
DRCM: a disentangled
representation network based on
coordinate and multimodal
attention for medical image fusion

Wanwan Huang, Han Zhang*, Yu Cheng and Xiongwen Quan

College of Artificial Intelligence, Nankai University, Tianjin, China

Recent studies on medical image fusion based on deep learning have made
remarkable progress, but the common and exclusive features of different
modalities, especially their subsequent feature enhancement, are ignored.
Since medical images of different modalities have unique information, special
learning of exclusive features should be designed to express the unique
information of different modalities so as to obtain a medical fusion image with
more information and details. Therefore, we propose an attention mechanism-
based disentangled representation network for medical image fusion, which
designs coordinate attention and multimodal attention to extract and
strengthen common and exclusive features. First, the common and exclusive
features of each modality were obtained by the cross mutual information and
adversarial objective methods, respectively. Then, coordinate attention is focused
on the enhancement of the common and exclusive features of different
modalities, and the exclusive features are weighted by multimodal attention.
Finally, these two kinds of features are fused. The effectiveness of the three
innovation modules is verified by ablation experiments. Furthermore, eight
comparison methods are selected for qualitative analysis, and four metrics are
used for quantitative comparison. The values of the four metrics demonstrate the
effect of the DRCM. Furthermore, the DRCM achieved better results on SCD, Nabf,
and MS-SSIM metrics, which indicates that the DRCM achieved the goal of further
improving the visual quality of the fused imagewithmore information from source
images and less noise. Through the comprehensive comparison and analysis of
the experimental results, it was found that the DRCMoutperforms the comparison
method.
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1 Introduction

Medical imaging is widely used in medical diagnosis. It can show pathological tissues that
cannot be observed by the naked eye, so it can assist doctors in making accurate judgments on
the condition and reduce the possibility of misdiagnosis (Iglehart, 2006). Medical imaging
mainly includes ultrasound, computed tomography (CT), fluorescence examination, and
positron emission tomography (PET) (James and Dasarathy, 2014). CT can detect
abnormalities in the brain, neck, chest, abdomen, and pelvis. However, in some areas,
there are too many artifacts of the bones, affecting the display effect of soft tissue lesions
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(Burns et al., 2017; Dong et al., 2019).MRI can be used formulti-plane
imaging, which makes up for the shortcoming of CT of being unable
to be used for directmulti-plane imaging. However, it has a poor effect
in showing lesion calcification and bone cortex, so it is not suitable for
observing fractures. However, characteristic intracranial calcification
is often helpful for qualitative diagnosis. PET has the advantages of
high sensitivity, three-dimensional imaging, being non-destructive,
and accurate positioning, which is important in early tumor diagnosis.
The specificity of PET is very high, and the qualitative diagnosis can be
made according to the characteristics of the hypermetabolism of
malignant tumors (Wang et al., 2018a).

Medical image fusion is the technique to handle the
aforementioned disadvantage of medical imaging, which
synthesizes multiple images into a new image (Du et al., 2016).
Medical image fusion generally includes the integration of
anatomical images with other anatomical images as well as the
integration of anatomical images and functional images. The most
common anatomical image pair is CT–MRI, while the anatomical and
functional image pairs include MRI–PET and MRI–SPECT. The
fusion of anatomical images consolidates diverse anatomical
information from different modalities into a single image, thereby
facilitating medical information analysis for healthcare professionals.
The fusion of anatomical and functional images can integrate
anatomical and functional information into one image, enabling
doctors to assess metabolic data alongside precise visualization of
tissues and organs. The fusion image can make use of the correlation
and information complementarity of the original image, to have a
more comprehensive and clear description of the scene so as to be
more conducive to the diagnosis of the disease. In this paper, we
investigate how to accurately disentangle features and further address
common redundant information problems in multimodal medical
image fusion. The proposed method significantly enhances the visual
quality of the fused image with clearer edges and richer detail
information, surpassing the performance of state-of-the-art methods.

So far, extensive research efforts have been dedicated to
enhancing the quality of fused images and optimizing fusion
algorithms (James and Dasarathy, 2014; Du et al., 2016).
Traditional image fusion has achieved remarkable results, and as
computation power has advanced, deep learning-based image fusion
methods have been thoroughly investigated (Huang et al., 2020; Li
et al., 2021; Azam et al., 2022). However, much of the
aforementioned research focuses on improving the type,
complexity, and depth of neural networks for the extraction of
more profound features. Regrettably, it often neglects the inherent
characteristics of the features themselves present in images from
diverse modalities. The image feature reflects the detail information
of the image, making the extraction of these features a pivotal
component in image fusion. Although several disentangled
representation methods have been introduced to extract both
common and exclusive features (Li et al., 2021) from multimodal
images, the disentanglement of multiple modalities in medical image
fusion remains a current challenge. Furthermore, many disentangled
representation methods typically rely on combination or weighted
combination to fuse multimodal features, often resulting in the issue
of common redundant information (Li et al., 2020), which may lead
to the loss of details or blurring in the fused image.

To address the aforementioned problems, we propose a
disentangled representation network with coordinate attention and

multimodal attention for medical image fusion (DRCM). Specifically,
we design a disentangled representation network to extract the
common and exclusive features from multimodal medical images,
which can reflect the special characteristics of multimodal medical
images. In addition, we also use the multimodal attention mechanism
(Li et al., 2020) to solve the problem of common redundant information
and coordinated attention (Hou et al., 2021) to further enhance the
feature representation of fused images. As Figure 1 shows, two source
images have different anatomical information at the same location, but
MIEF (Huang et al., 2022a) encounters the problem of common
redundant information, which leads to blurring of edges and
contours and loss of details in its fused image, while the fused
images generated by the DRCM have clearer edges and contours
and can contain more information of different modalities.

