tmax

Output: Group of nodes to be visited

Initialize the group of nodes to be visited to empty.

while (t < tmax) // (t time of the loop execution)

Calculate the number of waste bins that have exceeded their AST.

If this number exceeds the desired service level (φ), do {

add this hospital to the group of nodes to be visited

} end if

end

Return the group of nodes to be visited gr

Apply the TDVRPTW model for the collection of medical waste of gr

Figure 13. Smart collection approach.
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The notations used for this TDVRPTW sub module for medical waste collection are as follows:

Index sets I¼ 0,1,2,…,nf g set of n hospital and the real depot 0

Parameters

K number of available vehicles

Cak vehicle capacity (in kg)

dij distance between node i and node j (in km)

SHi amount of waste in kg at Hospital i

Qa amount of collected waste in kg

popij number of people in the bandwidth for waste along link ij

REjk Amount of waste in vehicle k at reaching j

GEij released gas rate between i and j

f kVehicle fixed cost

β Travelling cost

twj waiting time at node j

Tikthe time when the vehicle k starts to serve node j

Figure 14. Algorithm 1 Result.
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Tak the arrival time of vehicle k at the warehouse

Tdk the departure time of vehicle k from the warehouse

Si service time in node i; (= 0; for i = 0)

bi start of the time window at node i

ei end of the time window at node i

tijp the traveled time between ij at period p

RI Risk exposure rate for transportation of waste

Figure 15. Two-commodity flow formulation representation.
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Decision variables

xijk binary variable indicating if edge i, jð Þ is visited by vehicle k, i, j ϵ Ið Þ

yk binary variable indicating if the vehicle k is used

Zjk binary variable indicating if node j is served by vehicle k

Objective function

Z ¼ β
X
i, jϵ I

X
k ϵ K

dij∗xijk

 !
þ
X
k ϵ K

f k∗yk (5)

Constraints X
k ϵ K

X
i ϵ I

xijk ¼ 1∀jϵ I (6)

X
i ϵ I

xijk ¼ Zjk∀jϵ I, k ϵ K (7)

X
j ϵ I

xijk ¼ Zik∀jϵ I, k ϵ K (8)

xiik ¼ 0∀kϵK (9)

X
i ϵ I

xipk ¼
X
i ϵ I

xpjk∀pϵ I (10)

X
iεI

X
j ϵ I

X
k ϵK

SHi∗xijk ¼Qa∀jϵ I (11)

X
i ϵ I

X
j ϵ I

SHi∗xijk≤Cak∗yk;∀kϵK (12)

X
j ϵ I

x0jk ¼ yk∀k ϵ K (13)

X
i ϵ I

xi0k ¼ yk∀k ϵ K (14)

Tik þSiþ tijpþ twj�Tjk≤ 1� xijk
� �

∗M∀kϵK, iϵI, jϵI, p ϵ P (15)

Tik þSiþ ti0p�Tak≤ 1� xi0kð Þ∗M∀kϵK, iϵI, jϵI, p ϵ P (16)

Tdkþ t0jp�Tjk≤ 1� x0jk
� �

∗M∀kϵK, iϵI, jϵI, p ϵ P (17)

bi∗yk≤Tik≤ei∗yk∀kϵK, iϵI (18)

b0∗yk≤Tak≤e0∗yk∀kϵK, iϵI (19)
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b0∗yk≤Tdk≤e0∗yk∀kϵ K, iϵI (20)

X
k ϵ K

yk≤K (21)

xij ϵ 0,1f g∀i, j∈I, i 6¼ j (22)

yijϵℝ
þ∀i, j∈I, i 6¼ j (23)

Kϵℕ∗ (24)

The objective of the TDVRPTW is represented by the objective function (5) which seeks to minimize the traveling cost.
The constraints are defined as follows: (6), (7) and (8) all selected hospitals must be visited and they are visited only once;
(9) serves to eliminate loops or isolated sub-tours; (10) a vehicle that arrives at a node should also depart from that node;
(11) ensure that all available waste is collected; (12) the total demand in a particular route should not exceed the vehicle
capacity; (13) and (14) indicate that vehicles should be taken out of the warehouse and returned to the warehouse at the
end of the trip; (15), (16) and (17) regulate the start time of the service, also avoid sub routes; (18), (19) and (20) vehicles
should respect the time windows of the hospitals and the warehouse; (21) the number of vehicles should be less than or
equal to the number available; the types of variables are indicated in constraint (22), (23) and (24).

