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Introduction: Interspecies interactions are a crucial driving force of species 
evolution. The genes of each coexisting species play a pivotal role in shaping the 
structure and function within the community, but how to identify them at the 
genome-wide level has always been challenging.

Methods: In this study, we  embed the Lotka-Volterra ordinary differential 
equations in the theory of community ecology into the systems mapping model, 
so that this model can not only describe how the quantitative trait loci (QTL) of 
a species directly affects its own phenotype, but also describe the QTL of the 
species how to indirectly affect the phenotype of its interacting species, and 
how QTL from different species affects community behavior through epistatic 
interactions.

Results: By designing and implementing a co-culture experiment for 100 pairs 
of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), we mapped 
244 significant QTL combinations in the interaction process of the two bacteria 
using this model, including 69 QTLs from E. coli and 59 QTLs from S. aureus, 
respectively. Through gene annotation, we obtained 57 genes in E. coli, among 
which the genes with higher frequency were ypdC, nrfC, yphH, acrE, dcuS, rpnE, 
and ptsA, while we obtained 43 genes in S. aureus, among which the genes with 
higher frequency were ebh, SAOUHSC_00172, capF, gdpP, orfX, bsaA, and phnE1.

Discussion: By dividing the overall growth into independent growth and interactive 
growth, we  could estimate how QTLs modulate interspecific competition and 
cooperation. Based on the quantitative genetic model, we can obtain the direct 
genetic effect, indirect genetic effect, and genome-genome epistatic effect 
related to interspecific interaction genes, and then further mine the hub genes in 
the QTL networks, which will be particularly useful for inferring and predicting the 
genetic mechanisms of community dynamics and evolution. Systems mapping 
can provide a tool for studying the mechanism of competition and cooperation 
among bacteria in co-culture, and this framework can lay the foundation for a 
more comprehensive and systematic study of species interactions.
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1. Introduction

In nature, the survival and development of any species are 
inseparable from its surrounding living environment. The 
phenomenon of interspecies interactions generally exists between 
different individuals of the same species, population, or family, and 
runs through all stages of biological growth and development 
(Gallagher et al., 1983; Tilman, 1994; Holt and Polis, 1997). A species 
needs to adapt not only to the physical environment, but also to 
another species with which it interacts (Wade, 2007). The interspecies 
interactions can not only affect community structure, organization, 
and function, as well as adaptation to changing environments (Suttle 
et al., 2007; Alexander et al., 2015), but also act as an evolutionary 
force that drives species to change in time and space (De Mazancourt 
et al., 2008; Whitham et al., 2008; Turcotte et al., 2012). The genes of 
each coexisting species play a critical role in shaping the internal 
workings of communities (Whitham et al., 2006; Bailey et al., 2009; 
Hersch-Green et al., 2011), however, how to identify these genes at the 
genome-wide level has always been an unsolved problem. While there 
have been a lot of simple experimental designs which can be able to 
describe how individual genes or pathways contribute to ecological 
interactions in communities (Schwarzenberger et al., 2009; Miyakawa 
et al., 2010; Miner et al., 2012), it is difficult to map a comprehensive 
genetic architecture of how different species interact and communicate. 
Despite the increasing availability of genetic data through high-
throughput genotyping and sequencing technologies, many studies 
have used association analysis to locate quantitative trait loci (QTLs) 
that can influence phenotypes, but traditional genetic mapping 
focuses on phenotypic variation in an individual species and fails to 
describe how QTLs determine the formation of multiple species into 
a community. Meanwhile, the mapping results will also cause 
problems such as loss of heritability (Mackay, 2014; Uricchio, 2020), 
and it is still impossible to construct an accurate genotype–phenotype 
map for interspecific interactions in populations, communities, or 
ecosystems (Davey et al., 2011).

Microbes have extremely high richness and diversity in 
ecosystems. They do not exist alone, but coexist with many species in 
microbial communities and form complex interaction networks (Bell 
et al., 2005; Falkowski et al., 2008). Such interaction is characterized 
by diversity and dynamics, which is of great significance in colony 
formation and response to changes in the external environment, and 
plays a pivotal role in maintaining the stability of the ecosystem 
(Faust and Raes, 2012). Many studies have shown that when the 
environment changes, the interaction between species will affect the 
community structure, resulting in changes in species abundance, and 
these changes will react to the ecosystem function in return (Brown 
et al., 2001). A study has observed that experimental communities of 
five bacterial species in polyculture were more productive and 
evolved more rapidly than the same species in monocultures in a 
novel environment in the laboratory (Lawrence et al., 2012). In the 
process of interaction, microorganisms secrete some enzymes, 
growth factors or transmit some signals in order to maintain their 
own life activities, thereby changing their behavior (Little et  al., 
2008). Previous studies related to species interactions mostly focused 
on resource acquisition and utilization, individual physiological 
responses, and community composition changes during the 
interaction process. However, in this process, which genes hinder or 
promote the adaptation of microbes to new environmental 

conditions, and how to quantify the genetic effects in the interaction 
process are still issues to be solved.

Complex traits are genetic traits regulated by multiple genes and 
the environment. Its formation is not only directly affected by its own 
genes, but also indirectly affected by the genes of other individuals in 
the population, as well as affected by the epistasis interactions between 
genes between different individuals (Whitham et  al., 2008; 
Lambrechts, 2010). Traditional QTL mapping is a reductionist 
approach, which can only identify the direct genetic effects of a 
species’ QTLs on its own phenotype, but cannot detect the indirect 
genetic effects of a species’ QTLs on the phenotype of interacting 
species in the same community and genome-genome epistasis effects 
of different species’ QTLs on community phenotype (Jiang et  al., 
2018a,b). This type of epistasis can not only occur among QTLs in the 
same genome, but also among QTLs from different genomes. In 
molecular genetic experiments, some studies have located such 
epistatic QTLs dependent on other genomes (Lambrechts, 2010) and 
also identified the molecular pathways related to the QTL function 
(Biscarini et  al., 2010). Considering a complex trait as a system 
composed of interactive components, the traditional mapping models 
can be upgraded to a new approach, named the systems mapping 
model (Wu et al., 2011; Sun and Wu, 2015). By integrating a set of 
ordinary differential equations (ODEs), the systems mapping model 
can not only study dynamic phenotypic data, but also decompose a 
complex trait into different components (Wu et al., 2011), and then 
analyze and quantify the dynamic changes of a component and its 
interaction relationship with other components in a complex system, 
thus better understanding the underlying mechanisms of trait 
formation and development. The epistatic interaction between 
genomes from different individuals accounts for a large proportion of 
the total genetic variance (Mackay, 2014; Uricchio, 2020), and our 
model also provides a new perspective to solve the problem of 
complex trait loss heritability.