Specifically, beyond previous works (Huang et al., 2022a), we
propose a DRCM. More precisely, the coordinate attention is
focused on the enhancement of the common and exclusive
features of different modalities, and the multimodal attention is
used to calculate the weights of multiple modalities by using the
exclusive features. The contributions of the article are as follows:

1) A disentangled representation network based on cross mutual
information and adversarial objective is adopted for extracting
commonandexclusive featuresofdifferentmodalitymedical images.

2) Coordinate attention captures the direction-aware and location-
sensitive information of common features and exclusive features
and can capture cross-channel information, which helps the
network to accurately express the medical image features.

3) The multimodal attention network calculates the dynamic
weight of features according to the exclusive features of each
modality, avoids the interference of redundant information on
the expression of exclusive features, and emphasizes the
importance of exclusive features.

Overall, in order to address correct feature disentangling
problems and the common redundant information problem, we
propose a disentangled representation network based on coordinate
and multimodal attention. The DRCM uses the cross mutual
information and adversarial objective methods to extract the
common and exclusive features from multimodal medical images.
These features capture the special characteristics inherent in
multimodal images. Furthermore, the DRCM employs the
multimodal attention mechanism to address the problem of
common redundant information and uses coordinated attention
to further enhance the feature representation.

The remainder of this paper is structured as follows: the second
part shows the related works, the third part introduces the proposed
method, the fourth part verifies the method through experiments,
the fifth part is the ablation experiment of the method, and the last
part is the conclusion and recommendations.

2 Related works

2.1 Medical image fusion methods

Traditional methods usually fuse images in image pixels, image
blocks, or image regions. The commonly used methods are bilateral
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filter (BF) (Shreyamsha Kumar, 2015) and guided filtering (GFF) (Li
et al., 2013). Typical transform domain traditional fusion methods
include the wavelet transform (WT) (Cheng et al., 2008), curvelet
transform (CVT) (Ali et al., 2010), non-subsampled contourlet
transform (NSCT) (Arthur et al., 2006), and Laplacian pyramid
(LP) (Sahu et al., 2015). Jain and Salau (2021) and Salau et al. (2021)
made a comprehensive summary of transformation, technologies,
and rules of image fusion and proposed a method of image fusion
using discrete cosine transform, which achieved better results.
Panigrahy et al. (2020) proposed a novel weighted parameter
adaptive dual-channel PCNN for PET-MRI fusion and obtained
greater outperformance. Seal et al. (2018) employed the random
forest and à-trous wavelet transform methods for PET–CT fusion,
which performed superior in terms of visual and quantitative
qualities. Some image feature representation methods also
achieved an excellent fusion effect, such as the sparse
representation (SR)-based image fusion method. Li et al. (2012)
proposed a new dictionary learning method to realize the denoising
and fusion tasks of 3D medical images. Liu et al. (2019) proposed a
morphological component analysis (MCA)-based medical image
fusion model. Adame et al. (2020) proposed a method with an
interval-valued intuitionistic fuzzy set for CT–MRI image fusion,
which is more conducive to practical clinical application. Panigrahy
et al. (2023) proposed the parameter adaptive unit-linking PCNN
and distance-weighted regional energy-based measure for medical
image fusion, which create more informative images to specialists
for disease diagnosis. However, the artificially designed fusion
strategies in traditional methods are often difficult to optimize,
which may result in suboptimal results and low contrast.

Since the deep learning method performs better in extracting
image features, many scholars use residuals, pyramid, attention,
generative adversarial network (GAN), and other methods to
achieve higher-quality medical image fusion. Lahoud and Süsstrunk
(2019) proposed a real-time image fusion method suitable for any
number of input sources. In this method, a preprocessing network is
used to generate a fusion image containing the features of multimodal
images. Amethod based on the trained Siamese convolutional network
and contrast pyramid was proposed by Wang et al. (2020a) to achieve
high-quality medical image fusion. To improve the performance of an
approach based on a single kind of network framework, Fu et al. (2021)
attempted a multi-scale residual pyramid attention network to achieve
end-to-end fusion. The aforementioned work is based on the
convolution neural network. To further improve the stability and

efficiency of network training, Wang et al. (2020b) used a GAN to
effectively suppress artifacts and distortions in fused images. Ma et al.
(2020) used the dual-discriminator conditional generative adversarial
network (DDcGAN) for the fusion of infrared and visible images with
different resolutions. Cheng et al. proposed a network architecture
integrating an image generation module and discriminator module to
generate information-rich fusion images. The image generation
module is built based on dense blocks and encoder–decoder (Zhao
et al., 2021). However, in the feature extraction, these deep learning-
based methods often overlook the distinctions among different
modalities, thus neglecting the unique characteristics inherent to
each modality.

Unlike the aforementioned existing methods, our approach
involves the design of a disentangled representation network aimed
at extracting common and exclusive features frommultimodal medical
images by contrasting the information derived from various
modalities. In addition, to address the common redundancy issues
that may arise during the fusion process, we employed the multimodal
attention mechanism to dynamically weight exclusive features.
Additionally, we employed the coordinate attention to further
enhance the representation of multimodal features, ultimately
enhancing the visual quality of the fused image.

