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Ranks and approximations for families of cubic theories

In this paper, we study the rank characteristics for families of cubic theories, as well as new properties
of cubic theories as pseudofiniteness and smooth approximability. It is proved that in the family of cubic
theories, any theory is a theory of finite structure or is approximated by theories of finite structures. The
property of pseudofiniteness or smoothly approximability allows one to investigate finite objects instead of
complex infinite ones, or vice versa, to produce more complex ones from simple structures.
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1 Introduction

Modern mathematical models, which are large relational structures (random graphs) and at the
same time time-dependent dynamic models, such as the growth of the Internet, social networks and
computer security, cannot be described and explored by infinite models in standard graph theory.
However, if a set of models is algorithmically well defined, then these sets exhibit general patterns that
are inherent in «almost all» models in the community. These general laws for well-defined systems can
be investigated using statistical and model-theoretic methods. From a model-theoretic point of view,
one can approach approximations [1], definability [2], and interpretability [3].

The ranks and degrees for families of complete theories [4], similar to the Morley rank and degree
for a fixed theory, and the Cantor-Bendixson rank and degree, were introduced by S. Sudoplatov.
The problem arises of describing ranks and degrees for natural theory families. Ranks and degrees for
families of incomplete theories are examined in [5, 6], for families of permutation theories - in [7], and
for families of all theories of arbitrary languages - in [8].

The [1] examines approximations of theories both in the general context and in relation to specific
natural theory families. The problem of describing the approximation forms of the natural theory
families arises.

This work is devoted to the description of the ranks and degrees of families of cubic theories, as
well as approximation by theories of finite cubic structures. Pseudofinite structures are mathematical
structures that resemble finite structures but are not actually finite. They are important in various
areas of mathematics, including model theory and algebraic geometry. Further study of pseudofinite
structures will continue to reveal new insights and applications in mathematics and beyond.

1.1 Preliminaries from cubic theories

Cubic structures are defined in [9], theoretical properties of the model are discussed and included in
the monograph [10], applications in discrete mathematics are presented [11]. The following necessary
terminology for cubic structures was taken from [9,11] without specifying it.
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Definition 1. An n-dimensional cube or an n-cube (where n ∈ ω) is a graph isomorphic to the graph
Qn with universe {0, 1}n and such that any two vertices (δ1, . . . , δn) and (δ′1, . . . , δ′n) are adjacent if
and only if these vertices differ by exactly one coordinate.

Let λ be an infinite cardinal number. A λ-dimensional cube or a λ-cube is a graph isomorphic to
a graph Γ = 〈X;R〉 that satisfies the following conditions:

(1) the universe X ⊆ {0; 1}λ is generated from an arbitrary function f ∈ X by the operator 〈f〉
attaching, to the set {f}, all results of substitutions for any finite tuples (f (i1) , . . . , f(im)) by tuples
(1− f (i1) , . . . , 1− f(im));

(2) the relation R consists of edges connecting functions differing exactly in one coordinate.
The described graph Q � Qf with the universe 〈f〉 is a canonical representative for the class of

λ-cubes.
Note that the canonical representative of the class of n-cubes (as well as the canonical representatives

of the class of λ-cubes) are generated by any its function: {0, 1}n = 〈f〉, where f ∈ {0, 1}n. Therefore
the universes of canonical representatives Qf of n-cubes like λ-cubes, will be denoted by 〈f〉.

Any graph Γ = 〈X; R〉, where any connected component is a cube, is called a cubic structure. A
theory T of the graph language {R(2)} is cubic if T = Th(M) for some cubic structureM. In this
case, the structureM is called a cubic model of T.

The invariant of a theory T is the function

InvT : ω ∪ {∞} →ω ∪ {∞},

satisfying the following conditions:
(1) for any natural n; InvT (n) is the number of connected components in any model of T, being

n-cubes, if that number is finite, and InvT (n) =∞ if that number is infinite;
(2) InvT (∞) = 0 if models of T do not contain infinite-dimensional cubes (i. e., the dimensions

of cubes are totally bounded), otherwise we set InvT (∞) = 1.
The diameter d(T ) of a cubic theory T is the maximal distance between elements in models of T, if

these distances are bounded, and we set d(T) 
∞ otherwise. The support (accordingly the∞-support)
Supp(T )(Supp∞(T )) of a theory T is the set {n ∈ ω|InvT (n) 6= 0}({n ∈ ω|InvT (n) =∞}).

If the diameter d(T ) is finite then there exists an upper estimate for dimensions of cubes, being
in models of T. It means that Supp(T ) is finite, i. e., InvT (∞) = 0. In this case the ∞-support is
non-empty.

