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Abstract

Introduction
Federated Learning (FL) is a decentralised approach to training statistical models, where training
is performed across multiple clients, producing one global model. Since the training data remains
with each local client and is not shared or exchanged with other clients the use of FL may reduce
privacy and security risks (compared to methods where multiple data sources are pooled) and can
also address data access and heterogeneity problems. Synthetic data is artificially generated data
that has the same structure and statistical properties as the original but that does not contain any
of the original data records, therefore minimising disclosure risk. Using FL to produce synthetic data
(which we refer to as “federated synthesis”) has the potential to combine data from multiple clients
without compromising privacy, allowing access to data that may otherwise be inaccessible in its raw
format.

Objectives
The objective was to review current research and practices for using FL to generate synthetic data and
determine the extent to which research has been undertaken, the methods and evaluation practices
used, and any research gaps.

Methods
A scoping review was conducted to systematically map and describe the published literature on
the use of FL to generate synthetic data. Relevant studies were identified through online databases
and the findings are described, grouped, and summarised. Information extracted included article
characteristics, documenting the type of data that is synthesised, the model architecture and the
methods (if any) used to evaluate utility and privacy risk.

Results
A total of 69 articles were included in the scoping review; all were published between 2018 and 2023
with two thirds (46) in 2022. 30% (21) were focussed on synthetic data generation as the main model
output (with 6 of these generating tabular data), whereas 59% (41) focussed on data augmentation.
Of the 21 performing federated synthesis, all used deep learning methods (predominantly Generative
Adversarial Networks) to generate the synthetic data.

Conclusions
Federated synthesis is in its early days but shows promise as a method that can construct a global
synthetic dataset without sharing any of the local client data. As a field in its infancy there are
areas to explore in terms of the privacy risk associated with the various methods proposed, and more
generally in how we measure those risks.

Keywords
synthetic data; federated learning; review; data utility; data confidentiality

∗Corresponding Author:
Email Address: claire.little@manchester.ac.uk (Claire Little)

https://doi.org/10.23889/ijpds.v8i1.2158
October 30, 2023 © The Authors. Open Access under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.en)

http://www.ijpds.org
mailto:claire.little@manchester.ac.uk
https://doi.org/10.23889/ijpds.v8i1.2158
https://creativecommons.org/licenses/by/4.0/deed.en


Little C et al. International Journal of Population Data Science (2023) 8:1:24

Introduction

Rationale

The ability to share data is important for transparency,
research, and policy development. To ensure confidentiality,
Statistical Disclosure Control (SDC) [1] can be applied to alter
or remove disclosive information from data, making it safer
for release. However, SDC methods can distort relationships
in data, reducing its usefulness [2, 3]. Even with SDC applied
there is still residual risk and if naively carried out it is possible
to identify individuals in supposedly anonymous data [4, 5].
An alternative privacy-preserving method is data synthesis
[6, 7] which uses models based on an original dataset to
generate artificial data with the same structure and statistical
properties, but which does not contain any of the original
records. Synthetic data can be used where access to the
original data is restricted or the data are unavailable for
release due to privacy constraints. It may also be used for
data augmentation, that is where extra data is created to
add to an already existing dataset (for instance, large training
datasets can be required when training a machine learning
(ML) model). Where data is safeguarded, the application and
approval processes to acquire access can be lengthy, taking
months or even years and potentially delaying research analysis
[8]. In these situations, synthetic versions of the data can allow
researchers to plan analysis or test code whilst awaiting access
to the real data.

Whilst synthetic data should present extremely low
disclosure risk, as the risk of reidentification is not meaningful
(since it does not contain any “real” data), there is still a
risk of attribution disclosure [9]. This can occur where some
attribute can be associated with a particular equivalence class;
for example, the synthetic data might reveal that all females
aged over 80 in a particular geographical area have dementia.
There are therefore usually two competing objectives when
producing synthetic data: high data utility (i.e., ensuring that
the synthetic data is useful, with a distribution close to the
original) and low disclosure risk. Balancing this trade-off can
be difficult as, in general, reducing disclosure risk comes at a
cost in utility.

Methods to generate synthetic data include statistical
methods [10, 11] and deep learning (DL) methods based
on neural networks (NNs) such as Generative Adversarial
Networks (GANs) [12], Variational Autoencoders (VAEs) [13],
large language models [14] and diffusion models [15, 16].
DL methods have been used extensively for image synthesis
(and tend to deal with homogeneous numerical data) but
there is growing interest in their use for the generation of
tabular1 data with methods being adapted for this purpose
(i.e., to deal with predominantly categorical data, for example
[17, 18]). Kokosi et al. [19] note that the most effective way of
synthesising tabular data is not yet known, particularly where
the datasets contain thousands or even millions of records and
many variables, as is typical of administrative data.