2.2 Disentangled representation

Disentangled representation is a theory aimed at modeling the
underlying factors of data variations. In recent years, it has been
widely used in computer vision tasks, particularly for learning the
disentangled representation of input features. For instance, Sanchez
et al. (2020) used a mutual information estimation method to
achieve the disentangled representation of input images and
completed several tasks such as image classification and
segmentation. Salau and Jain (2019) divided image features into
common and exclusive features of different fields and extracted the
image features specifically through detailed feature classification.
Wang et al. (2021) adopted the weighted parallel method to extract
the common and exclusive features. Wang et al. (2022), Zhao et al.
(2020), and Niu et al. (2020) extracted common and exclusive
features under different modalities by maximizing the mixing of
source image information. In this paper, as the goal of image fusion
is to extract and fuse complementary information from multimodal
images, we aim to extract the common and exclusive features

FIGURE 1
Schematic illustration of medical image fusion. From left to right: two source images (reproduced with permission from http://www.med.harvard.
edu/AANLIB/home.html), MIEF (Reproduced from Huang et al. (2022a), licensed under CC BY 4.0) and the proposed DRCM. Obviously, the DRCM not
only retains more information of multimodal images but also has sharper edges.
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between multimodal medical images. To achieve this, we designed a
disentangled representation network utilizing the cross mutual
information method (Huang et al., 2022a) and adversarial
objective method (Sanchez et al., 2020).

2.3 Attention mechanisms

Attention mechanisms focus on the most important
information of the input images. In the realm of computer
vision, the spatial attention (Wang et al., 2018b) is dedicated
to choosing features within spatial domains, while the channel
attention (Guo et al., 2022) recalibrates the channel-wise features
and serves as an operation of selecting the target object (Chen
et al., 2017). These two attention mechanisms have their own
advantages. The coordinate attention can combine the
advantages of spatial attention and channel attention, which is
beneficial for many visual tasks. Yi et al. (2022) combined the
channel and coordinate attention to realize feature fusion for a
semantic segmentation task. Zhang et al. (2021) used the
coordinate attention and complex-valued method to
distinguish space targets. Yang et al. (2022) employed the
coordinate attention to achieve image classification.
Multimodal attention (Li et al., 2020) is proposed to solve the
problem of common redundant information that often occurs in
multiple modalities, and this method assigns weights to multiple
modalities by extracting the exclusive features. Multimodal
attention has also been applied to many multimodal tasks. Liu
et al. (2023) calculated the weights of different modalities for
multimodal emotion recognition. Li et al. (2020) employed the
multimodal attention method to assign weights to multiple
modalities for click-through rate prediction.

In this article, we utilized multimodal attention to assign weights
to multimodal medical images. This approach effectively solves the
problem of common redundant information between modalities by
utilizing the exclusive features of multiple modalities. Furthermore,
we also employed the coordinate attention to enhance the features of
multiple modalities, thus further elevating the visual quality of the
fused image.

3 Proposed method

First, the procedure and framework of the DRCM method are
introduced. Then, the coordinate attention performs weighted
enhancement on common and exclusive features. Finally,
multimodal attention is used for weighted enhancement of
exclusive features.

3.1 Overview

In this paper, a disentangled representation network with
coordinate and multimodal attention is proposed. The entire
procedure of the DRCM is shown in Figure 2. This model mainly
includes three parts. First, we employ the mutual information
estimation method (Sanchez et al., 2020) to disentangle features
from image pairs, which contains the cross mutual information

and adversarial objective methods and has been proven to be
effective in image fusion (Huang et al., 2022a). Thus, we obtain
the common and exclusive features from the multimodal images.
Second, to further enhance the feature representation and
improve the fusion performance, we utilize the coordinate
attention to strengthen the disentangle features. Third, to
exclude the influence of redundant information on
multimodal data, we employ multimodal attention to
dynamically weight multimodal medical images. The
experiments exhibited the superiority of the DRCM compared
with the state-of-the-art methods in terms of visual effects and
quantitative measurement.

The designed framework of the DRCM is also shown in Figure 2.
As we can see, a four-branch encoder is used to extract features, and
the branches with the same structure of four convolution layers are
employed to obtain common and exclusive features. Then,
coordinate attention and multimodal attention are adopted to
process the extracted features. Finally, according to the fusion
strategy, the feature fusion is performed to reconstruct the image.
According to Huang et al. (2022a), the mutual information
estimation method is completed by two steps; the first step
employs the cross mutual information method to extract the
extract the common features C1 and C2, and the second step
uses the adversarial objective method to obtain the exclusive
features E1 and E2.

After feature extraction, coordinate attention is used to weight
common and exclusive features to improve the expression of
features in the network, and multimodal attention is used to
dynamically weight multimodal information. By combining these
weighted features and passing them through a decoder, we obtain
the final fused image If.

3.2 Feature disentangling based on mutual
information estimation

The cross mutual information (Huang et al., 2022a) is used to
capture common features between two different modalities,
involving the mutual information between source image I2 and
C1, as well as the mutual information between source image I1 and
C2. C1 and C2 are the shallow features of I1 and I2, respectively. It is
worth noting that since we employ a 3 × 3 convolution kernel and set
the stride and padding to 1, the resolution of the features is the same
as that of input images. Therefore, the estimation of mutual
information maximization of I2 and C1 and I1 and C2 can be
computed, and the Jensen–Shannon divergence (JSD) is generally
used as an approximation (Sanchez et al., 2020).