If d(T ) = ∞ then InvT (∞) = 1. In this case the support Supp(T ) can be either finite or infinite.

1.2 Preliminaries from model theory and approximations of theories

Historically, pseudofinite fields were first introduced by J. Ax and S. Kochen [12] in the form of
non-principal ultraproducts of finite fields. Later, J. Ax in [13] connected the notion of pseudofiniteness
and the construction of ultraproducts. The class of pseudofinite fields was defined in the work of J. Ax
[13] and regardless of him in the work of Yu. Ershov [14] with an axiom system indicating this class.

In 1965 J. Ax [15] investigated fields F having the property that every absolutely irreducible variety
over F has an F -rational point. It was shown that the non-principal ultraproduct of finite fields has
such property. Yu. Ershov called such fields regularly closed. The notion of pseudofiniteness is credited
to work in the 1968s by J. Ax [13]. He introduced the notion of pseudofiniteness to show the decidability
of the theory of all finite fields, i.e. there is an algorithm to decide whether a given statement is true
for all finite fields. It was proved that pseudofinite fields are exactly those infinite fields that have every
elementary property common to all finite fields, that is, pseudofinite fields are infinite models of the
theory of finite fields.
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In the early 1990s, E. Hrushovski resumed research in the field of pseudofinite structures in meeting
on Finite and Infinite Combinatorics in Sets and Logic [16], as well as in the joint works of E. Hrushovski
and G. Cherlin and the following definition first occurs in [17], subsequently in [18]:

Definition 2. Let Σ be a language and M be a Σ-structure. A Σ-structure M is pseudofinite if
for each Σ-sentences ϕ, M |= ϕ implies that there is a finite M0 such that M0 |= ϕ. The theory
T = Th(M) of a pseudofinite structureM is called pseudofinite.

In the work [1] S. Sudoplatov defined approximations relative given family T of complete theories.
Definition 3. [1] Let T be a family of theories and T be a theory such that T /∈ T . The theory T is

said to be T -approximated, or approximated by the family T , or a pseudo-T -theory, if for any formula
ϕ ∈ T there exists T ′ ∈ T for which ϕ ∈ T ′.

If a theory T is T -approximated, then T is said to be an approximating family for T , and theories
T ′ ∈ T are said to be approximations for T . We put Tϕ = {T ∈ T | ϕ ∈ T}. Any set Tϕ is called the
ϕ-neighbourhood, or simply a neighbourhood, for T . A family T is called e-minimal if for any sentence
ϕ ∈ Σ(T ), Tϕ is finite or T¬ϕ is finite.

Recall that the E-closure for a family T of complete theories is characterized by the following
proposition.

Proposition 1. [19] Let T be a family of complete theories of the language Σ. Then ClE(T ) = T for
a finite T , and for an infinite T , a theory T belongs to ClE(T ) if and only if T is a complete theory
of the language Σ and T ∈ T , or T 6= T and for any formula ϕ the set Tϕ is infinite.

We denote by T the class of all complete theories of relational languages, by T fin the subclass of
T consisting of all theories with finite models, and by T inf the class T \T fin.

Proposition 2. [1] For any theory T the following conditions are equivalent:
(1) T is pseudofinite;
(2) T is T fin-approximated;
(3) T ∈ ClE(T fin)\T fin.

1.3 Preliminaries from ranks for families of theories

In [4], rank RS(·) is defined inductively for families of complete theories.
(1) The empty family T is assigned the rank RS(T ) = −1.
(2) For finite nonempty families T set RS(T ) = 0.
(3) For infinite families T we set RS(T ) ≥ 1.
(4) For the family T and the ordinal number we set α = β + 1 RS(T ) ≥ α if there are pairwise

inconsistent Σ(T ) sets of ϕn, n ∈ ω such that RS(Tϕn) ≥ β, n ∈ ω.
(5) If α is a limit ordinal, then RS(T ) ≥ α if RS(T ) ≥ β for each β < α.
(6) Let RS(T ) = α if RS(T ) ≥ α and RS(T ) 6≥ α+ 1.
(7) If RS(T ) ≥ α for any α, we set RS(T ) =∞.
A family T is called e-totally transcendental, or totally transcendental, if RS(T ) is an ordinal.

If T is e-totally transcendental, with RS(T ) = α ≥ 0, we define the degree ds(T ) of T as the
maximal number of pairwise inconsistent sentences ϕi such that RS(Tϕi) = α.