In this study, we selected E. coli and S. aureus as research objects, 
which are closely related to human health and widely distributed in 
nature. Dynamic quantitative phenotypic data of two kinds of bacteria 
in co-culture at 14-time points were detected by quantitative real-time 
PCR (qPCR), and high-density genetic markers of two bacteria, 
namely single nucleotide polymorphisms (SNPs), were obtained by 
whole-genome resequencing, respectively. By correlating dynamic 
phenotypic data with SNPs data through the systems mapping model, 
significant QTLs that play a vital role in the interaction between the 
two bacteria were mapped and the functional annotations of these 
QTLs were performed. Incorporating the Lotka-Volterra interspecies 
competition model in the theory of community ecology into the 
systems mapping, the overall growth of the two bacteria can 
be  decomposed into independent growth and interactive growth, 
which could be combined with the strategy matrix of game theory to 
study the mechanism of competition and cooperation among bacteria. 
The quantitative genetic models were used to verify whether 
significant QTLs exerted direct effects, indirect effects, and genome-
genome epistasis effects between bacterial interactions, and then three 
kinds of genetic effect networks among key QTLs from two bacteria 
were constructed to explore the regulatory mode on bacterial 
interactions. The systems mapping model can provide a new idea and 
method for studying the QTLs of interactions between bacteria in 
co-culture, and also provide a theoretical basis for the study of more 
complex interaction models. This statistical framework can provide a 
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powerful tool for studying the genetic mechanism of complex traits in 
animals, microbes, and humans, as well as a theoretical basis for a 
systematic and comprehensive understanding of the nature of 
bacterial interactions, and also provide new insights for explaining the 
influence of genetic factors on complex traits.

2. Materials and methods

2.1. Microbial interaction ecological 
experiment

In order to study the competition and cooperation mechanism of 
two species in the same environment, we, respectively, collected 100 
strains of E. coli and S. aureus and randomly paired these strains to 
form a total of 100 independent interspecific combinations and 
numbered them. The source information of 200 strains can be found 
in Supplementary Table S1 and the relevant sequencing information 
has been uploaded to the National Genomics Data Center (NGDC) 
database. Two hundred original strains were cultured on the tryptose 
soya agar (TSA) solid medium (OXOID, Basingstoke, England) for 
activation treatment. A total of 100 conical flasks (50 mL) were, 
respectively, added to 25 mL of the same two-times dilution of brain-
heart infusion (BHI) medium (OXOID, Basingstoke, England). 
We picked out the single colonies of two bacteria on the TSA culture 
plate and then inoculated them to 100 BHI culture media for 
co-culture according to the numbered pairing principle. The 
absorbance of the bacterial solution was measured with an enzyme-
labeled instrument and converted to the bacterial solution 
concentration, and the bacterial solution was diluted to 5 × 103 cells/
mL, and the flask was cultured continuously for 36 h in a constant 
temperature shaker at 30°C and 130 r/min. This co-culture experiment 
was replicated at least three times. The method of randomized block 
experiment was adopted to eliminate the random error which may 
be produced by the environment. Faced with the pressure of limited 
resources, two strains from different species in a culture flask may 
choose to compete or cooperate.

According to the law of bacterial growth, the strain will show a 
trend logarithmic growth before the stable period, 1 mL of samples 
were taken every 0.5 h, 2 h, 4 h, and 6 h at 0–2 h, 2–12 h, 12–24 h, and 
24–36 h, respectively, and then bacterial genomic DNA was extracted 
by using the TIANamp Bacterial Genome Extraction Kit. The specific 
primers were designed according to the uidA (1694260–1,696,071) 
gene encoding β-D-glucosidase in E. coli and the nuc (1397756–
1,398,289) gene encoding thermostable nuclease in S. aureus. The 
specific fragments obtained by primer amplification were cloned into 
the pMD18-T vector for preparation of standards, and then these 
standards were further diluted by 10 times gradient to obtain standard 
curves. Through the Mx3005P real-time fluorescence quantitative 
system (Stratagene, La Jolla, United States), two specific primers were 
used to perform qPCR amplification on E. coli and S. aureus to obtain 
CT values. These values were then substituted into the standard curve 
to calculate the bacterial abundance of each bacteria in each flask at 
each time point, which was repeated three times to take the average 
value for genetic mapping. The total volume of the qPCR reaction 
system was 25 μL, including 2 × SuperReal PreMix Plus (SYBR Green 
I) (TIANGEN, Beijing, China), 300 nM forward primer, and 300 nM 
reverse primer. The thermal cycle reaction conditions were as follows: 

initial denaturation at 95°C for 10 min, followed by 40 cycles of 30 s at 
95°C, 1 min at 55°C, and 1 min at 72°C. Fluorescent signals were 
detected and collected during annealing and extension.

2.2. Whole genome sequencing

Using E. coli str. K-12 substr. MG1655 and S. aureus subsp. aureus 
NCTC 8325 as reference strains, the whole genome sequencing of 100 
strain combinations was performed on the Illumina HiSeq  2,500 
(Novogene, Beijing, China) platform to obtain SNPs (single-
nucleotide polymorphisms) genotype data of two species at the 
genome-wide level. The obtained effective sequencing data was 
performed for the sequence alignment with the reference genome 
using BWA (Li et al., 2009) software (version 0.7.17) and for quality 
control to ensure the SNPs data with high-quality scores (Q value 
≥20) and enough supporting bases (≥ 4, with variation) using 
SAMtools (Li et al., 2009; Danecek et al., 2021) software (version 1.17). 
Ultimately, a total of 745,528,965 SNP combinations were obtained 
from the E. coli and S. aureus genomes, which should be sufficient 
enough in density to identify genomic regions in the QTL mapping.