Î
JSD( )

θS
I1, C2( ) � Ep I1′ ,C2( ) −log 1 + e−TθS

I1′ ,C2( )( )[ ]
− Ep I1′( )p C2( ) −log 1 + e−TθS

I1′ ,C2( )( )[ ],
Î

JSD( )
θC

I2, C1( ) � Ep I2 ,C1( ) −log 1 + e−TθS
I2 ,C1( )( )[ ]

− Ep I2( )p C1( ) −log 1 + e−TθS
I2 ,C1( )( )[ ],

(1)

where TθS is the statistics network with the parameter θS, which is
implemented by four convolutional layers (Huang et al., 2022a),
while x’ denotes the feature maps of image x. Using these variables,
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the loss function that estimates the mutual information for common
features can be obtained as follows:

Lch
MI � Î

JSD( )
θS

I1, C2( ) + Î
JSD( )

θS
I2, C1( ). (2)

Additionally, as the features Cx and Cy are common between
both modalities, it is important to minimize the difference between
them. This can be achieved by using the L1 distance as a constraint:

L1 � Ep Cx,Cy( ) Cx − Cy





 



. (3)

To extract the exclusive features, an adversarial objective is
employed, which engages in a context between a generator and a
discriminator to achieve the least mutual information between the
common and exclusive features.

Ladv � LI1
adv + LI2

adv,

� Ep CI1( )p eI1( ) logDρ CI1 , EI1( )[ ] + Ep CI1 ,eI1( ) log 1 −Dρ CI1 , EI1( )( )[ ][ ]
+ Ep CI2( )p eI2( ) logDρ CI2 , EI2( )[ ] + Ep CI2 ,eI2( ) log 1 −Dρ CI2 , EI2( )( )[ ][ ],

(4)

where the discriminator with parameter ρx is denoted as Dρ, which
includes three convolution layers (Huang et al., 2022a). The
adversarial loss of image I is represented as LIadv.

Furthermore, in addition to the aforementioned loss functions,
to obtain features for image fusion, we employMSE and SSIM loss to
achieve pixel and structural similarity between fused image If and
source images I1 and I2.

LMSE � 1
H × W

I1 − If




 



22 + I2 − If





 



22( ), (5)
Lssim � 1 − SSIM I1, If( )[ ] + 1 − SSIM I2, If( )[ ], (6)

Lt � LMSE + Lssim, (7)

whereH andW denote the height and width of images, respectively.
SSIM (·) indicates the SSIM similarity of source and fusion images.

3.3 Coordinate attention

In computer vision, attention mechanisms mainly include
spatial attention and channel attention (Guo et al., 2022), and
coordinate attention can combine the advantages of channel
attention and spatial attention. Different from squeeze and
excitation (SE) attention (Hu et al., 2018) which directly uses
global average pooling, coordinate attention factorizes the global
pooling into two spatial extents of pooling kernels (H, 1) and (1,
W), one of them being along the horizontal coordinate and the
other being along the vertical coordinate, which is good for
extracting position information in space. The schematic
diagram of coordinate attention is shown in Figure 3A. The
output of the cth channel at height h and width w is described as

zhc h( ) � 1
W

∑
0≤ i≤W

xc h, i( ), (8)

zwc w( ) � 1
H

∑
0≤ j≤H

xc j,w( ). (9)

Then, concatenating Eqs 1, 2 and performing the convolution
operation, the expression can be expressed as

f � δ F1 zh, zw[ ]( )( ), (10)

where F1 and δ denote the convolutional transformation function
and non-linear activation function, respectively, and [·, ·] denotes
the concatenation operation. f ∈ RC/r×(H+W) is the feature map,
where r is the reduction ratio and set to 32 manually. Splitting f
again along horizontal and vertical coordinates yields fh ∈ RC/r×H

and fw ∈ RC/r×W. Then, two 1 × 1 convolutions Fh and Fw are used
to transform fh and fw to obtain gh and gw, respectively, as
follows:

gh � σ Fh f h( )( ), (11)

FIGURE 2
Entire network structure of the DRCM.
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gw � σ Fw fw( )( ), (12)
where σ denotes the sigmoid activation function. Finally, gh and gw

are the final weights obtained, and the resulting output can be
described as

yc i, j( ) � xc i, j( ) × ghc i( ) × gwc j( ). (13)

3.4 Multimodal attention

Since each modality has different effective information and
exclusive features, only using common features cannot represent
the exclusive characteristics of a different modality m. Therefore,
multimodal attention is used to calculate the dynamic weight of
exclusive features for each modality. The dynamic weighting of the
exclusive feature ei can be written as

ei � ∑
2

m�1
attenm

i ⊙ emi , (14)

attenm
i � tanh WT

m · emi + bm( ), (15)
where attenmi is used to adjust the weights of different modalities and
⊙ denotes element-wise multiplication. WT

m and bm are the
256 × 256 parameter matrix and 256 × 1 vector, respectively.
Figure 3B shows the schematic of the multimodal attention fusion.

4 Results

4.1 Datasets and training details

In the experiments, publicly available medical images from the
website of Harvard Medical School are used to train and test the
network (http://www.med.harvard.edu/AANLIB/home.html).
CT–MRI and PET–MRI are two commonly used modality pairs

in the field of medical images (Liu et al., 2017a; Xu and Ma, 2021),
and SPECT–MRI image pairs are also employed to verify the
generalization of the proposed model. We select 500 CT–MRI
image pairs and cropped them into over 13,000 patch pairs for
training, and 500 PET–MRI image pairs are also cropped into over
13,000 patch pairs. All images have a uniform size of 256*256. In the
test set, the PET and SPECT images are converted into YCbCr space,
and the Y (brightness) channel is used for training. The network is
trained with the five epochs in batches of four, the learning rate is 0.
0001, and the optimizer is Adam. Experiments are performed on a
NVIDIA GeForce RTX 2070 GPU and Intel Core i7-9700k CPU.