GANs are a generative method that use NNs to model
the distribution of some data. Broadly, a GAN aims to

1Following [88], we refer to tabular data in the context of ML, as
structured data comprising rows (e.g., individuals, cases) and columns
(e.g., features, variables) that may contain mixed feature types (such as
categorical, numerical, and ordinal).

probabilistically describe how a dataset is generated, allowing
new data to be generated by sampling from the model.
Figure 1 shows the structure of a typical GAN, where two
NN models are trained: a generative model that captures
the data distribution and generates new data samples, and a
discriminative model that aims to determine whether a sample
is from the model distribution or the (real) data distribution.
The models are trained together in an adversarial zero-sum
game, such that the generator’s goal is to produce data
samples that fool the discriminator into believing that they
are real, and the discriminator’s goal is to determine which
samples are real and which are fake. Training is iterative
with (ideally) both models improving over time (in terms of
capability) but with the overall system goal being a situation
where the discriminator can no longer distinguish which data
is real or fake (in terms of outcome).2

Federated Learning (FL) [20], is a decentralised approach
to training statistical models, where the model hosted on
a server is collaboratively trained using data from multiple
clients, without the clients transmitting or exchanging the
raw data.3 Kairouz et al. [21] describe a typical FL training
process using the FedAvg (Federated Averaging) algorithm
[20], as involving a server orchestrating the training process
by repeating the following steps:

1. Client selection: server samples from a set of clients
who meet eligibility requirements (e.g., mobile phone is
plugged in and connected to wi-fi).

2. Broadcast: the selected clients download current model
weights and training program.

3. Client computation: each selected client locally runs
and updates the model (training on their own local
data).

4. Aggregation: server collects client updates and
aggregates them.

5. Model update: server updates the global shared model
based on the aggregated update from the clients.

Training would usually continue until some stopping condition
is met, for example, when a target number of training rounds
have been performed. FL is commonly used to train NN
models, with the weights and parameter settings sent to the
central server. Since the central server does not access the local
data during the training process, privacy and security risks
are reduced (over alternative methods where the data would
need to be transmitted and stored centrally). Challenges in FL
include dealing with non-iid (non-independent and identically
distributed) data on the clients and ensuring that the privacy
of client data is truly preserved. Data can be non-iid in diverse
ways, there could be different distributions or features in the
client datasets, or clients may have differing amounts of data,
all of which can affect the performance of the overall model

2From a data synthesis perspective GANs are interesting in that the
generative model does not access the original (or training) data at all and
starts off with only noise as input. In theory this might reduce disclosure
risk.

3Following the practice used in the papers we have reviewed,
throughout this paper, we refer to each individual participating device
as a client (the devices could be as diverse as a data server or a mobile
phone, for example).
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Figure 1: Structure of a typical GAN (Generative Adversarial Network)

NNs contain multiple layers of weighted nodes and backpropagation (backward propagation of errors) involves feeding the errors
(or gradient of the loss function) back through the layers in order to adjust the weights for the next round of training.

[22]. As for privacy protection, it is possible that information
about the raw data could still be leaked even where data is not
sent, for instance, an adversary may be able to make inferences
about a client’s training data by knowing the previous model
and the current model update supplied by that client [21].
Methods such as encryption or Differential Privacy (DP) [23]
can be used to counter this risk, but it is important to be aware
of the types of attack that could occur and where information
could potentially be leaked.

The initial emphasis of FL was on mobile and edge device
applications [20, 24, 25] where there could be many massively
distributed clients with potentially limited communication,
unbalanced data and/or different computational and storage
capabilities [26], but interest has increased in its use in
other applications [21]. For example, FL can allow cross-
organisational collaboration for the training of models;
potentially allowing for a (privacy-preserving) use of data
that would never normally be shared or combined outside
of an organisation, or institution, etc. In the context
of healthcare, FL has the potential to improve medical
care, allowing the creation of accurate, robust models
without the need to exchange or centralise sensitive medical
data [27, 28].

Using FL to produce synthetic data allows the combination
of data from multiple clients, in a form that reflects real
data, whilst minimising disclosure risk. It could allow the
combination of information in datasets where those datasets
would be unlikely to be linked in the traditional sense,
thereby producing opportunities to access unique data that
is potentially more diverse, and richer, than each client’s
synthetic dataset alone. That is, using FL to produce synthetic
data may produce a dataset that is more representative of

the overall (or combined) distribution than any clients own
individual dataset could be, without the need for data sharing.
As an example, if multiple hospitals would like to share their
private patient data (pertaining to a medical trial, for instance)
in order to have a larger sample, but they are restricted from
doing this due to privacy constraints, an alternative then would
be to use FL to produce synthetic data.