To obtain high-quality SNP combinations and improve systems 
mapping efficiency, this study adopted a two-step approach to filter 
out low-quality SNP combinations: (1) Before combining the SNPs of 
two bacteria, the single marker analysis method was used to control 
the number of SNPs, and T-test was used to filter out SNPs below the 
threshold; (2) After pairing the screened SNPs, SNP combinations 
were further filtered by comparing the proportions of the four 
genotypes in each combination. SNP combinations with genotype 
proportions below 10% were filtered out. Based on the above method, 
272,873 high-quality SNP combinations were ultimately obtained, 
greatly improving the efficiency of parameter estimation for 
systems mapping.

2.3. Analysis of population structure and 
kinship relationship

Population genetic structure analysis can provide information on 
the origin and composition of individuals and is a worthwhile tool for 
analyzing genetic relationships. Based on the posterior variational 
Bayes framework, fastStructure software (Raj et al., 2014) is able to 
calculate the estimated values faster than the classical population 
structure analysis software STRUCTURE, which is suitable for 
inferring the population structure from large SNP genotype data. In 
this study, we conducted population structure analysis on SNPs data 
of two species using fastStructure software (version 1.0). Based on the 
default convergence criteria and prior probability, K values ranging 
from 2 to 20 were tested with 10 replicates per K. Using the chooseK.
py function in fastStructure, a reasonable range of K values was 
determined. Meanwhile, the prcomp function in the R software was 
performed for principal component analysis (PCA) to further 
investigate the structural components of the two bacteria and their 
relationship. The emma.kinship function in the R package emma was 
used to calculate the kinship matrix of two bacterial SNPs used in 
subsequent analysis (Kang et al., 2008). According to the analysis of 
kinship and population structure, we used the lmer function in the R 
package lme4 (Bates et  al., 2015) to adjust the phenotype of two 
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bacteria based on the linear mixed effect model, to avoid detecting the 
phenotypic data of the falsely associated population structure.

2.4. Systems mapping model

Assume that there are two QTL that affects the growth trait of two 
bacteria in co-culture, including two genotypes A and a by species E 
and two genotypes B and b by species S, respectively. These two QTLs 
formed four interspecific genotype combinations, expressed as A B/ , 
A b/ , a B/ , and a b/ . By correlating SNPs genotype data and dynamic 
phenotypic data of n  interspecific strains combinations, we  used 
maximum likelihood estimation (MLE) to construct a dynamic model 
for parameter estimation of specific genotypes. A mixture-based 
likelihood model has been widely used to map QTLs for complex 
traits. The mixture-based likelihood of time-dependent abundance 
data for n interspecific strains combinations is formulated as
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are the vectors of abundance trajectories at T  times for species E and 
S, respectively, and ( )· N ,N ; ,E S

i if Θ Ψ  is a multivariate normal 
distribution with expected mean vector (6 parameters) and covariance 
matrix Σ  (5 parameters) for pair i that belongs to a particular 
genotype–genotype combination. The covariance matrix can 
be  simulated using the second-order structured antedependence 
(SAD(2)) model (Zimmerman et al., 2001; Zhao et al., 2005).

Based on the dynamic likelihood model (1), it becomes a crucial 
issue how to map the significant QTLs related to the interaction 
between two species. We  can test whether there are significant 
interspecific QTLs involved in interspecific interactions, which can 
be done by formulating the following two assumptions:

 0H : AB Ab aB abΘ = Θ = Θ = Θ ≡ Θ  (2a)

 H Not all equalities in the H hold1 0:  (2b)

where H0 is the null hypothesis that each component uses the 
same ODE parameters in different genotypes. H1 is an alternative 
hypothesis, which means that there is at least one component in the 
system that has different ODE parameters under different genotypes. 
Using the values of H0 and H1 to calculate the likelihood values L0 and 
L1, respectively, and further calculate their log-likelihood ratio (LR), 
which can be expressed as

 
LR L

L
� �2

0

1

log
 

(3)

These LR values are compared to genome-wide critical 
thresholds determined by 1,000 permutation tests. If H0 is rejected, 

it means that significant interspecific QTLs from both species have 
been mapped.

2.5. Functional annotation

After mapping all the significant QTLs among species, we further 
implemented the corresponding functional annotations, so as to 
obtain the key genes that play a critical role in the interaction process 
of different species in the system, which can provide a theoretical basis 
for the study of competition and cooperation mechanism among 
species. Meanwhile, we proofread the results of GO annotation via 
MGI1 and AureoWiki2 databases.

2.6. Interspecies interaction model

We used a set of generalized Lotka-Volterra (LV) ordinary 
differential equations to describe the interaction between E. coli and 
S. aureus in co-culture (Fujikawa et al., 2014; Jiang et al., 2018a,b). The 
LV equations were integrated into the systems mapping model, which 
can screen out significant QTLs for the interaction between the two 
species in co-culture. We  combined this new approach with 
community ecology so that patterns of interactions between two 
species can be  quantified and explained. The LV equations could 
be divided into two different parts to describe microbial abundance 
differently, expressed as
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where rE and rS are the Malthusian growth rates; KE and KS are 
the environmental capacities of the two different species; and E|Sα  
and S|Eα  are dimensionless parameters used to simulate how one 
species affects the other through the interaction in co-culture; ME and 
MS represent the independent growth of each species, which is 

determined by its inherent attributes; E|SN  and S|EN  represent the 
interactive growth of each species, which is determined by how the 
species interacts with the other in co-culture. If the interactive growth 
of a species is positive or negative, it indicates that the species is 
beneficially or detrimentally affected by the other. If the interactive 
growth is zero, it means that the two species will not affect each other. 
Therefore, by estimating ODEs parameters 

( )E E E|S S S S|E, , ; , ,r K r Kα αΘ = , the LV equations can not only specify 

1 https://www.informatics.jax.org/vocab/gene_ontology

2 https://aureowiki.med.uni-greifswald.de/Main_Page
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the dynamic pattern of each species abundance, but also describe two 
interaction patterns of two species in co-culture.