4.2 Fusion results

Eight methods are compared with the DRCM in this paper,
i.e., CNN (Liu et al., 2017b), RPCNN (Das and Kundu, 2013),
U2Fusion (Xu et al., 2020), DDcGAN (Ma et al., 2020), GFF (Li
et al., 2013), IFCNN (Zhang et al., 2020), EMFusion (Xu and Ma,
2021), and MIEF (Huang et al., 2022a). Among these, GFF is only
used in the experiments of CT–MRI image pair datasets. There
are various metrics to quantify the fusion results, i.e., MS-SSIM
(Wang et al., 2003), SCD (Aslantas and Bendes, 2015), Nabf
(Kumar, 2013), HVS (Chen and Blum, 2009), and VIFF (Han
et al., 2013). Multi-scale structural similarity (MS-SSIM) mainly
measures the structural consistency between image blocks and
has better expression ability compared to the general structural
similarity. A higher MS-SSIM value indicates that the fused
image is closer to the structural information of the source
image, and the value range of MS-SSIM is [0, 1]. The sum of
the correlations of differences (SCD) is an evaluation index based
on the sum of correlations. A larger SCD value indicates that
more source image information is contained in the fused image,
and the value range of the SCD is [−2, +2]. Nabf measures how
much noise and artificial information the algorithm introduces
into the final fused image during fusion. Therefore, a smaller
Nabf introduces less noise and the fusion quality of the image is

FIGURE 3
Schematic of (A) coordinate attention and (B) multimodal attention.
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better. The range of Nabf is [0, 1]. Visual information fidelity
(VIFF) is a metric to evaluate the fused images based on visual
information fidelity. A larger VIFF value indicates more fidelity
of the fused image, and the value range of VIFF is [0, 1]. In
addition, the best values of each metric in the given tables are
highlighted in red.

4.2.1 CT–MRI fusion
The test set contains eight CT–MRI image pairs, and these

images are widely used to test fusion models (Zhang et al., 2020;
Huang et al., 2022b), of which four classic image pairs are used for
qualitative comparison. Figure 4 shows the fusion images of the
DRCM and eight comparison algorithms. For the four examples, our

FIGURE 4
CT-MRI fusion images under different comparison methods. Two source images are reproduced with permission from http://www.med.harvard.
edu/AANLIB/home.html.

FIGURE 5
Results of four metrics of fusion images on CT–MRI image pairs under different methods.

Frontiers in Physiology frontiersin.org07

Huang et al. 10.3389/fphys.2023.1241370

http://www.med.harvard.edu/AANLIB/home.html
http://www.med.harvard.edu/AANLIB/home.html
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1241370


method almost has the clear boundaries of the tissues and organs,
and the retention of details and the contrast of brightness are also
good. In particular, RPCNN did not accurately extract
complementary information between two source images, resulting
in the introduction of noise into the fused image, as shown in the
second example. DDcGAN cannot extract important features from
the source images, which leads to less retention of multimodal
information in the fused image, as shown in the first example.
U2Fusion can slightly alleviate the problem of complementary
information extraction but still encounters this problem to some
extents, resulting in low contrast. The CNN has better performance
in containing multimodal information, but it over-preserves the
information from the first source image, resulting in blurred fusion
results. The IFCNN alleviated the blurring problem but encounters
low contrast. EMFusion has better performance in contrast but over-
extracts the features of the second source image, which leads to the
loss of important information of the first source image. MIEF has
better performance in contrast and multimodal information
retention but has blurred edges and contours in the fused image.
In comparison, the DRCM has better performance showing clearer

edges and contours, maintaining high contrast, and preserving more
multimodal information from source images. It is worth noting that
MIEF and the DRCM have richer details than other methods, which
verifies the effectiveness of the disentangled representation network.
Furthermore, compared with MIEF, the fusion images of the DRCM
have clearer edges and contours, which suggests that our method has
better fusion results. The fused images of the DRCM have clearer
edges and contours and have significant advantages in expressing
multimodal information, although the fused images slightly sacrifice
the brightness of source images, which can be observed in the first
and third examples. This is because the DRCM is used to solve the
common redundancy problem in multimodal fusion processes and
mainly focuses on the dynamic weighting of multimodal
information by employing exclusive information, which may
affect the expression of common visual information such as
brightness.

Four evaluation metrics are used to quantitatively compare eight
CT–MRI image pairs in the test set. Figure 5 and Table 1 represent
line plots and average values of CT–MRI fusion results, respectively.
The DRCM shows significant advantages in terms of fusion results,
and the mean values of all the metrics are better than those obtained
by the most comparison methods. The results are shown in Table 1.
It is worth noting that MIEF is another work of ours, which uses the
disentangled representation network for medical image fusion. The
difference from this paper is that MIEF does not further process the
subsequent disentangled features, while this paper uses two
attentions to perform weighted fusion of those features. The
experimental results show that MIEF and the DRCM based on
the disentangled representation network obtain the best results,
which proves the superiority of the disentangled representation
method. In addition, the best values of the DRCM on Nabf and
MS-SSIM also prove that the fusion images of the DRCM contain
less noise and retain more structural information of the source
images. Figure 5 shows that the DRCM achieves the best values of
MS-SSIM and Nabf in almost all image pairs. In particular, the
DRCM obtains the largest MS-SSIM values on image pairs 2 and
4 and the best values on almost all data pairs except for data pair 1.