Objectives

FL is a relatively new research field, and it is unclear which
methods are best suited for federated synthesis.4 This paper
aims to identify work to date, what type of data is generated,
which model architecture (for example, GANs) is used to
generate the data, which (if any) produce usable high utility
data with low privacy risk, and how the privacy risk is
measured (for example, is it a part of the algorithm, or ad-
hoc). Since population data is typically likely to be in a
tabular format, we perform a more detailed analysis on those
methods producing tabular data. To meet these objectives,
a scoping review was performed to systematically map the
research done in this area and to identify any existing gaps in
knowledge.

The review aims to investigate federated synthesis by:
1) identifying and describing the literature; 2) discussing
open questions and trends; and 3) considering the benefits
and challenges of federated synthesis. This scoping review
will serve to inform the next stages of research and to our
knowledge, is the first review undertaken on the use of FL for
data synthesis.

4We define “federated synthesis” as the process of generating synthetic
data using FL.
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Methods

A scoping review was conducted to systematically map and
describe the published literature on the use of FL to generate
synthetic data, following the reporting guidelines of the
PRISMA extension for scoping reviews (PRISMA-ScR) [29]
and the five-stage framework defined by Arksey and O’Malley
[30]. This included defining the research questions, identifying
relevant studies, selecting studies, charting the data, and
summarising and reporting the findings.

The search strategies and data charting form were drafted
by Little and refined through discussion with the research
team. Little performed the search, selection of sources of
evidence and appraisal and synthesis of results, all with
feedback from the research team.

Eligibility criteria

Articles from peer-reviewed journals were included together
with conference and arXiv preprint papers. arXiv papers were
included because this is a fast-moving field, and it is common
for research to first appear on the platform. We recognise that
because arXiv is not peer-reviewed, the quality of papers on
the platform may be lower but since this review aims to include
all research that is being undertaken it was deemed important
to err on the side of inclusion. To be included, all research
must be written in English and published between 2010 and
January 2023. Since the term “federated learning” was first
introduced in 2016 [21] it is unlikely there would be results
before that date, but a longer timeline was used for the sake
of thoroughness.

The focus of much of the FL literature is not data
synthesis, but can involve goals that generally include
producing more efficient algorithms to improve overall FL
performance (where performance might be measured as the
accuracy of a global predictive model, for example), or solving
problems of non-iid data on the client side. Synthetic data is
often produced as part of these models however and may be
used to improve the training of an ML classifier by providing
extra data, though it is not necessarily the final output of the
model. The data produced by some of these models is referred
to as augmented data. Whilst augmented data can simply be
the original training data with transformations applied to it,
it can also be produced using data synthesis methods, and
therefore of interest in this review. Since, given the newness
of the field we aim to be inclusive, a fairly broad set of search
terms was used and variations of the terms “synthetic” and
“augmented” were searched for alongside “federated learning”.
Papers were excluded if they did not use FL and/or did not
generate new (synthetic or augmented) data.

Information sources and search

To identify potentially relevant documents, on January 31st

2023, the following bibliographic databases were searched:
ACM, ScienceDirect, Web of Science, IEEE Xplore, Scopus
and arXiv. The search strategy involved searching the title,
abstract and keywords for the search terms (and variations
of) “federated learning”, “synthetic” and “augmentation”, as
listed in Table 1. The Google Scholar search engine was
also used, but since it is not possible to focus the search

on a particular field (e.g., title), the results were necessarily
broader – therefore whilst all results were screened, only the
top 50 were reviewed in depth since the relevance declined
(and there were no results from Google Scholar that were not
also identified in the bibliographic databases). The inclusion
of papers identified whilst reviewing the primary sources and
background literature was permitted if they satisfied the
inclusion criteria; the cut-off date for this was February 13th

2023, after which no further articles were added. The results
from each source were saved in a csv file.

Selection of sources of evidence

Once all sources were identified via search, the process involved
firstly removing duplicates, then reading the abstract of each
remaining article to apply the exclusion criteria. Articles were
excluded if they did not use FL (e.g. [31] which discussed
image synthesis but did not reference FL, although it is listed
as a keyword in the paper), or if they used FL but did not
involve the creation of new data (e.g. [32] which tested an FL
approach on synthetic data but did not generate the synthetic
data). Articles that were earlier versions of a newer work
(that was already included) were also excluded (e.g. [33] was
excluded as it was an earlier conference version of [34]).