2.7. Quantitative genetic model

According to quantitative genetic theory (Li and Wu, 2009), four 
interspecific genotypic values can be  partitioned into different 
components and then converted into various genetic effect 
components, expressed as
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Where � � � �AB
l

Ab
l

aB
l

ab
lt t t t� � � � � � � �, , and  are the genotypic 

values for the abundance of each species l l E or S�� � at time t ; � l t� � 
is the time-dependent population means of abundance of each species 
l l E or S�� � ; if l E= , a tl

A � � is the time-dependent direct genetic 
effect of species E’s QTL on its own abundance, while if l S= , a tl

A � � 
is the time-dependent indirect genetic effect of species E’s QTL on the 
abundance of its coexisting species S; if l S= , a tl

B � �  is the time-
dependent direct genetic effect of species S’s QTL on its own 
abundance, while if l E= , a tl

B � �  is the time-dependent indirect 
genetic effect of species S’s QTL on the abundance of its coexisting 
species E; and I tl

A B� � � is the time-dependent genome–genome 
epistatic effect between the QTLs of two species on the abundance of 
each species l l E or S�� �.

After mapping significant interspecies QTLs, the next step is to 
test whether these QTLs exert significant direct genetic effects, 
indirect genetic effects, and interspecies genome-genome epistasis 
effects. The null hypotheses for these tests are expressed as

 H and for direct effectsA B0 0 0: a t a tE S� � � � � �  (6a)

 H and for indirect effectsA B0 0 0: a t a tS E� � � � � �  (6b)

 

( ) ( )0 A B A BH : 0 and
0 for genome genome epistatic effects

E SI t I t× ×= =
−  (6c)

2.8. Quantitative trait loci networks

For a given QTL, the systems mapping models can estimate its 
time-dependent direct genetic effects on independent growth, 

time-dependent indirect genetic effects on interactive growth, and 
time-dependent genome-genome epistasis effects on interactive 
growth. The procedure of constructing the corresponding genetic 
network of all QTLs based on their genetic effects is as follows: Let 
q tm � � denotes the genetic effects of QTL m m M� �� �1, ,  at time t . All 
these M  QTLs interact with each other in a network to jointly affect 
growth. Through a set of ordinary differential equations, q tm � � is used 
to denote the genetic effects of other QTLs, expressed as

 
q t w q t u q tm m m

m m m

M
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� �
� �

� �
�
1,  

(7)

where w q tm m � �� � is the parametric or non-parametric function 
of q tm � �, and u q tm m� � � �� �  is the parametric or nonparametric 
function of the genetic effects of QTL � � �� � �� �m m m m M, , ,1 . The 
latter presents the interactive effects of other QTLs on the focal 
QTL. Non-parametric methods (Wu et al., 2014) are used to estimate 
the parameters of these functions, so that the corresponding genetic 
effect network can be constructed among these QTLs, and how a QTL 
interacts with others through activation or inhibition, thereby 
affecting the expression of the latter.

3. Results

3.1. Analysis of population structure and 
kinship relationship

According to the marginal possibility, we identified eight and nine 
subpopulations in E. coli and S. aureus strains, respectively 
(Supplementary Figure S1A). In terms of PCA analysis, the first two 
PCs of E. coli accounted for 50.4 and 11.5% of the variation in the 
genotypic data respectively, and PC1 and PC3 of S. aureus accounted 
for 47.5 and 10.0%, respectively (Supplementary Figure S1B). The 
results of fastStructure and PCA indicated significant population 
structure differences among individuals of the natural population of 
these two bacteria. The confounding effects of population structure 
and kinship were well removed to a certain extent 
(Supplementary Figures S1C, S2, S3). The adjusted phenotypic data 
can be used for systems mapping of the two species in co-culture.

3.2. Mapping significant QTLs for the 
interaction of two bacteria in co-culture

Taking the number of microbes (the number or weight of the 
living bacteria) as the vertical coordinate, and the cultivation time as 
the horizontal coordinate, we can draw a microbial growth curve. A 
typical microbial growth process includes three successive growth 
phases: lag, logarithmic, and stationary phases. At the lag phase, the 
population adapts to a new environment, in which the specific growth 
rate gradually increases from zero and then accelerates the maximum 
value at the logarithmic phase. At the stationary phase, however, the 
rate decreases to zero and the population growth terminates, thereby 
reaching the culture-carrying capacity. A number of growth equations 
have been derived to capture these phases (Zwietering et al., 1990; 
Tonner et al., 2020). In this study, a set of generalized LV ordinary 
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differential equations was used to fit the growth curve of E. coli and 
S. aureus in co-culture during the first 36 h after culture (Figure 1A). 
For the growth curve of each strain, the actual individual growth 
curve and the fitted growth curve of 100 pairs of interspecific strains 
of E. coli and S. aureus were shown in Supplementary Figures S4, S5. 
In the average growth curve, we can observe that the fitting of the two 
bacteria met the analysis requirement, with a coefficient of variation 
R2 ≥ 0.94, which indicated that the growth curve fitted by LV can well 
represent the dynamic phenotype data of the interaction between the 
two bacteria. Overall, the microbial abundance of E. coli in the unit 
time is generally higher than S. aureus. For example, at 0.5 h, the 
abundance value of E. coli is over e16 , while that of S. aureus is less 
than e14 . Selecting 0.5 h, 6 h, 16 h, and 36 h to draw the phenotype 
distribution of the two bacteria (Figure 1B), we could see that the vast 
majority of the E. coli strains grow faster than S. aureus strains, but 
there were also some outliers indicating the existence of some opposite 

situations. We selected four kinds of representative growth curves 
(Figure 1C) and found that, in addition to the fact that E. coli has 
consistently been leading the growth of S. aureus or vice versa, there 
were also two bacteria with similar initial growth conditions, but 
during the logarithmic period, the growth of E. coli exceeded that of 
S. aureus and even S. aureus was severely inhibited. This indicates that 
there may be some genes that affect the actual growth of the two 
bacteria when they interact, and the degree of influence varies greatly 
between different bacterial pairs.