TABLE 1Mean value and standard deviation of CT–MRI under different metrics.

Metrics SCD VIFF MS-SSIM Nabf

CNN 1.2948 ± 0.30 0.6412 ± 0.13 0.9257 ± 0.02 0.1266 ± 0.30

RPCNN 0.7158 ± 0.37 0.4806 ± 0.1 0.8564 ± 0.07 0.1944 ± 0.06

U2Fusion 0.4037 ± 0.41 0.4139 ± 0.07 0.868 ± 0.04 0.0544 ± 0.02

DDcGAN 0.8161 ± 0.34 0.3326 ± 0.07 0.6365 ± 0.08 0.3537 ± 0.01

GFF 0.9573 ± 0.41 0.5465 ± 0.1 0.9113 ± 0.03 0.0711 ± 0.04

IFCNN 1.0374 ± 0.35 0.5644 ± 0.1 0.9119 ± 0.02 0.1422 ± 0.06

EMFusion 1.2348 ± 0.33 0.4864 ± 0.15 0.8376 ± 0.1 0.0707 ± 0.03

MIEF 1.5579 ± 0.32 0.669 ± 0.12 0.9298 ± 0.06 0.0413 ± 0.03

DRCM 1.4067 ± 0.39 0.6249 ± 0.1 0.9321 ± 0.02 0.0204 ± 0.001

FIGURE 6
PET–MRI fusion images under different comparison methods. Two source images are reproduced with permission from http://www.med.harvard.
edu/AANLIB/home.html.
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As for the SCD and VIFF, MIEF obtains the best average values, and
the values of the DRCM fluctuated slightly. In general, these
quantitative comparison results demonstrate the superiority of
disentangled representation networks and the better performance
of the DRCM. It is worth noting that the proposed DRCM is slightly
worse than the traditional CNN and MIEF methods. Similar to

Figure 4, the decrease in brightness may affect the visual quality of
the fused image.

4.2.2 PET–MRI fusion
Figure 6 represents the qualitative comparison results of

different methods in PET–MRI image pairs. The results of the
DRCM retain the color intensity of PET, while the contour
details of MRI are very clear, and images have higher sharpness,
fewer artifacts, and richer details, improving readability. Specifically,
as shown in Figure 6, the CNN over-extracts anatomical information
and loses functional information from PET images, resulting in
color distortion in the fused image. RPCNN alleviates the issue of
loss of functional information, but this issue also exists to a certain
extent. U2Fusion better preserves the functional information but
contains less anatomical information, resulting in a blurred fused
image. DDcGAN cannot correctly extract multimodal
complementary features, leading to undesirable artifacts in the
fused image. The IFCNN over-preserves the anatomical
information and lost functional information of the PET image.
EMFusion slightly alleviates the problem of loss of functional
features, but it also encounters this problem to some extent.
MIEF better retains the functional information and anatomical

FIGURE 7
Results of the four metrics of fusion images on PET–MRI image pairs under different methods.

TABLE 2 Mean value and standard deviation of PET–MRI under different
metrics.

Metrics SCD Nabf VIFF MS-SSIM

CNN 1.5768 ± 0.28 0.0791 ± 0.03 0.5786 ± 0.18 0.9568 ± 0.02

RPCNN 1.6932 ± 0.13 0.0623 ± 0.01 0.5651 ± 0.16 0.9586 ± 0.03

U2Fusion 0.7513 ± 0.18 0.0566 ± 0.02 0.3658 ± 0.06 0.8583 ± 0.03

DDcGAN 0.5610 ± 0.07 0.2173 ± 0.06 0.1163 ± 0.03 0.4857 ± 0.05

IFCNN 1.5668 ± 0.17 0.0964 ± 0.03 0.5365 ± 0.11 0.9577 ± 0.02

EMFusion 1.3161 ± 0.21 0.0562 ± 0.02 0.4561 ± 0.13 0.9293 ± 0.03

MIEF 1.7657 ± 0.18 0.0388 ± 0.02 0.61 ± 0.0.12 0.9703 ± 0.01

DRCM 1.7974 ± 0.18 0.0371 ± 0.01 0.6282 ± 0.11 0.9595 ± 0.01
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FIGURE 8
SPECT–MRI fusion images under different comparison methods. Two source images are reproduced with permission from http://www.med.
harvard.edu/AANLIB/home.html.

FIGURE 9
Results of the four metrics of fusion images on PET–MRI image pairs under different methods.

TABLE 3 Average time taken for different algorithms to process CT–MRI and PET–MRI datasets.

Methods CNN (s) RPCNN (s) U2Fusion (s) DDcGAN (s) IFCNN (s) EMFusion (s) MIEF (s) DRCM (s)

Time 21.341 12.337 8.5287 5.8927 0.0313 0.8881 0.0542 0.0624
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information but has low contrast. Overall, our DRCM retains more
functional information and clearer anatomical information than
other comparative methods. However, it also has the disadvantage of
insufficient brightness in PET–MRI fusion. As shown in the first
example, although the fusion image of the DRCM retains more
information, its anatomical information is not as bright as the source
image. This phenomenon may be due to insufficient attention and

processing of brightness information by the DRCM in the process of
weighting multimodal information, and this direction will be an
important object of our future research.