Data charting, appraisal, and synthesis of
results

After the exclusions were applied, all sources were loaded into
the Mendeley reference manager and then the full article was
reviewed. The data was captured using an Excel spreadsheet
and included the following information:

• Author, title, publication title, year, DOI, URL, source,
author affiliations, author country

• Goal of the study, type of data, application domain

• Method for generating data, FL algorithm, URL for code
repository

• How study was evaluated, privacy metrics, privacy
concerns

• Outcome of the study

The data charting variables were specified in advance;
however, further variables were added during the capture
process as became necessary. Extra variables were added to
capture the distinct types of GAN architecture that were used,
and to allow the inclusion of extra detail around the type of
data that the clients and server exchange.

The papers were then grouped and summarised by: the
overall aim (e.g., to generate synthetic data, or improve FL
performance); the type of data they produced (e.g., image,
tabular); whether they measured the associated privacy risk of
generated data; and whether they send data (other than model
parameters) to the server. The groupings were not independent
across these dimensions, and for the data type a paper could
contain a method that produces more than one type of data.
Papers were also grouped by the model architecture (e.g.,
GAN) that they employed to generate the data and variations
within this were summarised.
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Table 1: The databases and search terms used

Database Search terms

ACM Digital Library [[Title: "federated learning"] AND [Title: synth*]] OR [[Title: "federated learning"] AND [Title: augmen*]]
OR [[Abstract: "federated learning"] AND [Abstract: synth*]] OR [[Abstract: "federated learning"] AND
[Abstract: augmen*]] OR [[Keywords: "federated learning"] AND [Keywords: synth*]] OR [[Keywords:
"federated learning"] AND [Keywords: augmen*]] AND [E-Publication Date: (01/01/2010 TO 31/01/2023)]

arXiv Query: date_range: from 2010-01-01 to 2023-01-31; include_cross_list: True; terms: AND title="federated
learning" AND synth*; OR title="federated learning" AND augmen*; OR abstract="federated learning"
AND synth*; OR abstract="federated learning" AND augmen*

IEEEXplore ("Document Title":"federated learning") AND ("Document Title":augmen*) OR ("Abstract":"federated
learning") AND ("Abstract":augmen*) OR ("Author Keywords":"federated learning") AND ("Author
Keywords":augmen*) Year: 2010–2023 ("Document Title":"federated learning") AND ("Document
Title":synth*) OR ("Abstract":"federated learning") AND ("Abstract":synth*) OR ("Author
Keywords":"federated learning") AND ("Author Keywords":synth*) Year: 2010–2023

ScienceDirect Title, abstract or author-specified keywords: ("federated learning" AND augmentation) OR ("federated
learning" AND augment) OR ("federated learning" AND synthetic) OR ("federated learning" AND
synthesis)
Year: 2010–2023

Scopus TITLE-ABS-KEY ("federated learning" AND (synth* OR augmen∗)) AND PUBYEAR > 2009

Web of Science (TI=(("federated learning" AND augmen*) OR ("federated learning" AND synth*))) OR (AB=(("federated
learning" AND augmen*) OR ("federated learning" AND synth*))) OR (AK=(("federated learning" AND
augmen*) OR ("federated learning" AND synth*)))
Year: 2010-01-01 to 2023-01-31

Google Scholar "federated learning" AND (synth* OR augmen*)
Year: 2010-2023

Results

The PRISMA flow diagram (Figure 2) details the literature
database and website search and article selection process.
When all duplicates were removed and exclusions were applied,
69 articles remained.

Characteristics of the included papers (n= 69)

Figure 3 details the key characteristics of the selected papers.
Two thirds (46, 67%) were published in 2022 suggesting a
growing interest in FL. Just under half (32, 46%) of the
papers did not specify a particular domain, whereas just over
a quarter (19, 28%) were in the medical domain focussing
predominantly (16 out of 19) on image data. Nine (13%)
papers focussed on the Internet of Things (IOT), mobile or
cloud services papers and six (9%) focussed on intrusion or
anomaly detection. A third (23, 33%) of all papers originated
in China (including Hong Kong), that is, the first author was
based there. The USA (12, 17%) accounted for the next
biggest group, followed by Germany (6, 9%). There was a mix
of journal (23, 33%), conference (22, 32%) and arXiv (24,
35%) papers, and whilst nearly three quarters (51, 74%) of
the papers were authored by academics, just over a fifth (15,
22%) were a collaboration between industry and academia.
Supplementary Appendix 1 contains the data charting form
with the variables and information extracted from the
papers.