The correlation analysis between the phenotypic data of two 
bacteria in co-culture and SNP genotype data by using the systems 
mapping theory can excavate the QTL closely related to the 
interspecific interaction. The LR threshold at the genome-wide level 
was determined by 1,000 permutation tests, and we could draw the 
Manhattan diagram (Figure  2) and search out significant QTL 
combinations affecting the microbial abundance through the 

FIGURE 1

Analysis of the growth trajectory of E. coli and S. aureus. (A) The average growth curve of 100 pairs of E. coli and S. aureus, in which both of the 
coefficients of variation were greater than or equal to 0.94. (B) The boxplot displaying the phenotypic distribution of E. coli and S. aureus at selected 
4-time points (0.5  h, 6  h, 16  h, and 36  h). (C) Four pairs of representative individual growth curves from 100 pairs of combinations (1st, 15th, 22nd, and 
96th pairs). The green color indicates E. coli and the blue color indicates S. aureus. In this part label C, the light-colored curves represent the average 
growth curve, and the dark-colored curves represent the actual growth curve.
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interspecific interaction, whose LR values are greater than the LR 
threshold. The LR threshold of this study was 450.0346, and 244 vital 
QTL combinations were obtained through comparison, including 69 
SNPs from E. coli and 59 SNPs from S. aureus 
(Supplementary Tables S2, S3). These SNPs were further mapped to 
genes, and 57 and 43 genes were obtained in E. coli and S. aureus, 
respectively (Supplementary Tables S4, S5).

3.3. Functional annotation and 
interpretation of significant interspecific 
interaction QTLs

Based on the results of 3.1, we successfully annotated 57 genes in 
E. coli with 44 effective GO annotation results and 43 genes in 
S. aureus with 38 effective GO annotation results. 
Supplementary Tables S4, S5, respectively, listed the detailed 
functional annotation information of the significant interspecific 
interaction QTLs of the two bacteria.

GO annotations can be  divided into three categories: Biology 
Process (BP), Cellular Component (CC), and molecular function 
(MF). Each large category can be subdivided into subcategories, which 
can help us understand the biological significance behind each gene 
(Figures 3, 4).

In the gene annotation of E. coli (Figure  3), the BP category 
involved 37 genes, accounting for the highest proportion (65%), 
followed by the CC category (31 genes, 54%). The BP category mainly 
included DNA-templated transcription (5 genes), anaerobic 
respiration (3 genes), phosphorus metabolic process (3 genes), and 
sulfur metabolic process (3 genes); the CC category mainly included 
peptidoglycan-based cell wall (13 genes), cytoplasm (12 genes), and 
organelle inner membrane (8 genes); the MF category includes 
transcription activator activity (3 genes) and transcription repressor 
activity (2 genes).

In the gene annotation of S. aureus (Figure 4), the CC category 
involved 29 genes, accounting for the highest proportion (67%), 
followed by the MF category (23 genes, 53%). The CC category was 
mainly related to membranes, such as membrane (14 genes) and 
plasma membrane (12 genes); the MF category included 
oxidoreductase activity (4 genes), ATP binding (3 genes), and catalytic 
activity (3 genes); the BP category mainly included pathogenesis (2 
genes) and transmembrane transport (2 genes).

3.4. Modeling the genotype–phenotype 
relationship

Any species in co-culture may choose to cooperate or compete 
with other species from the same system, depending on the level at 
which common resources can be shared for their respective growth. 
According to the community ecology theory, the interaction types of 
two different species can be  formulated by a strategy matrix 
(Supplementary Figure S6), including mutualism, competition, 
neutralism, commensalism, predation/parasitism, and amensalism.

Different strategies used between two species in one system 
resulted in six distinct types of interactions: (++) → Mutualism, which 
means that two species benefit from each other; (00) → Neutralism, 
which means that any one species does not depend on or affect the 
other; (−-) → Competition, which means that two species fight each 
other; (+0) → Commensalism, which means that one species is 
beneficial to the other, while the latter does not affect the former; 
(+−) → Predation/Parasitism, which means that one species helps the 
other, whereas the latter is harmful to the former; (−0) → Amensalism, 
which means that one species harms the other, while the latter does 
not affect the former.

Based on the LV equations, the overall growth of each species in 
co-culture can be  decomposed into independent growth and 
interactive growth. By estimating the ODEs parameters 

FIGURE 2

Manhattan plot displaying the systems mapping result of significant interspecific QTLs in 272,873 SNP combinations. The green triangle indicates the 
significantly associated SNP combinations. The red dashed line indicates the threshold with 1,000 permutation tests at 450.0346.
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( )e e e|s s s s|e, , ; , ,r K r Kα αΘ = , we  can characterize the interaction 
mode of two species in co-culture by comparing the interactive 
growth between species. We plotted the overall growth curves (solid 
lines), independent growth (long dashed lines), and interactive growth 
curves (short dashed lines) of E. coli and S. aureus over time in 
co-culture, according to ODE parameters (Figure 5A). On the whole, 
the interactive growth was always negative because two bacteria in the 
same environment compete with each other for limited resources, and 
the independent growth is much greater than the actual overall growth 
observed, indicating that these two bacteria have a competitive 
relationship in co-culture.