Proposition 3. [4] T is e-minimal ⇔ RS(T ) = 1 and ds(T ) = 1

Definition 4. [4] A family T , with infinitely many accumulation points, is called a-minimal if for
any sentence ϕ ∈ Σ(T ), Tϕ or T¬ϕ has finitely many accumulation points.

Let α be an ordinal. A family T of rank α is called α-minimal if for any sentence ϕ ∈ Σ(T ),
RS(Tϕ) < α or RS(T¬ϕ) < α.

Proposition 4. [4] (1) A family T is 0-minimal ⇔ T is a singleton.
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(2) A family T is 1-minimal ⇔ T is e-minimal.
(3) A family T is 2-minimal ⇔ T is a-minimal.
(4) For any ordinal α a family T is α-minimal ⇔ RS(T ) = α and ds(T ) = 1.

2 Ranks for families of cubic theories

Consider a language Σ composed of R(2). Let Tcub be the family of all cubic theories of Σ. Let T
be a cubic theory and Q |= T . For a cubic theory T we consider the above invariants and the following
possibilities:

2.1 Family of cubic theories with a bounded number of InvT (n)

If for each theory T from the subfamily T ⊂ Tcub both diameters d(T ) and InvT (n) are finite, and
also InvT (∞) = 0 or Supp(T ) is finite, the subfamily T is finite, so RS(T ) = 0, and the degree of
ds(T ) is equal to the number of invariants. Let’s illustrate how the grades of families differ.

Example 1. Now we consider a one-element family T = {T1}. If we consider n0-cubes with invariant
InvT1(n0) = m, then RS(T ) = 0, ds(T ) = 1. And if we work with n0-cubes and n1-cubes with
InvT1(n0) = m and InvT1(n1) = l for m 6= l, then ds(T ) = 2. For a finite number k, if we are dealing
with nk-cubes with the set of invariants {InvT1(n0), . . . , InvT1(nk)}, ni 6= nj , we still have RS(T ) = 0
and degree ds(T ) = k + 1.

Example 2. Let us deal with the finite family T ⊂ Tcub consisting of theories T1, . . . , Tn. If the
number of mi-cubes in each theory Ti is equal to k, in other words, each theory has the same number
of mi-cubes, that is, InvTi(mi) = k with InvTi(mi) 6= InvTj (mj), i 6= j, then RS(T ) = 0, ds(T ) = n,
since T is represented as a disjoint union of finite subfamilies Tϕi = {Ti ∈ T |ϕi ∈ Ti is a sentence
describing mi-cubes }.

In the examples above, one can notice that the degree of the family depends on the number of
invariants. If for the theories considered in Example 2 we add the conditions that each theory has the
same number of invariants, let, for example, s, then ds(T ) = n · s. And if for different s1, . . . , sn, in
each theory Ti there are si invariants, then ds(T ) =

∑n
i=1 si.

For a family T ⊂ Tcub such that InvT (∞) = 0 and Supp(T ) is finite for every theory T ∈ T , the
degree varies in a similar way.

Let us now consider infinite subfamilies T ⊂ Tcub of all cubic theories with a bounded number of
InvT (n) =∞ and InvT (∞) = 0 for every T ∈ T . In this case, Supp(T ) is infinite and the rank of the
family increases, and for the degree of the family, we consider the number of accumulation points.

For natural numbers n,m ∈ ω, with n 6= m, we denote by Tn the family of cubic theories from Tcub
with one arbitrary value InvT (n), where T ∈ Tn and InvT (m) = 0.

Proposition 5. Each subfamily Tn of Tcub is e-minimal.

Proof. By Proposition 3, it suffices to prove that RS(Tn) = 1 and ds(Tn) = 1. The family Tn
consists of theories T1, . . . , Ts with InvTi(n) = ki, ki > 0 1 ≤ i ≤ s and the only theory T∞ with
InvT∞(n) =∞. The theory T∞ is the only accumulation point for Tn, and the number of accumulation
points is equal to the degree of the family. We get RS(Tn) = 1 and ds(Tn) = 1, which implies an
e-minimality of Tn.

Example 3. We are dealing with cubes of different sizes n0 and n1. Then we get a countable number
of options (InvT (n0), InvT (n1)). Thus there is a countable set of theories with n0-cubes and n1-cubes
forming the family T ′. Here every family with an infinite InvT (n0) or InvT (n1) has RS = 1, and
the only accumulation point with InvT (n0) = InvT (n1) =∞, has infinitely many n0 cubes, infinitely
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many n1 cubes and RS(T ′) = 2. Thus for the given family T ′ RS(T ′) = 2 and ds(T ′) = 1. Hence the
family is a-minimal.