Categorising the papers

The 69 papers were grouped into four categories by the
purpose for generating new data and the overall goal of the
research:

• Federated synthesis: 21 (30%) papers had a goal of
generating synthetic data, that is, the output was data
that had been generated by the model. This is the group
of central interest since these were methods designed
specifically for generating synthetic data.

• Improving FL using augmentation: 29 (42%) papers
generated data for the purpose of improving the FL
process, that is, the data was used within the model
(rather than as an output) to augment existing data.
Whilst “Improving FL” is a broad categorisation, the
papers in this group use data augmentation to mitigate
the problem of non-iid data on the client side and
improve the overall FL performance.

• Developing FL: 11 (16%) papers were categorised
as developing FL further, this included a federated
clustering framework [35] and seven papers [36–42]
where clients share synthetic data with the server,
rather than model parameters/weights (this might
allow quicker model training and reduce communication
costs).

• Adversarial attacks and detection: 8 (12%) papers
focussed on attacks on FL, or the use of FL for intrusion

5
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Figure 2: PRISMA flow diagram for the literature database and website search

or anomaly detection. They generated data to augment
the models, although Huang et al. [43] demonstrated
generating malicious data to poison the model.

These groups will be referred to in the following analysis.

What type of data is generated?

The type of data was determined either by the papers explicitly
stating it, or by the types of data that the method was
evaluated on. Note that where a method could generate
multiple types of data (e.g., image and text), this was not
simultaneous, but as separate runs of the model. Overall,
72% (50) of the papers dealt with image data, 26% (18)
used tabular data, 6% (4) used text data, 1% (1) used audio
data and 1% (1) time series. There were overlaps in that six
papers [35, 36, 40, 44–46] mentioned the ability to deal with
multiple data types, such as image and text (not at the same
time), and one paper [47] did not describe the data used.
Figure 4 plots the different data types by the goal of research as
described in the previous section. The papers in the Federated
synthesis group deal with either image or tabular data ([45]
could generate both), whereas papers in the Improving FL
using augmentation group predominantly generate image data
(with smaller groups generating tabular, text or audio data).
The Developing FL group focus mostly on image data whereas

the Adversarial attacks and detection group focus mostly on
tabular data.

The methods used to generate image data can be different
than those used for other data types. Where image data
was augmented, this could simply involve transformations.
That is, synthetic data generation methods are not used and
transformations (such as cropping, rotation, blurring, etc.)
are performed on the images – this was the case for seven
papers [48–54], whilst [55–57] used transformations and GAN
or VAE, and one paper [58] suggested augmenting data by
using Google’s image search function.

There can be problems associated with dealing with tabular
data when using deep learning methods such as GANs, as they
were designed initially to deal with numerical data and must
be adapted for categorical data. Zhao et al [18] state that in
general, when attempting to synthesise tabular data using a
GAN it is important to know the global data properties (such
as all possible distinct values that a categorical variable can
take) so that the inputs and outputs of the models will be setup
correctly. However, to do this would require sharing knowledge
about the data by sending information to the central server
about each client’s data distribution, which could present a
disclosure risk (for instance, if this was medical data, simply
knowing that a certain number of patients at a particular site
have a disease may be disclosive). Four of the papers [59–62]

6
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Figure 3: Characteristics of included papers (n= 69)

dealing with tabular data did send information about the client
data properties to the server, however the other twelve papers
did not share such information, which suggests it may be
possible to produce tabular data using these methods without
risking information disclosure.

What methods have been used for federated
synthesis?

Since the primary focus of this review is to determine what
methods are used for federated synthesis, Table 2 details
the 21 papers that generate synthetic data using FL, i.e.,
those in the Federated synthesis group. All but two use

GANs to generate the synthetic data and just under half
(10) of the papers are in the medical domain. Nine of the
papers implement Differential Privacy (DP) with the majority
achieving this by clipping the gradients and adding noise
to the GAN generator/discriminator. The GAN configuration
column in Table 2 refers to Figure 5, which is explained in
more detail in the following section and identifies the different
configurations of the GANs used on client and server devices
(where applicable).