Each interspecies QTL combination inherited two bacterial 
alleles 0 and 1, respectively, forming four interspecies genotype–
genotype combinations, denoted as 0/0, 0/1, 1/0, and 1/1. Taking the 
selected QTL combination E3414424 × S383182 (LR value = 505.2964) 
as an example to analyze the interaction between two bacteria in 
co-culture, we drew the microbial growth curves of four genotype 
combinations of two bacteria in co-culture (Figure 5B). By combining 
the relevant parameters of ODEs, the overall growth curve (solid line) 
of microbial abundance for each genotype combination can 
be  decomposed into independent growth (long dashed line) and 
interactive growth curve (short dashed line). For each genotype 
combination, it can be observed that the competition between E. coli 

and S. aureus was intense, and the overall growth was lower than the 
independent growth, but the overall growth, independent growth, 
and interactive growth were significantly different in scale and 
pattern among all four combinations. These results can 
be summarized as follows: (1) The two bacteria in the same system 
were in an antagonistic relationship, but the degree of antagonism of 
S. aureus to E. coli was greater than that of E. coli to S. aureus; (2) 
When the same genotype was paired, the antagonistic was expressed 
more strongly, for example, 0/0 and 1/1 exhibited larger negative 
interactive growth than 0/1 and 1/0; (3) Combination-dependent 
differences in independent growth and interactive growth was more 
pronounced than in overall growth, suggesting that bacteria exhibited 
more variation in their internal machinery than what can 
be phenotypically observed. These results suggested that E3414424 
and S383182 were antagonistic QTLs that participated in determining 
and shaping the antagonistic relationship between E. coli and 
S. aureus when they were in the same system.

3.5. Decomposing genetic effects

Interspecies QTL combinations can affect the independent growth 
of two bacteria as a growth potential and also affect their interactive 

FIGURE 3

Distribution of three categories of GO annotation results of E. coli. The green color represents BP, the orange color represents CC, and the purple 
color represents MF.

https://doi.org/10.3389/fmicb.2023.1192574
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2023.1192574

Frontiers in Microbiology 09 frontiersin.org

growth determined by interacting with other species in the ecosystem. 
To some extent, such QTLs play a radical role in regulating microbial 
communities’ dynamic structure and behavior. The systems mapping 
model can also dissect the genetic structure of community traits into 
its direct, indirect, and genome-genome epistatic genetic effects. The 
direct genetic effect of an interspecific QTL combination describes 
how it affects the independent growth of one species (such as E. coli) 
where this QTL is mapped. The indirect genetic effect specifies the 
genetic effect of an interspecific QTL combination from one species 
(such as S. aureus) on the interactive growth of the other (such as 
E. coli) competing with this species in the same system. And the 
genome-genome epistatic effect depicts the genetic effect of the 
interaction between the alleles of two species on the interactive growth 
of one species.

After estimating and mapping these three genetic effects of the 
interspecies QTL combination (E3414424 × S383182) on the growth 
trajectory of two bacteria, it was found that the indirect effects and 
genome-genome epistasis effects, which were ignored in previous 
studies, were significant, and even their influence range was greater 
than the direct effect (Figure 6). E3414424 from E. coli appeared to 
be  a more “aggressive” QTL, because its indirect effect on the 
abundance dynamics of S. aureus was greater than that of S383182 
from S. aureus on the abundance dynamics of E. coli. Meanwhile, its 
direct effect on the abundance of its home species at the logarithmic 
phase was greater than the indirect effect of S383182 on its abundance. 
From the analysis of the genetic effect curve, we can see how an SNP 
affects the growth of two microbes over time. For this particular QTL 
combination, the direct, indirect, and genome-genome epistatic effects 
on E. coli reached their maximum at 10–14 h, and these effects on 
S. aureus showed a similar pattern.

3.6. Construction of the genetic effect 
networks of significant interspecific QTLs

The bacterial abundance of E. coli in co-culture was jointly 
determined by the direct effects of its own 60 QTLs, the indirect 
effects of 49 QTLs from S. aureus, and the interspecific epistatic 
effects between 230 QTL combinations. The bacterial abundance of 
S. aureus in the same system was determined by the direct and 
indirect effects triggered by its own 49 QTLs and 60 E. coli QTLs, 
respectively, and the interspecific epistatic effects among 230 QTL 
combinations. We employed an ODE-based approach to map genetic 
networks to characterize how these significant QTLs interacted in the 
network to affect the microbial abundance through three different 
types of effects (Figure 7). By comparing the three types of QTL 
networks, we  found that the structure and organization of these 
networks differed greatly between the two bacteria. The core feature 
of the QTL network is its ability to identify the hub QTLs, which play 
a vital role in the genetic architecture of microbial growth in the 
same system.

For E. coli, there were a major hub QTL SNP 50 (E4323969) 
and two minor hub QTLs SNP 28 (E2357245) and 54 (E4544464) 
in the direct effect network that directly affected its own growth 
(Figure 7A), while S. aureus’s direct effect network had SNP 21 
(S301259), 38 (S590022), 11 (S134253), and 27 (S321552) as the 
hub QTLs directly affecting its own growth. In the indirect effect 
network, there were 3 hub QTLs from S. aureus which exerted an 
indirect effect on the growth performance of E. coli, including 
SNP 47 (S1731046), 22 (S301667), and 24 (S306067). However, 
there were 5 hub QTLs from E. coli in the network that indirectly 
affected the growth performance of S. aureus, including SNP 16 

FIGURE 4

Distribution of three categories of GO annotation results of S. aureus. The green color represents BP, the orange color represents CC, and the purple 
color represents MF.
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(E2015702), 41 (E4125943), 8 (E555930), 30 (E2683642), and 28 
(E2357245; Figure 7B). Interestingly, whether directly affecting its 
own growth or being indirectly affected by competing strains, the 

number of hub QTLs in S. aureus was greater than that in E. coli. 
SNP 28 (E2357245) from E. coli acted as a hub QTL in both direct-
to-self and indirect-to-S. aureus effect networks, although the 

FIGURE 5

The interspecies interaction pattern of two bacteria in co-culture based on the LV equations. (A) Overall growth, independent growth, and interactive 
growth curves of two bacteria in co-culture. (B) Genotypic differences in the growth curves of the two bacteria. Four genotype–genotype 
combinations 0/0, 0/1, 1/0, and 1/1 at the QTL combination E3414424  ×  S383182 were fitted by a set of generalized LV ordinary differential equations. 
The green lines represent E. coli and the blue lines represent S. aureus. The solid lines represent the overall growth curves fitted to each set of actual 
observed data, decomposed into independent growth curves (long dashed lines) and interactive growth curves (short dashed lines).