The time-dependent vehicle routing problem with hospital medical waste pickup at different locations and time windows
can be difficult to solve in real time, as the speed of the vehicles is not constant. To minimize the distance traveled, it is
important to find efficient alternative routes using metaheuristics. In this study, a GA62 was used to solve this problem,
considering several vehicles with different capacities and varying travel times between different nodes. The performance
of the GA used is compared with another existing algorithm for TDVRPTW developed by.63

To evaluate the performance of the algorithm used, we conducted simulations using different sets of parameters
(see Table 3). One of the simulation scenarios was carried out with mng = 1000 and pop = 100 to simulate a TDVRPTW
model with 100 nodes and 25 vehicles. The score obtained was 559.6136551185149, indicating a high level of
efficiency in the model. The distance traveled by the vehicles was 191.23298176125226, and the total travel time
was 368.38067335726265. The runtime for the simulation was 84.48301577568054 seconds, which was reasonable
considering the complexity of the problem. The number of trucks used was 2 out of 25, indicating that the model was able
to optimize the routes efficiently. The routes taken by the vehicles were (5, 2, 7, 6, 8, 3, 1, 4) and (9, 10).

The GA used has shown its ability to generate good results despite the variations in key factors such as cluster structures,
random aspects, and short or long scheduling horizons. The results obtained in our study have confirmed the effectiveness
and robustness of our approach in tackling these complex challenges. By considering the different characteristics of the
Solomon instances, the algorithm used has successfully found high-quality solutions, demonstrating its adaptability
to diverse conditions and its efficient resolution of vehicle routing problems with time windows (see Table 3). These
findings highlight the algorithm’s capacity to handle instance diversity and underscore its potential for real-world
applications, where time constraints and operational conditions often change.

Furthermore, to justify our choice of algorithm, we performed a comparison of GA and ALNS in terms of travelling cost.
We used anANOVA test followed by Tukey’s test to evaluate the significance of the difference in travelling cost between
the different algorithms.

Table 3. Analysis of variance (ANOVA).

(DL) Degrees of
Freedom

Sum Car
adjusted

Correction for the
mean (CM) adjusted

F Value P Value

Replication of Class 5 1313445 262689 38.75 0.000

Algorithm 1 697454 697454 102.89 0.000

Error 41 277937 6779

Lack of fit 5 106082 21216 4.44 0.003

Pure error 36 171855 4774

Total 47 2288836

Page 29 of 47

F1000Research 2023, 12:1060 Last updated: 29 NOV 2023



The ANOVA test is based on three main assumptions:

• Normality: The distribution of the errors should be normal (conditional residual value charts are used to check
the assumptions of normality and homoscedasticity in the ANOVA model: see Figure 16).

• Homogeneity of variance: The variance of the errors should be equal across all groups.

• Independence: The observations should be independent of each other.

TheANOVA results show that there are significant differences between themeans of the groups (see Tables 4 and 5). The
main effect of the algorithm factor was found to be statistically significant (F = 102.89, p < 0.001), indicating that there are
significant differences in the mean distances traveled between the two algorithms. The main effect of the replication of

Figure 16. Conditional residual value charts for "data: distance traveled".

Table 4. Coefficients (ANOVA).

Term Coeff Coeff Error Term T Value P Value FIV

Constant 754.0 11.9 63.45 0.000

Replication of Class

C1 -50.7 26.6 -1.91 0.064 *

C2 -247.0 26.6 -9.30 0.000 *

R1 94.2 26.6 3.55 0.001 *

R2 -94.7 26.6 -3.56 0.001 *

RC1 287.5 26.6 10.82 0.000 *

Algorithm

ALNS 120.5 11.9 10.14 0.000 1.00
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Table 5. Result - Simulation of TDVRPTW Model.