Of the 21 papers, 16 generated image data and 6 generated
synthetic tabular data (Lomurno et al. [45] could generate
image or tabular data). It is clear there is not currently a large
body of work on federated synthesis, particularly for tabular

7
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Figure 4: The type of data used by each paper, by the goal of the research

data. Since population data is more likely to be in a tabular
format, the focus of this section is the research generating
tabular data:

• HT-Fed-GAN [60] uses a federated variational Bayesian
Gaussian mixture model and one-hot encoding to
deal with problems caused by tabular data (such as
multimodal distributions and imbalanced attributes),
conditional GANs and DP. Each client had a local
GAN, and the server aggregated the parameters. It
was compared to another method (one not designed
for tabular data) and outperformed this in terms of
synthetic data utility (comparing predictive accuracy of
classification/regression tests and cumulative distributions
of attributes). HT-Fed-GAN was one of four papers
included in this review to perform post-hoc privacy
risk analysis on the generated data (using membership
inference attack [77]) and its privacy risk was
similar to the comparator model (whilst having better
utility).

• FDP-CTGAN [66] - it should be noted this paper
concentrates on presenting a version of CTGAN [17]
(which is a GAN specifically designed to generate tabular
data) with the addition of DP (DP-CTGAN), and a
federated version is only briefly described. FDP-CTGAN
synthesises tabular medical data, and its performance
in terms of utility (predictive performance of a model
trained on synthetic data but tested on real data) is
compared to other (non-FL) methods; the federated
version is outperformed (in terms of, the Area Under
Receiver Operating Curve and Area Under the Precision-
Recall curve metrics) in all but one case by CTGAN and
DP-CTGAN.

• SGDE [45] presents a different way to generate synthetic
data by having each client train a data generator
locally (VAE are used) using DP; each client sends their
generator to the server, but they are not aggregated or
combined (as is typical in FL). In the final phase each
client can access the set of generators stored on the

8
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Figure 5: The different GAN (Generative Adversarial Network) configurations used on the server and client devices, for federated
synthesis

server and use some/all of these to generate synthetic
data locally. This method is not compared to others,
but to a local and federated version, with the synthetic
data version outperforming those overall, in terms of
prediction accuracy, AUC and F1 score.

• Weldon et al. [74] generate synthetic electronic health
records (EHR) using federated GANs and tested

their method by constructing the scenario of multiple
hospitals, each with unique data silos, training a GAN
locally and combining their parameters into one central
GAN, which generated the synthetic patient data. Whilst
not compared to other methods, the synthetic data
utility was evaluated (comparing predictive diagnosis
accuracy to real data, using coefficient of determination
(R2) and RMSE (root mean squared error)) and domain

9
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Table 2: Details of the 21 papers that perform federated synthesis (where DP is Differential Privacy, GAN is Generative Adversarial
Network, and GAN configuration refers to Figure 5)

Lead Author, Application Data Model Synthetic data GAN configuration Use DPYear domain type name generation method (if applicable)

Behera, 2022 [63] Not specified Image FedSyn GAN A Yes
Dalmaz, 2022 [64] Medical Image pFLSynth GAN C No
Duan, 2022 [60] Not specified Tabular HT-Fed-GAN GAN A Yes
Elmas, 2022 [65] Medical Image FedGIMP GAN C No
Fang, 2022 [66] Medical Tabular FDP-CTGAN GAN A Yes
Han, 2020 [67] Medical Image - GAN B No
Li, 2020 [68] Medical Image - GAN B No
Lomurno, 2022 [45] Not specified Image, Tabular SGDE VAE - Yes
Mei, 2022 [69] Not specified Image VPFL GAN A No
Pfitzner, 2022 [70] Not specified Image DPD-fVAE VAE - Yes
Qu, 2020 [57] Medical Image TDGAN GAN, Transformations D No
Rajotte, 2021 [71] Medical Image FELICIA GAN E No
Triastcyn, 2020 [72] Not specified Image FedGP GAN C Yes
Wang, H, 2021 [73] Mobile/IOT/Cloud Image P-FedGAN GAN, AE A Yes
Wang, J, 2022 [55] Medical Image FedMed-ATL GAN, Transformations C No
Weldon, 2021 [74] Medical Tabular - GAN B No
Welten, 2022 [75] Not specified Image synRainGAN GAN A No
Xie, 2022 [76] Medical Image FedMed-GAN GAN C Yes
Xin, 2022 [34] Not specified Image FL-GAN GAN B Yes
Zhao, 2021 [61] Not specified Tabular Fed-TGAN GAN A No
Zhao, 2023 [62] Not specified Tabular GTV GAN B No

experts were used to rate the data on plausibility, finding
no substantial difference between the synthetic and
real data, although this was not statistically tested.
The authors also performed a basic post-hoc privacy
risk analysis, checking the synthesised data for records
duplicated from the original data (there were none) or
records that were highly similar (using Cosine similarity).