FIGURE 6

The three genetic effect modes of the growth curve of two bacteria in co-culture were analyzed by QTL combination E3414424  ×  S383182. The 
genotypic value of each genotype combination was partitioned into its direct (solid line), indirect (long dotted line), and genome-genome (G-G) 
epistatic effects (short dotted line) on the growth of each species.
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network structures of these two effects were very different. In 
terms of the genome-genome epistasis effect network, E. coli had 
10 QTL combinations acting as hubs, and S. aureus had 8. 

Surprisingly, the 34th QTL combination (E2015702 × S1385806) 
acted as a major hub in E. coli, whereas it was a minor hub for 
S. aureus (Figure 7C).

FIGURE 7

QTL genetic networks through three types of genetic effects. The left figures show the direct effects of 60 E. coli QTLs (A), indirect effects of 49 S. 
aureus QTLs (B), and genome-genome epistatic effects of 230 QTL combinations (C) on the growth trajectory of E. coli. The right figures show the 
direct effects of 49 S. aureus QTLs (A), indirect effects of 60 E. coli QTLs (B), and genome-genome epistatic effects of 230 QTL combinations (C) on 
the growth trajectory of S. aureus. The hub QTLs in each network are highlighted in red. Arrows indicate the direction of one QTL/effect to another 
QTL/effect, wherein the orange arrow indicates promotion and the blue arrow indicates inhibition. Names of genes corresponding to each number are 
given in Supplementary Table S6.
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4. Discussion

Interactions between species are important drivers of structuring 
species communities. In biological communities, a member interacts 
with other members of the same species through density-dependent 
regulation, and also with members of other species, including 
mutualism, competition, neutralism, commensalism, predation/
parasitism, or amensalism (Ovaskainen et  al., 2017). Despite 
increasing interest in how evolution affects ecological dynamics, most 
studies of evolutionary adaptation consider single species in isolation 
(Lawrence et al., 2012). The microbiota is widely recognized as a vital 
determinant of various natural processes, from biogeographical cycles 
to human health. Discovering and characterizing mechanisms of 
microbial interactions can help us reveal a wealth of new biological 
information about microbes and can provide insights into how the 
microbiome can be manipulated to improve medical, agricultural, and 
environmental relationships (Pierce and Dutton, 2022). For instance, 
predict the stability of intestinal flora (Fang et al., 2021), resist the 
infection of pathogenic bacteria (Levy and Borenstein, 2013), degrade 
complex organic matter in the deep-sea environment (Nawaz et al., 
2022), and optimize the design of microbial engineering (Perez-Garcia 
et al., 2016).

The development of next-generation sequencing technology has 
made it possible to explore the interaction of complex microbial 
communities or microbiomes, although there are many challenges and 
limitations (Carr et al., 2019). It is very difficult to observe microbial 
interactions in situ, while theoretical model research can set the 
mechanism or parameters of microbial interactions, which is a flexible 
and powerful tool for exploring the ecology of microbial community 
ecology. Current research on the mechanism of microbial interactions, 
mainly including interactions related to toxic molecules, nutrient 
competition and cross-feeding, access to metals, signaling pathways, 
pH changes, and interactions within biofilms (Pierce and Dutton, 
2022), has rarely deeply explored which QTLs play a key role in the 
microbial interaction process at the molecular level. Although it has 
been documented that conventional mapping approaches can map 
QTLs responsible for interspecies interactions in terms of the immune 
response, tolerance to herbivores, mate recognition, or predator-
defense traits, they cannot distinguish phenotypic independent and 
interacting components, but focus directly on the observed overall 
phenotype (Jiang et al., 2018a). Embedding community ecology into 
the genetic mapping model has been proven to be very effective and 
powerful for studying the genetic landscaping of how plants coexist 
(Jiang et al., 2018a) and the mechanisms of microbial interactions 
(Jiang et  al., 2018b). In this study, we  designed an ecological 
experiment for 100 pairs of E. coli and S. aureus in co-culture and 
applied the systems mapping model based on the generalized LV 
interspecific competition equations to study the interaction between 
these two bacteria. Our model can decompose the overall phenotype 
into independent and interactive parts, and quantify the genetic effects 
between these two bacteria into direct effects, indirect effects, and 
genome-genome epistatic effects, so as to analyze the mechanism of 
competition and cooperation between the two species in the same 
environment and provide a new perspective to solve the problem of 
missing heritability.

Systems mapping is a dynamic model, which capitalizes on time 
series phenotypic data to search for interspecific interaction QTLs. 
According to the results of systems mapping, we have counted and 