Best solution for {ts_prob: 0.9, x_prob: 0.7,
m_prob: 0.3, w_t: 1.0, mng: 100, pop_size: 100,
init_method: random_sample, cache_gran: 1.0}

Best solution for {ts_prob: 0.9, x_prob: 0.7,
m_prob: 0.3, w_t: 1.0, mng: 1000, pop_size: 100,
init_method: random_sample, cache_gran: 1.0}

Score Distance Travel
Time

Runtime
(Sec)

Vehicles Score Distance Travel
Time

Runtime
(Sec)

Vehicles

C101 27383 4022 23361 119 30 22004 3596 18408 11036 25

C102 23661 3937 19725 138 30 19894 3358 16536 10859 24

C103 21192 3756 17437 136 21 18829 3302 15527 10832 18

C104 17817 3654 14163 138 16 16347 2767 13580 11007 15

C105 25406 3830 21576 139 31 20580 3447 17132 10939 23

C106 24921 4157 20764 141 30 20541 3618 16922 10965 22

C107 22488 4237 18251 139 26 19325 3389 15936 10988 21

C108 22100 4138 17962 135 24 17526 3013 14513 11666 18

C109 20039 3962 16077 133 21 15873 2938 12934 12036 16

C201 56250 4493 51757 137 25 38374 3330 35044 11232 15

C202 44975 4198 40777 137 18 30976 3472 27504 11230 12

C203 44975 4493 51757 137 25 21847 3238 18609 11074 8

C204 20720 3673 17048 134 6 17483 3243 14240 11222 6

C205 52191 4054 48138 135 20 27807 3544 24262 11182 10

C206 42527 4345 38182 134 18 25854 3189 22666 12751 10

C207 41491 3819 37672 133 19 41491 3819 37672 133 19

C208 39911 3695 36215 138 15 23059 3470 19589 11381 8

R101 10003 3270 6733 138 42 8070 2672 5398 11254 33

R102 9164 3164 6001 120 37 7421 2561 4860 11133 27

R103 7944 2834 5110 110 29 6693 2432 4261 11189 25

R104 7349 2765 4583 110 24 5767 2180 3588 11157 18

R105 8748 3167 5582 113 35 6717 2367 4351 11230 27

R106 7977 2909 5068 109 30 6546 2362 4184 11918 25

R107 7667 2904 4764 109 27 6285 2360 3925 6342 21

R108 7045 2830 4214 108 21 5836 2243 3593 6240 19

R109 7769 3032 4736 108 29 6292 2431 3861 6203 24

R110 7549 2996 4553 147 29 6255 2411 3845 6256 24

R111 7410 2850 4560 165 25 5997 2243 3754 6254 21

R112 6564 2660 3904 132 23 5633 2204 3429 6268 20

R201 16256 3459 12797 78761 21 10834 2878 7956 6330 11

R202 13653 3298 10355 128 16 9383 2814 6569 6268 10

R203 10269 2901 7368 110 12 6914 2466 4448 6226 7

R204 7921 2944 4976 103 8 5725 2088 3637 6336 5

R205 11325 3158 8167 103 13 8364 2740 5623 6289 10

R206 10093 3113 6981 110 10 6887 2368 4519 9394 7

R207 8382 2870 5512 127 9 5529 1979 3550 12616 6

R208 6691 2629 4061 153 6 5132 1962 3170 11824 5

R209 10454 3334 7120 136 12 6654 2148 4507 11785 7

R210 10845 2932 7913 137 12 7080 2236 4844 11965 7

R211 7583 2635 4948 136 8 6161 2035 4126 11875 7
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class factor was also found to be significant (F = 38.75, p < 0.001), suggesting that there are significant differences in the
mean distances traveled across the six different classes (see Figure 17).

Additionally, the interaction effect between algorithm and replication of class was not significant (F = 0.25, p = 0.97),
indicating that the effect of one factor does not depend on the level of the other factor. The lack of significant interaction
effect implies that the main effects of Algorithm and Replication of Class can be interpreted independently.

Table 5. Continued

Best solution for {ts_prob: 0.9, x_prob: 0.7,
m_prob: 0.3, w_t: 1.0, mng: 100, pop_size: 100,
init_method: random_sample, cache_gran: 1.0}

Best solution for {ts_prob: 0.9, x_prob: 0.7,
m_prob: 0.3, w_t: 1.0, mng: 1000, pop_size: 100,
init_method: random_sample, cache_gran: 1.0}

Score Distance Travel
Time

Runtime
(Sec)

Vehicles Score Distance Travel
Time

Runtime
(Sec)