• Fed-TGAN [61] uses a GAN on each client and
initialises the model by sending the statistical properties
(categorical frequency distribution, and distribution of
continuous variables) of each client’s data to the server.
This is performed in order to understand the global data
distribution, but there may be disclosure risk in sending
this type of data. Fed-TGAN is compared against other
FL methods in terms of data quality (using average
Jensen-Shannon divergence and Wasserstein distance),
and it generally outperformed them.

• GTV [62] uses a GAN-based method for Vertical FL
(where clients have unique data relating to the same
individuals, rather than having similar data relating to
different individuals). Like [61] information about the
data distribution is collected in a “conditional vector”
and shared in order to understand the global distribution.
This conditional vector stores indices (corresponding
to rows in the real data) that must be selected for
training to balance the classes in a particular categorical
column. Since this information is available to server and
clients, it presents the risk of adversaries potentially
reconstructing the categorical columns, although the
method shuffles the training data after each iteration
to mitigate this risk. GTV is not compared to other FL

methods, but the performance impact of the number of
FL clients is investigated; utility is compared (prediction
accuracy and average Jensen-Shannon divergence,
Wasserstein distance and correlation difference) and
GTV produces results similar to a centralised (non-FL)
method.

Which methods are used to generate the synthetic data?

Across all the included papers, whatever the goal (augmentation
or synthesis), 62% (43) used deep learning methods to
generate data, with the majority of these (36) being GAN-
based methods (and four using VAE, two using both GAN
and AE-based methods). Two papers [78, 79] used tree-based
methods, and three others [80–82] used SMOTE (Synthetic
Minority Oversampling Technique). Thirteen papers used
image transformations, image search or the exchange of image
statistics. As the most used method, the GANs were deployed
in various architectures, as pictured in Figure 5, and are
summarised here for the 21 papers in the Federated synthesis
group. It should be noted that it was difficult to extract the
exact architecture from some of the papers as the language was
not always precise, for instance, a paper may refer to having a
GAN on the server but only use the generator, whereas others
may specifically mention using just a generator.

• A. GAN on clients: 7 papers [60, 61, 63, 66, 69, 73, 75]
had a GAN on each client but not on the server. Usually,
each client trains its GAN, sends the parameters to the
server, which aggregates them and sends them back
to the client, and so on. In this scenario once the FL
model has finished training, the local GAN (generator)
will generate the synthetic data on each client.
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• B. GAN on server, GAN on clients: 5 papers
[34, 62, 67, 68, 74] had a GAN on the server and on each
client. Usually, the server GAN will initiate the process
by sending initial parameters to each client, which trains
its own GAN and then sends parameter updates back
to the central server, which aggregates them and then
the server GAN may train before sending parameters
back to the clients. Two of these papers use sequential
training, Weldon et al. [74] train each client in turn (each
sends the parameters back to the central server after
they train), whereas Xin et al. [34] use serial training,
which involves passing the model parameters from client
to client until each has participated, where it is then
returned to the server (each time the model is passed
on, the new client synthesises a small amount of data
and adds it to their training data, in order to balance
the data).

• C. Generator on server, GAN on clients: 5 papers
[55, 64, 65, 72, 76] had a GAN on each client and
a generator on the server. Usually, each client trains
and sends generator parameters to the server, which
aggregates them and sends them back, and so on. Once
training has concluded each client can generate synthetic
data, or, in theory, the server can use its generator to
do this.

• D. Generator on server, discriminator on clients:
1 paper [57] had a generator on the server and a
discriminator on the clients. Used for image generation,
the central generator creates images, and the client
discriminators evaluate them based on their own data.
Rather than gradient updates, data (images) are
exchanged between client and server.

• E. Discriminator on server, GAN on clients: 1 paper
[71] had a GAN on the clients and a discriminator
on the server. Each client trains its local GAN (using
image data) and sends the synthetic data to the server
discriminator, which has the same architecture as the
client discriminators except for the activation of the final
layer. The final layer would normally predict whether the
image was “real” or fake, however it cannot do this as
the central server has no access to the “real” data. The
authors do not make it clear how the server discriminator
operates, but it does train and feedback an error to the
model.

Data utility and privacy risk

Overall, the performance of many of the models is more
difficult to determine – 52% (36) did not compare their
method against others (although 27 of the 36 compare
variations of their own method). Most of those that did provide
some kind of comparison against other methods found their
framework or algorithm was at least comparable to other
methods (i.e., there were no negative results). Evaluation was
usually performed by considering the accuracy of a prediction
task, with 58% (40) of papers using accuracy-based metrics,
and 22% (15) using accuracy alongside other metrics (e.g.,
statistical similarity). For the 21 Federated synthesis papers
(i.e., those who produced synthetic data as the output of

the model) metrics evaluating the image quality were used
on 11 of the 16 image methods, with prediction accuracy used
on 9 papers (5 used multiple metrics). For the six tabular
data methods, a combination of prediction accuracy (4) and
statistical similarity (4) were used. Han et al. [67] and Weldon
et al. [74] used domain experts to analyse their data.