Figure 7 shows the comparison of the four metrics of the
23 typical image pairs with different methods, and the mean
values of metrics under different methods are shown in Table 2.
The experimental results show that our two works, namely, MIEF
and the DRCM, obtain the best results in some metrics, which
proves the superiority of the disentangled representation method. In
addition, the best values of the DRCM on Nabf, SCD, and VIFF also
prove that the fused image of the DRCM contains less noise
compared to MIEF. The basic methods such as the CNN and
RPCNN already have relatively good feature learning ability, but
they also produce more noise during fusion, resulting in an unclear
image outline. For a single image pair, our method also achieves
goodmetric results onmost of the image pairs. Specifically, for VIFF,
the DRCM achieves the maximum average value and the maximum
value on data pairs of 7–23. As for the SCD, the DRCM obtains the
largest average value and largest value on image pairs of 6–23.
Furthermore, the DRCM obtains the best average Nabf value and
best values on data pairs of 3–8, while obtaining the suboptimal
average value ofMS-SSIM and largest values of image pairs of 17–19.

TABLE 4 Mean value and standard deviation of SPECT–MRI under different
metrics.

Metrics SCD Nabf VIFF HVS

CNN 1.2699 ± 0.22 0.0899 ± 0.01 0.5357 ± 0.09 0.5341 ± 0.04

RPCNN 1.126 ± 0.16 0.0957 ± 0.01 0.4952 ± 0.1 0.5566 ± 0.06

U2Fusion 1.203 ± 0.15 0.1630 ± 0.06 0.5561 ± 0.06 0.3416 ± 0.04

IFCNN 1.1319 ± 0.14 0.1336 ± 0.03 0.5187 ± 0.09 0.5498 ± 0.06

EMFusion 1.1394 ± 0.2 0.0407 ± 0.01 0.4602 ± 0.1 0.5504 ± 0.06

MIEF 0.895 ± 0.12 0.0239 ± 0.01 0.4113 ± 0.06 0.5204 ± 0.06

DRCM 1.6385 ± 0.06 0.0182 ± 0.01 0.5905 ± 0.08 0.5744 ± 0.05

FIGURE 10
Fusion results of the ablation experiments. Two source images are reproduced with permission from http://www.med.harvard.edu/AANLIB/home.
html.
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MIEF obtains the best average MS-SSIM value; the better
performance of MIEF and the DRCM demonstrates the
advantages of the disentangled representation network. Through
the comprehensive analysis of the actual image effects and
indicators, the DRCM achieved better results compared to other
methods.

Table 3 shows the average time for different algorithms to
process CT–MRI and PET–MRI datasets. It can be seen that
CNN, RPCNN, U2Fusion, DDcGAN, and PMGI take several
seconds or even more than 20 s, while IFCNN, EMFusion, MIEF,
and DRCM only take less than 1 s. The processing time of the
DRCM reaches 0.06 s, which ensures the fusion effect and the
rapidity of imaging.

4.2.3 SPECT–MRI fusion
To further verify the generalization of the proposed method

DRCM, we also conducted experiments to fuse SPECT and MRI
image pairs.

Figure 8 represents the comparison results of the DRCM and
other fusion algorithms on three typical image pairs. It can be
intuitively seen that compared to other methods, the DRCM
contains more functional information from SPECT, as well as
more anatomical information. In addition, the DRCM also has a
clearer edge. Specifically, the IFCNN cannot effectively extract
functional features from SPECT, resulting in the loss of
metabolic information and color distortion in fused images.
EMFusion slightly alleviates color distortion issues but
encounters it to some extent, which leads to a blurred fused
image. RPCNN better retains functional information but has
limited ability in extracting functional features, resulting in
blurred contours of soft tissue. U2Fusion can effectively extract
anatomical features from MRI while introducing white noise into
the fused image. The CNN demonstrated superior soft tissue
retention ability but lost some metabolic information, as shown
in the first example. MIEF better contains the functional
information but is not good at preserving anatomical

information, resulting in blurred edges and contours of soft
tissue. By comparison, the DRCM has better fusion performance,
which not only contains more functional information but also has
clearer edges and richer details. Therefore, these fusion results
demonstrate that our method can also achieve better fusion
results in the SPECT–MRI fusion. Similarly, the DRCM also
limits the visual quality of the fused image due to little attention
on visual information such as luminance.

We also conducted quantitative experiments on this dataset, and
the results of 10 typical image pairs are given in Figure 9 and Table 4.
It can be seen that our method achieved the best results on all four
indicators. Specifically, for SCD, the DRCM obtained the maximum
average value and reached the maximum SCD value on all image
pairs. For Nabf, the DRCM obtained the best average value and the
best value on all data pairs except for 5 and 6. For VIFF, the DRCM
obtained the largest average value and the maximum VIFF value on
all data pairs except for 5 and 6. These results demonstrate that the
DRCM not only has less noise and contains more source image
information compared to other comparison methods but is also
more consistent with the human visual system. Therefore, the
DRCM has superior fusion performance compared to other
comparison methods on the SPECT–MRI dataset.

Overall, for the fusion of SPECT–MRI, the DRCM has
advantages in both qualitative and quantitative aspects compared
with other methods. This result indicates that the proposed DRCM
has satisfactory generalization ability.