Vehicles

RC101 10626 4050 6576 141 40 8158 3040 5118 11966 30

RC102 10214 4012 6203 124 36 7356 2668 4688 12044 26

RC103 9261 3665 5596 115 30 6670 2618 4052 11953 22

RC104 8538 3521 5017 122 27 6391 2514 3877 11817 20

RC105 10378 3899 6479 120 38 7417 2732 4685 11891 27

RC106 9568 3873 5695 115 34 7052 2740 4312 11923 25

RC107 8541 3420 5121 118 30 6983 2798 4185 12380 25

RC108 8215 3350 4865 114 27 6477 2514 3963 12457 23

RC201 17233 4375 12858 116 22 11690 3353 8337 12344 13

RC202 14218 4089 10129 118 16 10191 3176 7015 12187 11

RC203 12183 4223 7960 118 13 8305 2667 5638 12165 9

RC204 9419 3528 5891 124 8 6884 2562 4321 12080 6

RC205 15690 4218 11472 113 18 10389 3291 7098 12225 10

RC206 13806 4211 9595 114 16 8383 2966 5418 12129 9

RC207 11392 3908 7484 105 12 7763 2548 5215 12273 9

RC208 9579 3403 6176 109 12 6887 2347 4540 14130 8

Figure 17. Main effects graph for data: distance traveled (adjusted means).
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In summary, the collective outcomes strongly indicate that the distance traveled is significantly influenced by two key
factors: algorithm and replication of class. Consequently, when assessing algorithm performance, it is imperative to
consider the impact of both these factors.

After conducting the ANOVA test, post-hoc tests can be performed to determine significant differences between groups.
In this case, Tukey’s test was used to compare the means of the six classes for each algorithm (ALNS63 or the algorithm
used in this work “GA used”62).

The obtained results (see Table 6) reveal a noteworthy distinction in the average distances between the two algorithms
(p < 0.001). Specifically, the “GA used” exhibits a significantly lower mean distance traveled compared to the ALNS
algorithm (mean difference = -241.1, p < 0.001, 95% CI = -289.1 to -193.1) (refer to Figure 18). These findings strongly
indicate that across all six problem classes, the “GAused” outperforms the ALNS algorithm in terms of distance traveled.

To sum up, the outcomes of the ANOVA and Tukey tests reveal substantial disparities in the mean distances traveled
across all six problem classes between the “GA used” and ALNS algorithms. The main effect of algorithm is statistically
significant, indicating that the selection of algorithm significantly influences the distance traveled. Furthermore, themain
effect of replication of class was also found to be significant, indicating that the problem class itself has a significant
impact on the distance traveled.

The nonexistence of a substantial interaction effect between algorithm and replication of class indicates that the impact of
these two factors on the distance traveled is separate and unrelated. These results suggest that both factors, algorithm and
replication of class, should be considered when analyzing the performance of the algorithms.

Drawing upon these finding, we can infer that the “GA used” surpasses the ALNS algorithm in terms of the distance
traveled across all six problem classes. This deduction is substantiated by the outcomes of the Tukey test, which
demonstrate a significant decrease in the mean distance traveled by the “GA used” compared to the ALNS algorithm.

Table 6. Tukey simultaneity tests for differences between means.

Difference in
levels algorithm

Difference
of averages

Typical error of
the difference

Simultaneous
confidence interval
95%

T Value Adjusted
P Value

GA used - ALNS -241.1 23.8 (-289.1; -193.1) -10.14 0.000

Figure 18. Concurrent Tukey 95% CIs.

Page 33 of 47

F1000Research 2023, 12:1060 Last updated: 29 NOV 2023



These results justify the choice of the “GAused”62 over the widely used TDVRPTW algorithm in practical applications63

where distance traveled is a critical performance metric. Future research could explore the performance of these
algorithms on other metrics or in other problem domains.

Second Sub-Module: Medical waste transportation to treatment centre

The second sub-model can be framed as a TDVRPTW, in which the waste sorting center serves as the departure point for
the transportation operations. Following waste sorting at the center, each vehicle is loaded with the waste stream that
corresponds to its designated treatment destination.

The route planning process of each vehicle must account for the temporal and spatial constraints of waste transportation,
as well as the loading capacity of the vehicles. Optimal route planning can minimize the overall costs of waste
transportation while ensuring that each waste stream is transported to its respective treatment center for efficient and
cost-effective treatment.

By leveraging TDVRPTW as a planning model, second sub-model can facilitate the optimization of waste transportation
efficiency while simultaneously reducing environmental impacts (see Table 7). This serves to advance the development
of a cleaner and more sustainable environment for the benefit of future generations.