Example 4. If there exists a countable number of ni-cubes, i ∈ ω, with countable (InvT (n0),
InvT (n1), . . . , InvT (ni)) one can construct an α-minimal family T consisting of a countable number
of e-minimal subfamilies Ti, i ∈ ω. According to the definition of α-minimality, the family T has
RS(T ) = α, ds(T ) = 1 and is represented as T∧

i∈ω ϕi
.

So by increasing the number of InvT (n) invariants and the dimension of the cubes, one can unlimited
increase rank to any natural number. If the set InvT (n) is countable, then the family T ⊂ Tcub of cubic
theories is e-totally transcendental and can contain e-minimal, a-minimal, α-minimal subfamilies.

Realizations of e-minimal, a-minimal, α-minimal subfamilies of the family Tcub of all cubic theories
allow one to construct a subfamily T with a given countable rank and degree. According to the
definition of α-minimality, a family of T cubic theories with RS(T ) = α and ds(T ) = n can
be represented as a disjoint union of subfamilies TInvT (k0), . . . , TInvT (kn−1) , somewhat differently
InvT (k0), . . . , InvT (kn−1), so every TInvT (ki) is α-minimal.

2.2 Family of cubic theories with an unbounded number of InvT (n)

The next result shows that the family Tcub of all cubic theories is not e-totally transcendental.
Theorem 1. RS(Tcub) =∞.
Proof. Repeating the arguments of [1; Proposition 4.4] and [8; Proposition 2.5] we can construct a

2-tree of sentences ϕ, ϕ0, ϕ1, ϕ01, . . . indicating an infinite rank.

3 Approximations of cubic theories

The following theorem shows that any cubic theory is approximated by theories of finite cubic
structures.

Theorem 2. Any cubic theory T with an infinite model is pseudofinite.
Proof. Let Q be an infinite model of a cubic theory T . Since for finite k and n, InvT (n) = k and

InvT (∞) = 0, the cubic model Q is finite and consists of a finite number of finite connected components
(n-cubes), we will consider only the following cases:

Case 1. If InvT (n) = ∞ and InvT (∞) = 0 (that is, ∞-support is a singleton), then Q consists of
an infinite number of connected components of finite diameters. The Q model is approximated by the
disjoint union

⊔
i∈ωQi of models Qi, i ∈ ω which the connected components are n-cubes. Each such

n-cubes are pairwise isomorphic that implies the pseudofiniteness of T .
Case 2. If for finite k and n ∈ ω, InvT (n) = k and InvT (∞) = 1, then the theory T has models

Q = Q0
⊔
Q1, where Q0 is a finite cubic model consisting of m ≤ k connected components (n-cubes)

of finite diameters, Q1 is an infinite cubic model consisting of k−m connected components of infinite
diameters. Since the components of the modelQ0 do not affect the pseudofiniteness,Q1 is approximated
by increasing the dimension, as well as the diameters of the connected components. Let Q′n be a finite
model with k−m connected components which are n-cubes. Using Q′i = Q′2 ∪Q′i−1, i > 2 in the limit,
we obtain the desired model Q1. The set of theories {Th(Q′i)|i ∈ ω} approximate the theory Th(Q1)
and theories {Th(Q0

⊔
Q′i)|i ∈ ω} approximate the T theory.

We can also grow connected components to get a pseudofinite model Q′ with InvT (n) = ∞ and
InvT (∞) = 1, having components of both finite and infinite diameters.

Case 3. Let InvT (n) =∞ and InvT (∞) = 1. Let the cubic model Q have only an infinite number
of connected components of infinite diameters. For the cubic model Q, it is true that Q =

⊔
i∈ωQ′i,

where Q′i = Q′2 ∪ Q′i−1, i > 2. That is, first we take the finite model and increase the diameters of the

Mathematics series. No. 3(111)/2023 85



N.D. Markhabatov

connected components, we get a model with a finite number of connected components, each of which
is infinite-dimensional cubes, then, increasing the number of the connected components, we get the
desired model Q.

4 Futher direction

Recently, various methods similar to the “transfer principle” have been rapidly developing, where
one property of the structure or pieces of this structure is satisfied in all infinite structures or in another
algebraic structure. Such methods include smoothly approximable structures, holographic structures,
almost sure theory, and pseudofinite structures approximable by finite structures. Pseudofinite structures
in an explicit form after J. Ax were not studied for a long time. Until the 1990s, only a few results
on this topic were obtained, and the very first result is the result of B.I. Zilber [20] asserting that
ω-categorical theory is not finitely axiomatizable. At the time, the property of being pseudofinite was
not considered particularly important or interesting, but the proof is based on pseudofiniteness.