5 Ablation analysis

Ablation experiments are carried out on three innovation points
to test the effectiveness of the innovation points in the proposed
method, including without the cross mutual information ablation
experiment (w/o c-mi), the ablation experiment without coordinate
attention (w/o coor), and the ablation experiment without
multimodal attention (w/o multi). In the w/o c-mi ablation
experiment, the network only extracts features and has no
function to extract common and exclusive features. In the w/o
coor ablation experiment, common and exclusive features of
different modalities are not reinforced by coordinate attention. In
the w/o multi ablation experiment, exclusive features are not
dynamically weighted and highlighted by multimodal attention.

CT–MRI, PET–MRI, and SPECT–MRI datasets are also used in
ablation experiments, and Figure 10 shows the results of the
experiments. Compared with the other control groups, the fusion
results of the DRCM are the best, and the image texture is clearer, the
contrast is higher, and the details are richer. The fused images of w/o

TABLE 5 Mean value and standard deviation of four metrics for ablation
experiments on the CT–MRI dataset.

Metrics w/o c-mi w/o coor w/o multi DRCM

SCD 0.83 ± 0.33 1.1472 ± 0.38 1.3247 ± 0.43 1.4067 ± 0.39

VIFF 0.4838 ± 0.08 0.505 ± 0.08 0.6 ± 0.1 0.6249 ± 0.1

MS-SSIM 0.8765 ± 0.03 0.8288 ± 0.08 0.9016 ± 0.05 0.9321 ± 0.02

Nabf 0.0235 ± 0.02 0.072 ± 0.04 0.041 ± 0.02 0.0204 ± 0.001

TABLE 6 Mean value and standard deviation of four metrics for ablation
experiments on the PET–MRI dataset.

Metrics w/o c-mi w/o coor w/o multi DRCM

SCD 1.13 ± 0.17 1.3667 ± 0.14 1.6178 ± 0.19 1.7974 ± 0.18

VIFF 0.4161 ± 0.07 0.4479 ± 0.08 0.5403 ± 0.08 0.6282 ± 0.11

MS-SSIM 0.8884 ± 0.02 0.9045 ± 0.01 0.9435 ± 0.01 0.9595 ± 0.01

Nabf 0.015 ± 0.01 0.057 ± 0.03 0.045 ± 0.02 0.0371 ± 0.01

TABLE 7 Mean value and standard deviation of four metrics for ablation
experiments on the SPECT–MRI dataset.

Metrics w/o c-mi w/o coor w/o multi DRCM

SCD 0.3109 ± 0.14 0.8675 ± 0.1 0.8145 ± 0.09 1.6385 ± 0.06

VIFF 0.2675 ± 0.05 0.4005 ± 0.05 0.3914 ± 0.06 0.5905 ± 0.08

MS-SSIM 0.8137 ± 0.02 0.8893 ± 0.01 0.8818 ± 0.01 0.9363 ± 0.01

Nabf 0.0245 ± 0.01 0.0259 ± 0.01 0.034 ± 0.01 0.0182 ± 0.01
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c-mi and w/o coor have many artifacts, and the results of w/o multi
are greatly improved compared with those of w/o c-mi and w/o coor.
This shows that cross mutual information and coordinate attention
play an important role in removing artifacts and improving image
quality. Compared with w/o multi, our method obtains fusion
images with clearer contours, indicating that multimodal
attention is helpful for the expression of exclusive features of
modalities.

Tables 5–7 show the quantitative comparison results of ablation
experiments, respectively, from left to right by row; the indicator
data gradually become better, and our method achieves the optimal
results. Among them, the w/o multi greatly improved, which
indicates that the cross mutual information and coordinate
attention greatly increase the quality of the fused image by
extracting and enhancing common and exclusive features.
However, in the w/o coor and w/o multi ablation experiments,
the values of Nabf increase significantly, which indicates that
coordinate attention and multimodal attention can suppress the
generation of noise and eliminate artifacts during fusion. In
summary, the results of ablation experiments show the necessity
and importance of the three innovations included in our method.

This paper mainly explores the common redundancy issues and
designs dynamic weights for multiple modalities to accurately reflect
the importance of different modalities. However, the method that
concentrates on multimodal dynamic weighting has limitations on
the expression of visual information such as brightness. Therefore,
in future, we will achieve multimodal preservation of more source
image information while further improving the visual quality of
fused images.

6 Conclusion and recommendations

In this article, a disentangled representation medical image
fusion network with coordinated attention and multimodal
attention is proposed. In this network, the common features and
exclusive features of each modality pair are obtained by cross mutual
information and adversarial objective, respectively. Then, the
common features and exclusive features of different modes are
enhanced by coordinating attention, and the exclusive features
are weighted by multimodal attention. Finally, the two processing
features are fused by the elementwise-maximum method. The
ablation experiment results show that the innovation points in
the method significantly increase the effectiveness of the fused
network. In addition, the network is tested with CT–MRI,
PET–MRI, and SPECT–MRI pairs in the experiments. Eight
state-of-the-art comparison methods and four metrics are
adopted for qualitative and quantitative analyses, and the
comprehensive results show that the fused images obtained by
the DRCM have better performance.

It is worth noting that some challenges arose in the research
process, such as slight insufficiency in the brightness of fused images.

Therefore, addressing this limitation is the future direction and
recommendation. In addition, to the best of our knowledge, this is
the first time a multimodal attention mechanism was applied to
medical image fusion and achieved better results, which can be
further extended to other image fusion tasks. The medical images
used in this paper are all registered, which is not common in daily
life. Next, we will consider registration and fusion of common
images, and images of other specific diseases will also be
considered for fusion studies.
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