To provide further elucidation of the second sub-model, a detailed discussion of themathematical model is presented. Let
G¼ V,Að Þbe a graph where A¼ vi,v j

� �
: i 6¼ j

� �
is an arc set and the vertex (node) set is V ¼ v0,v1,…,vnþ1ð Þ, v0 and

vnþ1 denote the warehouse (see Figure 15). In this waste distribution problem, every amount of waste must be transported
to its corresponding treatment center vi, which has a designated time window for the visit to take place.

The assumptions made for this sub-model are the following:

• The time windows of each node must be respected.

• The vehicles have a maximum capacity.

• The capacity of the center treatment is not limited.

The notations used for this TDVRPTW sub module for medical waste distribution are as follows:

Index sets I ¼ 0,1,2,…,nf g set of n center treatment and the real depot 0

Parameters

K number of available vehicles

Table 7. Comparative table of theproposed solution and the traditional solution (trip for transport ofmedical
waste to treatment centers).

Indicator Distribution without
sorting

Cross-docking with sorting

Total treatment cost 100 000€ 80 000€

Number of treatment
centers

4 4

Initial investment cost 10 000€ 50 000€

Transport cost 20 000€ 15 000€

Total treatment time 40 hours 30 hours

Environmental cost Risk of cross-
contamination

Reduction of the risk of cross-contamination

Capacity utilization of each
treatment center:

All centers are used to
their full capacity

The capacity of each center is optimized through the
distribution of waste by type
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C0
ak vehicle capacity (in kg)

d0 ij distance between node i and node j (in km)

WTi amount of waste in kg be transported to the treatment center i

Q0
a amount of transported waste in kg

EFip Emission Factor: the rate at which pollutants p are released per unit of waste treated in center i

γp Marginal Cost of Pollution: the cost associated with each unit of pollutant released, which takes into account the
environmental and health impacts of the pollution.

REjk Amount of waste in vehicle k at reaching j

GEij released gas rate between i and j

f kfixed cost = Vehicles Usage Cost + Outsourcing Costs

β Travelling cost

twj waiting time at node j

Tik the time when the vehicle k starts to serve node j

Tak the arrival time of vehicle k at the warehouse

Tdk the departure time of vehicle k from the warehouse

Si service time in node i; (= 0; for i = 0)

bi start of the time window at node i

ei end of the time window at node i

tijp the traveled time between ij at period p

RI Risk exposure rate for transportation of waste

Decision variables

x0 ijk binary variable indicating if edge i, jð Þ is visited by vehicle k, i, j ϵ Ið Þ

y0k binary variable indicating if the vehicle k is used

Z 0
jk binary variable indicating if node j is visited by vehicle k

Objective function

Z ¼ β
X
i, jϵ I

X
k ϵ K

dij∗x0 ijk

 !
þ
X
k ϵ K

f k∗yk þ
X
i∈I

WTi∗
X
p ϵ P

EFip∗γp (25)

Constraints X
i ϵ I

x0 ijk ¼ Z 0
jk∀jϵ I, k ϵ K (26)
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X
j ϵ I

x0 ijk ¼ Z 0
ik∀jϵ I, k ϵ K (27)

x0 iik ¼ 0∀kϵ K (28)

X
i ϵ I

x0ipk ¼
X
i ϵ I

x0pjk∀pϵ I (29)

X
iεI

X
j ϵ I

X
k ϵK

WTi∗x0 ijk ¼Q0
a∀jϵ I (30)

X
i ϵ I

X
j ϵ I

WTi∗x0 ijk≤C0ak∗yk;∀kϵK (31)

X
j ϵ I

x00jk ¼ y0k∀k ϵ K (32)

X
i ϵ I

x0 i0k ¼ y0k∀k ϵ K (33)

Tik þSiþ tijpþ twj�Tjk≤ 1� x0 ijk
� �

∗M∀kϵK, iϵI, jϵI, p ϵ P (34)

Tik þSiþ ti0p�Tak≤ 1� x0 i0kð Þ∗M∀kϵK, iϵI, jϵI, p ϵ P (35)

Tdkþ t0jp�Tjk≤ 1� x00jk
� �

∗M∀kϵK, iϵI, jϵI, p ϵ P (36)

bi∗y0k≤Tik≤ei∗y0k∀kϵK, iϵI (37)

b0∗y0k≤Tak≤e0∗y0k∀kϵK, iϵI (38)

b0∗y0k≤Tdk≤e0∗y0k∀kϵK, iϵI (39)

X
k ϵ K

y0k≤K (40)

x0 ij ϵ 0,1f g∀i, j∈I, i 6¼ j (41)

y0 ijϵℝþ∀i, j∈I, i 6¼ j (42)