One of the first results in the theory of classification of pseudofinite structures is the famous theorem
of G. Cherlin, L. Harrington and A. Lachlan [21], which generalizes Zilber’s theorem to the class of
ω-stable ω-categorical structures, stating that totally categorical theories (and in more generally, ω-
categorical ω-stable theories) are pseudofinite. They also proved that such structures are smoothly
approximated by finite structures.

Definition 5. [22] Let L be a countable language and let M be a countable and ω-categorical L-
structure. L-structure M (or Th(M)) is said to be smoothly approximable if there is an ascending
chain of finite substructures A0 ⊆ A1 ⊆ . . . ⊆ M such that

⋃
i∈ω Ai = M and for every i, and for

every ā, b̄ ∈ Ai if tpM(ā) = tpM(b̄), then there is an automorphism σ of M such that σ(ā) = b̄ and
σ(Ai) = Ai, or equivalently, if it is the union of an ω-chain of finite homogeneous substructures; or
equivalently, if any sentence in Th(M) is true of some finite homogeneous substructure ofM.

A. Lachlan introduced the concept of smoothly approximable structures to change the direction
of analysis from finite to infinite, that is, to classify large finite structures that appear to be smooth
approximations to an infinite limit.

Smoothly approximated structures were first examined in generality in [22], subsequently in [23].
The model theory of smoothly approximable structures has been developed very much further by
G. Cherlin and E. Hrushovski [18]. The class of smoothly approximable structures is a class of ω-
categorical supersimple structures of finite rank which properly contains the class of ω-categorical
ω-stable structures (so in particular the totally categorical structures).

Recall [24,25] that a countable model Q of a theory T is called a limit model if Q is represented as
the union of a countable elementary chain of models of the theory T that are prime over tuples, and
the model Q itself is not prime over any tuple. A theory T is called l-categorical if T has a unique (up
to isomorphism) limit model.

Homogeneity and l-categoricity, as well as the Morley rank for a fixed cubic theory, are studied in
[9, 10].

Proposition 6. Any model Q of the l-categorical cubic theory T is smoothly approximable by finite
cubic structures.

Proof. The limit model Q of l-categorical cubic theories T is represented as an ascending chain of
finite prime substructures Q′0 ⊆ Q′1 ⊆ . . . ⊆ Q such that Q =

⋃
i∈ωQ′i and there is an automorphism

σ of Q such that σ(Q′i) = Q′i.
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Conclusions

In the paper the ranks and degrees for families of cubic theories are described. Several examples
of families of finite rank cubic theories are given. It is proved that any cubic theory with an infinite
model is pseudofinite.
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Кубтық теориялардың үйiрлерi үшiн рангiлер мен
аппроксимациялар

Жұмыста кубтық теориялар үйiрлерiнiң рангтық сипаттамалары, сонымен қатар псевдоақырлы және
тегiс аппроксимациялау сияқты кубтық теориялардың жаңа қасиеттерi зерттелген. Кубтық теория-
лар үйiрiндегi кез келген теория ақырлы құрылым теориясы болып табылатыны немесе ақырлы
құрылымдардың теорияларымен аппроксимацияланатыны дәлелдендi. Псевдоақырлылық немесе те-
гiс аппроксимациялану қасиетi күрделi шексiз құрылымдардың орнына ақырлы объектiлердi зертте-
уге немесе керiсiнше қарапайым құрылымдардан күрделi құрылымдарды тудыруға мүмкiндiк бередi.

Кiлт сөздер: теориялар аппроксимациялары, куб, кубтық құрылым, кубтық теория, псевдоақырлы
теория, тегiс аппроксимацияланатын құрылым.
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Ранги и аппроксимация для семейств кубических теорий

В работе изучены ранговые характеристики семейств кубических теорий, а также новые свойства
кубических теорий, такие как псевдоконечность и гладкая аппроксимируемость. Доказано, что в
семействе кубических теорий любая теория является теорией конечной структуры или аппроксими-
руется теориями конечных структур. Свойство псевдоконечности или гладкой аппроксимируемости
позволяет исследовать конечные объекты вместо сложных бесконечных или, наоборот, из простых
структур производить более сложные.

Ключевые слова: аппроксимация теории, куб, кубическая структура, кубическая теория, псевдоко-
нечная теория, гладко аппроксимируемая структура.
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