drawn the frequency distribution of the interspecific interaction genes 
mapped between E. coli and S. aureus (Supplementary Figure S7). 
Among them, the significant interspecific QTLs from E. coli were 
mainly mapped on 7 genes, including ypdC (23, 10.00%), nrfC (23, 
10.00%), yphH (21, 9.13%), acrE (19, 8.26%), dcuS (17, 7.39%), rpnE 
(12, 5.22%), and ptsA (11, 4.78%). These genes were functionally 
annotated for more information. YpdC is annotated as an AraC-type 
regulator with a C-terminal helix-turn-helix (HTH) domain, so it may 
have regulatory functions under the appropriate growth conditions 
(Gao et al., 2021). NrfD-like proteins can associate with NrfC-like FeS 
proteins to form a dimeric redox module involved in quinone redox 
chemistry, so as to provide the proton or sodium motive force required 
for ATP synthesis in prokaryotes (Duarte et al., 2021). The fumarate, 
or C4-dicarboxylate (C4DC), responsive sensor kinase DcuS of E. coli 
is anchored by TM helices TM1 and TM2 in the membrane, which as 
extra-cytoplasmic sensor domain is related to transmembrane (TM) 
signaling (Stopp et al., 2021). The ptsA gene is related to inorganic ion 
transport and metabolism (Song et  al., 2018) and is involved in 
phosphate and nickel transport, which may represent genes 
responsible for adaptation to stress or other environmental signals 
(Spoto et al., 2022). In terms of S. aureus, the significant interspecific 
QTLs were mainly mapped on 7 genes, including ebh (38, 16.52%), 
SAOUHSC_00172 (37, 16.09%), capF (23, 10.00%), gdpP (12, 5.22%), 
orfX (11, 4.78%), bsaA (11, 4.78%), and phnE1 (10, 4.35%), which 
were also functionally annotated for more information. CapF enzyme 
can catalyze the synthesis of UDP-N-acetyl-L-fucosamine, which is a 
component of capsular polysaccharide, an important virulence factor 
of S. aureus (Miyafusa et al., 2008). Mutations in gdpP are significantly 
related to meticillin-resistant lacking mec (MRLM) phenotype, and its 
encoded GdpP is a phosphodiesterase, which participates in the 
degradation of cyclic-di-AMP, the second messenger in S. aureus 
(Sommer et  al., 2021). The gene orfX is conserved among all 
staphylococci, whose product has been suspected to play an important 
role in bacterial growth and survival (Boundy et al., 2013). The mutant 
S. aureus expressing AgrAC199S was more susceptible to H2O2 due to 
repression of the antioxidant bsaA gene under oxidative stress, and 
this oxidation sensing could serve as an intrinsic checkpoint to 
ameliorate the oxidation burden caused by intense metabolic activity 
and potential host immune response (Sun et al., 2012). A study using 
phnE1 deletion strains confirmed that low phosphate (Pi) 
concentrations in the media could increase the uptake of 
phosphorylated amino acids and could divert or inhibit their 
subsequent breakdown into Pi to further stabilize the levels of the 
phosphorylated amino acid, which can ensure Pi is provided to the 
intracellular environment and made available for vital processes 
(Steinfeld et  al., 2014). The gene information provides a certain 
reference for further exploring the genetic mechanism of the 
interaction between the two bacteria, especially in experimental 
verification, and more specific pathway information needs to 
be further explored.

By decomposing the overall phenotype based on the LV equations, 
we can estimate how QTLs regulate interspecific competition and 
cooperation and interpret the vital role of these QTLs in organizing 
community structure and function through six patterns. We detected 
the QTL combination to analyze the interaction between two bacteria 
in co-culture, including the gene acrE located at E3414424 position in 
E. coli and the gene guaA located at S383182 position in S. aureus. By 
analyzing the growth curve of the four genotypes for this QTL 
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combination (Figure 5C), we found that most genotypes were in a 
competitive relationship, to compete for limited medium resources 
and space for survival. The acrE gene encodes multidrug efflux pump 
membrane fusion lipoprotein AcrE, which can recognize a variety of 
toxic chemicals and actively expel them from cells. It acts on a wide 
range of substrates, ranging from most antibiotics, disinfectants, dyes, 
and detergents to simple solvents (Ma et al., 1993; Lu et al., 2006; Alav 
et  al., 2021). The guaA gene encodes guanosine monophosphate 
(GMP) synthase. GMP is a vital cellular metabolite for signal 
transduction (e.g., cyclic di-GMP) as well as bacterial virulence and 
survival (Hall and Lee, 2018). GMP can be directly generated from 
guanine and guanosine through a simple enzymatic reaction, but the 
inactivation of guaA generally results in guanine auxotrophy, 
therefore, guaA is essential for the de novo biosynthesis of GMP 
(Kotloff et al., 2004; Kofoed et al., 2016; Smith-Peter et al., 2021). This 
illustrates that our model can glean new insights into the genetic 
architecture of interspecific interactions, species coevolution, and 
community dynamics.

Our model could visualize three kinds of genetic effect networks, 
which will be  particularly useful for inferring and predicting the 
genetic mechanisms of community dynamics and evolution through 
further mining hub QTLs of these networks. Interestingly, yphH 
(E2683642), rpnE (E2357245), and ebh (S1385806) genes were not 
only genes with high frequency in interspecific QTL mapping, but also 
hub genes in the genetic effect networks. The yphH gene as harboring 
microdiversity can help bacteria adapt to varying and challenging 
environments by modifying their surface proteins (Touzain et al., 
2010). Bacteria use a variety of DNA-mobilizing enzymes to facilitate 
environmental niche adaptation via horizontal gene transfer, and a 
study found that rpnA-E genes of E. coli encode nucleases involved in 
DNA recombination, but overexpression of RpnA (YhgA) to RpnD 
(YjiP) increased RecA-independent recombination, reduced cell 
viability, and induced the expression of reporter of DNA damage, 
while RpnE (YfaD) is inactive in these processes (Kingston et  al., 
2017). The ebh gene is one of the mutations with possible influence on 
resistance phenotype identified in the genome of S. aureus SG511 
(Dietrich et al., 2021), and mutations that disrupt the ebh reading 
frame are associated with increased oxacillin and teicoplanin 
susceptibility (Cheng et al., 2014). In particular, the rpnE gene is a hub 
gene in the direct genetic effect network of E. coli and the indirect 
genetic effect network of S. aureus, indicating that this gene plays a 
pivotal role in the process of microbial interspecies interaction, and is 
worth further exploring its function and significance.

The application of systems mapping advances our understanding 
of microbial community structure and function, and also provides 
guidance for the efficient design of related experiments. Theoretical 
model studies provide new insights into microbial community 
ecology, while experimental validation of microbial interactions 
compensates for the limitations of model inference. In the future, the 
combination of systems mapping and gene function verification will 
not only deepen the understanding of the mechanism of microbial 
interspecies interactions, but also improve the ability to predict the 

dynamics and functional changes of microbial communities, and then 
further respond to challenges such as invasive alien species and global 
climate change, by regulating the species composition and interaction 
patterns of microbial communities.
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