Kϵℕ∗ (43)

The objective function (25) of the TDVRPTW problem for waste transportation includes three main cost components:
the travelling cost, the fixed cost, and the pollution cost of treatment centers. The travelling cost refers to the cost incurred
for each unit of distance travelled by the vehicle, while the fixed cost includes the cost of using vehicles and the
outsourcing costs. Finally, the pollution cost is a measure of the environmental impact of the waste treatment process,
which takes into account the marginal cost of each unit of pollutant released by the treatment center. The optimization of
the objective function can help to minimize the cost of waste transportation while ensuring that each waste is delivered to
the appropriate treatment center for effective and efficient treatment, contributing to a cleaner and more sustainable
environment.

The constraints used for this second sub model are similar to those previously mentioned for hospital waste collection.
These constraints ensure that all treatment centers are visited exactly once by vehicle k (26-27), prevent loops or isolated
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sub-tours (28), require that a vehicle that arrives at a center also departs from it (29), mandate the distribution of all
available waste to the appropriate center (30), limit the total demand in a particular route to the vehicle capacity (31),
dictate that vehicles start and end at the warehouse (32-33), regulate the start time of service (33-36), ensure that vehicles
respect time windows of the centers and warehouse (37-39), limit the number of vehicles to those available (40), and
specify the types of variables used (41-43).

To solve the TDVRPTW problem of waste distribution to treatment centers, we utilized the same GA described in the
previous sections.

The fitness function for the GA was defined as follows:

Z ¼ β
X
i, jϵ I

X
k ϵ K

dij∗x0 ijk

 !
þ
X
k ϵ K

f k∗yk þ
X
i∈I

WTi∗
X
p ϵ P

EFip∗γp (25)

The travel cost encompasses expenses related to fuel and vehicle maintenance, whereas the fixed vehicle cost comprises
the costs associated with vehicle acquisition and upkeep. Outsourcing costs pertain to the expenses incurred when
subcontracting certain aspects of the waste treatment process. Pollution costs encompass the financial implications of the
environmental impact caused by the waste treatment process.

Overall, the GA approach proved to be effective in optimizing the distribution of waste to treatment centers while
minimizing costs and environmental impact. The results obtained from the GA could be used to inform waste
management policies and practices, and to promote more sustainable waste management practices for the benefit of
future generations.

Our study case consists of 10 treatment centers, 4 available waste transport vehicles, eachwith a capacity of 250 units, this
scenario is based on the context of Casablanca. After applying the GAwith the constraints and fitness function described
above, we obtain an optimal solution that minimizes the total cost of distributing medical waste. The first round consists
of transporting the collected waste to the first treatment center, which specializes in the treatment of infectious waste. The
other two vehicles begin their rounds at the second treatment center, which specializes in the treatment of radioactive
waste. They collect radioactive waste from all nearby hospitals and deliver it to the second treatment center. The
cumulative cost of this approach is determined by combining the expenses associated with vehicle travel, fixed vehicle
costs, waste collection outsourcing, and the environmental impact resulting from vehicle operations and processing
centers.

Implementing this optimal solution has resulted in a reduction in both waste transportation costs and the expenses linked
to pollution emanating from vehicles and treatment centers (refer to Table 7).

MWM through cross-docking
To illustrate the benefits of the warehouse for cross-docking, we used a simulation modeling using Simul8 (v 3.0).66

The simulation aimed to replicate real-world MWM scenarios while rigorously testing the impact of various parameters
(vehicle capacity, time windows, cross-docking center size, transport costs, processing times, initial investment costs,
cross-contamination rates, etc). We ran the simulation using two scenarios for each waste management method,
distribution without sorting and cross-docking with sorting.

In the first case, where waste is distributed without prior sorting, it is possible that some types of waste are sent to
inappropriate processing centers, which can result in additional costs for processing these wastes. In addition, cross-
contamination between different types of waste can lead to environmental and public health problems. In the second case,
setting up a warehouse for cross-docking with waste sorting can reduce processing costs, better use resources, and reduce
environmental impacts. Indeed, each type of waste can be sent to the specialized processing center for its specific
treatment, which allows for better resource management and reduces cross-contamination. However, setting up a
warehouse for cross-dockingmay require larger initial investments andmore complex coordination between the different
actors involved in the waste processing process.