When FL was first proposed, one of the core assumptions
was that the data would stay on the local client devices
and only model parameter updates would be sent to the
global server; this was the selling point in terms of minimising
disclosure risk. However, 39% (27) of the papers included in
this review send some form of data (beyond parameters) to
the central server. Ten papers send information about the data
distributions to the server, with few appearing to consider the
risk associated with this. Four papers mention sending data
samples in order to compensate for data imbalance or to allow
the central GAN to have access to data, with only one [83]
referring to the samples being encoded. Thirteen papers send
synthetic data to the server or other clients. Whilst 10 of the
27 papers that send data do mention using encryption or some
form of DP, and 19 papers include a section discussing privacy
risks, it is notable that some of the papers do not appear to
have considered the potential risk associated with sending such
data.

Overall, 67% (46) of the 69 papers do not mention
using any form of privacy enhancing technology when sending
updates to the server. However, 28% (19) do mention using
DP, and a further four papers mention adding some form of
noise or encryption to the updates sent to the server. Of
those that used DP, many also tended to experiment with
different values of ϵ (epsilon, which is a settable parameter
to control the amount of noise added and hence the level of
privacy afforded). All but four of the methods do not perform
a post-hoc privacy measure on the data they create, although
this may only be necessary if data is an output of the model.
Overall, just over a half (37, 54%) of the included papers
provide some discussion of privacy risk.

Discussion

This scoping review identified 69 papers that generated data
using FL, of those 21 conducted federated synthesis. The field
of FL is in its infancy, having begun in 2016, but it is rapidly
growing, with a marked increase in literature in 2022. However,
there is still only a small body of work on federated synthesis,
particularly for tabular data, with most of the work carried out
on image data.

Deep Learning methods, such as GANs, were the most
used method for generating synthetic data, this may be partly
because their popularity has risen in line with that of FL
over the last few years. Another reason may be that neural
network models in general are suited to the FL task because
the weights/parameters of the models can easily be shared
and aggregated. Also, the different configurations of GANs
explored in this review (e.g., allowing a generator on the server
and GANs on clients) allow for flexibility and experimentation.
Since, in general, NN methods are less suited to the use of
tabular data and tend to require adaptation, this may explain
the relative lack of research in the federated synthesis of
tabular data.
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It was notable that a large portion of the included papers
deviated from the original idea of FL [20, 21] by choosing
to send potentially disclosive information (data other than
parameters) to the server, and further research may be required
to quantify the risk associated with the different types of
data that are sent. The relative lack of engagement with
privacy/confidentiality issues is concerning given that this is
part of the raison d’etre for FL. It is possible that in some of
these cases there is a naive assumption that simply because
FL is being used, there is inherently less risk.

In general, there is a need for consensus on the metrics
to measure the utility and risk (and a lack of post-hoc risk
analysis generally) of the synthetic data produced, but this
is also true of non-federated data synthesis. Recent work by
Taub et al. [84, 85] have developed a basket approach for
assessing utility of synthetic data - considering many different
analytical properties of the data simultaneously. It is unclear
how the different federated synthesis methods reviewed in this
paper fare in terms of the risk-utility trade-off; it is possible to
map this on the risk-utility map (for example, see [86, 87]).
In general, post-hoc risk and utility measures for federated
synthesis will need to be thought about differently, for the
simple reasons that we don’t have the original (combined)
data to make comparisons to. So this is something that each
client may need to perform separately (for example, a global
synthetic dataset might be acceptable to client A in terms of
disclosure risk but considered disclosive for client B); this is
an area where further research is needed.

Conclusion

Federated synthesis is in its early days and it is unclear
at this stage whether it is simply an interesting research
problem or whether federated synthetic data may prove to
have some practical value. However, the research reviewed here
shows that the methodology has promise and warrants further
research. The potential that we may be able to construct a
global synthetic dataset without sharing any of the local client
data is a sufficient prize to motivate future research effort.

As a field in its infancy there are areas to explore in terms of
the privacy risk associated with the various methods proposed
and the information that they transmit. In general, work on
achieving greater consensus on how we measure both the risk
and utility of synthetic data is required to effectively compare
and evaluate methods.
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Supplementary appendices
Please browse Full Text version to see the data of
Supplementary Appendix 1.

Supplementary Appendix 1: presents the data charting
form with the variables and information extracted from the
papers.
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