In this example, distribution without sorting of medical waste resulted in a total processing cost of €100,000, whereas
setting up a cross-docking warehouse with sorting reduced this cost to €80,000. However, the initial investment cost for
setting up the cross-docking warehouse was €50,000, five times higher than the initial investment cost for distribution
without sorting. Transport cost was also reduced from €20,000 to €15,000 thanks to the optimization of MWM by
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cross-docking with sorting. In terms of processing time, cross-docking with sorting allowed a significant reduction of
30 hours, compared to the 40 hours required for distribution without sorting. Finally, the risk of cross-contamination was
reduced thanks to the setting up of a cross-dockingwarehouse with sorting, which allowed each type of waste to be sent to
the appropriate processing center.

In the case of unsorted distribution of medical waste, waste of different types was sent to treatment centers that were not
specialized in their specific treatment. This can result in additional costs for the treatment of these wastes, as treatment
centers must adapt their equipment and personnel to handle these types of wastes that were not originally planned for.
Additionally, cross-contamination between different types of wastes can lead to environmental and public health issues,
thereby increasing costs tomanage these problems. On the other hand, in the case of setting up a cross-dockingwarehouse
with sorting, each type of waste is sent to the specialized treatment center for its specific treatment, allowing for better
resource management and a reduction in cross-contamination. This can reduce overall treatment costs as treatment
centers can specialize in one type of waste and optimize their equipment and personnel to specifically treat that type of
waste. Furthermore, the reduction in cross-contamination can reduce costs associated with managing environmental and
public health issues. As a result, the total cost of treatment was reduced by €20,000 with the implementation of a cross-
docking warehouse with sorting, compared to unsorted distribution of medical waste.

Furthermore, with the implementation of a cross-docking warehouse with sorting, vehicles were used more efficiently.
Wastewas sorted based on its treatment type and destination, allowing for optimal filling of vehicles and a reduction in the
number of required trips. This led to a reduction in transportation costs from €20,000 to €15,000.

Moreover, cross-contamination is a significant problem in MWM. It can lead to the spread of diseases and infections, as
well as contamination of the environment. For example, if infectious wastes are mixed with non-infectious wastes, this
can lead to disease spread. Similarly, if chemical wastes are mixed with organic wastes, this can lead to dangerous
chemical reactions and the production of toxic gases. In fact, when chemical wastes are mixed with organic wastes,
chemical reactions can occur, leading to the production of toxic gases. For instance, if wastes containing chlorine-
containing chemicals are mixed with organic wastes such as food, a chemical reaction can occur to produce hydrogen
chloride gas (HCl), which is toxic to humans and the environment. Another example is the reaction between wastes
containing acidic chemicals andwastes containing alkaline chemicals, which can produce toxic gases such as ammonium
chloride or hydrochloric acid gas. By using the cross-docking warehouse with waste sorting, each type of waste is sent to
the appropriate treatment center, reducing the risk of cross-contamination and ensuring safer and more efficient
management of medical waste.

On the other hand, although the initial investment for the warehouse solution is higher, optimizing theMWMprocess can
lead to long-term savings by reducing treatment and transportation costs, as mentioned earlier. Additionally, using a
cross-docking warehouse with waste sorting allows each type of waste to be sent to the specialized treatment center for its
specific treatment, which improves the quality of treatment and can enable better recovery of raw materials. Not to
mention that the reduction in the risk of cross-contamination through the separation of different types of wastes can have
benefits in terms of public health and environmental safety.

In conclusion, when comparing the two approaches, it was found that the implementation of a cross-docking warehouse
allowed for a reduction in medical waste treatment costs, better resource utilization, and a reduction in environmental
impact compared to unsorted distribution. The results showed that the implementation of a cross-docking warehouse can
be an effective solution for MWM in hospitals and healthcare centers.

Conclusions
This article has thoroughly addressed the issue of MWM using vehicle routing models and cross-docking techniques.
It has presented two sub-models, one for medical waste collection and the other for transportation to treatment centers,
highlighting the importance of the cross-docking process for efficient coordination of these stages.

The article has emphasized the use of a smart cross-docking center to facilitate seamless transition of collected waste
between collection and transportation vehicles without intermediate storage. Additionally, the author has proposed the
specialization of treatment centers to focus on specific types of waste treatment, which would enhance the overall
efficiency of the waste management system.

The evaluation of the algorithm’s performance demonstrated its ability to reduce the number of vehicles and distance
traveled. The utilization of ANOVA and Tukey tests confirmed the statistical significance of these improvements, further
supporting the effectiveness of the proposed approach.
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The article also leveraged IoT technologies, including sensors and smart objects, to enable real-time monitoring of waste
levels and optimize collection schedules.

Furthermore, the article incorporated XAI techniques to provide transparent and interpretable explanations for the
decision-making process of the proposedmodels. This ensures that the stakeholders involved can understand and trust the
recommendations made by the system.

In conclusion, this article presents an innovative approach toMWMby integrating vehicle routingmodels, cross-docking
techniques, IoT utilization, and XAI. This approach enhances operational efficiency, reduces costs, and promotes better
resource utilization. Future prospects could explore further optimization of route planning and the integration of
advanced AI techniques for even more sophisticated MWM.

Data availability
Source data
We have a collection of synthetic datasets known as the “Solomon instances”,65 which consist of 56 instances featuring
100 clients with time windows http://www.vrp-rep.org/references/item/solomon-1987.html. These instances are cate-
gorized into six sets based on their specific attributes: The specific datasets mentioned in this project are categorized into
six sets based on their attributes:

• C1….txt: Clustered instances with a short scheduling horizon.

• C2….txt: Clustered instances with a long scheduling horizon.

• R1.….txt: Random instances with a short scheduling horizon.

• R2….txt: Random instances with a long scheduling horizon.

• RC1….txt: Random and clustered instances with a short scheduling horizon.

• RC2….txt: Random and clustered instances with a long scheduling horizon.

This dataset represents a standardized set of test instances for evaluating and comparing the algorithm for solving
TDVRPTW.

This dataset is characterized by the following key features:

• Customers and time windows: Each instance in the dataset represents a set of customers (depots) with specific
demand quantities and time windows within which they can be serviced.

• Vehicle capacity and number: The dataset also specifies the capacity of the vehicles used for deliveries and the
number of available vehicles.

• Coordinates: For each customer, the dataset includes its geographical coordinates (usually represented as (x, y)
coordinates in a Euclidean space).

• Service Duration: The time taken to service each customer is also provided.

• Depot Information: The dataset contains information about the depot (depot coordinates, available vehicles,
etc.).

• Objective Value: For each instance, the optimal or best-known solution (i.e., the minimum route duration) is
provided. This value is used to evaluate the quality of solutions obtained by different algorithms.

Additionally, we have an extension of Solomon’s instances that incorporates time-dependence, as introduced by Ichoua
et al.74 Indeed, the travel times between locations (customers or depots) are not constant but vary depending on the time of
day. This extension aims to make the vehicle routing optimization more realistic by considering the dynamic nature of
travel times in real-world scenarios. This extension includes three different scenarios, each varying in the degree of time-
dependence:
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• t_dep.dat: Speed matrix for the first scenario, which exhibits the lowest level of time-dependence.

• t_dep2.dat: Speed matrix for the second scenario.

• t_dep3.dat: Speed matrix for the third scenario, characterized by the highest degree of time-dependence.

Underlying data
Zenodo: Zineb-bdg/Medical-waste-management-system-in-a-smart-city-using-XAI-and-Vehicle-Routing-Optimization-
Data-: Initial Implementation. https://doi.org/10.5281/zenodo.815739457

This project contains the following underlying data:

• Waste_test.csv

• Waste_train.csv

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).

Software availability
Archived source code at the time of publication: https://doi.org/10.5281/zenodo.8157394.57

Source code available from: https://github.com/Zineb-bdg/Medical-waste-management-system-in-a-smart-city-using-
XAI-and-Vehicle-Routing-Optimization-Data

License: This project is licensed under the Creative Commons Zero v1.0 Universal.
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In this article, the authors proposed a new approach based on collaboration and technological 
advances. This approach is based on the use of colored bags with identification tags, smart 
containers with sensors, object recognition sensors, air and ground control sensors, vehicles with a 
global positioning system and temperature and humidity sensors, and outsourced waste 
processing. The results show that the integration of cutting-edge technologies forms the basis of 
an efficient and intelligent medical waste management system. In addition, they emphasized the 
use of genetic algorithms (GA) to solve vehicle routing models, optimizing waste collection routes 
and minimizing transport time to treatment centers. 
 
Personally, as a lecturer, I find that this paper reflects the quality of the teamwork involved, and 
that it could lead to a number of challenges that could generate significant industrial spin-offs. 
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